JP2017031868A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2017031868A
JP2017031868A JP2015151944A JP2015151944A JP2017031868A JP 2017031868 A JP2017031868 A JP 2017031868A JP 2015151944 A JP2015151944 A JP 2015151944A JP 2015151944 A JP2015151944 A JP 2015151944A JP 2017031868 A JP2017031868 A JP 2017031868A
Authority
JP
Japan
Prior art keywords
cam
exhaust
intake
phase
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015151944A
Other languages
Japanese (ja)
Inventor
光浩 高見
Mitsuhiro Takami
光浩 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2015151944A priority Critical patent/JP2017031868A/en
Publication of JP2017031868A publication Critical patent/JP2017031868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine which can reduce the deterioration of an exhaust gas when an abnormality occurs in one variable valve timing mechanism, in the internal combustion engine having variable valve timing mechanisms at an intake side and an exhaust side.SOLUTION: A control device 1 of an internal combustion engine comprises variable valve timing mechanisms (VVT3, 4) at an intake side and an exhaust side, and a control part 6 which controls the variable valve timing mechanisms so as to be operated in leakage. The control part 6 comprises a valve timing command part 64 which commands the other VVT to be operated according to a fixed phase of a cam at a side at which the abnormality occurs so that a cam at a normal side is displaced to a state which is deviated to the same side as a state which is deviated to an advance side or a retardation side from a normal time at a phase of the cam at the side at which the abnormality occurs when it is determined that the abnormality exists at one VVT. Since the cam at the normal side is displaced according to the fixed phase, the deterioration of combustion is improved, and the deterioration of an exhaust gas can be reduced.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の運転状態に応じて、吸気バルブや排気バルブの開閉時期を変化させる可変バルブタイミング機構を備える内燃機関を制御する制御装置に関する。   The present invention relates to a control device that controls an internal combustion engine that includes a variable valve timing mechanism that changes opening and closing timings of intake valves and exhaust valves in accordance with the operating state of the internal combustion engine.

自動車に搭載される内燃機関として、エンジン回転数やエンジン負荷などの運転状態に応じて吸気バルブや排気バルブの開閉時期を変化させる可変バルブタイミング機構(以下、VVTと呼ぶことがある)を備えるものがある(例えば、特許文献1参照)。   As an internal combustion engine mounted on an automobile, a variable valve timing mechanism (hereinafter sometimes referred to as VVT) that changes the opening / closing timing of an intake valve or an exhaust valve according to an operating state such as an engine speed or an engine load. (For example, refer to Patent Document 1).

吸気バルブや排気バルブを開閉するカムを備えるカム軸は、代表的には、その端部近くにスプロケットが設けられ、スプロケットに架け渡されたタイミングチェーンやタイミングベルトを介してクランク軸の回転が伝えられて回転する。このカム軸の回転によって、カムプロフィールに応じた基本的な各バルブの開閉時期が決定される。VVTは、代表的には、カム軸に取り付けられて、スプロケットに対して相対的にカム軸を所定の角度に回転させて(詳細な構成は後述を参照)、クランク軸の回転に基づく基本的な各バルブ開閉時期を上記所定の角度に応じてずらす。カム軸の回転を油圧で行うVVTを油圧式、電動モータで行うVVTを電動式と呼ぶ。   A camshaft equipped with a cam that opens and closes an intake valve and an exhaust valve is typically provided with a sprocket near its end, and the rotation of the crankshaft is transmitted via a timing chain or timing belt that spans the sprocket. Rotate. By the rotation of the cam shaft, the basic opening / closing timing of each valve according to the cam profile is determined. The VVT is typically attached to a camshaft, and rotates the camshaft at a predetermined angle relative to the sprocket (see below for detailed configuration), and is basically based on the rotation of the crankshaft. Each valve opening / closing timing is shifted according to the predetermined angle. The VVT that rotates the camshaft hydraulically is called a hydraulic type, and the VVT that uses an electric motor is called an electric type.

VVTは、通常、電子制御部(ECU)によって制御される。電子制御部には、運転状態ごとに適した各バルブの開閉時期が設定されて、記憶されている。電子制御部は、自動車の運転時、各種センサからの情報に基づいて運転状態を調べて、現在の運転状態に適した各バルブの開閉時期を選択して、VVTを制御する。   VVT is normally controlled by an electronic control unit (ECU). In the electronic control unit, the opening / closing timing of each valve suitable for each operating state is set and stored. The electronic control unit checks the driving state based on information from various sensors during driving of the automobile, selects the opening / closing timing of each valve suitable for the current driving state, and controls the VVT.

吸気側VVT及び排気側VVTの双方を備える内燃機関では、吸気バルブの開閉時期及び排気バルブの開閉時期の調整の自由度が高い。例えば、吸気側VVTと排気側VVTの双方を備え、かつミラーサイクル(アトキンソンサイクルと呼ばれることがある)を行う内燃機関について、図3のバルブタイミングダイヤグラムを参照して、各バルブの開閉時期の一例を説明する。図3では、幅広のハッチングを付した内周のダイヤグラムが排気バルブ(Ex)のダイヤグラムを示し、細幅のハッチングを付した外周のダイヤグラムが吸気バルブ(In)のバルブタイミングを示す。   In an internal combustion engine having both an intake side VVT and an exhaust side VVT, the degree of freedom in adjusting the opening / closing timing of the intake valve and the opening / closing timing of the exhaust valve is high. For example, referring to the valve timing diagram of FIG. 3 for an internal combustion engine that has both an intake side VVT and an exhaust side VVT and performs a mirror cycle (sometimes referred to as an Atkinson cycle), an example of opening and closing timing of each valve Will be explained. In FIG. 3, the inner periphery diagram with wide hatching shows the diagram of the exhaust valve (Ex), and the outer periphery diagram with narrow hatching shows the valve timing of the intake valve (In).

図3(C)に示すように低負荷・低回転時には、吸気バルブの閉時期(close)を、下死点(BDC)を十分に過ぎた遅角側とし、図3(D)に示すように高負荷・高回転時には、吸気バルブの閉時期(close)を低負荷・低回転時の閉時期よりも進角側にすることができる。その結果、低負荷・低回転時には、圧縮比よりも膨張比を十分に高められて熱効率を高められる上に圧縮比が小さいことでノッキングを抑制でき、高負荷・高回転時には、圧縮比を高められて大きなパワーが得られる。   As shown in FIG. 3 (C), when the load is low and the rotation is low, the closing timing (close) of the intake valve is set to the retarded side sufficiently past the bottom dead center (BDC), as shown in FIG. 3 (D). In particular, when the load is high and the rotation is high, the closing timing of the intake valve (close) can be advanced from the closing timing when the load is low and the rotation is low. As a result, when the load is low and the rotation is low, the expansion ratio is sufficiently higher than the compression ratio and the thermal efficiency is increased. In addition, the compression ratio is small and knocking can be suppressed. To obtain great power.

始動時やアイドル時には、図3(A),(B)に示すように排気バルブの閉時期(close)を上死点(TDC)直後とすると共に、吸気バルブの開時期(open)を上記排気バルブの閉時期(close)よりも遅角側としてオーバーラップを設けず、高負荷・高回転時には、吸気バルブの開時期(open)をTDC近くである排気バルブの閉時期(close)よりも進角側にしてオーバーラップを設けることができる。その結果、始動時やアイドル時には、排気ガスを吸い込まず燃焼が安定し易く、高負荷・高回転時には、掃気効果や排気ガス再循環(内部EGR)によるNOxの低減効果が得られる。   When starting or idling, as shown in FIGS. 3A and 3B, the exhaust valve closing timing (close) is set immediately after the top dead center (TDC), and the intake valve opening timing (open) is set to the exhaust gas. No overlap is provided on the retarded side of the valve closing timing (close), and the intake valve opening timing (open) advances more than the exhaust valve closing timing (close) close to TDC at high load and high rotation. An overlap can be provided on the corner side. As a result, during start-up and idling, exhaust gas is not sucked in and combustion is easy to stabilize, and at high loads and high rotations, a scavenging effect and NOx reduction effect due to exhaust gas recirculation (internal EGR) can be obtained.

