JP2017030067A - 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置 - Google Patents

加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置 Download PDF

Info

Publication number
JP2017030067A
JP2017030067A JP2015150341A JP2015150341A JP2017030067A JP 2017030067 A JP2017030067 A JP 2017030067A JP 2015150341 A JP2015150341 A JP 2015150341A JP 2015150341 A JP2015150341 A JP 2015150341A JP 2017030067 A JP2017030067 A JP 2017030067A
Authority
JP
Japan
Prior art keywords
machining
machine learning
learning
processing
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015150341A
Other languages
English (en)
Inventor
澤田 毅
Takeshi Sawada
毅 澤田
蔚波 李
Weibo Li
蔚波 李
邦孝 小槇
Kunitaka Komaki
邦孝 小槇
友磯 黒川
Yuki Kurokawa
友磯 黒川
信二 秋元
Shinji Akimoto
信二 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2015150341A priority Critical patent/JP2017030067A/ja
Priority to DE102016009106.1A priority patent/DE102016009106A1/de
Priority to US15/223,008 priority patent/US10180667B2/en
Priority to CN201610621863.XA priority patent/CN106406236A/zh
Publication of JP2017030067A publication Critical patent/JP2017030067A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/028Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using expert systems only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33056Reinforcement learning, agent acts, receives reward, emotion, action selective
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33322Failure driven learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35528Create machining conditions database by analyzing actual machining nc program
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36061Storage, memory area to store history data for previous corrections, editable
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37336Cutting, machining time
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37617Tolerance of form, shape or position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39076Learn by function division, change only one variable at a time, combine shapes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49065Execute learning mode first for determining adaptive control parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49205Compensate with stored values as function of machining time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)

Abstract

【課題】加工状況の変化に合わせて適切な加工条件を求めることを可能とする制御装置付き加工装置を提供すること。【解決手段】本発明の加工装置は、ワークの加工形状をオンマシンで測定するオンマシン測定部と、ワークの加工時間を測定する加工時間測定部と、加工形状と設計データとの間の加工精度、および加工時間を入力として機械学習する機械学習器を備え、機械学習器は、加工精度と加工時間を状態データとして取得する状態観測部と、状態データに基づいて報酬を計算する報酬計算部と、機械学習結果および状態データに基づいて加工条件の調整を行う加工条件調整学習部と、加工条件調整学習部が調整した加工条件を出力する加工条件出力部と、を有し、加工条件調整学習部は、調整された前記加工条件と、状態観測部により取得された状態データと、報酬計算部が計算した前記報酬と、に基づいて加工条件の調整を機械学習する。【選択図】図4

