JP2017027720A - Battery cooling structure - Google Patents

Battery cooling structure Download PDF

Info

Publication number
JP2017027720A
JP2017027720A JP2015143823A JP2015143823A JP2017027720A JP 2017027720 A JP2017027720 A JP 2017027720A JP 2015143823 A JP2015143823 A JP 2015143823A JP 2015143823 A JP2015143823 A JP 2015143823A JP 2017027720 A JP2017027720 A JP 2017027720A
Authority
JP
Japan
Prior art keywords
heat
battery
heat transfer
cooling structure
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015143823A
Other languages
Japanese (ja)
Inventor
下野園 均
Hitoshi Shimonosono
均 下野園
且行 浦山
Katsuyuki Urayama
且行 浦山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2015143823A priority Critical patent/JP2017027720A/en
Publication of JP2017027720A publication Critical patent/JP2017027720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery cooling structure capable of enhancing the cooling efficiency and the heat radiation efficiency.SOLUTION: A battery cooling structure includes a first heat transfer surface H1 configured by an outer peripheral surface 60 of a battery module M having one or two or more battery cells C, a second heat transfer surface H2 configured by an inner peripheral surface 100a of a housing 100 for housing the battery module, and a thermoelectric element 30 which are arranged between the first heat transfer surface and the second heat transfer surface and has a heat absorption surface 30a and a heat radiation surface 30b. Heat transport members 50A, 50B for performing heat transport by circulation of a heating medium that changes in phase between vapor phase and liquid phase are arranged either between the thermoelectric element and the first heat transfer surface or between the thermoelectric element and the second heat transfer surface.SELECTED DRAWING: Figure 5

Description

本発明は、バッテリセルを備えたバッテリモジュールを冷却するバッテリ冷却構造に関する。   The present invention relates to a battery cooling structure that cools a battery module including battery cells.

電気自動車やハイブリット自動車などには、電動機等に電気を供給するバッテリが搭載されている。バッテリとしては、繰返し充放電が可能なニッカド(Ni−Cd)電池、ニッケル−水素電池、リチウムイオン電池などの二次バッテリが用いられる。   A battery for supplying electricity to an electric motor or the like is mounted on an electric vehicle or a hybrid vehicle. As the battery, a secondary battery such as a nickel-cadmium (Ni-Cd) battery, a nickel-hydrogen battery, or a lithium ion battery that can be repeatedly charged and discharged is used.

このようなバッテリは、充電時および放電時に発熱し、バッテリ温度が上昇する。このようなバッテリ温度が上昇した状態を放置すると、バッテリ特性が低下し、使用寿命が短くなるなどの不具合を生じる。   Such a battery generates heat during charging and discharging, and the battery temperature rises. If such a state in which the battery temperature is increased is left as it is, problems such as deterioration in battery characteristics and shortened service life occur.

そこで、ペルチェ素子等の熱電素子を利用してバッテリを冷却する冷却装置が種々提案されている(例えば特許文献1等)。   Therefore, various cooling devices for cooling the battery using thermoelectric elements such as Peltier elements have been proposed (for example, Patent Document 1).

特開2010−192207号公報JP 2010-192207 A

ここで、従来の冷却装置では、ペルチェ素子の吸熱面は、組電池(バッテリモジュール)の一面に接し、ペルチェ素子の放熱面はバッテリモジュールの収容容器(筐体)の一面に接するように配置されている。   Here, in the conventional cooling device, the heat absorption surface of the Peltier element is disposed so as to contact one surface of the assembled battery (battery module), and the heat dissipation surface of the Peltier element is disposed so as to contact one surface of the container (housing) of the battery module. ing.

しかしながら、従来構造において、ペルチェ素子とバッテリモジュールおよび筐体とが接する面は限定され、接触面積も比較的小さいため、ペルチェ素子の冷却面によるバッテリモジュールの冷却、およびペルチェ素子の放熱部からの放熱を十分に行うことができず、冷却効率および放熱効率が低いという問題があった。   However, in the conventional structure, the surface where the Peltier element contacts the battery module and the housing is limited, and the contact area is also relatively small. Therefore, the cooling of the battery module by the cooling surface of the Peltier element and the heat dissipation from the heat dissipation part of the Peltier element There was a problem that cooling efficiency and heat dissipation efficiency were low.

本発明は、上記課題に鑑みてなされたものであり、冷却効率および放熱効率を向上させることのできるバッテリ冷却構造を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the battery cooling structure which can improve cooling efficiency and heat dissipation efficiency.

上記目的を達成するため、本発明に係るバッテリ冷却構造は、1または2以上のバッテリセルを備えたバッテリモジュールの外周面で構成される第1伝熱面と、前記バッテリモジュールを収容する筐体の内周面で構成される第2伝熱面と、前記第1伝熱面と前記第2伝熱面の間に配置され、吸熱面と放熱面を備えた熱電素子と、を備え、前記熱電素子と前記第1伝熱面の間、または前記熱電素子と第2伝熱面の間の少なくとも一方に、気相と液相とに相変化する熱媒の循環により熱輸送を行う熱輸送部材が配置されていることを要旨とする。   In order to achieve the above object, a battery cooling structure according to the present invention includes a first heat transfer surface formed of an outer peripheral surface of a battery module including one or more battery cells, and a housing that houses the battery module. A second heat transfer surface composed of an inner peripheral surface of the first heat transfer surface, a thermoelectric element disposed between the first heat transfer surface and the second heat transfer surface, and having a heat absorption surface and a heat dissipation surface, Heat transport that transports heat by circulation of a heat medium that changes phase between gas phase and liquid phase between at least one of the thermoelectric element and the first heat transfer surface or between the thermoelectric element and the second heat transfer surface. The gist is that the members are arranged.