特開2003−206767号公報JP 2003-206767 A

吸気側可変バルブタイミング機構及び排気側可変バルブ機構の双方を備える内燃機関において、一方のVVTに異常が生じた場合に排気ガスの悪化を低減できることが望まれる。特に、この内燃機関がミラーサイクルを行う場合でも、燃焼の安定性に優れて、排気ガスの悪化を低減できることが望まれる。   In an internal combustion engine equipped with both an intake side variable valve timing mechanism and an exhaust side variable valve mechanism, it is desirable to be able to reduce the deterioration of exhaust gas when an abnormality occurs in one VVT. In particular, even when this internal combustion engine performs a mirror cycle, it is desired that the combustion stability is excellent and deterioration of exhaust gas can be reduced.

VVTの異常は、VVT内に供給されるエンジンオイルに含まれる異物等を噛み込むことで、VVTの作動時にカム軸を所定の角度に回転できない状態となる、固着異常と呼ばれるものが挙げられる。一方のVVTに固着異常が生じると、各運転状態における吸気バルブ及び排気バルブの開閉時期が適切な状態とならず、所望の効果を良好に得られない。   VVT abnormalities include those called sticking abnormalities in which the camshaft cannot be rotated to a predetermined angle when the VVT is operated by biting foreign matter or the like contained in engine oil supplied into the VVT. If a sticking abnormality occurs in one VVT, the opening / closing timings of the intake valve and the exhaust valve in each operation state are not in an appropriate state, and a desired effect cannot be obtained satisfactorily.

例えば、上述のミラーサイクルを行う内燃機関において、排気バルブの閉時期が上死点(TDC)よりも遅角側となるように固着した場合を考える。この場合、図4(d)に示すように高負荷・高回転時に吸気側のVVTを正常時と同様に動作させると、図4(d)に二点鎖線で示すように、オーバーラップが非常に大きくなる。オーバーラップが大き過ぎることで、燃料と空気との混合気中の排気ガス量が多くなって燃焼が安定せず、失火が生じ易くなり、排気ガスの悪化、例えば非メタン炭化水素(NMHC)の増加などを招き得る。始動時やアイドル時では、吸気側のVVTを正常時と同様に動作させると、オーバーラップができて、失火を生じ易くなる。   For example, in the internal combustion engine that performs the above-described mirror cycle, consider a case where the exhaust valve is fixed so that the closing timing of the exhaust valve is on the retard side from the top dead center (TDC). In this case, when the intake-side VVT is operated in the same way as during normal operation at high load and high speed as shown in FIG. 4 (d), the overlap is extremely large as shown by the two-dot chain line in FIG. 4 (d). Become bigger. If the overlap is too large, the amount of exhaust gas in the mixture of fuel and air will increase, combustion will not be stable, and misfire will be likely to occur, exhaust gases will deteriorate, for example non-methane hydrocarbons (NMHC) An increase can be invited. When starting or idling, if the VVT on the intake side is operated in the same manner as normal, an overlap can occur and a misfire tends to occur.

このようにいずれか一方のVVTに異常が生じたときに、他方のVVTを正常時と同様に動作させると、排ガスの悪化を生じ易くなる場合がある。   In this way, when an abnormality occurs in one of the VVTs, if the other VVT is operated in the same manner as normal, exhaust gas may be easily deteriorated.

特許文献1では、一方のVVTに固着異常が生じた場合、オーバーラップが最小となるように他方のVVTを制御すること、及びアイドル回転速度を通常よりも上昇することの少なくとも一方を行うことを開示する。VVTの具体的な制御は、正常な側の開閉タイミングを最進角位置(吸気側に異常があり、排気側が正常である場合)、又は最遅角位置(排気側に異常があり、吸気側が正常である場合)にする。この制御では、固着時のカム角の大小に係わらず、最遅角位置や最進角位置という固定位置にして、オーバーラップを最小にする、実質的には無くす(特許文献1の図7の実線参照)。そのため、上述のようにオーバーラップを望む運転状態では、オーバーラップによる効果が実質的に得られない。上述の図3に示すミラーサイクルを行う内燃機関において、上述のように排気バルブの閉時期が遅角側で固着した場合に正常である吸気バルブの開閉時期を最遅角位置とすれば、高負荷・高回転時にオーバーラップが十分に設けられない上に、吸気バルブの閉時期が更に遅くなって圧縮が不十分となり、燃焼の不安定を招く恐れがある。   In Patent Document 1, when a sticking abnormality occurs in one of the VVTs, the other VVT is controlled so that the overlap is minimized, and at least one of increasing the idle rotation speed from normal is performed. Disclose. The specific control of the VVT is based on whether the opening / closing timing on the normal side is the most advanced angle position (when the intake side is abnormal and the exhaust side is normal) or the most retarded position (the exhaust side is abnormal and the intake side is If it is normal). In this control, regardless of the magnitude of the cam angle at the time of fixing, the overlap is minimized by substantially setting the fixed position as the most retarded angle position or the most advanced angle position (see FIG. 7 of Patent Document 1). (See solid line). Therefore, in the operation state in which overlap is desired as described above, the effect due to the overlap cannot be substantially obtained. In the internal combustion engine that performs the mirror cycle shown in FIG. 3 described above, if the closing timing of the intake valve, which is normal when the closing timing of the exhaust valve is fixed on the retarded side as described above, is set to the most retarded position, it is In addition, sufficient overlap is not provided at the time of load and high rotation, and the closing timing of the intake valve is further delayed, resulting in insufficient compression, which may cause instability of combustion.

そこで、本発明の目的の一つは、吸気側可変バルブタイミング機構及び排気側可変バルブ機構の双方を備える内燃機関において、一方の可変バルブタイミング機構に異常が生じた場合に排気ガスの悪化を低減できる内燃機関の制御装置を提供することにある。   Accordingly, one of the objects of the present invention is to reduce deterioration of exhaust gas when an abnormality occurs in one variable valve timing mechanism in an internal combustion engine having both an intake side variable valve timing mechanism and an exhaust side variable valve mechanism. An object of the present invention is to provide a control device for an internal combustion engine.

本発明の一態様に係る内燃機関の制御装置は、吸気バルブを開閉する吸気側カムの位相を変化させる吸気側可変バルブタイミング機構、排気バルブを開閉する排気側カムの位相を変化させる排気側可変バルブタイミング機構、及びこれらを連係して動作するように制御する制御部を備える。
前記制御部は、前記吸気側カムの位相及び前記排気側カムの位相を演算するカム角演算部と、演算した両カムの位相に基づいて、前記吸気側可変バルブタイミング機構及び前記排気側可変バルブタイミング機構の異常の有無を判断する異常判断部と、以下のバルブタイミング指令部とを備える。
バルブタイミング指令部は、前記異常判断部で、一方の可変バルブタイミング機構に異常があると判断されたとき、異常がある前記一方の可変バルブタイミング機構で動作されるカムにおける前記カム角演算部で演算した位相に応じて、かつ、この異常がある側のカムの位相における正常時から進角側又は遅角側にずれた状態と同じ側にずれた状態に、正常な側のカムを変位するように他方の可変バルブタイミング機構に動作を指令する。
An internal combustion engine control apparatus according to an aspect of the present invention includes an intake side variable valve timing mechanism that changes a phase of an intake side cam that opens and closes an intake valve, and an exhaust side variable that changes a phase of an exhaust side cam that opens and closes an exhaust valve. A valve timing mechanism and a control unit that controls the valve timing mechanism to operate in cooperation with each other are provided.
The control unit includes a cam angle calculation unit that calculates the phase of the intake side cam and the phase of the exhaust side cam, and the intake side variable valve timing mechanism and the exhaust side variable valve based on the calculated phases of both cams. An abnormality determination unit that determines whether there is an abnormality in the timing mechanism, and a valve timing command unit described below.
The valve timing command unit is the cam angle calculation unit in the cam operated by the one variable valve timing mechanism having an abnormality when the abnormality determination unit determines that the one variable valve timing mechanism has an abnormality. In accordance with the calculated phase, the cam on the normal side is displaced to a state shifted to the same side as the state shifted to the advance side or retard side from the normal phase of the cam on the abnormal side. Thus, the other variable valve timing mechanism is commanded to operate.