Description

本発明は、加工装置に関し、特に加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置に関する。
従来より、加工プログラムを作成し、該加工プログラムに基づいて加工装置を制御してワークを加工することが行われている。加工装置によるワークの加工においては、作業者は所定の水準以上の加工精度を保ちながら、より短い時間で加工ができるように加工条件の調整を行っている。しかし、加工条件の調整においては、工具の特性やワークの特性、加工内容や加工装置の種類などによって加工条件の最適値が異なるため、作業者は新しく加工を行うたびに知識と経験に基づき試行錯誤しながら労力をかけて加工条件の調整を行っていた。
このような加工条件の調整に関連する従来技術として、特許文献1には、作業者を支援することを目的として過去に行った加工運転で用いられた加工条件をデータベース化して利用する発明が開示されている。
国際公開第00/010769号
特許文献1に開示される技術を用いることで、作業者は似たような状況における加工条件を再利用することができるため、加工条件調整における労力をある程度軽減することができる。しかしながら、過去の加工条件をデータベースから読み出した後、読み出した加工条件を現在の加工状況に合わせて調整するために作業者が試行錯誤しなければならない点に変わりはなく、特許文献1に開示される技術では作業者の労力を完全に軽減することはできないという課題がある。
そこで本発明の目的は、加工状況の変化に合わせて適切な加工条件を求めることを可能とする制御装置付き加工装置を提供することである。
本願の請求項1に係る発明は、ワークの加工形状をオンマシンで測定するオンマシン測定部と、ワークの加工時間を測定する加工時間測定部とを備えた加工装置において、前記加工形状と前記ワークの設計データとの間の加工精度、および前記加工時間を入力として機械学習する機械学習器を備え、該機械学習器は機械学習の結果に基づいて、前記加工精度が向上するように、また、前記加工時間を最短にするように加工条件を変更する、ことを特徴とする加工装置である。
本願の請求項2に係る発明は、前記機械学習器は、前記加工装置が前記ワークの設計データとの間の誤差が小さくなるように加工した場合または前記加工時間が短縮された場合をプラスの報酬とし、前記ワークの設計データとの誤差が大きくなるように加工した場合または前記加工時間が長くなった場合をマイナスの報酬として機械学習する、ことを特徴とする請求項1に記載の加工装置である。
本願の請求項3に係る発明は、前記機械学習器は、機械学習に際して、前記ワークの設計データとの誤差を小さくすること、および、加工時間を短縮すること、のどちらを重視するか重み付けを行うことができる、ことを特徴とする請求項1または2に記載の加工装置である。
本願の請求項4に係る発明は、少なくとも1つの他の加工装置と接続可能であり、前記他の加工装置との間で機械学習の結果を相互に交換または共有する、ことを特徴とする請求項1〜3のいずれか1つに記載の加工装置である。
本願の請求項5に係る発明は、加工装置によるワークの加工における加工条件の調整を機械学習した機械学習器であって、前記加工条件の調整の機械学習結果を記憶する学習結果記憶部と、少なくとも前記加工装置によるワークの加工における加工時間、ワークの加工精度、および加工条件を含む状態データを取得する状態観測部と、前記加工条件の調整の機械学習結果と、前記状態観測部が取得した前記状態データと、に基づいて前記加工条件の調整を行う加工条件調整学習部と、前記加工条件調整学習部が調整した前記加工条件を出力する加工条件出力部と、を備えたことを特徴とする機械学習器である。
本発明において、制御装置付き加工装置に対して機械学習を導入することにより加工状況に合わせて加工精度を保ちながらより短時間で加工を行うことができる適切な加工条件を求めることが可能となる。
強化学習アルゴリズムの基本的な概念を説明する図である。 本発明の実施形態における加工装置の機械学習に関するイメージ図である。 本発明の実施形態において扱う各データについて説明する図である。 本発明の実施形態における加工装置の機能ブロック図である。
以下、本発明の実施形態を図面と共に説明する。
本発明では、ワークの加工を行う加工装置に対して人工知能となる機械学習器を導入し、ワークの加工における加工条件の調整について機械学習を行うことで、ワークの加工に最適な加工条件を自動的に求めることができるようにする。加工条件の調整では、より短い時間での加工と、加工精度の維持を目的とする。
<1.機械学習>
一般に、機械学習には教師あり学習や教師なし学習など、その目的や条件によって様々なアルゴリズムに分類されている。本発明ではワークの加工における加工装置に設定する加工条件調整の学習を目的としており、設定された加工条件に基づいて加工装置で加工を行った結果、測定された加工時間と加工精度に対してどのような行動(送り速度、主軸回転数、テーブル送り、一刃送りなどの調整)をすることが正しいのかを明示的に示すことが困難であることを考慮して、報酬を与えるだけで機械学習器が目標到達のための行動を自動的に学習する強化学習のアルゴリズムを採用する。
図1は、強化学習アルゴリズムの基本的な概念を説明する図である。強化学習においては、学習する主体となるエージェント(機械学習器)と、制御対象となる環境(制御対象システム)とのやりとりにより、エージェント学習と行動が進められる。より具体的には、(1)エージェントはある時点における環境の状態stを観測し、(2)観測結果と過去の学習に基づいて自分が取れる行動atを選択して行動atを実行し、(3)行動atが実行されることで環境の状態stが次の状態st+1へと変化し、(4)行動atの結果としての状態の変化に基づいてエージェントが報酬rt+1を受け取り、(5)エージェントが状態st、行動at、報酬rt+1および過去の学習の結果に基づいて学習を進める、といったやりとりがエージェントと環境の間で行われる。
上記した(5)における学習では、エ−ジェントは将来取得できる報酬の量を判断するための基準となる情報として、観測された状態st,行動at,報酬rt+1のマッピングを獲得する。例えば、各時刻において取り得る状態の個数がm、取り得る行動の個数がnとすると、行動を繰り返すことによって状態stと行動atの組に対する報酬rt+1を記憶するm×nの2次元配列が得られる。
そして、上記得られたマッピングに基づいて現在の状態や行動がどのくらい良いのかを示す関数である価値関数(評価関数)を用い、行動を繰り返す中で価値関数(評価関数)を更新していくことにより状態に対する最適な行動を学習していく。
状態価値関数は、ある状態stがどのくらい良い状態であるのかを示す価値関数である。状態価値関数は、状態を引数とする関数として表現され、行動を繰り返す中での学習において、ある状態における行動に対して得られた報酬や、該行動により移行する未来の状態の価値などに基づいて更新される。状態価値関数の更新式は強化学習のアルゴリズムに応じて定義されており、例えば、強化学習アルゴリズムの1つであるTD学習においては、状態価値関数は以下の数1式で定義される。なお、数1式においてαは学習係数、γは割引率と呼ばれ、0<α≦1、0<γ≦1の範囲で定義される。
Figure 2017030067
また、行動価値関数は、ある状態stにおいて行動atがどのくらい良い行動であるのかを示す価値関数である。行動価値関数は、状態と行動を引数とする関数として表現され、行動を繰り返す中での学習において、ある状態における行動に対して得られた報酬や、該行動により移行する未来の状態における行動の価値などに基づいて更新される。行動価値関数の更新式は強化学習のアルゴリズムに応じて定義されており、例えば、代表的な強化学習アルゴリズムの1つであるQ学習においては、行動価値関数は以下の数2式で定義される。なお、数2式においてαは学習係数、γは割引率と呼ばれ、0<α≦1、0<γ≦1の範囲で定義される。
Figure 2017030067
なお、学習結果としての価値関数(評価関数)を記憶する方法としては、近似関数を用いる方法や、配列を用いる方法以外にも、例えば状態sが多くの状態を取るような場合には状態st、行動atを入力として価値(評価)を出力する多値出力のSVMやニューラルネットワーク等の教師あり学習器を用いる方法などがある。
そして、上記した(2)における行動の選択においては、過去の学習によって作成された価値関数(評価関数)を用いて現在の状態stにおいて将来にわたっての報酬(rt+1+rt+2+…)が最大となる行動at(状態価値関数を用いている場合には、もっとも価値の高い状態へ移るための行動、行動価値関数を用いている場合には該状態において最も価値の高い行動)を選択する。なお、エージェントの学習中には学習の進展を目的として(2)における行動の選択において一定の確率でランダムな行動を選択することも有効である(εグリーディ法)。