本発明に係るバッテリ冷却構造によれば、熱輸送部材を介して熱電素子と第1伝熱面の間、または熱電素子と第2伝熱面の間の熱輸送を行うので、熱輸送部材がバッテリモジュール側の第1伝熱面あるいは筐体側の第2伝熱面と接触する位置を調整したり接触面積を大きくとることにより、バッテリモジュールの冷却面積あるいは熱電素子の放熱面積を実質的に拡大することができる。これにより、バッテリモジュールの冷却効率および熱電素子の放熱効率を向上させることができる。   According to the battery cooling structure of the present invention, heat transfer is performed between the thermoelectric element and the first heat transfer surface or between the thermoelectric element and the second heat transfer surface via the heat transfer member. By adjusting the position of contact with the first heat transfer surface on the battery module side or the second heat transfer surface on the housing side or by increasing the contact area, the cooling area of the battery module or the heat dissipation area of the thermoelectric element is substantially expanded. can do. Thereby, the cooling efficiency of a battery module and the thermal radiation efficiency of a thermoelectric element can be improved.

実施の形態に係るバッテリ冷却構造と温度との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the battery cooling structure and temperature which concern on embodiment. 実施の形態に係るバッテリ冷却構造に適用される熱輸送部材の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the heat transport member applied to the battery cooling structure which concerns on embodiment. 第1の実施の形態に係るバッテリ冷却構造を示す一部断面図である。It is a partial cross section figure showing the battery cooling structure concerning a 1st embodiment. 第1の実施の形態に係るバッテリ冷却構造を示すA−A線断面図である。It is an AA line sectional view showing the battery cooling structure concerning a 1st embodiment. 第1の実施の形態に係るバッテリ冷却構造を示す一部断面斜視図である。It is a partial cross section perspective view which shows the battery cooling structure which concerns on 1st Embodiment. 第2の実施の形態に係るバッテリ冷却構造を示す一部断面図である。It is a partial cross section figure which shows the battery cooling structure which concerns on 2nd Embodiment. 第2の実施の形態に係るバッテリ冷却構造を示すA−A線断面図である。It is AA sectional view taken on the line which shows the battery cooling structure which concerns on 2nd Embodiment. 第2の実施の形態に係るバッテリ冷却構造を示す一部断面斜視図である。It is a partial cross section perspective view which shows the battery cooling structure which concerns on 2nd Embodiment. 第2の実施の形態に係るバッテリ冷却構造に適用される熱輸送部材の構成例を模式的に示す平面図である。It is a top view which shows typically the structural example of the heat transport member applied to the battery cooling structure which concerns on 2nd Embodiment. 第3の実施の形態に係るバッテリ冷却構造を示す一部断面図である。It is a partial cross section figure which shows the battery cooling structure which concerns on 3rd Embodiment. 第3の実施の形態に係るバッテリ冷却構造を示すA−A線断面図である。It is AA sectional view taken on the line which shows the battery cooling structure which concerns on 3rd Embodiment. 第3の実施の形態に係るバッテリ冷却構造を示す一部断面斜視図である。It is a partial cross section perspective view which shows the battery cooling structure which concerns on 3rd Embodiment.

以下、本発明の一例としての実施の形態を図面に基づいて詳細に説明する。ここで、添付図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。なお、ここでの説明は本発明が実施される最良の形態であることから、本発明は当該形態に限定されるものではない。   Hereinafter, an embodiment as an example of the present invention will be described in detail with reference to the drawings. Here, in the accompanying drawings, the same reference numerals are given to the same members, and duplicate descriptions are omitted. In addition, since description here is the best form by which this invention is implemented, this invention is not limited to the said form.

[実施の形態に係るバッテリ冷却構造の模式的構成]
図1は、実施の形態に係るバッテリ冷却構造Bと温度との関係を模式的に示す説明図である。
[Schematic Configuration of Battery Cooling Structure According to Embodiment]
FIG. 1 is an explanatory diagram schematically showing the relationship between the battery cooling structure B and the temperature according to the embodiment.

バッテリ冷却構造Bは、発熱部としての1または2以上のバッテリセルCを備えたバッテリモジュールMの熱が、熱輸送部材50Aによりペルチェ素子等で構成される熱電素子30に熱輸送されるようになっている。   The battery cooling structure B is configured so that heat of the battery module M including one or more battery cells C as a heat generating portion is thermally transported to the thermoelectric element 30 configured by a Peltier element or the like by the heat transport member 50A. It has become.

より具体的には、バッテリモジュールMの外周面60で構成される第1伝熱面H1と、熱電素子30の吸熱面30aとが熱輸送部材50Aを介して接続されている。   More specifically, the first heat transfer surface H1 configured by the outer peripheral surface 60 of the battery module M and the heat absorption surface 30a of the thermoelectric element 30 are connected via the heat transport member 50A.

また、熱電素子30に熱輸送された熱は、熱輸送部材50Aにより放熱部Dに熱輸送されるようになっている。   Further, the heat transported to the thermoelectric element 30 is transported to the heat radiating portion D by the heat transport member 50A.

より具体的には、熱電素子30の放熱面30bと、バッテリモジュールMを収容する筐体100の内周面100aで構成される放熱部Dとしての第2伝熱面H2とが熱輸送部材50Bを介して接続されている。   More specifically, the heat transfer member 50B includes a heat dissipation surface 30b of the thermoelectric element 30 and a second heat transfer surface H2 as the heat dissipation portion D configured by the inner peripheral surface 100a of the casing 100 that houses the battery module M. Connected through.

ここで、熱輸送部材50(50A、50B)は、気相と液相とに相変化する熱媒の循環により熱輸送を行う部材である。なお、熱輸送部材50の原理等については後述する。   Here, the heat transport member 50 (50A, 50B) is a member that transports heat by circulation of a heat medium that changes phase between a gas phase and a liquid phase. The principle of the heat transport member 50 will be described later.