上記の内燃機関の制御装置は、一方の可変バルブタイミング機構(VVT)に異常があると判断されたときに、異常がある側のカムの位相(以下、固着位相と呼ぶことがある)に応じて、正常な他方のVVTに動作されるカムを異常がある側のカムと同じ進角側又は遅角側に変位させる。そのため、上記の内燃機関の制御装置は、一方のVVTに異常が生じた場合でも、正常時の運転環境に近付けられる。従って、上記の内燃機関の制御装置によれば、一方のVVTに異常が生じた場合でも、運転状態ごとに設定された正常時の運転環境にある程度近い運転環境にすることができ、他方のVVTを正常時と同様に動作させる場合と比較して、排気ガスの悪化を低減できる。また、ミラーサイクルを行う内燃機関である場合にも、排気ガスの悪化を低減できる。   When it is determined that one of the variable valve timing mechanisms (VVT) is abnormal, the control device for the internal combustion engine according to the phase of the cam on the abnormal side (hereinafter sometimes referred to as a fixing phase). Thus, the cam operated by the other normal VVT is displaced to the same advance side or retard side as the cam on the abnormal side. Therefore, the control device for the internal combustion engine is brought close to the normal operating environment even when an abnormality occurs in one of the VVTs. Therefore, according to the control device for an internal combustion engine described above, even when an abnormality occurs in one VVT, it is possible to make the operation environment close to a normal operation environment set for each operation state to some extent, and the other VVT. As compared with the case where the engine is operated in the same manner as normal, deterioration of exhaust gas can be reduced. Further, even when the internal combustion engine performs a mirror cycle, deterioration of exhaust gas can be reduced.

実施形態1の内燃機関の制御装置の機能ブロック図である。2 is a functional block diagram of a control device for an internal combustion engine according to Embodiment 1. FIG. 実施形態1の内燃機関の制御装置による制御手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of a control procedure by the control device for an internal combustion engine according to the first embodiment. ミラーサイクルを行う内燃機関について、運転状態ごとの吸気バルブ及び排気バルブの開閉時期の一例を示すタイミングダイヤグラムであり、(A)は始動時、(B)はアイドル時、(C)は低負荷・低回転時、(D)は高負荷・高回転時を示す。FIG. 3 is a timing diagram showing an example of opening and closing timings of intake valves and exhaust valves for each operating state for an internal combustion engine that performs a mirror cycle, where (A) is a start time, (B) is an idle time, and (C) is a low load At low rotation, (D) shows a high load and high rotation. 実施形態1の内燃機関の制御装置によって、排気側可変バルブタイミング機構に異常が生じた場合に吸気側可変バルブタイミング機構を動作させて、吸気バルブの開閉時期を調整した一例を示すタイミングダイヤグラムであり、(c)は排気側VVTが正常時よりも進角側に固着した場合における低負荷・低回転時のダイヤグラム、(d)は排気側VVTが正常時よりも遅角側に固着した場合における高負荷・高回転時のダイヤグラムを示す。3 is a timing diagram showing an example in which the intake side variable valve timing mechanism is operated to adjust the opening / closing timing of the intake valve when an abnormality occurs in the exhaust side variable valve timing mechanism by the control device for the internal combustion engine of the first embodiment. (C) is a diagram when the exhaust side VVT is fixed to the advance side than normal, and (d) is a diagram when the exhaust side VVT is fixed to the retard side than normal. The diagram at the time of high load and high rotation is shown.

以下、図面を参照して、本発明の内燃機関の制御装置を具体的に説明する。図中、同一符号は同一名称物を示す。   Hereinafter, a control device for an internal combustion engine of the present invention will be described in detail with reference to the drawings. In the figure, the same reference numerals indicate the same names.

[実施形態1]
(全体構成)
実施形態1の内燃機関の制御装置1は、自動車といった車両(図示せず)に搭載されて、車両が走行する駆動力を発生する内燃機関2の各構成要素の制御に利用される。内燃機関2は、燃料と空気とを含む混合気を点火プラグ5によって点火して、燃焼室22Cで燃焼して上記駆動力を発生する。この内燃機関2は、吸気バルブ30を開閉する吸気側カム(図示せず)の位相を変化させる吸気側可変バルブタイミング機構3(以下、InVVT3)と、排気バルブ40を開閉する排気側カム(図示せず)の位相を変化させる排気側可変バルブタイミング機構4(以下、ExVVT4)と、点火プラグ5とを備える。制御装置1は、InVVT3と、ExVVT4と、これらを連係して動作するように制御する制御部(ECU)6とを備える。
[Embodiment 1]
(overall structure)
The internal combustion engine control apparatus 1 according to the first embodiment is mounted on a vehicle (not shown) such as an automobile, and is used to control each component of the internal combustion engine 2 that generates a driving force that the vehicle travels. The internal combustion engine 2 ignites an air-fuel mixture containing fuel and air with the spark plug 5 and burns it in the combustion chamber 22C to generate the driving force. The internal combustion engine 2 includes an intake side variable valve timing mechanism 3 (hereinafter referred to as InVVT3) that changes the phase of an intake side cam (not shown) that opens and closes an intake valve 30, and an exhaust side cam that opens and closes an exhaust valve 40 (see FIG. An exhaust side variable valve timing mechanism 4 (hereinafter, ExVVT4) for changing the phase of the ignition plug 5 is provided. The control device 1 includes an InVVT 3, an ExVVT 4, and a control unit (ECU) 6 that controls them to operate in association with each other.

実施形態1の内燃機関の制御装置1は、制御部6によって、InVVT3,ExVVT4の異常の有無を判断すると共に、一方のVVTに異常があると判断されたとき、異常がある側のカムの位相(固着位相)に応じて、異常が無く正常な他方のVVTで動作されるカムを変位するように他方のVVTを動作させることを特徴の一つとする。まず、図1を参照して、内燃機関2の各構成要素及び制御部6を説明する。   In the control device 1 for an internal combustion engine according to the first embodiment, the control unit 6 determines whether there is an abnormality in the InVVT3 and ExVVT4, and when it is determined that one VVT is abnormal, the phase of the cam on the abnormal side is determined. One of the characteristics is that the other VVT is operated so as to displace the cam operated by the other VVT that is normal and has no abnormality according to (fixing phase). First, each component of the internal combustion engine 2 and the control unit 6 will be described with reference to FIG.