このように、(1)〜(5)を繰り返すことで学習が進められる。ある環境において学習が終了した後に、新たな環境におかれた場合でも追加の学習を行うことでその環境に適応するように学習を進めることができる。したがって、本発明のように加工装置でのワークの加工における加工条件の決定に適用することで、新しい設計データに基づくワークの加工を行う際にも、過去の加工条件調整の学習に基づいて新しい設計データを新たな環境とした追加の学習をすることで、適切な加工条件の調整を短時間で行うことが可能となる。
また、強化学習においては、複数のエージェントをネットワークなどを介して接続したシステムとし、エージェント間で状態s、行動a、報酬rなどの情報を共有してそれぞれの学習に利用することで、それぞれのエージェントが他のエージェントの環境も考慮して学習をする分散強化学習を行うことで効率的な学習を行うことができる。本発明においても、複数の環境(制御対象となる加工装置)を制御する複数のエージェント(機械学習器)がネットワークなどを介して接続された状態で分散機械学習を行うことで、加工装置でのワークの加工における加工条件調整の学習を効率的に行わせることができるようになる。
なお、強化学習のアルゴリズムとしては、Q学習、SARSA法、TD学習、AC法など様々な手法が周知となっているが、本発明に適用する方法としていずれの強化学習アルゴリズムを採用してもよい。なお、それぞれの強化学習アルゴリズムは周知なので、本明細書における各アルゴリズムの詳細な説明は省略する。
以下では、機械学習器を導入した本発明の加工装置について、具体的な実施形態に基づいて説明する。
<2.実施形態>
図2は、本発明の一実施形態における人工知能となる機械学習器を導入した加工装置における加工条件調整の機械学習に関するイメージを示す図である。なお、図2には本実施形態における加工装置における機械学習の説明に必要な構成のみを示している。
本実施形態において、機械学習器20が環境(<1.機械学習>で説明した状態st)を特定するための情報として、加工装置の出力データである加工精度と加工時間を機械学習器に対して入力している。加工時間は加工装置1が備える加工時間測定部4により測定された値であり、加工精度は加工装置1が備えるオンマシン測定部3により測定された加工後ワークの加工形状とCADなどで作成された設計データ(目標となる加工後ワークの加工形状を示すデータ)とに基づいて算出された値(設計データが示す加工形状と、加工後ワークの加工形状との誤差)である。
本実施形態における加工装置1は、オンマシン測定部3を備えており、加工装置1に固定された状態でワークの加工形状を測定することができる。加工装置1は、設計データが示すワークの加工形状と、オンマシン測定部3により測定された加工後ワークの加工形状とを比較し、加工精度に係るデータを算出する。図3は、本実施形態における加工精度に係るデータの一例を示す図である。加工精度に係るデータの種類としては、例えば、それぞれのワークの段差における設計データにおける深さ方向(Z軸方向)の長さと加工後ワークにおける深さ方向の長さとの誤差を示す深さ方向精度Az、それぞれのワークの段差における設計データにおける幅方向(X軸方向)の長さと加工後ワークにおける幅方向の長さとの誤差を示す幅方向精度Ax、それぞれのワークのコーナ部において内回り誤差などが原因で生じる設計データと加工後ワークの誤差(コーナ近傍部分の体積差)を示すコーナ部精度Ac、それぞれの加工面において加工面の仕上げの粗さや歪みなどが原因で生じる設計データと加工後ワークの誤差(面近傍部分の体積差)を示す面精度As、などが挙げられる。これら各加工精度を示すデータをワークの部分毎に求め、それぞれの値を機械学習器20が状態を決定するためのパラメータとして用いてもよいし、ワークの各部分毎に求めた加工精度の絶対値を、深さ方向精度、幅方向精度などの加工精度の種類毎に積算した値(例えば、図3におけるワーク上の2つの段差形状における深さ方向精度をそれぞれAz1、Az2としたとき、|Az1|+|Az2|を深さ方向精度として算出するなど)を機械学習器20が状態を決定するためのパラメータとして用いてもよい。
なお、図3で示した加工精度に係るデータは一例に過ぎず、他の加工精度の表現方法を採用してもよい。また、加工の種類や加工対象などに合わせた加工精度に係るデータの種類を適宜定めるようにしてよく、例えば、ねじきり加工の場合には螺溝深さ精度を採用するようにしてもよい。
本実施形態では、機械学習器20は環境に対して出力するもの(<1.機械学習>で説明した行動at)として、加工装置1に入力される加工条件の調整量を出力している。加工条件には、例えば、送り速度、主軸回転数、テーブル送り、一刃送りなどが挙げられる。
また本実施形態では、機械学習器20に対して与えられる報酬(<1.機械学習>で説明した報酬rt)として、加工時間と加工精度データを用いる。報酬の算出においては、加工時間が所定の基準値から見て短ければ短いほどプラス値が大きくなる報酬となるようにし、長ければ長いほどマイナス値が大きくなる報酬となるようにする。また、加工精度データは、所定の基準値から見て0に近ければ近いほどプラス値が大きくなる報酬となるようにし、所定の基準値よりも大きくなるほどマイナス値が大きくなる報酬となるようにする。加工時間、加工精度データの所定の基準値については、加工装置1の加工条件を初期設定にしてワークの加工を行った際に測定された加工時間、および加工精度に係るデータを基準とすればよい。
なお、いずれのデータに基づいて報酬を決定するのかについては、加工装置1でのワークの加工内容に応じてオペレータが適宜設定するようにしてもよい。
更に、本実施形態では、機械学習器20は上記した状況、行動、および報酬に基づいて機械学習を行う。機械学習においては、ある時刻tにおいて、入力データの組み合わせにより状態stが定義され、定義された状態stに対して行われる加工条件の変更が行動atとなり、そして、行動atにより加工条件の変更が行われた結果として新たに得られた入力データに基づいて評価計算された値が報酬rt+1となり、これを<1.機械学習>で説明したように、機械学習のアルゴリズムに応じた価値関数(評価関数)の更新式に当てはめることにより学習を進める。
以下では、加工装置の機能ブロック図に基づいて説明する。
図4は、本実施形態の加工装置の機能ブロック図である。本実施形態の加工装置1は、部品の加工において各軸を駆動するためのサーボモータなどの駆動部(図示せず)、該サーボモータを制御するサーボ制御部(図示せず)などの加工装置が標準的に備える構成と周辺機器(図示せず)、該駆動部や該周辺機器を制御する制御部2、加工装置1により加工するワークの加工形状をオンマシンで測定するオンマシン測定部3、ワークの加工に掛かる加工時間を測定する加工時間測定部4、および機械学習を行う人工知能となる機械学習器20を備える。図4に示した構成を、図1に示した強化学習における要素と対比すると、機械学習器20がエージェントに対応し、加工装置1が備える駆動部や周辺機器、制御部2などを含む全体が環境に対応する。
制御部2は、図示しないメモリから読み出された、または図示しない入力機器などを介して入力されたプログラムを解析して加工装置1の各部を制御する。制御部2には、ワークの加工において用いられる加工条件と、プログラムにより加工されるワークの加工形状を示す設計データとが、図示しないメモリに対してあらかじめ記憶されている。
オンマシン測定部3は、加工装置1により加工するワークの加工形状をオンマシンで測定する機能手段である。オンマシン測定部3は、例えばレーザ測定器や磁気測定器などで構成され、加工装置1に固定された状態でワークの加工形状を測定する。測定したワークの加工形状は制御部2に入力される。そして、オンマシン測定部3から入力された加工後ワークの加工形状と、図示しないメモリに記憶されている目標とするワークの加工形状を示す設計データとに基づいて、加工後ワークの加工形状の加工精度を算出する。加工精度の算出においては、上記したようにワークの各部位ごとに加工精度を算出する。
加工時間測定部4は、加工装置1による1つのワークの加工にかかる加工時間を測定する機能手段である。加工時間測定部4は、例えば制御部2の図示しない計時機能などを用いて加工に用いるプログラムが起動してから終了するまでの時間を測定し、加工時間とする。
そして、測定された加工時間と、算出された加工精度とが、機械学習器20の学習における報酬の計算に用いられる。
