JP2017020536A - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP2017020536A
JP2017020536A JP2015136761A JP2015136761A JP2017020536A JP 2017020536 A JP2017020536 A JP 2017020536A JP 2015136761 A JP2015136761 A JP 2015136761A JP 2015136761 A JP2015136761 A JP 2015136761A JP 2017020536 A JP2017020536 A JP 2017020536A
Authority
JP
Japan
Prior art keywords
coating
elastic member
friction
pulley
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015136761A
Other languages
Japanese (ja)
Inventor
中尾 吾朗
Goro Nakao
吾朗 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015136761A priority Critical patent/JP2017020536A/en
Priority to PCT/JP2016/069916 priority patent/WO2017006934A1/en
Publication of JP2017020536A publication Critical patent/JP2017020536A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
    • F16H13/04Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Pulleys (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power transmission device capable of suppressing deterioration of durability due to abrasion and securing high torque transmission efficiency.SOLUTION: A friction wheel 13 is provided between a driving pulley 12 and a driven pulley 15. On the outer diameter surface of the friction wheel 13, a first coating 18 comprising a high-strength elastic member and a second coating 19 comprising a high-friction-coefficient elastic member are provided in parallel in an axial direction. The first coating 18 and the second coating 19 elastically contact with the driving pulley 12 and the driven pulley 15 respectively. Consequently, high torque transmission efficiency is secured by elastic deformation of the second coating 19 comprising the high-friction-coefficient elastic member.SELECTED DRAWING: Figure 3

Description

この発明は、フリクションホイールの摩擦接触によって駆動プーリの回転を従動プーリに伝達する動力伝達装置に関する。   The present invention relates to a power transmission device that transmits rotation of a driving pulley to a driven pulley by frictional contact of a friction wheel.

二酸化炭素の排出量を削減するため、車両の停止時にエンジンを停止し、アクセルペダルの踏み込による車両の発進時にエンジンを瞬時に始動させるモータ機能付き発電機(ISG)(Integrated Starter Generator)が搭載されたエンジンにおいては、普通、ベルト伝動装置によってエンジンのクランクシャフトの回転をウォータポンプ等の補機やモータ機能付き発電機に動力伝達している。また、エンジンの始動時には、モータ機能付き発電機の回転をクランクシャフトに動力伝達している。   In order to reduce carbon dioxide emissions, a generator with motor function (ISG) (Integrated Starter Generator) that stops the engine when the vehicle is stopped and starts the engine instantly when the vehicle is started by depressing the accelerator pedal is installed. In such an engine, the rotation of the crankshaft of the engine is normally transmitted to an auxiliary machine such as a water pump or a generator with a motor function by a belt transmission. Further, when the engine is started, the power of the generator with a motor function is transmitted to the crankshaft.

上記のようなベルト伝動装置を採用するエンジンの動力伝達装置においては、クランクシャフトの回転に伴ってウォータポンプが常に回転することになる。このため、エンジンの暖気運転のように、ウォータポンプを回転させる必要のないときや、エンジンを速やかに最大効率に到達させる場合においてもウォータポンプが回転することになってトルク損失が大きく、燃料消費も多いという問題がある。   In a power transmission device for an engine that employs such a belt transmission device as described above, the water pump always rotates as the crankshaft rotates. For this reason, even when it is not necessary to rotate the water pump, such as when the engine is warming up, or when the engine is quickly reached the maximum efficiency, the water pump rotates, resulting in large torque loss and fuel consumption. There is a problem that there are many.

上記の問題を解決するため、下記特許文献1においては、クランクシャフトの端部に取り付けた駆動プーリとしてのクランクシャフトプーリと補機の回転軸に取り付けた従動プーリとしてのフリクションプーリとの間にフリクションホイールを設け、そのフリクションホイールをクランクシャフトプーリおよびフリクションプーリに対して接触、離反可能とし、補機駆動時には、フリクションホイールをクランクシャフトプーリおよびフリクションプーリと接触する位置に変位して、そのフリクションホイールの接触回転によりクランクシャフトプーリからフリクションプーリに動力伝達している。   In order to solve the above-mentioned problem, in Patent Document 1 below, the friction between a crankshaft pulley as a drive pulley attached to the end of the crankshaft and a friction pulley as a driven pulley attached to a rotating shaft of an auxiliary machine is disclosed. A wheel is provided so that the friction wheel can be brought into contact with and separated from the crankshaft pulley and the friction pulley.When the accessory is driven, the friction wheel is displaced to a position where it comes into contact with the crankshaft pulley and the friction pulley. Power is transmitted from the crankshaft pulley to the friction pulley by contact rotation.

また、モータ機能付き発電機(ISG)の始動によるエンジン始動時にはフリクションホイールを離反位置に変位して、クランクシャフトプーリからフリクションプーリへの動力伝達を遮断している。   In addition, when the engine is started by starting the generator with motor function (ISG), the friction wheel is displaced to the separation position to cut off power transmission from the crankshaft pulley to the friction pulley.