(内燃機関)
内燃機関2は、代表的には、オイルパン(図示せず)、シリンダブロック20、シリンダヘッド22、シリンダヘッドカバー24が下から順に組み付けられた積層物を主体とする。
シリンダブロック20は、シリンダボア20Bを備え、燃焼圧を利用してボア20B内を直線的に往復動するピストン20Pと、ピストン20Pの直線的な往復動を回転運動に変換するクランク軸20Cなどの主運動系を収納する。
シリンダヘッド22は、空気を導入する吸気ポート223と、インジェクタ8から噴射された燃料と吸気ポート223から導入した空気とを含む混合気を燃焼する燃焼室22Cと、燃焼室22Cで生じた排気ガスを排出する排気ポート224とを有する。シリンダヘッド22は、各ポート223,224と燃焼室22Cとの境界に配置されて燃焼室22Cを開閉する吸気バルブ30及び排気バルブ40、吸気バルブ30を開閉する吸気側カム(図示せず)が設けられた吸気側カム軸30C、排気バルブ40を開閉する排気側カム(図示せず)が設けられた排気側カム軸40Cなどの動弁系を収納する。
図1では、インジェクタ8が吸気ポート223に取り付けられて、吸気ポート223に燃料を噴射する形態(ポート噴射式)を示すが、燃焼室22Cに直接噴射する形態(直噴式)とすることができる。
吸気ポート223には、吸気マニホールド93が接続されて、エアクリーナー(図示せず)などを経た空気が導入される。吸気ポート223を経て、開状態にある吸気バルブ30を経て燃焼室22Cに空気を導入する。排気ポート224には排気マニホールド94が接続されて、触媒コンバーター(図示せず)を経て排気ガスを車外に排出する。
内燃機関2は、上記混合気の燃焼を利用して、吸気、圧縮、燃焼、排気の4サイクル運転を行う。
(Internal combustion engine)
The internal combustion engine 2 typically includes a laminate in which an oil pan (not shown), a cylinder block 20, a cylinder head 22, and a cylinder head cover 24 are assembled in order from the bottom.
The cylinder block 20 includes a cylinder bore 20B, and includes a piston 20P that linearly reciprocates within the bore 20B using combustion pressure, and a main shaft such as a crankshaft 20C that converts the linear reciprocation of the piston 20P into rotational motion. Stores the motor system.
The cylinder head 22 includes an intake port 223 for introducing air, a combustion chamber 22C for burning an air-fuel mixture including fuel injected from the injector 8 and air introduced from the intake port 223, and exhaust gas generated in the combustion chamber 22C. And an exhaust port 224 for discharging the air. The cylinder head 22 is disposed at the boundary between the ports 223 and 224 and the combustion chamber 22C, and has an intake valve 30 for opening and closing the combustion chamber 22C, an exhaust valve 40, and an intake side cam (not shown) for opening and closing the intake valve 30. A valve operating system such as an intake side camshaft 30C provided and an exhaust side camshaft 40C provided with an exhaust side cam (not shown) for opening and closing the exhaust valve 40 is housed.
Although FIG. 1 shows a mode in which the injector 8 is attached to the intake port 223 and fuel is injected into the intake port 223 (port injection type), a mode in which fuel is directly injected into the combustion chamber 22C (direct injection type) can be used. .
An intake manifold 93 is connected to the intake port 223 to introduce air that has passed through an air cleaner (not shown). Air is introduced into the combustion chamber 22C via the intake port 223 and the intake valve 30 in the open state. An exhaust manifold 94 is connected to the exhaust port 224, and exhaust gas is discharged outside the vehicle through a catalytic converter (not shown).
The internal combustion engine 2 performs four-cycle operation of intake, compression, combustion, and exhaust using the combustion of the air-fuel mixture.

・可変バルブタイミング機構
InVVT3,ExVVT4の基本構成及び機能は同様であり、公知の構成を利用できる。この例のInVVT3は電動式VVTであり、ExVVT4は油圧式VVTである。電動式VVTは、エンジンオイルの温度によらず動作可能あり、エンジンオイルが低温である始動時などでも、良好に動作できる。油圧式VVTは、汎用されており、利用し易い。以下、各VVT3,4の一例を簡単に説明する。
-Variable valve timing mechanism The basic configuration and functions of InVVT3 and ExVVT4 are the same, and a known configuration can be used. InVVT3 in this example is an electric VVT, and ExVVT4 is a hydraulic VVT. The electric VVT can operate regardless of the temperature of the engine oil, and can operate well even at the start-up when the engine oil is at a low temperature. The hydraulic VVT is widely used and easy to use. Hereinafter, an example of each VVT 3 and 4 will be briefly described.

InVVT3に利用する電動式VVTは、吸気側カム軸30Cの端部に配置される電動モータ32と、位相変化機構34とを備える。
モータ32は、カム軸30Cと同軸に回転可能に配置されるモータ軸a、外周面に磁石が配設され、モータ軸aに一体のロータ(図示せず)、ロータの外周に配置され、コアとコイルとで構成されるステータ(図示せず)などを備える。制御部6によってコイルに通電されて、モータ軸aの外周に回転磁界が形成されると、回転磁界に応じて、モータ軸aは時計回り又は反時計回りに回転する。
位相変化機構34は、吸気側カム軸30Cの端部に同軸に固定される出力軸(図示せず)、出力軸の外周に同軸に設けられるスプロケットs、スプロケットsの内周壁に同軸に固定される内歯のリングギアr、モータ軸aに連結固定された偏心軸d、リングギアrの内周に配設されて、内歯に噛み合う外歯を備える遊星歯車pなどを備える。出力軸には、周方向に等間隔に設けられた複数の係合孔を有する円板状の係合部を備え、遊星歯車pは、係合孔(図示せず)に対応する箇所に複数の突起を備える。スプロケットsとクランク軸20Cに設けられたスプロケット(図示せず)とにタイミングチェーンなど(図示せず)が架け渡されて、カム軸30Cは、クランク軸20Cに同期して回転可能である。モータ軸aは、スプロケットsに対して相対回転可能に設けられる。
The electric VVT used for the InVVT 3 includes an electric motor 32 disposed at the end of the intake camshaft 30C and a phase change mechanism 34.
The motor 32 has a motor shaft a that is rotatably disposed coaxially with the cam shaft 30C, a magnet is disposed on the outer peripheral surface, a rotor (not shown) that is integral with the motor shaft a, and an outer periphery of the rotor. And a stator (not shown) composed of a coil and a coil. When the coil is energized by the controller 6 and a rotating magnetic field is formed on the outer periphery of the motor shaft a, the motor shaft a rotates clockwise or counterclockwise according to the rotating magnetic field.
The phase change mechanism 34 is coaxially fixed to an output shaft (not shown) coaxially fixed to the end portion of the intake camshaft 30C, a sprocket s coaxially provided on the outer periphery of the output shaft, and an inner peripheral wall of the sprocket s. An inner ring gear r, an eccentric shaft d connected and fixed to the motor shaft a, a planetary gear p provided on the inner periphery of the ring gear r and having outer teeth meshing with the inner teeth. The output shaft is provided with a disk-like engagement portion having a plurality of engagement holes provided at equal intervals in the circumferential direction, and a plurality of planetary gears p are provided at positions corresponding to the engagement holes (not shown). With protrusions. A timing chain or the like (not shown) is bridged between the sprocket s and a sprocket (not shown) provided on the crankshaft 20C, so that the camshaft 30C can rotate in synchronization with the crankshaft 20C. The motor shaft a is provided to be rotatable relative to the sprocket s.

InVVT3を動作させず、モータ軸aがスプロケットsに対して相対回転しないときには、クランク軸20Cの回転に伴って、遊星歯車pがリングギアrと噛合った状態でスプロケットsと一体に回転する。このとき、突起が係合孔の内壁を回転方向に押圧するため、出力軸がスプロケットsに対して同一方向に回転する。
InVVT3に制御部6から動作指令が出されて、モータ軸aがスプロケットsに対して相対回転すると、遊星歯車pが遊星運動によって偏心軸dに対して相対回転しつつ、リングギアrの噛合い位置を変化させる。相対回転の回転方向によって、突起が係合孔の内壁を押圧する方向が変わって、進角側、遅角側に位相をずらすことができる。
When the InVVT 3 is not operated and the motor shaft a does not rotate relative to the sprocket s, the planetary gear p rotates integrally with the sprocket s while being engaged with the ring gear r as the crankshaft 20C rotates. At this time, since the protrusion presses the inner wall of the engagement hole in the rotation direction, the output shaft rotates in the same direction with respect to the sprocket s.
When an operation command is issued from the control unit 6 to the InVVT 3 and the motor shaft a rotates relative to the sprocket s, the planetary gear p rotates relative to the eccentric shaft d by planetary motion, while the ring gear r meshes. Change position. The direction in which the protrusions press the inner wall of the engagement hole changes depending on the rotation direction of the relative rotation, and the phase can be shifted to the advance side and the retard side.