機械学習を行う機械学習器20は、状態観測部21、状態データ記憶部22、報酬条件設定部23、報酬計算部24、加工条件調整学習部25、学習結果記憶部26、加工条件出力部27を備える。前記機械学習器20は、加工装置1内に備えてもよいし、加工装置1外のパソコン等に備えるようにしてもよい。
状態観測部21は、制御部2を介して加工装置1に関する状態データを観測して機械学習器20内に取得する機能手段である。状態データとしては上記した加工時間、および加工精度に掛かるデータなどがある。
状態データ記憶部22は状態データを入力して記憶し、記憶した該状態データを報酬計算部24や加工条件調整学習部25に対して出力する機能手段である。入力される状態データは、最新の加工運転で取得したデータでも、過去の加工運転で取得したデータでも構わない。また、他の加工装置1や集中管理システム30に記憶された状態データを入力して記憶したり、出力したりすることも可能である。
報酬条件設定部23は、機械学習において報酬を与える条件を設定するための機能手段である。報酬にはプラスの報酬とマイナスの報酬があり、適宜設定が可能である。さらに、報酬条件設定部23への入力は集中管理システム30で使用しているパソコンやタブレット端末等からでも構わないが、加工装置1が備える図示しないMDI機器を介して入力できるようにすることで、より簡便に設定することが可能となる。
報酬計算部24は、報酬条件設定部23で設定された条件に基づいて状態観測部21または状態データ記憶部22から入力された状態データを分析し、計算された報酬を加工条件調整学習部25に出力する。
以下に、本実施形態における報酬条件設定部23で設定する報酬条件の例を示す。
●[報酬1:加工時間の短縮(プラス報酬,マイナス報酬)]
1つのワークの加工に掛かった加工時間が短縮された場合に、部品加工のサイクルタイムの向上につながるため、その度合いに応じてプラスの報酬を与える。報酬の算出においては、加工時間が所定の基準値から見て短ければ短いほどプラス値が大きくなる報酬となるようにし、長ければ長いほどマイナス値が大きくなる報酬となるようにする。加工時間の所定の基準値については、加工装置1の加工条件を初期設定にしてワークの加工を行った際に測定された加工時間を基準とすればよい。
●[報酬2:加工精度の向上(プラス報酬,マイナス報酬)]
設計データにより示される目標とするワークの加工形状に対する、加工後ワークの加工形状の加工精度が高い場合に、その度合いに応じてプラスの報酬を与える。加工精度に基づく報酬は、上述したように加工精度の種類毎に算出するようにしても良い。報酬の算出においては、加工精度データは、所定の基準値から見て0に近ければ近いほどプラス値が大きくなる報酬となるようにし、所定の基準値よりも大きくなるほどマイナス値が大きくなる報酬となるようにする。加工精度データの所定の基準値については、加工装置1の加工条件を初期設定にしてワークの加工を行った際に測定された加工精度データを基準とすればよい。
なお、加工時間により得られる報酬と、加工精度により得られる報酬に、その重要度に応じた重み付けをするようにしても良い。このようにすることで、加工時間を重視する加工条件の調整を行うように学習をさせたり、加工精度を重視した加工条件の調整を行うように学習させたりすることができる。
また、上記したように、加工精度に係るデータが複数ある場合においては、加工精度に係るデータ毎に重みをつけるようにしても良い。このようにすることで、深さ方向の精度を重視したり、コーナ部精度を重視したりする学習をさせることができる。
図4に戻って、加工条件調整学習部25は、加工装置1による1つのワークの加工が完了する度に、状態データと、自身が行った加工装置1の加工条件の調整結果、および報酬計算部24で計算された報酬とに基づいて機械学習(強化学習)を行うと共に、過去の学習結果に基づいて現在の状態データに基づいて加工装置1がワークの加工に用いる加工条件を調整する。ここでいう加工条件の調整が、機械学習に用いられる行動aに相当する。
加工条件の調整方法は、例えば、調整する加工条件と加工条件の調整量の組み合わせのそれぞれを選択可能な行動としてあらかじめ定義しておき、過去の学習結果に基づいて将来に得られる報酬が最も大きくなる行動を選択するようにしてもよい。また、上記したεグリーディ法を採用し、所定の確率でランダムな行動を選択することで学習の進展を図るようにしてもよい。
ここで、加工条件調整学習部25が行う機械学習においては、ある時刻tにおける状態データの組み合わせにより状態stが定義され、定義された状態stに応じて加工条件を調整して後述する加工条件出力部27により該調整結果を出力することが行動atとなり、そして、調整結果に基づいて加工装置1によるワークの加工が行われた結果として得られた状態データに基づいて前記報酬計算部24で計算された値が報酬rt+1となる。学習に用いられる価値関数については、適用する学習アルゴリズムに応じて決定する。例えば、Q学習を用いる場合には、上記した数2式に従って行動価値関数Q(st,at)を更新することにより学習を進めるようにすれば良い。
学習結果記憶部26は、前記加工条件調整学習部25が学習した結果を記憶する。また、加工条件調整学習部25が学習結果を再使用する際には、記憶している学習結果を加工条件調整学習部25に出力する。学習結果の記憶には、上述したように、利用する機械学習アルゴリズムに応じた価値関数を、近似関数や、配列、又は多値出力のSVMやニューラルネットワーク等の教師あり学習器などにより記憶するようにすれば良い。
なお、学習結果記憶部26に、他の加工装置1や集中管理システム30が記憶している学習結果を入力して記憶させたり、学習結果記憶部26が記憶している学習結果を他の加工装置1や集中管理システム30に対して出力したりすることも可能である。
加工条件出力部27は、前記加工条件調整学習部25による加工条件の調整結果を制御部2に対して出力する。制御部2は加工条件出力部27から出力された加工条件に基づいて加工装置1を制御してワークの加工を行う。
そして、加工が完了したら再び状態データの取得が機械学習器20により行われ、入力された状態データを使用して学習を繰り返すことにより、より優れた学習結果を得ることができる。
上記学習が完了した学習データを用いて実際に加工装置1で加工する際には、機械学習器20は新たな学習を行なわないようにして学習完了時の学習データをそのまま使用して繰り返し運転をするようにしてもよい。
また、学習が完了した機械学習器20(または、他の機械学習器20の完了した学習データを学習結果記憶部26に複写した機械学習器20)を他の加工装置1に取付けて、学習完了時の学習データをそのまま使用して繰り返し運転をするようにしてもよい。
更に、学習が完了した機械学習器20の学習機能を有効にしたままで他の加工装置1に取付けて、ワークの加工を続けることで、加工装置1毎に異なる個体差や経年変化などを更に学習させ、当該加工装置1にとってより良い加工条件を探索しながら運転することも可能である。
加工装置1は単独で機械学習をするようにしてもよいが、複数の加工装置1がそれぞれ外部との通信手段を更に備えると、それぞれの前記状態データ記憶部22が記憶した状態データや学習結果記憶部26が記憶した学習結果を送受信して共有することが可能となり、より効率良く機械学習を行うことができる。例えば、所定の範囲内で加工条件を変動させて学習する際に、複数の加工装置1において異なる加工条件を所定の範囲内でそれぞれ変動させてワークの加工を行いながら、それぞれの加工装置1の間で状態データや学習データをやり取りすることにより並列して学習を進めるようにすることで効率的に学習させることができる。
このように複数の加工装置1間でやり取りする際には、通信は集中管理システム30等のホストコンピュータを経由しても、直接加工装置1同士が通信しても構わないし、クラウドを使用しても構わないが、大量のデータを取り扱う場合があるため、なるべく通信速度が速い通信手段が好ましい。
また、いきなり製品となる部分を加工するのではなく、ワークの不要な部分を用いて予備加工を行い、ある程度機械学習してから製品となる部分の本加工を行うことにより、最初からある程度精度の高い加工形状を得ることが可能である。
以上、本発明の実施の形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
1 加工装置
2 制御部
3 オンマシン測定部
4 加工時間測定部
20 機械学習器
21 状態観測部
22 状態データ記憶部
23 報酬条件設定部
24 報酬計算部
25 加工条件調整学習部
26 学習結果記憶部
27 加工条件出力部
30 集中管理システム