そして、温度を示すグラフの温度変化状況が示すように、発熱部としてのバッテリモジュールMの熱が熱輸送部材50Aの熱輸送作用により熱電素子30の吸熱面30aから放熱面30bに集められ、放熱面30bの温度がピークとなる。その後、熱電素子30の方向面30bの熱は、熱輸送部材50Bの熱輸送作用により放熱部Dに熱輸送され、外気との接触により徐冷される。   As shown in the temperature change state of the graph indicating the temperature, the heat of the battery module M as the heat generating part is collected from the heat absorbing surface 30a of the thermoelectric element 30 to the heat radiating surface 30b by the heat transport action of the heat transport member 50A, The temperature of the surface 30b becomes a peak. Thereafter, the heat of the directional surface 30b of the thermoelectric element 30 is heat transported to the heat radiating portion D by the heat transport action of the heat transport member 50B and gradually cooled by contact with the outside air.

これにより、発熱部としてのバッテリモジュールMを効率的に冷却することができる。   Thereby, the battery module M as a heat-emitting part can be cooled efficiently.

[バッテリ冷却構造に適用される熱輸送部材の構成]
図2は、実施の形態に係るバッテリ冷却構造Bに適用される熱輸送部材50の構成を模式的に示す説明図である。
[Configuration of heat transport member applied to battery cooling structure]
FIG. 2 is an explanatory diagram schematically showing the configuration of the heat transport member 50 applied to the battery cooling structure B according to the embodiment.

図2に示すように、熱輸送部材50は、熱媒200がD1、D2方向に循環可能なアルミニウム等で構成される流路51を備えている。なお、図2に示す熱輸送部材50は、横方向が長手となる長方形となる板状あるいはシート状に成形されている。   As shown in FIG. 2, the heat transport member 50 includes a flow channel 51 made of aluminum or the like through which the heat medium 200 can circulate in the directions D1 and D2. Note that the heat transport member 50 shown in FIG. 2 is formed in a plate shape or a sheet shape that is a rectangle whose longitudinal direction is the longitudinal direction.

熱媒200は、気相Gと液相Lとに相変化可能なフロン、ブタン、水、アルコール等で構成される。   The heat medium 200 is composed of chlorofluorocarbon, butane, water, alcohol, or the like that can change into a gas phase G and a liquid phase L.

そして、熱輸送部材50の長手方向の一端(A端)側が放熱部となる際には、他端(B端)が冷却部として機能し、逆に一端(A端)側が冷却部となる際には、他端(B端)が放熱部として機能する。   When the one end (A end) side in the longitudinal direction of the heat transport member 50 becomes a heat radiating part, the other end (B end) functions as a cooling part, and conversely, when one end (A end) side becomes a cooling part. The other end (B end) functions as a heat radiating part.

このような熱輸送部材50の熱輸送効果は、熱媒200の気相GのD1、D2方向への移動および液相Lの自励振動によって得られる。   Such a heat transport effect of the heat transport member 50 is obtained by the movement of the gas phase G of the heat medium 200 in the directions D1 and D2 and the self-excited vibration of the liquid phase L.

即ち、熱吸収により熱媒200が相変化し、気相(蒸気)Gの移動によって潜熱を輸送する。また、熱媒200の核沸騰(表面温度が液体の沸点より低いが、熱流束が臨界熱流束を下回る場合に起こる沸騰の一形態)により液相Lが振動し、この振動により顕熱が輸送されるという原理を応用している。   That is, the heat medium 200 changes phase by heat absorption, and latent heat is transported by movement of the gas phase (steam) G. Further, the liquid phase L vibrates due to nucleate boiling of the heating medium 200 (a form of boiling that occurs when the surface temperature is lower than the boiling point of the liquid but the heat flux is below the critical heat flux), and this vibration transports sensible heat. Applying the principle of being.

ここで、本実施の形態で適用した熱輸送部材50の実効熱伝導率は、約10000〜30000W/m℃程度に達する。これに対して、一般的なヒートパイプ等に適用される鉄の熱伝導率は84W/m℃、アルミニウムの熱伝導率は236W/m℃、銅の熱伝導率は398W/m℃であり、熱輸送部材50の熱伝導率が非常に高いことが分かる。   Here, the effective thermal conductivity of the heat transport member 50 applied in the present embodiment reaches about 10,000 to 30000 W / m ° C. On the other hand, the thermal conductivity of iron applied to a general heat pipe or the like is 84 W / m ° C., the thermal conductivity of aluminum is 236 W / m ° C., and the thermal conductivity of copper is 398 W / m ° C., It can be seen that the heat conductivity of the heat transport member 50 is very high.

このような特性を有する熱輸送部材50を用いることにより、図1に示すような発熱部(第1伝熱面H1)と放熱部(第2伝熱面H2)との間で効率的に熱輸送を行って、バッテリモジュールMを効果的に冷却することができる。   By using the heat transport member 50 having such characteristics, heat is efficiently generated between the heat generating portion (first heat transfer surface H1) and the heat radiating portion (second heat transfer surface H2) as shown in FIG. The battery module M can be effectively cooled by transportation.

なお、熱輸送部材50を可撓性を有するシート状とすることにより、バッテリモジュールMの外周面60やバッテリモジュールMを収容する筐体100の内周面100aの形状に沿って、熱輸送部材50を密着させて配置することができる。   In addition, by making the heat transport member 50 into a flexible sheet shape, the heat transport member is formed along the shape of the outer peripheral surface 60 of the battery module M and the inner peripheral surface 100a of the housing 100 that houses the battery module M. 50 can be placed in close contact with each other.

[第1の実施の形態に係るバッテリ冷却構造]
図3〜図5を参照して、第1の実施の形態に係るバッテリ冷却構造B1について説明する。
[Battery Cooling Structure According to First Embodiment]
The battery cooling structure B1 according to the first embodiment will be described with reference to FIGS.