ExVVT4に利用する油圧式VVTは、排気側カム軸40Cの端部に取り付けられるケース41と、ケース41内に収納されてケース41に対して相対的に回転可能なベーン42とを備える。ケース41の外周面には、スプロケット(図示せず)を備え、このスプロケットとクランク軸20Cに設けられたスプロケットとにタイミングチェーンなどが架け渡されて、ケース41は、クランク軸20Cに同期して回転可能である。ケース41の回転により、カム軸40Cが回転する。
ケース41内面には、カム軸40Cの中心に向かって突出し、カム軸40Cの周方向に所定の間隔に離間して配置された複数の軸側突出部を備える。
ケース41内に収納されるベーン42は、スプロケット(ケース41)に対して相対的に回転可能に設けられる。このベーン42の外周には、径方向外方に突出する複数のベーン側突出部を備える。ベーン側突出部は、上述の軸側突出部間に介在するように配置される。ベーン側突出部を挟む二つの軸側突出部のうち、一方は、排気側カムの最進角位置よりも更に進角側に設けられ、他方は、排気側カムの最遅角位置よりも更に遅角側に設けられる。
The hydraulic VVT used for the ExVVT 4 includes a case 41 attached to the end of the exhaust camshaft 40C, and a vane 42 that is housed in the case 41 and is rotatable relative to the case 41. A sprocket (not shown) is provided on the outer peripheral surface of the case 41, and a timing chain or the like is bridged between the sprocket and a sprocket provided on the crankshaft 20C. The case 41 is synchronized with the crankshaft 20C. It can be rotated. The rotation of the case 41 causes the cam shaft 40C to rotate.
The inner surface of the case 41 is provided with a plurality of shaft-side protrusions that protrude toward the center of the cam shaft 40C and are spaced apart from each other at a predetermined interval in the circumferential direction of the cam shaft 40C.
The vane 42 accommodated in the case 41 is provided so as to be rotatable relative to the sprocket (case 41). The outer periphery of the vane 42 is provided with a plurality of vane side projecting portions projecting radially outward. The vane-side protrusion is disposed so as to be interposed between the above-described shaft-side protrusions. Of the two shaft-side protrusions sandwiching the vane-side protrusion, one is provided on the further advance side than the most advanced position of the exhaust side cam, and the other is further on the most retarded position of the exhaust side cam. Provided on the retard side.

ExVVT4を動作させていないときには、図1に例示するように、ベーン側突出部は、軸側突出部間の概ね中間位置に保持される。両軸側突出部は、上述のように最進角側及び最遅角側のいずれからも離れた位置に配置されるため、クランク軸20Cの回転に同期してケース41が回転すると、ケース41に一体のカム軸40Cは、軸側突出部及びベーン側突出部に規制されることなく回転し、排気側カムは、所定の位相をとる。
ExVVT4に制御部6から動作指令が出されると、油圧によってベーン42を軸側突出部間で所定の角度だけ回転させる。この状態で、クランク軸20Cの回転に伴ってケース41が回転すると、VVTを動作させていないときから、上記所定の角度だけカムの位相をずらすことができる。
When the ExVVT 4 is not operated, as illustrated in FIG. 1, the vane-side protrusion is held at a substantially intermediate position between the shaft-side protrusions. Since both shaft side protrusions are arranged at positions away from both the most advanced angle side and the most retarded angle side as described above, the case 41 rotates when the case 41 rotates in synchronization with the rotation of the crankshaft 20C. The cam shaft 40C integrated with the shaft rotates without being restricted by the shaft-side protruding portion and the vane-side protruding portion, and the exhaust-side cam takes a predetermined phase.
When an operation command is issued to the ExVVT 4 from the control unit 6, the vane 42 is rotated by a predetermined angle between the shaft-side protruding portions by hydraulic pressure. In this state, if the case 41 rotates with the rotation of the crankshaft 20C, the cam phase can be shifted by the predetermined angle from when the VVT is not operated.

この例の内燃機関2は、膨張比が圧縮比より大きくなるようにカムプロフィールと両カム軸30C,40Cにおけるカムの配置位置とが調整されて、ミラーサイクルを行う。更に、この例の内燃機関2は、VVT3,4を備えており、運転状態に応じてVVT3,4を動作させて両カムの位相を変化させることで、特定の運転状態のときに膨張比をより大きくしたり、圧縮比をより大きくしたりすることができる(図3参照)。   The internal combustion engine 2 of this example performs a mirror cycle by adjusting the cam profile and the cam arrangement positions on both cam shafts 30C and 40C so that the expansion ratio is larger than the compression ratio. Further, the internal combustion engine 2 of this example includes VVTs 3 and 4 and operates the VVTs 3 and 4 in accordance with the operating state to change the phase of both cams, thereby increasing the expansion ratio in a specific operating state. It can be made larger or the compression ratio can be made larger (see FIG. 3).

例えば、図3(C)に示すように低負荷・低回転時には、吸気バルブ30の閉時期(close)が下死点(BDC)よりも十分に遅角側となるようにInVVT3を制御することで、圧縮比を十分に小さくでき、膨張比をより大きくすることができる。
図3(D)に示すように高負荷・高回転時には、吸気バルブ30の閉時期(close)を低負荷・低回転時よりも進角側にすることで圧縮比を大きくすることができる。かつ、吸気バルブ30の開時期(open)を上死点(TDC)よりも前にする(進角側にする)と共に、排気バルブ40の閉時期(close)を上死点(TDC)近くとなるようにInVVT3,ExVVT4を制御することで、上死点(TDC)よりも前に(進角側に)オーバーラップを設けられる。
図3(A),(B)に示すように始動時、アイドル時には、排気バルブ40の閉時期(close)を上死点(TDC)近くにすると共に、吸気バルブ30の開時期(open)を排気バルブ40の閉時期(close)よりも後にする(遅角側にする)ことで、オーバーラップを無くすことができる上に、圧縮比を比較的小さくできる。
For example, as shown in FIG. 3C, at the time of low load and low rotation, the InVVT 3 is controlled so that the closing timing (close) of the intake valve 30 is sufficiently retarded from the bottom dead center (BDC). Thus, the compression ratio can be sufficiently reduced, and the expansion ratio can be further increased.
As shown in FIG. 3D, when the load is high and the rotation is high, the compression ratio can be increased by making the closing timing of the intake valve 30 closer to the advance side than when the load is low and the rotation is low. In addition, the opening timing (open) of the intake valve 30 is set before the top dead center (TDC) (advanced side), and the closing timing (close) of the exhaust valve 40 is set near the top dead center (TDC). By controlling InVVT3 and ExVVT4 in such a manner, an overlap can be provided before the top dead center (TDC) (on the advance side).
As shown in FIGS. 3A and 3B, at the time of start-up and idling, the closing timing (close) of the exhaust valve 40 is made close to top dead center (TDC) and the opening timing (open) of the intake valve 30 is set. By setting the exhaust valve 40 later (closed side) than the closing timing (closing), the overlap can be eliminated and the compression ratio can be made relatively small.

(制御部)
InVVT3、ExVVT4、その他点火プラグ5などの内燃機関2の各構成要素は、制御部6によって制御される。制御部6は、車両に取り付けられた各種センサからの信号を受信し、得られた信号を適宜演算などし、演算結果などに基づき、各構成要素に所定の動作を指令する。この制御部6は、自己診断機能(OBD)を有しており、各構成要素に異常が生じた場合に、各構成要素に予め設定された異常時用の動作を指令したり、警告灯などによって運転者に異常を知らせたりする。このような制御部6は、各種センサからの信号を受信する受信部と、受信した信号を適宜な演算値とする演算部と、演算結果と記憶された情報とを比較して判定する判定部と、判定結果によって各構成要素に動作を指令する指令部とを備える(いずれも図示せず)。また、制御部6は、各種の情報を記憶する記憶部65を備える。制御部6の基本構成は、自動車の電子制御部に利用されている公知のものを利用できる。
(Control part)
Each component of the internal combustion engine 2 such as InVVT 3, ExVVT 4, and other spark plugs 5 is controlled by the control unit 6. The control unit 6 receives signals from various sensors attached to the vehicle, appropriately calculates the obtained signals, and commands predetermined components to each component based on the calculation results. The control unit 6 has a self-diagnosis function (OBD). When an abnormality occurs in each component, the controller 6 instructs an operation for an abnormality set in advance in each component, a warning light, or the like. To inform the driver of the abnormality. Such a control unit 6 includes a reception unit that receives signals from various sensors, a calculation unit that uses the received signal as an appropriate calculation value, and a determination unit that compares and determines the calculation result and stored information. And a command unit that commands each component according to the determination result (none of which is shown). The control unit 6 includes a storage unit 65 that stores various types of information. As the basic configuration of the control unit 6, a known configuration used for an electronic control unit of an automobile can be used.