Claims (5)

  1. ワークの加工形状をオンマシンで測定するオンマシン測定部と、ワークの加工時間を測定する加工時間測定部とを備えた加工装置において、
    前記加工形状と前記ワークの設計データとの間の加工精度、および前記加工時間を入力として機械学習する機械学習器を備え、
    該機械学習器は機械学習の結果に基づいて、前記加工精度が向上するように、また、前記加工時間を最短にするように加工条件を変更する、
    ことを特徴とする加工装置。
  2. 前記機械学習器は、前記加工装置が前記ワークの設計データとの間の誤差が小さくなるように加工した場合または前記加工時間が短縮された場合をプラスの報酬とし、前記ワークの設計データとの誤差が大きくなるように加工した場合または前記加工時間が長くなった場合をマイナスの報酬として機械学習する、
    ことを特徴とする請求項1に記載の加工装置。
  3. 前記機械学習器は、機械学習に際して、前記ワークの設計データとの誤差を小さくすること、および、加工時間を短縮すること、のどちらを重視するか重み付けを行うことができる、
    ことを特徴とする請求項1または2に記載の加工装置。
  4. 少なくとも1つの他の加工装置と接続可能であり、
    前記他の加工装置との間で機械学習の結果を相互に交換または共有する、
    ことを特徴とする請求項1〜3のいずれか1つに記載の加工装置。
  5. 加工装置によるワークの加工における加工条件の調整を機械学習した機械学習器であって、
    前記加工条件の調整の機械学習結果を記憶する学習結果記憶部と、
    少なくとも前記加工装置によるワークの加工おける加工時間、ワークの加工精度、および加工条件を含む状態データを取得する状態観測部と、
    前記加工条件の調整の機械学習結果と、前記状態観測部が取得した前記状態データと、に基づいて前記加工条件の調整を行う加工条件調整学習部と、
    前記加工条件調整学習部が調整した前記加工条件を出力する加工条件出力部と、
    を備えたことを特徴とする機械学習器。
JP2015150341A 2015-07-30 2015-07-30 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置 Pending JP2017030067A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015150341A JP2017030067A (ja) 2015-07-30 2015-07-30 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置
DE102016009106.1A DE102016009106A1 (de) 2015-07-30 2016-07-27 Mit Steuerung ausgerüstete Bearbeitungsvorrichtung mit Bearbeitungszeit- Messfunktion und Messfunktion auf der Maschine
US15/223,008 US10180667B2 (en) 2015-07-30 2016-07-29 Controller-equipped machining apparatus having machining time measurement function and on-machine measurement function
CN201610621863.XA CN106406236A (zh) 2015-07-30 2016-08-01 具有加工时间测量功能和在机测量功能的加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150341A JP2017030067A (ja) 2015-07-30 2015-07-30 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置