ここで、図3は、第1の実施の形態に係るバッテリ冷却構造B1を示す一部断面図、図4は、図3のA−A線断面図、図5は、バッテリ冷却構造B1の構成例を示す一部断面斜視図である。   3 is a partial cross-sectional view showing the battery cooling structure B1 according to the first embodiment, FIG. 4 is a cross-sectional view taken along line AA of FIG. 3, and FIG. 5 is a configuration of the battery cooling structure B1. It is a partial cross section perspective view which shows an example.

本実施の形態に係るバッテリ冷却構造B1は、複数のバッテリセルCを備えた各バッテリモジュールM1、M2の外周面60で構成される第1伝熱面H1と、2つのバッテリモジュールM1、M2を収容するアルミニウム等の金属で成形される筐体100の内周面100aで構成される第2伝熱面H2と、第1伝熱面H1と第2伝熱面H2の間に配置され、吸熱面30aと放熱面30bを備えたペルチェ素子等で構成される熱電素子30とを備えている。   The battery cooling structure B1 according to the present embodiment includes a first heat transfer surface H1 configured by the outer peripheral surface 60 of each of the battery modules M1 and M2 including a plurality of battery cells C, and the two battery modules M1 and M2. Arranged between the second heat transfer surface H2 composed of the inner peripheral surface 100a of the housing 100 formed of a metal such as aluminum to be accommodated, and between the first heat transfer surface H1 and the second heat transfer surface H2, and absorbs heat. The thermoelectric element 30 comprised by the Peltier device etc. provided with the surface 30a and the thermal radiation surface 30b is provided.

そして、本実施の形態に係るバッテリ冷却構造B1では、熱電素子30と第1伝熱面H1の間に、前出の図2に示すような内部構造を備えた熱輸送部材50Aが設けられている。   In the battery cooling structure B1 according to the present embodiment, a heat transport member 50A having an internal structure as shown in FIG. 2 is provided between the thermoelectric element 30 and the first heat transfer surface H1. Yes.

また、筐体100内の熱輸送部材50Aと第2伝熱面H2との間には、発泡樹脂等で構成される断熱材101が設けられている。これにより、熱輸送部材50Aと第2伝熱面H2との間の熱戻りを抑制することができる。   Further, a heat insulating material 101 made of foamed resin or the like is provided between the heat transport member 50A in the housing 100 and the second heat transfer surface H2. Thereby, the heat return between the heat transport member 50A and the second heat transfer surface H2 can be suppressed.

そして、熱電素子30の吸熱面30aは熱輸送部材50Aの一端(A端)側に熱結合され、熱輸送部材50Aの他端(B端)側は第1伝熱面H1に熱結合されている(図5等参照)。   The endothermic surface 30a of the thermoelectric element 30 is thermally coupled to one end (A end) side of the heat transport member 50A, and the other end (B end) side of the heat transport member 50A is thermally coupled to the first heat transfer surface H1. (Refer to FIG. 5 etc.).

ここで、図5等に示すように、可撓性を有するシート状等に成形された熱輸送部材50Aは、バッテリモジュールM1、M2の外周面60の左右側面の大部分と底面を覆うように配置されている。   Here, as shown in FIG. 5 and the like, the heat transport member 50A formed into a flexible sheet or the like covers most of the left and right side surfaces and the bottom surface of the outer peripheral surface 60 of the battery modules M1 and M2. Has been placed.

これにより、バッテリモジュールM1、M2の充放電時などに発生する熱は、外周面60で構成される第1伝熱面H1に熱接合されている熱輸送部材50Aを介して熱電素子30の吸熱面30aに効率的に集めることができる。   Thereby, the heat generated during charging / discharging of the battery modules M1 and M2 is absorbed by the thermoelectric element 30 through the heat transport member 50A that is thermally bonded to the first heat transfer surface H1 formed by the outer peripheral surface 60. It can be efficiently collected on the surface 30a.

そして、熱電素子30の吸熱面30aに集められた熱は、熱電素子30の放熱面30bと熱接合される筐体100の内周面(底面)100aで構成される第2伝熱面H2を介して筐体100の外周面100bから外気に放熱される。   Then, the heat collected on the heat absorption surface 30a of the thermoelectric element 30 passes through the second heat transfer surface H2 configured by the inner peripheral surface (bottom surface) 100a of the housing 100 that is thermally bonded to the heat dissipation surface 30b of the thermoelectric element 30. The heat is radiated from the outer peripheral surface 100b of the housing 100 to the outside air.

なお、図5に示すように、バッテリモジュールM2の端面には、バッテリモジュールM2を筐体100内に固定する金属板等で構成されるブラケット61がボルト63により締結されている。   As shown in FIG. 5, a bracket 61 made of a metal plate or the like that fixes the battery module M2 in the housing 100 is fastened to the end surface of the battery module M2 by a bolt 63.

ブラケット61の下端部には、バッテリモジュールM2の下面によりも下方に位置し、熱電素子30の底面と同じ接地面となるL字型の固定部62が形成されている。なお、ブラケット61と熱電素子30とは離間して設けられている。   At the lower end portion of the bracket 61, an L-shaped fixing portion 62 is formed which is located below the lower surface of the battery module M2 and serves as the same ground plane as the bottom surface of the thermoelectric element 30. The bracket 61 and the thermoelectric element 30 are provided apart from each other.

また、バッテリモジュールM2の他端面にも同様のブラケット61が設けられている。また、バッテリモジュールM1の両端面にも同様のブラケット61が設けられている。   A similar bracket 61 is also provided on the other end surface of the battery module M2. Similar brackets 61 are also provided on both end faces of the battery module M1.