制御に利用するパラメータとして、エンジン回転数、エンジン負荷(トルク)、冷却液温度、アクセル開度又はアクセル踏込量、車速、吸気量、スロットルバルブ開度、空燃比、排気ガス中の酸素量などが挙げられる。制御部6は、上述の始動時、アイドル時、低負荷・低回転時、高負荷・高回転時などといった各運転状態に応じて、InVVT3,ExVVT4を制御することから、各種センサからの信号を適宜演算して、運転状態の把握に利用するパラメータを取得する。例えば、エンジン回転数は、クランク軸20Cの回転角度によって把握できることから、クランク角センサ26からの信号を利用することが挙げられる。エンジン負荷は、例えば、冷却液温度、アクセル開度、車速、スロットルバルブ開度などなどによって把握できることから、温度センサ、アクセルセンサ、車速センサ、スロットルセンサなどからの信号を利用することが挙げられる。上記センサは公知のものを利用できる。   Parameters used for control include engine speed, engine load (torque), coolant temperature, accelerator opening or accelerator depression, vehicle speed, intake air, throttle valve opening, air-fuel ratio, and oxygen content in exhaust gas. Can be mentioned. Since the control unit 6 controls the InVVT3 and ExVVT4 according to each operation state such as at the time of start-up, idling, low load / low rotation, high load / high rotation, etc., signals from various sensors are transmitted. It calculates appropriately and acquires the parameter used for grasping the driving state. For example, since the engine speed can be grasped by the rotation angle of the crankshaft 20C, a signal from the crank angle sensor 26 can be used. Since the engine load can be grasped by, for example, the coolant temperature, the accelerator opening, the vehicle speed, the throttle valve opening, and the like, it is possible to use signals from a temperature sensor, an accelerator sensor, a vehicle speed sensor, a throttle sensor, and the like. A known sensor can be used as the sensor.

運転状態の把握にあたり、例えば、エンジン回転数とエンジン負荷とで表される運転状態マップなどを予め設定しておき、記憶部65に記憶させておく。各運転状態に応じたInVVT3による吸気側カムの調整量の基本マップ、ExVVT4による排気側カムの調整量の基本マップ(以下、まとめて基本カムマップと呼ぶことがある)も予め設定しておき、記憶部65に記憶させておく。   In grasping the operation state, for example, an operation state map represented by the engine speed and the engine load is set in advance and stored in the storage unit 65. A basic map of the adjustment amount of the intake side cam by InVVT3 and a basic map of the adjustment amount of the exhaust side cam by ExVVT4 (hereinafter sometimes collectively referred to as a basic cam map) according to each operation state are also set in advance. This is stored in the storage unit 65.

その他、制御部6は、ノッキングの防止、燃費向上などを目的として点火プラグ5による点火時期の制御を行う点火制御部(図示せず)などを備える。各運転状態に応じた点火時期を予め設定しておき、記憶部65に記憶させておく。   In addition, the control unit 6 includes an ignition control unit (not shown) that controls ignition timing by the spark plug 5 for the purpose of preventing knocking and improving fuel consumption. The ignition timing corresponding to each operating state is set in advance and stored in the storage unit 65.

特に、実施形態1の内燃機関の制御装置1に備える制御部6は、InVVT3及びExVVT4の異常の有無を判断する異常判断部62と、異常判断部62で一方のVVTに異常があると判断されたとき、異常がある側のカムにおけるこのときの位相(固着位相、カム角演算部で演算された位相)に応じて、異常が無い正常な側のカムを異常がある側のカムと同じ側にずれた状態に変位するように、異常が無く正常な他方のVVTに動作を指令するバルブタイミング指令部64とを備えることを特徴の一つとする。更に制御部6は、吸気側カムの位相及び排気側カムの位相を演算するカム角演算部60を備える。異常判断部62は、演算した両カムの位相に基づいて異常の有無を判断する。   In particular, the control unit 6 included in the control device 1 for an internal combustion engine according to the first embodiment determines that there is an abnormality in one VVT by the abnormality determination unit 62 that determines whether there is an abnormality in InVVT3 and ExVVT4. The cam on the normal side with no abnormality is the same as the cam on the abnormal side according to the phase at this time (fixed phase, phase calculated by the cam angle calculation unit) of the cam on the abnormal side. One of the features is that it includes a valve timing command unit 64 that commands the other VVT that is normal and has no abnormality so as to be displaced to a state deviated. Further, the control unit 6 includes a cam angle calculation unit 60 that calculates the phase of the intake side cam and the phase of the exhaust side cam. The abnormality determination unit 62 determines the presence or absence of abnormality based on the calculated phase of both cams.

現在の各カムの位相は、クランク軸20Cの回転角度(クランク角)と各カム軸30C,40Cの回転角度(カム角)とを用いることで求められる。詳しくは、クランク角とカム角との角度差を求め、この角度差が、適宜学習などして設定される基準の角度差からどの程度進角しているか又は遅角しているかによって現在の各カムの位相が求められる(例えば、特許文献1参照)。そこで、この例の制御装置1は、InVVT3、ExVVT4にそれぞれ取り付けられて、各カム軸30C,40Cの回転角度を検出する吸気側カム角センサ36、排気側カム角センサ46を備えると共に、クランク軸20Cに取り付けられて、クランク軸20Cの回転速度を検出するクランク角センサ26を備える。各センサ26,36,46からの信号を用いて、カム角演算部60は、各カムの位相を演算する。   The current phase of each cam is obtained by using the rotation angle (crank angle) of the crankshaft 20C and the rotation angles (cam angle) of the camshafts 30C and 40C. Specifically, an angle difference between the crank angle and the cam angle is obtained, and each current angle depends on how much the angle difference is advanced or retarded from a reference angle difference set by appropriate learning or the like. The phase of the cam is obtained (see, for example, Patent Document 1). Therefore, the control device 1 of this example is provided with an intake side cam angle sensor 36 and an exhaust side cam angle sensor 46 which are attached to InVVT3 and ExVVT4, respectively, and detect the rotation angles of the camshafts 30C and 40C. A crank angle sensor 26 that is attached to 20C and detects the rotational speed of the crankshaft 20C is provided. The cam angle calculation unit 60 calculates the phase of each cam using signals from the sensors 26, 36, and 46.

異常が無く正常である他方のVVTに動作されるカム(正常な側のカム)は、バルブタイミング指令部64からの指令に基づいて他方のVVTが制御されることで、異常がある一方のVVTで動作されるカム(異常がある側のカム)の位相における正常時から進角側又は遅角側にずれた状態と同じ側にずれた状態に変位される。端的にいうと、一方のVVTで異常があると判断された場合には、正常な側のカムの位相を、異常がある側のカムの位相と同じ側に進角又は遅角する。かつ、このときのシフト量を異常がある側のカムの位相(固着位相)の大きさに応じて予め設定した値とする。   A cam operated on the other VVT that is normal and has no abnormality (a cam on the normal side) is controlled by the other VVT based on a command from the valve timing command unit 64, so that one VVT having the abnormality is operated. In the phase of the cam operated at (the cam on the abnormal side), it is displaced to a state shifted to the same side as the state shifted from the normal time to the advance side or the retard side. In short, when it is determined that there is an abnormality in one VVT, the phase of the cam on the normal side is advanced or retarded to the same side as the phase of the cam on the abnormal side. In addition, the shift amount at this time is set to a value set in advance according to the magnitude of the phase (fixed phase) of the cam on the abnormal side.