Publications (1)

Publication Number Publication Date
JP2017030067A true JP2017030067A (ja) 2017-02-09

Family

ID=57795978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150341A Pending JP2017030067A (ja) 2015-07-30 2015-07-30 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置

Country Status (4)

Country Link
US (1) US10180667B2 (ja)
JP (1) JP2017030067A (ja)
CN (1) CN106406236A (ja)
DE (1) DE102016009106A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153872A (ja) * 2017-03-15 2018-10-04 ファナック株式会社 洗浄工程最適化装置及び機械学習装置
JP2018181217A (ja) * 2017-04-20 2018-11-15 ファナック株式会社 加減速制御装置
CN108931959A (zh) * 2017-05-26 2018-12-04 发那科株式会社 控制装置及机械学习装置
JP2019021235A (ja) * 2017-07-21 2019-02-07 ファナック株式会社 機械学習装置、数値制御装置、数値制御システム、及び機械学習方法
JP2019025561A (ja) * 2017-07-27 2019-02-21 ファナック株式会社 加工機械システム及び製造システム
KR20190056993A (ko) * 2017-11-17 2019-05-27 화낙 코퍼레이션 제어 장치 및 기계 학습 장치
JP2019185125A (ja) * 2018-04-02 2019-10-24 ファナック株式会社 制御装置及び機械学習装置
JP2020044620A (ja) * 2018-09-20 2020-03-26 株式会社ジェイテクト 研削加工に関する学習モデル生成装置、推定装置および動作指令データ更新装置
CN111571424A (zh) * 2019-02-19 2020-08-25 松下知识产权经营株式会社 研磨加工***、学习装置、学习装置的学习方法
WO2020217614A1 (ja) * 2019-04-26 2020-10-29 三菱電機株式会社 加工条件決定支援装置及び機械学習装置
JP2020181403A (ja) * 2019-04-25 2020-11-05 ファナック株式会社 機械学習装置、数値制御システム及び機械学習方法
JP2020192610A (ja) * 2019-05-24 2020-12-03 スター精密株式会社 生産システム
JP2021043854A (ja) * 2019-09-13 2021-03-18 ファナック株式会社 機械学習装置、制御装置、生成方法および制御方法
JP2021092954A (ja) * 2019-12-10 2021-06-17 ファナック株式会社 ワークモデルの修正量を学習する機械学習装置、制御装置、加工システム、及び機械学習方法
WO2022224450A1 (ja) * 2021-04-23 2022-10-27 ファナック株式会社 機械学習装置、加減速調整装置及びコンピュータ読み取り可能な記憶媒体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726579B2 (ja) * 2016-09-14 2020-07-22 オークマ株式会社 工作機械
JP6499689B2 (ja) * 2017-03-08 2019-04-10 ファナック株式会社 仕上げ加工量予測装置及び機械学習装置
JP6546213B2 (ja) * 2017-04-13 2019-07-17 ファナック株式会社 回路構成最適化装置及び機械学習装置
US10437698B2 (en) * 2018-01-24 2019-10-08 Joseph Matthew Sinclair Leader-follower system for additive manufacturing
JP6940474B2 (ja) * 2018-12-05 2021-09-29 ファナック株式会社 工作機械
CN110362034A (zh) * 2019-08-08 2019-10-22 合肥学院 具有加工时间测量和在机测量功能的加工装置
CN114467091A (zh) * 2019-11-06 2022-05-10 赫克斯冈技术中心 用于在制造中进行强化学习的虚拟环境的***和方法
WO2024037769A1 (en) 2022-08-18 2024-02-22 Carl Zeiss Ag Method and manufacturing installation for producing a plurality of workpieces