これにより、バッテリモジュールM1、M2をブラケット61により筐体100内に固定した際に、ブラケット61を介した熱伝導により、バッテリモジュールM1、M2の熱を筐体100からの放熱に寄与することができる。   Thus, when the battery modules M1 and M2 are fixed in the housing 100 by the bracket 61, the heat of the battery modules M1 and M2 contributes to the heat radiation from the housing 100 by the heat conduction through the bracket 61. it can.

なお、ブラケット61と熱電素子30とは離間して設けられているので、熱電素子30の熱がブラケット61を介してバッテリモジュールM1、M2に戻ることを抑制することができる。   In addition, since the bracket 61 and the thermoelectric element 30 are provided apart from each other, it is possible to suppress the heat of the thermoelectric element 30 from returning to the battery modules M1 and M2 via the bracket 61.

また、図3等に示す構成例では、筐体100内に2個のバッテリモジュールM1、M2を収容する場合を示しているが、バッテリモジュールの設置数はこれに限らず、1個のみ設ける場合でもよいし、或いは3個以上設けるようにしてもよい。   In the configuration example shown in FIG. 3 and the like, the case where two battery modules M1 and M2 are accommodated in the housing 100 is shown. However, the number of battery modules is not limited to this, and only one battery module is provided. Alternatively, three or more may be provided.

[第2の実施の形態に係るバッテリ冷却構造]
図7〜図9を参照して、第2の実施の形態に係るバッテリ冷却構造B2について説明する。
[Battery Cooling Structure According to Second Embodiment]
A battery cooling structure B2 according to the second embodiment will be described with reference to FIGS.

ここで、図7は、第2の実施の形態に係るバッテリ冷却構造B2を示す一部断面図、図8は、図7のA−A線断面図、図9は、バッテリ冷却構造B2の構成例を示す一部断面斜視図、図9は、バッテリ冷却構造B2に適用される熱輸送部材50Bの構成例を模式的に示す平面図である。   7 is a partial cross-sectional view showing the battery cooling structure B2 according to the second embodiment, FIG. 8 is a cross-sectional view taken along the line AA of FIG. 7, and FIG. 9 is a configuration of the battery cooling structure B2. FIG. 9 is a plan view schematically showing a configuration example of a heat transport member 50B applied to the battery cooling structure B2.

なお、第1の実施の形態に係るバッテリ冷却構造B1と同様の構成については、同一符号を付して重複した説明は省略する。   In addition, about the structure similar to battery cooling structure B1 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

第2の実施の形態に係るバッテリ冷却構造B2では、第1の実施の形態に係るバッテリ冷却構造B1の構成に加えて、熱電素子30と筐体100の内周面100aで構成される第2伝熱面H2との間に、熱輸送部材50Bが設けられている。   In the battery cooling structure B2 according to the second embodiment, in addition to the configuration of the battery cooling structure B1 according to the first embodiment, a second structure constituted by the thermoelectric element 30 and the inner peripheral surface 100a of the housing 100 is provided. A heat transport member 50B is provided between the heat transfer surface H2.

そして、熱電素子30の放熱面30bは、図2に示すような構成の熱輸送部材50Bの一端(A端)側と熱結合され、熱輸送部材50Bの他端(B端)側は第2伝熱面H2と熱結合されている(図8等参照)。   The heat radiation surface 30b of the thermoelectric element 30 is thermally coupled to one end (A end) side of the heat transport member 50B configured as shown in FIG. 2, and the other end (B end) side of the heat transport member 50B is second. It is thermally coupled to the heat transfer surface H2 (see FIG. 8 and the like).

また、筐体100内の熱輸送部材50Aと熱輸送部材50Bとの間には、発泡樹脂等で構成される断熱材101が設けられている。これにより、熱輸送部材50Aと熱輸送部材50Bとの間の熱戻りを抑制することができる。   Further, a heat insulating material 101 made of foamed resin or the like is provided between the heat transport member 50A and the heat transport member 50B in the housing 100. Thereby, the heat return between the heat transport member 50A and the heat transport member 50B can be suppressed.

ここで、図9を参照して、バッテリ冷却構造B2に適用される熱輸送部材50Bの構成例について説明する。   Here, with reference to FIG. 9, the structural example of the heat transport member 50B applied to battery cooling structure B2 is demonstrated.

図9に示すように熱輸送部材50Bは、櫛歯状の熱輸送セル50B1〜50B4を備えている。   As shown in FIG. 9, the heat transport member 50B includes comb-shaped heat transport cells 50B1 to 50B4.

熱輸送セル50B1と50B2は、櫛歯型の部位と反対側の背部同士が対向するように配置されている。また、同様に熱輸送セル50B3と50B4は、櫛歯型の部位と反対側の背部同士が対向するように配置されている。   The heat transport cells 50B1 and 50B2 are arranged so that the back portions on the opposite side to the comb-shaped portion face each other. Similarly, the heat transport cells 50B3 and 50B4 are arranged so that the back portions on the opposite side to the comb-shaped portion face each other.

そして、図9に示すように、符号Aで示す部位をA端として、バッテリモジュールM1、M2側の熱電素子30の放熱面30bに密着状態で配設される。また、符号Bで示す部位をB端として、バッテリモジュールM1、M2側の熱輸送セル50Aと所定の間隙を挟んで対向して配置される。   Then, as shown in FIG. 9, the portion indicated by the symbol A is disposed at the A end, and is disposed in close contact with the heat radiation surface 30b of the thermoelectric element 30 on the battery modules M1 and M2 side. Further, with the portion indicated by reference sign B as the B end, the heat transport cell 50A on the battery modules M1 and M2 side is arranged to face the gap with a predetermined gap.

なお、熱輸送セル50Aと熱輸送セル50Bとの間隙には、断熱材101が挟持される。   Note that the heat insulating material 101 is sandwiched in the gap between the heat transport cell 50A and the heat transport cell 50B.

また、熱輸送セル50Bの外側の面は、筐体100の内周面100aと密着状態で配設される。   Further, the outer surface of the heat transport cell 50B is disposed in close contact with the inner peripheral surface 100a of the housing 100.