運転状態ごとに、異常時の固着位相θ(正常時からの進角側への変位量、又は遅角側への変位量、図4)に対応したシフト量α,β(図4)などを予め設定しておき、記憶部65に記憶させておく。固着位相θが大きいほど、シフト量を大きくする傾向にある。
シフト量α、βなどは、正常時の運転環境に近づくように設定することが望ましい。
例えば、ミラーサイクルを行う内燃機関2では、図4(c)に示すように低負荷・低回転時において、図3(C)に示す正常時からみて排気バルブ40の開閉時期が進角側に位置するようにExVVT4が固着などした場合、進角側に動作する排気バルブ40と同様に、図3(C)に示す正常時からみて吸気側バルブ30の開閉時期を進角側にずらす。このときの排気側の固着位相θに応じて、予め設定された吸気側のシフト量βに基づいて正常なInVVT3を動作させて吸気側カムを変位させる。
また、例えば、図4(d)に示すように高負荷・高回転時において、図3(D)に示す正常時からみて排気バルブ40の開閉時期が遅角側に位置するようにExVVT4が固着などした場合、遅角側に動作する排気バルブ40と同様に、図3(D)に示す正常時からみて吸気側バルブ30の開閉時期を遅角側にずらす。このときの排気側の固着位相θに応じて、予め設定された吸気側のシフト量αに基づいて正常なInVVT3を動作させて吸気側カムを変位させる。
その他の運転状態においても同様に、排気側の固着位相θに応じて、吸気側のシフト量を予め設定しておく。また、InVVT3が固着などした場合も同様に、運転状態ごとに固着位相に応じて排気側のシフト量を予め設定しておく。
For each operating state, the shift amounts α, β (FIG. 4) corresponding to the fixing phase θ at the time of abnormality (the amount of displacement toward the advance side or the amount of displacement toward the retard side from the normal state, FIG. 4), etc. It is set in advance and stored in the storage unit 65. There is a tendency for the shift amount to increase as the fixing phase θ increases.
The shift amounts α, β, etc. are desirably set so as to approach the normal operating environment.
For example, in the internal combustion engine 2 that performs the mirror cycle, the opening / closing timing of the exhaust valve 40 is set to the advance side at the time of low load and low rotation as shown in FIG. When the ExVVT 4 is fixed so as to be positioned, the opening / closing timing of the intake side valve 30 is shifted to the advance side as seen from the normal state shown in FIG. 3C, similarly to the exhaust valve 40 operating on the advance side. The intake side cam is displaced by operating the normal InVVT 3 based on a preset intake side shift amount β in accordance with the exhaust side fixing phase θ at this time.
Further, for example, as shown in FIG. 4 (d), the ExVVT 4 is fixed so that the opening / closing timing of the exhaust valve 40 is located on the retard side when viewed from the normal state shown in FIG. In the case, the opening / closing timing of the intake side valve 30 is shifted to the retarded side as seen from the normal time shown in FIG. 3D, similarly to the exhaust valve 40 operating on the retarded side. In response to the exhaust-side fixing phase θ at this time, the normal InVVT 3 is operated based on a preset intake-side shift amount α to displace the intake-side cam.
Similarly, in other operating states, the intake-side shift amount is set in advance in accordance with the exhaust-side fixing phase θ. Similarly, when the InVVT 3 is fixed, the shift amount on the exhaust side is set in advance according to the fixing phase for each operation state.

(制御手順)
図2を参照して制御部6による制御手順の具体例を説明する。
制御部6は、カム角センサ36,46、クランク角センサ26からの信号を受信し、カム角演算部60は、これらの信号を用いて、吸気側カムの位相及び排気側カムの位相を演算する(ステップS10)。
(Control procedure)
A specific example of the control procedure by the control unit 6 will be described with reference to FIG.
The control unit 6 receives signals from the cam angle sensors 36 and 46 and the crank angle sensor 26, and the cam angle calculation unit 60 calculates the phase of the intake side cam and the phase of the exhaust side cam using these signals. (Step S10).

異常判断部62は、演算した両カムの位相に基づいて、InVVT3及びExVVT4の異常の有無を判断する(SステップS11)。具体的には、制御部6は、現在の運転状態に対応した基本カムマップを記憶部65から呼び出し、VVTごとに演算値と基本カムマップの位相(正常であれば本来とり得る位相)とを比較し、その差が予め設定した所定の範囲内であるか否か判定する。   The abnormality determination unit 62 determines whether there is an abnormality in InVVT3 and ExVVT4 based on the calculated phase of both cams (Sstep S11). Specifically, the control unit 6 calls a basic cam map corresponding to the current operating state from the storage unit 65, and calculates a calculated value and a phase of the basic cam map (a phase that can be originally taken if normal) for each VVT. It is determined whether the difference is within a predetermined range set in advance.

上記の差が所定の範囲内であれば、両VVTは異常が無いといえ、異常判断部62は異常無し(正常である)と判断する。異常なしと判断したとき、制御部6は、運転状態に応じて記憶部65から基本カムマップを呼び出して(ステップS14)、バルブタイミング指令部64は、基本カムマップに則って動作するようにVVT3,4に動作指令を出す(ステップS13)。この動作指令によって、各バルブ30,40の開閉時期は、基本カムマップに従って調整される(図3(A)〜図3(D)など参照)。   If the above difference is within a predetermined range, it can be said that both VVTs are not abnormal, and the abnormality determining unit 62 determines that there is no abnormality (normal). When it is determined that there is no abnormality, the control unit 6 calls the basic cam map from the storage unit 65 according to the operating state (step S14), and the valve timing command unit 64 operates so as to operate according to the basic cam map. , 4 (step S13). By this operation command, the opening / closing timing of the valves 30 and 40 is adjusted according to the basic cam map (see FIGS. 3A to 3D).

いずれか一方のVVTにおける上記の差が所定の範囲外であれば、いずれか一方のVVTは異常があるといえ、異常判断部62は異常ありと判断する。一方のVVTに異常ありと判断されたとき、制御部6は、異常があるVVTに動作されるカムの位相が正常時からみて進角側か遅角側かを判断する。この判断は、上述の演算値と、基本カムマップとを比較することで行える。判断結果に応じて、記憶部65から、現在の運転状態における固着位相θに応じたシフト量を呼び出し(ステップS12)、バルブタイミング指令部64は、異常がある側のカムと同じ進角側又は遅角側に、選択したシフト量だけ、正常な側のカムを変位するように、正常なVVTに動作指令を出す(ステップS13)。この動作指令によって、各バルブ30,40の開閉時期は、上述のように正常時からシフト量だけ進角側又は遅角側にずれて調整される(図4(c),(d)など参照)。   If the difference in any one of the VVTs is outside the predetermined range, it can be said that any one of the VVTs is abnormal, and the abnormality determination unit 62 determines that there is an abnormality. When it is determined that one of the VVTs is abnormal, the control unit 6 determines whether the phase of the cam operated by the abnormal VVT is the advance side or the retard side from the normal time. This determination can be made by comparing the above-described calculated value with the basic cam map. Depending on the determination result, the shift amount corresponding to the fixing phase θ in the current operating state is called from the storage unit 65 (step S12), and the valve timing command unit 64 An operation command is issued to the normal VVT so that the normal cam is displaced by the selected shift amount on the retard side (step S13). By this operation command, the opening / closing timing of the valves 30 and 40 is adjusted so as to be shifted from the normal time to the advance side or the retard side by the shift amount as described above (see FIGS. 4C and 4D, etc.). ).

(効果)
実施形態1の内燃機関の制御装置1は、一方のVVTに異常があると判断された場合に、そのときの運転状態における固着位相に応じたシフト量だけ、正常時よりもカムの位相を変位するように、正常である他方のVVTを動作させる。そのため、この制御装置1は、失火し難くなって燃焼の悪化を改善でき、排気ガスの悪化を低減できる。
(effect)
When it is determined that there is an abnormality in one of the VVTs, the control device 1 for the internal combustion engine according to the first embodiment displaces the cam phase by a shift amount corresponding to the fixing phase in the operation state at that time than in the normal state. Then, the other VVT that is normal is operated. Therefore, the control device 1 is less likely to misfire, can improve the deterioration of combustion, and can reduce the deterioration of exhaust gas.