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138504A (ja) * 1990-09-29 1992-05-13 Toyoda Mach Works Ltd インテリジェント加工システム
JPH04348818A (ja) * 1991-05-24 1992-12-03 Mitsubishi Electric Corp 放電加工用加工条件生成装置
JPH05104395A (ja) * 1991-10-17 1993-04-27 Hokuriku Nippon Denki Software Kk 学習制御機能を有する製品加工条件設定装置
JPH1076444A (ja) * 1996-08-30 1998-03-24 Mitsubishi Electric Corp オートチューニング機能を備えた数値制御装置
JPH10296590A (ja) * 1997-04-28 1998-11-10 Komatsu Koki Kk 非円形部材の補正加工方法及びその加工装置
WO2000010769A1 (fr) * 1998-08-24 2000-03-02 Okuma Corporation Procede et appareil permettant de collecter des registres d'evenements concernant des operations d'usinage a commande numerique
JP2001255921A (ja) * 2000-03-09 2001-09-21 Yoshiaki Kakino 加工制御システム
JP2003256009A (ja) * 2002-02-28 2003-09-10 Star Micronics Co Ltd Ncプログラムのための最適データ変換方法及び最適データ変換手段を備えた数値制御工作機械
JP2005063057A (ja) * 2003-08-08 2005-03-10 Sony Corp 電子機器間の相互成長システム、電子機器及びロボット装置
JP2005327191A (ja) * 2004-05-17 2005-11-24 Fanuc Ltd サーボ制御装置
JP2007069330A (ja) * 2005-09-08 2007-03-22 Fanuc Ltd 放電加工装置の加工条件設定方法
JP2012509190A (ja) * 2008-11-21 2012-04-19 プレシテック カーゲー 工作物に対して実施されるべきレーザ加工作業をモニタリングするための方法および装置、ならびにかかる装置を有するレーザ加工ヘッド
JP2012196715A (ja) * 2011-03-18 2012-10-18 Denso Wave Inc ロボットの制御方法およびロボットの制御装置
JP2013106202A (ja) * 2011-11-14 2013-05-30 Fujitsu Ltd パラメータ設定装置、コンピュータプログラム及びパラメータ設定方法
JP2014228972A (ja) * 2013-05-20 2014-12-08 日本電信電話株式会社 情報処理装置、情報処理システム、情報処理方法、および学習プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002268A (ko) * 1990-07-17 1992-02-28 유끼노리 가까즈 인텔리젠트가공장치
JP3702496B2 (ja) * 1995-07-10 2005-10-05 三菱電機株式会社 数値制御装置を用いた加工方法
GB0303270D0 (en) * 2003-02-13 2003-03-19 Renishaw Plc A machine tool control process and apparatus therefor
US9298172B2 (en) * 2007-10-11 2016-03-29 International Business Machines Corporation Method and apparatus for improved reward-based learning using adaptive distance metrics
US8060454B2 (en) * 2007-10-11 2011-11-15 International Business Machines Corporation Method and apparatus for improved reward-based learning using nonlinear dimensionality reduction
JP4829359B2 (ja) * 2010-03-31 2011-12-07 ファナック株式会社 機上計測装置のプローブ取り付け位置算出方法
JP5199440B1 (ja) * 2011-11-04 2013-05-15 ファナック株式会社 放電加工機の加工条件調整装置
CN103235553B (zh) * 2013-04-24 2015-07-22 山东大学 一种基于分数阶的数控加工尺寸误差自动补偿方法
JP6159647B2 (ja) * 2013-11-12 2017-07-05 三菱重工工作機械株式会社 工作機械の加工検査ワークを用いた機上計測方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138504A (ja) * 1990-09-29 1992-05-13 Toyoda Mach Works Ltd インテリジェント加工システム
JPH04348818A (ja) * 1991-05-24 1992-12-03 Mitsubishi Electric Corp 放電加工用加工条件生成装置
JPH05104395A (ja) * 1991-10-17 1993-04-27 Hokuriku Nippon Denki Software Kk 学習制御機能を有する製品加工条件設定装置
JPH1076444A (ja) * 1996-08-30 1998-03-24 Mitsubishi Electric Corp オートチューニング機能を備えた数値制御装置
JPH10296590A (ja) * 1997-04-28 1998-11-10 Komatsu Koki Kk 非円形部材の補正加工方法及びその加工装置
WO2000010769A1 (fr) * 1998-08-24 2000-03-02 Okuma Corporation Procede et appareil permettant de collecter des registres d'evenements concernant des operations d'usinage a commande numerique
JP2001255921A (ja) * 2000-03-09 2001-09-21 Yoshiaki Kakino 加工制御システム
JP2003256009A (ja) * 2002-02-28 2003-09-10 Star Micronics Co Ltd Ncプログラムのための最適データ変換方法及び最適データ変換手段を備えた数値制御工作機械
JP2005063057A (ja) * 2003-08-08 2005-03-10 Sony Corp 電子機器間の相互成長システム、電子機器及びロボット装置
JP2005327191A (ja) * 2004-05-17 2005-11-24 Fanuc Ltd サーボ制御装置
JP2007069330A (ja) * 2005-09-08 2007-03-22 Fanuc Ltd 放電加工装置の加工条件設定方法
JP2012509190A (ja) * 2008-11-21 2012-04-19 プレシテック カーゲー 工作物に対して実施されるべきレーザ加工作業をモニタリングするための方法および装置、ならびにかかる装置を有するレーザ加工ヘッド
JP2012196715A (ja) * 2011-03-18 2012-10-18 Denso Wave Inc ロボットの制御方法およびロボットの制御装置
JP2013106202A (ja) * 2011-11-14 2013-05-30 Fujitsu Ltd パラメータ設定装置、コンピュータプログラム及びパラメータ設定方法
JP2014228972A (ja) * 2013-05-20 2014-12-08 日本電信電話株式会社 情報処理装置、情報処理システム、情報処理方法、および学習プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岩村 幸治 KOJI IWAMURA: "自律分散型リアルタイムスケジューリングへのマルチエージェント強化学習の適用 Applying Multi-agent Rei", システム/制御/情報 第57巻 第4号 SYSTEMS,CONTROL AND INFORMATION, vol. 第26巻,第4号, JPN6016040101, JP, pages 129 - 137, ISSN: 0003713751 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10754312B2 (en) 2017-03-15 2020-08-25 Fanuc Corporation Cleaning process optimization device and machine learning device
JP2018153872A (ja) * 2017-03-15 2018-10-04 ファナック株式会社 洗浄工程最適化装置及び機械学習装置
US10649441B2 (en) 2017-04-20 2020-05-12 Fanuc Corporation Acceleration and deceleration controller
JP2018181217A (ja) * 2017-04-20 2018-11-15 ファナック株式会社 加減速制御装置
JP2018199189A (ja) * 2017-05-26 2018-12-20 ファナック株式会社 制御装置及び機械学習装置
CN108931959A (zh) * 2017-05-26 2018-12-04 发那科株式会社 控制装置及机械学习装置
US11119464B2 (en) 2017-05-26 2021-09-14 Fanuc Corporation Controller and machine learning device
JP2019021235A (ja) * 2017-07-21 2019-02-07 ファナック株式会社 機械学習装置、数値制御装置、数値制御システム、及び機械学習方法
US10921774B2 (en) 2017-07-21 2021-02-16 Fanuc Corporation Machine learning devices and methods for optimizing the speed and accuracy of thread mill, inner diameter, outer shape, and surface machine tools
JP2019025561A (ja) * 2017-07-27 2019-02-21 ファナック株式会社 加工機械システム及び製造システム
US10935967B2 (en) 2017-07-27 2021-03-02 Fanuc Corporation Machining equipment system and manufacturing system
KR20190056993A (ko) * 2017-11-17 2019-05-27 화낙 코퍼레이션 제어 장치 및 기계 학습 장치
KR102224970B1 (ko) * 2017-11-17 2021-03-08 화낙 코퍼레이션 제어 장치 및 기계 학습 장치
JP2019185125A (ja) * 2018-04-02 2019-10-24 ファナック株式会社 制御装置及び機械学習装置
JP2020044620A (ja) * 2018-09-20 2020-03-26 株式会社ジェイテクト 研削加工に関する学習モデル生成装置、推定装置および動作指令データ更新装置
JP7225626B2 (ja) 2018-09-20 2023-02-21 株式会社ジェイテクト 研削加工に関する学習モデル生成装置、推定装置および動作指令データ更新装置
US11833635B2 (en) 2019-02-19 2023-12-05 Panasonic Intellectual Property Management Co., Ltd. Polishing system, learning device, and learning method of learning device
JP2020131353A (ja) * 2019-02-19 2020-08-31 パナソニックIpマネジメント株式会社 研磨加工システム、学習装置、学習装置の学習方法
CN111571424A (zh) * 2019-02-19 2020-08-25 松下知识产权经营株式会社 研磨加工***、学习装置、学习装置的学习方法
JP2020181403A (ja) * 2019-04-25 2020-11-05 ファナック株式会社 機械学習装置、数値制御システム及び機械学習方法
US11640557B2 (en) 2019-04-25 2023-05-02 Fanuc Corporation Machine learning device, numerical control system, and machine learning method
JP6833118B1 (ja) * 2019-04-26 2021-02-24 三菱電機株式会社 加工条件決定支援装置
WO2020217614A1 (ja) * 2019-04-26 2020-10-29 三菱電機株式会社 加工条件決定支援装置及び機械学習装置
JP2020192610A (ja) * 2019-05-24 2020-12-03 スター精密株式会社 生産システム
JP7389317B2 (ja) 2019-05-24 2023-11-30 スター精密株式会社 生産システム
JP2021043854A (ja) * 2019-09-13 2021-03-18 ファナック株式会社 機械学習装置、制御装置、生成方法および制御方法
JP7424777B2 (ja) 2019-09-13 2024-01-30 ファナック株式会社 機械学習装置、制御装置、生成方法および制御方法
JP2021092954A (ja) * 2019-12-10 2021-06-17 ファナック株式会社 ワークモデルの修正量を学習する機械学習装置、制御装置、加工システム、及び機械学習方法
JP7464383B2 (ja) 2019-12-10 2024-04-09 ファナック株式会社 ワークモデルの修正量を学習する機械学習装置、制御装置、加工システム、及び機械学習方法
WO2022224450A1 (ja) * 2021-04-23 2022-10-27 ファナック株式会社 機械学習装置、加減速調整装置及びコンピュータ読み取り可能な記憶媒体