また、熱輸送部材50Bの熱輸送セルの設置数は、図9に示すような4つの場合に限られず、バッテリモジュールMの大きさや設置数等に応じて適宜増減することができる。   Further, the number of installed heat transport cells of the heat transport member 50B is not limited to four as shown in FIG. 9, and can be appropriately increased or decreased according to the size, the number of installed, etc. of the battery module M.

このような構成により、バッテリモジュールM1、M2の充放電時などに発生する熱は、外周面60で構成される第1伝熱面H1に熱接合されている熱輸送部材50Aを介して熱電素子30の吸熱面30aに効率的に集めることができる。   With such a configuration, heat generated during charging / discharging of the battery modules M1 and M2 or the like is performed through the heat transport member 50A that is thermally bonded to the first heat transfer surface H1 formed by the outer peripheral surface 60. It is possible to efficiently collect the heat absorption surfaces 30a.

そして、熱電素子30の吸熱面30aに集められた熱は、放熱面30bと熱接合される熱輸送セル50Bを介して筐体100の内周面(底面)100aで構成される第2伝熱面H2に熱輸送され、筐体100の外周面100bから外気に効率的に放熱される。   Then, the heat collected on the heat absorption surface 30a of the thermoelectric element 30 is a second heat transfer configured by the inner peripheral surface (bottom surface) 100a of the housing 100 via the heat transport cell 50B thermally bonded to the heat dissipation surface 30b. The heat is transported to the surface H2 and efficiently radiated from the outer peripheral surface 100b of the housing 100 to the outside air.

これにより、バッテリモジュールM1、M2を効率的に冷却することができる。   Thereby, the battery modules M1 and M2 can be efficiently cooled.

[第3の実施の形態に係るバッテリ冷却構造]
図10〜図12を参照して、第3の実施の形態に係るバッテリ冷却構造B3について説明する。
[Battery Cooling Structure According to Third Embodiment]
The battery cooling structure B3 according to the third embodiment will be described with reference to FIGS.

ここで、図10は、第3の実施の形態に係るバッテリ冷却構造B3を示す一部断面図、図11は、図10のA−A線断面図、図12は、バッテリ冷却構造B3の構成例を示す一部断面斜視図である。   Here, FIG. 10 is a partial cross-sectional view showing a battery cooling structure B3 according to the third embodiment, FIG. 11 is a cross-sectional view taken along line AA of FIG. 10, and FIG. 12 is a configuration of the battery cooling structure B3. It is a partial cross section perspective view which shows an example.

なお、第1の実施の形態に係るバッテリ冷却構造B1と同様の構成については、同一符号を付して重複した説明は省略する。   In addition, about the structure similar to battery cooling structure B1 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

第3の実施の形態に係るバッテリ冷却構造B3では、第1の実施の形態に係るバッテリ冷却構造B1の構成に加えて、筐体100の外周面100bで構成される第3伝熱面H3を備え、第3伝熱面H3の少なくとも一部に、前出の図2に示すような構成を有する熱輸送部材50Cが配置されている。なお、図12に示すように、熱輸送部材50Cによって、筐体100の外周面100bの底面および左右側面の大部分が占められるように配設される。   In the battery cooling structure B3 according to the third embodiment, in addition to the configuration of the battery cooling structure B1 according to the first embodiment, a third heat transfer surface H3 configured by the outer peripheral surface 100b of the housing 100 is provided. The heat transport member 50C having the configuration shown in FIG. 2 is disposed on at least a part of the third heat transfer surface H3. As shown in FIG. 12, the heat transport member 50C is disposed so as to occupy most of the bottom surface and the left and right side surfaces of the outer peripheral surface 100b of the housing 100.

このような構成により、バッテリモジュールM1、M2の充放電時などに発生する熱は、外周面60で構成される第1伝熱面H1に熱接合されている熱輸送部材50Aを介して熱電素子30の吸熱面30aに効率的に集めることができる。   With such a configuration, heat generated during charging / discharging of the battery modules M1 and M2 or the like is performed through the heat transport member 50A that is thermally bonded to the first heat transfer surface H1 formed by the outer peripheral surface 60. It is possible to efficiently collect the heat absorption surfaces 30a.

そして、熱電素子30の吸熱面30aに集められた熱は、熱電素子30の放熱面30bと熱接合される筐体100の内周面(底面)100aで構成される第2伝熱面H2を介して筐体100の外周面100bで構成される第3伝熱面H3に伝熱される。   Then, the heat collected on the heat absorption surface 30a of the thermoelectric element 30 passes through the second heat transfer surface H2 configured by the inner peripheral surface (bottom surface) 100a of the housing 100 that is thermally bonded to the heat dissipation surface 30b of the thermoelectric element 30. The heat is transferred to the third heat transfer surface H3 configured by the outer peripheral surface 100b of the housing 100.

さらに、第3伝熱面H3に伝熱された熱は、筐体100の外周面100bに広く熱輸送され、外気に効率的に放熱される。   Furthermore, the heat transferred to the third heat transfer surface H3 is widely transported to the outer peripheral surface 100b of the housing 100 and efficiently radiated to the outside air.

これにより、バッテリモジュールM1、M2を効率的に冷却することができる。   Thereby, the battery modules M1 and M2 can be efficiently cooled.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって開示された技術に限定されるものではないと考えるべきである。すなわち、本発明の技術的な範囲は、前記の実施の形態における説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載にしたがって解釈すべきであり、特許請求の範囲の記載技術と均等な技術および特許請求の範囲内でのすべての変更が含まれる。   Although the invention made by the present inventor has been specifically described based on the embodiments, the embodiments disclosed herein are illustrative in all respects and are not limited to the disclosed technology. Should not be considered. That is, the technical scope of the present invention should not be construed restrictively based on the description in the above embodiment, but should be construed according to the description of the scope of claims. All the modifications within the scope of the claims and the equivalent technique to the described technique are included.