特に、この例の内燃機関2はミラーサイクルを行うものであるが、ExVVT4が遅角側に固着などした場合でも、高負荷・高回転時にはオーバーラップを少なくなるように正常である他方のVVTを動作させることで(図4(d))、排気ガスが過剰にならず、失火し難い。そのため、この制御装置1は、排気ガスの悪化を効果的に低減できながら、圧縮比をある程度高められて、燃焼の安定化を図ることができる。   In particular, the internal combustion engine 2 of this example performs a mirror cycle, but even when the ExVVT 4 is fixed on the retard side, the other VVT that is normal so as to reduce the overlap at the time of high load and high rotation is reduced. By operating (FIG. 4 (d)), exhaust gas does not become excessive and misfire is difficult. For this reason, the control device 1 can stabilize the combustion by increasing the compression ratio to some extent while effectively reducing the deterioration of the exhaust gas.

[変形例]
実施形態1の内燃機関の制御装置に対して、例えば、以下の少なくとも一つの変更が可能である。
(1)ミラーサイクルを行う内燃機関以外の内燃機関に適用する。
(2)両VVTを油圧式とする、又は両VVTを電動式とする。
[Modification]
For example, at least one of the following modifications can be made to the control device for an internal combustion engine according to the first embodiment.
(1) The present invention is applied to an internal combustion engine other than an internal combustion engine that performs a mirror cycle.
(2) Both VVTs are hydraulic, or both VVTs are electric.

本発明の内燃機関の制御装置は、吸気側可変バルブタイミング機構及び排気側可変バルブタイミング機構の双方を備える内燃機関の制御に利用できる。   The control device for an internal combustion engine of the present invention can be used for control of an internal combustion engine including both an intake side variable valve timing mechanism and an exhaust side variable valve timing mechanism.

1 内燃機関の制御装置
2 内燃機関
20 シリンダブロック 20B シリンダボア 20P ピストン
20C クランク軸
22 シリンダヘッド 22C 燃焼室 223 吸気ポート 224 排気ポート
24 シリンダヘッドカバー
26 クランク角センサ
3 吸気側可変バルブタイミング機構(InVVT)
30 吸気バルブ 30C 吸気側カム軸
32 電動モータ 34 位相変化機構 36 吸気側カム角センサ
a モータ軸 d 偏心軸 p 遊星歯車 r リングギア s スプロケット
4 排気側可変バルブタイミング機構(ExVVT)
40 排気バルブ 40C 排気側カム軸
41 ケース 42 ベーン 46 排気側カム角センサ
5 点火プラグ
6 制御部(ECU)
60 カム角演算部 62 異常判断部 64 バルブタイミング指令部
65 記憶部
8 インジェクタ 93 吸気マニホールド 94 排気マニホールド
DESCRIPTION OF SYMBOLS 1 Control apparatus of an internal combustion engine 2 Internal combustion engine 20 Cylinder block 20B Cylinder bore 20P Piston 20C Crankshaft 22 Cylinder head 22C Combustion chamber 223 Intake port 224 Exhaust port 24 Cylinder head cover 26 Crank angle sensor 3 Intake side variable valve timing mechanism (InVVT)
30 intake valve 30C intake side camshaft 32 electric motor 34 phase change mechanism 36 intake side cam angle sensor a motor shaft d eccentric shaft p planetary gear r ring gear s sprocket 4 exhaust side variable valve timing mechanism (ExVVT)
40 Exhaust Valve 40C Exhaust Side Cam Shaft 41 Case 42 Vane 46 Exhaust Side Cam Angle Sensor 5 Spark Plug 6 Control Unit (ECU)
60 Cam Angle Calculation Unit 62 Abnormality Determination Unit 64 Valve Timing Command Unit 65 Storage Unit 8 Injector 93 Intake Manifold 94 Exhaust Manifold

Claims (1)

吸気バルブを開閉する吸気側カムの位相を変化させる吸気側可変バルブタイミング機構、排気バルブを開閉する排気側カムの位相を変化させる排気側可変バルブタイミング機構、及びこれらを連係して動作するように制御する制御部を備える内燃機関の制御装置であって、
前記制御部は、
前記吸気側カムの位相及び前記排気側カムの位相を演算するカム角演算部と、
演算した両カムの位相に基づいて、前記吸気側可変バルブタイミング機構及び前記排気側可変バルブタイミング機構の異常の有無を判断する異常判断部と、
前記異常判断部で、一方の可変バルブタイミング機構に異常があると判断されたとき、異常がある前記一方の可変バルブタイミング機構で動作されるカムにおける前記カム角演算部で演算した位相に応じて、かつ、この異常がある側のカムの位相における正常時から進角側又は遅角側にずれた状態と同じ側にずれた状態に、正常な側のカムを変位するように他方の可変バルブタイミング機構に動作を指令するバルブタイミング指令部とを備える内燃機関の制御装置。
An intake-side variable valve timing mechanism that changes the phase of the intake-side cam that opens and closes the intake valve, an exhaust-side variable valve timing mechanism that changes the phase of the exhaust-side cam that opens and closes the exhaust valve, and these are operated in conjunction with each other A control device for an internal combustion engine including a control unit for controlling,
The controller is
A cam angle calculation unit for calculating the phase of the intake side cam and the phase of the exhaust side cam;
An abnormality determination unit that determines whether there is an abnormality in the intake-side variable valve timing mechanism and the exhaust-side variable valve timing mechanism based on the calculated phases of both cams;
When the abnormality determining unit determines that there is an abnormality in one of the variable valve timing mechanisms, depending on the phase calculated by the cam angle calculation unit in the cam operated by the one variable valve timing mechanism having the abnormality And the other variable valve to displace the normal cam in a state shifted to the same side as the state shifted from the normal time to the advance side or the retard side in the phase of the cam on the abnormal side. A control device for an internal combustion engine, comprising: a valve timing command unit that commands an operation to a timing mechanism.
JP2015151944A 2015-07-31 2015-07-31 Control device of internal combustion engine Pending JP2017031868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015151944A JP2017031868A (en) 2015-07-31 2015-07-31 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015151944A JP2017031868A (en) 2015-07-31 2015-07-31 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017031868A true JP2017031868A (en) 2017-02-09

Family

ID=57988167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015151944A Pending JP2017031868A (en) 2015-07-31 2015-07-31 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017031868A (en)

Similar Documents

Publication Publication Date Title
JP4957611B2 (en) Control method for internal combustion engine
JP4525517B2 (en) Internal combustion engine
US6405694B2 (en) Variable valve timing control device for internal combustion engine
JP3164007B2 (en) Valve timing adjustment device for internal combustion engine
EP0643201B1 (en) Valve timing control apparatus for engine
US8150605B2 (en) Coordination of variable cam timing and variable displacement engine systems
US10316765B2 (en) Control device and control method for internal combustion engine
US7520261B2 (en) Apparatus for and method of controlling intake operation of an internal combustion engine
US7743743B2 (en) Variable valve timing apparatus with reduced operation sound and control method thereof
JP2000356143A (en) Combustion control device for internal combustion engine
KR20100005709A (en) Spark-ignited internal combustion engine and method of controlling the same
WO2019035312A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP3699645B2 (en) Valve timing control device for internal combustion engine
US8682567B2 (en) Intake air control apparatus and intake air control method for internal-combustion engine
JP2004100535A (en) Valve timing control device for internal combustion engine
JP3771101B2 (en) Control device for internal combustion engine
JP3039303B2 (en) Valve timing control device for internal combustion engine
JP2017031868A (en) Control device of internal combustion engine
US8904978B2 (en) Variable cam timing system and method
JP3873809B2 (en) Variable valve timing control device for internal combustion engine
JP2010071188A (en) Control device for engine
JP3527629B2 (en) Control method of fuel injection timing
JP5585528B2 (en) In-cylinder injection spark ignition internal combustion engine having a variable compression ratio mechanism
JPH10231742A (en) Valve timing controller for internal combustion engine
JP3424479B2 (en) Valve timing control device for internal combustion engine