Also Published As

Publication number Publication date
US20170031328A1 (en) 2017-02-02
DE102016009106A1 (de) 2017-02-02
US10180667B2 (en) 2019-01-15
CN106406236A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
JP2017030067A (ja) 加工時間測定機能とオンマシン測定機能を有する制御装置付き加工装置
JP6063013B1 (ja) びびり或いは工具摩耗/破損の発生を抑制する加工条件調整機能を有する数値制御装置
JP6219897B2 (ja) 最適な加減速を生成する工作機械
US10331104B2 (en) Machine tool, simulation apparatus, and machine learning device
JP6077617B1 (ja) 最適な速度分布を生成する工作機械
JP6140228B2 (ja) 加工条件を調整しながら加工を行うワイヤ放電加工機
CN108241342B (zh) 数值控制装置以及机器学习装置
JP5969676B1 (ja) 工作機械の工具補正の頻度を最適化する機械学習装置及び機械学習方法、並びに該機械学習装置を備えた工作機械
JP6457563B2 (ja) 数値制御装置及び機械学習装置
JP6680756B2 (ja) 制御装置及び機械学習装置
JP6063016B1 (ja) 電動機に対する動作指令を学習する機械学習方法および機械学習装置並びに該機械学習装置を備えた工作機械
US10112247B2 (en) Wire electric discharge machine having movable axis abnormal load warning function
CN108723889B (zh) 加减速控制装置
CN111857052B (zh) 机器学习装置、数值控制***以及机器学习方法
JP6756676B2 (ja) 製造システム
US11897066B2 (en) Simulation apparatus
JP2019185125A (ja) 制御装置及び機械学習装置
US10698380B2 (en) Numerical controller
JPWO2020012581A1 (ja) 機械学習装置、数値制御加工プログラム生成装置および機械学習方法
JP2017033040A (ja) Plcプログラムの最適化機能を備えた制御装置及び機械学習器
KR20220157437A (ko) 기계가공의 프로세스 매개변수들을 생성하기 위한 치아 기계가공 시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109