例えば、第2の実施の形態に係るバッテリ冷却構造B2の構成と、第3の実施の形態に係るバッテリ冷却構造B3の構成とを組み合わせるようにしてもよい。   For example, you may make it combine the structure of battery cooling structure B2 which concerns on 2nd Embodiment, and the structure of battery cooling structure B3 which concerns on 3rd Embodiment.

即ち、第2の実施の形態に係るバッテリ冷却構造B2の構成に加えて、筐体100の外周面100bで構成される第3伝熱面H3の少なくとも一部に熱輸送部材50Cを配置するようにできる。   That is, in addition to the configuration of the battery cooling structure B2 according to the second embodiment, the heat transport member 50C is arranged on at least a part of the third heat transfer surface H3 configured by the outer peripheral surface 100b of the housing 100. Can be.

このような構成により、バッテリモジュールM1、M2の充放電時などに発生する熱は、外周面60で構成される第1伝熱面H1に熱接合されている熱輸送部材50Aを介して熱電素子30の吸熱面30aに効率的に集められる。そして、熱電素子30の吸熱面30aに集められた熱は、放熱面30bと熱接合される熱輸送セル50Bを介して筐体100の内周面(底面)100aで構成される第2伝熱面H2に熱輸送され、筐体100の外周面100bに伝熱される。   With such a configuration, heat generated during charging / discharging of the battery modules M1 and M2 and the like is performed through the heat transport member 50A that is thermally bonded to the first heat transfer surface H1 formed by the outer peripheral surface 60. It is efficiently collected on 30 endothermic surfaces 30a. Then, the heat collected on the heat absorption surface 30a of the thermoelectric element 30 is a second heat transfer configured by the inner peripheral surface (bottom surface) 100a of the housing 100 via the heat transport cell 50B thermally bonded to the heat dissipation surface 30b. Heat transported to the surface H <b> 2 and heat transfer to the outer peripheral surface 100 b of the housing 100.

さらに、第3伝熱面H3に伝熱された熱は、筐体100の外周面100bに広く熱輸送され、外気に効率的に放熱される。   Furthermore, the heat transferred to the third heat transfer surface H3 is widely transported to the outer peripheral surface 100b of the housing 100 and efficiently radiated to the outside air.

これにより、バッテリモジュールM1、M2をより効率的に冷却することができる。   Thereby, the battery modules M1 and M2 can be cooled more efficiently.

また、熱電素子30の吸熱面30aと放熱面30bを入れ替える(即ち、ペルチェ素子等への通電方向を逆にする)ことにより、バッテリモジュールM1、M2を加熱する用途に利用することもできる。   Moreover, it can also utilize for the use which heats battery module M1, M2 by replacing the heat absorption surface 30a and the heat radiating surface 30b of the thermoelectric element 30 (namely, the energization direction to a Peltier device etc. is reversed).

即ち、寒冷環境等において、バッテリモジュールM1、M2の温度が低下して、バッテリ特性が低下する場合などに、熱電素子30の吸熱面30aと放熱面30bとを入れ替えることにより、バッテリモジュールM1、M2を適度に加熱して、バッテリ特性を向上させる役割を担わせることができる。   That is, in a cold environment or the like, when the temperature of the battery modules M1 and M2 decreases and the battery characteristics deteriorate, the battery modules M1 and M2 are replaced by replacing the heat absorption surface 30a and the heat dissipation surface 30b of the thermoelectric element 30. Can be heated moderately to play a role of improving battery characteristics.

B(B1、B2、B3)…バッテリ冷却構造
C…バッテリセル
D…放熱部
H1…第1伝熱面
H2…第2伝熱面
H3…第3伝熱面
M(M1、M2)…バッテリモジュール
30…熱電素子(ペルチェ素子)
30a…吸熱面
30b…放熱面
50(50A、50B、50C)…熱輸送部材
50B1〜50B4…熱輸送セル
51…流路
60…バッテリモジュールの外周面
61…ブラケット
62…固定部
63…ボルト
100…筐体
100a…内周面
100b…外周面
101…断熱材
200…熱媒
G…気相
L…液相
B (B1, B2, B3) ... Battery cooling structure C ... Battery cell D ... Heat dissipation portion H1 ... First heat transfer surface H2 ... Second heat transfer surface H3 ... Third heat transfer surface M (M1, M2) ... Battery module 30 ... Thermoelectric element (Peltier element)
30a ... endothermic surface 30b ... heat radiating surface 50 (50A, 50B, 50C) ... heat transport member 50B1-50B4 ... heat transport cell 51 ... flow path 60 ... outer peripheral surface of battery module 61 ... bracket 62 ... fixed part 63 ... bolt 100 ... Housing 100a ... Inner peripheral surface 100b ... Outer peripheral surface 101 ... Insulating material 200 ... Heat medium G ... Gas phase L ... Liquid phase

Claims (5)

1または2以上のバッテリセル(C)を備えたバッテリモジュール(M)の外周面(60)で構成される第1伝熱面(H1)と、
前記バッテリモジュールを収容する筐体(100)の内周面(100a)で構成される第2伝熱面(H2)と、
前記第1伝熱面と前記第2伝熱面の間に配置され、吸熱面(30a)と放熱面(30b)を備えた熱電素子(30)と、
を備え、
前記熱電素子と前記第1伝熱面の間、または前記熱電素子と前記第2伝熱面の間の少なくとも一方に、気相と液相とに相変化する熱媒の循環により熱輸送を行う熱輸送部材(50A、50B)が配置されていることを特徴とするバッテリ冷却構造。
A first heat transfer surface (H1) composed of an outer peripheral surface (60) of a battery module (M) having one or more battery cells (C);
A second heat transfer surface (H2) composed of an inner peripheral surface (100a) of a housing (100) that houses the battery module;
A thermoelectric element (30) disposed between the first heat transfer surface and the second heat transfer surface, comprising a heat absorption surface (30a) and a heat dissipation surface (30b);
With
Heat transport is performed between the thermoelectric element and the first heat transfer surface or between at least one of the thermoelectric element and the second heat transfer surface by circulation of a heat medium that changes phase between a gas phase and a liquid phase. A battery cooling structure in which heat transport members (50A, 50B) are arranged.
前記熱電素子の吸熱面は前記熱輸送部材の一端(A端)側に熱結合され、該熱輸送部材の他端(B端)側は前記第1伝熱面に熱結合されていることを特徴とする請求項1に記載のバッテリ冷却構造。   The heat absorption surface of the thermoelectric element is thermally coupled to one end (A end) side of the heat transport member, and the other end (B end) side of the heat transport member is thermally coupled to the first heat transfer surface. The battery cooling structure according to claim 1, wherein: 前記熱電素子の放熱面は前記熱輸送部材の一端(A端)側に熱結合され、該熱輸送部材の他端(B端)側は前記第2伝熱面に熱結合されていることを特徴とする請求項1または請求項2に記載のバッテリ冷却構造。   The heat dissipation surface of the thermoelectric element is thermally coupled to one end (A end) side of the heat transport member, and the other end (B end) side of the heat transport member is thermally coupled to the second heat transfer surface. The battery cooling structure according to claim 1, wherein the battery cooling structure is a battery cooling structure. 前記筐体内の前記熱輸送部材と前記第2伝熱面との間、または前記熱輸送部材同士の間には、断熱材(101)が設けられていることを特徴とする請求項1から請求項3の何れか1項に記載のバッテリ冷却構造。   The heat insulating material (101) is provided between the heat transport member and the second heat transfer surface in the housing or between the heat transport members. Item 4. The battery cooling structure according to any one of Items 3 to 3. 前記筐体の外周面(100b)で構成される第3伝熱面(H3)を備え、
前記第3伝熱面の少なくとも一部に、前記熱輸送部材(50C)が配置されていることを特徴とする請求項1から請求項4の何れか1項に記載のバッテリ冷却構造。
A third heat transfer surface (H3) composed of the outer peripheral surface (100b) of the housing;
The battery cooling structure according to any one of claims 1 to 4, wherein the heat transport member (50C) is disposed on at least a part of the third heat transfer surface.
JP2015143823A 2015-07-21 2015-07-21 Battery cooling structure Pending JP2017027720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143823A JP2017027720A (en) 2015-07-21 2015-07-21 Battery cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143823A JP2017027720A (en) 2015-07-21 2015-07-21 Battery cooling structure

Publications (1)

Publication Number Publication Date
JP2017027720A true JP2017027720A (en) 2017-02-02

Family

ID=57950622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143823A Pending JP2017027720A (en) 2015-07-21 2015-07-21 Battery cooling structure

Country Status (1)

Country Link
JP (1) JP2017027720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172929A (en) * 2017-12-22 2018-06-15 银隆新能源股份有限公司 Battery radiator structure and the battery pack with air-cooled radiating device
CN109818103A (en) * 2017-11-20 2019-05-28 本田技研工业株式会社 Battery module and electric vehicle
CN112186296A (en) * 2020-09-23 2021-01-05 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Battery thermal management structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109818103A (en) * 2017-11-20 2019-05-28 本田技研工业株式会社 Battery module and electric vehicle
JP2019096399A (en) * 2017-11-20 2019-06-20 本田技研工業株式会社 Battery module and electric vehicle
CN109818103B (en) * 2017-11-20 2022-09-20 本田技研工业株式会社 Storage battery module and electric vehicle
CN108172929A (en) * 2017-12-22 2018-06-15 银隆新能源股份有限公司 Battery radiator structure and the battery pack with air-cooled radiating device
CN108172929B (en) * 2017-12-22 2024-03-15 银隆新能源股份有限公司 Battery core heat radiation structure and battery pack with air cooling heat radiation device
CN112186296A (en) * 2020-09-23 2021-01-05 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Battery thermal management structure
CN112186296B (en) * 2020-09-23 2022-02-15 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Battery thermal management structure

Similar Documents

Publication Publication Date Title
JP6129979B2 (en) Battery heat dissipation system, battery heat dissipation unit
JP6049752B2 (en) Newly structured bus bar
JP5137480B2 (en) Power supply for vehicle
KR101233318B1 (en) Battery module
JP5659554B2 (en) Battery pack
JP6693480B2 (en) Terminal cooling device
JP7155168B2 (en) Power supply and electric vehicle equipped with power supply
JP2013157111A (en) Cooling and heating structure of battery pack
RU2013103441A (en) ELECTRIC BATTERY COOLING SYSTEM AND A BATTERY WITH SUCH A SYSTEM
JPWO2013111815A1 (en) Heat transport equipment
JP2017027720A (en) Battery cooling structure
WO2014142033A1 (en) Temperature adjustment device and battery equipped with same
Singh et al. Battery cooling options in electric vehicles with heat pipes
US9184363B2 (en) Power generator
JP7049892B2 (en) Cooling and heating device for assembled batteries
JP2013105720A (en) Battery temperature control unit
JP2016035856A (en) Fuel cell cooling system
JP2015204267A (en) battery pack
JP2016023608A (en) Generating set using heat of exhaust gas of internal combustion engine
JP2015002105A (en) Cooling device for battery module
KR20150085308A (en) Cell Radiating Type Battery Module
KR101150287B1 (en) Water purifier with cooling apparatus
JP2011103350A (en) Cooling device of photovoltaic power generator
JP2017133713A (en) Heat storage body and air conditioning system using the same
TWM575194U (en) battery