特表2008−519950号公報Special table 2008-519950 gazette

ところで、上記のようなフリクションホイールの接触回転によってクランクシャフトの回転を補機に伝達する動力伝達装置において、フリクションホイールを介する動力伝達が金属接触による動力伝達であると、クランクシャフトプーリとフリクションホイールの接触部およびフリクションホイールとフリクションプーリの接触部のそれぞれで滑りが生じ易く、その滑りによってトルク伝達効率が低下するため、フリクションホイールとクランクシャフトプーリの一方およびフリクションホイールとフリクションプーリの一方に弾性部材からなる被膜を成形して、弾性接触による動力の伝達とするのが一般的である。   By the way, in the power transmission device that transmits the rotation of the crankshaft to the auxiliary machine by the contact rotation of the friction wheel as described above, if the power transmission through the friction wheel is power transmission by metal contact, the crankshaft pulley and the friction wheel The contact portion and the contact portion of the friction wheel and the friction pulley are liable to slip, and the torque transmission efficiency decreases due to the slip. In general, a coating film is formed to transmit power by elastic contact.

ここで、弾性部材からなる被膜においては、弾性変形することで接触部での応力集中を緩和し、接触面積を増やすことで摩擦力を向上させることができるが、弾性部材の変形が大きいと摩耗が加速したり、伝達効率が低下したりするので調整が極めて困難である。   Here, in the film made of an elastic member, the stress concentration at the contact portion can be relaxed by elastic deformation, and the frictional force can be improved by increasing the contact area. Is very difficult to adjust because it accelerates and transmission efficiency decreases.

また、高強度の弾性部材は、耐摩耗性に優れているものの摩擦係数が低く、コーティングにより摩擦係数を向上させても剥離が生じ易くなって耐久性に問題がある。そこで、高剛性で摩擦係数の高い弾性部材が必要となるが、そのような特性を有する弾性部材は存在せず、接触部での耐摩耗性とトルク伝達効率の改善が課題として残されている。   Moreover, although a high-strength elastic member is excellent in wear resistance, it has a low coefficient of friction, and even if the coefficient of friction is improved by coating, peeling easily occurs and there is a problem in durability. Therefore, an elastic member having high rigidity and a high friction coefficient is required, but there is no elastic member having such characteristics, and improvement of wear resistance and torque transmission efficiency at the contact portion remains as problems. .

この発明の課題は、摩耗による耐久性の低下を抑制し、高いトルク伝達効率を確保できるようにした動力伝達装置を提供することである。   An object of the present invention is to provide a power transmission device capable of suppressing a decrease in durability due to wear and ensuring high torque transmission efficiency.

上記の課題を解決するため、この発明においては、駆動プーリと従動プーリの間にフリクションホイールを設け、そのフリクションホイールを弾性部材からなる被膜を介して前記駆動プーリおよび前記従動プーリの双方に弾性接触し、前記フリクションホイールの接触摩擦によって駆動プーリの回転を従動プーリに伝達する動力伝達装置において、前記被膜が、高強度弾性部材からなる第1被膜と、高摩擦係数弾性部材からなる第2被膜の2種類からなり、その第1被膜と第2被膜を軸方向に並列した構成を採用したのである。   In order to solve the above problems, in the present invention, a friction wheel is provided between the driving pulley and the driven pulley, and the friction wheel is elastically contacted with both the driving pulley and the driven pulley through a film made of an elastic member. In the power transmission device that transmits the rotation of the driving pulley to the driven pulley by contact friction of the friction wheel, the coating includes a first coating made of a high-strength elastic member and a second coating made of a high friction coefficient elastic member. It consists of two types, and adopted a configuration in which the first coating and the second coating are aligned in the axial direction.

上記のように、弾性部材からなる被膜を高強度弾性部材からなる第1被膜と、高摩擦係数弾性部材からなる第2被膜の2種類として軸方向に並列することにより、高強度弾性部材からなる第1被膜によって駆動プーリとフリクションホイールの接触部での接触荷重および従動プーリとフリクションホイールとの接触部での接触荷重を支えることができ、高摩擦係数弾性部材からなる第2被膜によって高い伝達トルクを確保することができる。   As described above, the coating made of an elastic member is made of a high-strength elastic member by being juxtaposed in the axial direction as two types of a first coating made of a high-strength elastic member and a second coating made of a high-friction coefficient elastic member. The first coating can support the contact load at the contact portion between the driving pulley and the friction wheel and the contact load at the contact portion between the driven pulley and the friction wheel, and the second coating made of a high friction coefficient elastic member can provide high transmission torque. Can be secured.

また、第1被膜が高強度弾性部材からなるため、第1被膜および第2被膜のそれぞれが過度に弾性変形することがなく、第1被膜および第2被膜のそれぞれの被膜の耐久性の低下を抑制することができる。   Further, since the first coating is made of a high-strength elastic member, each of the first coating and the second coating is not excessively elastically deformed, and the durability of each coating of the first coating and the second coating is reduced. Can be suppressed.

ここで、第2被膜を第1被膜より大径とするのがよい。第2被膜を第1被膜より大径とすることにより、高摩擦係数弾性部材からなる第2被膜の弾性変形量が多くなって接触圧力が増大し、トルク伝達効率をさらに高めることができる。また、高強度弾性部材からなる第1被膜の弾性接触力が低減し、耐久性の低下をより効果的に抑制することができる。   Here, it is preferable that the second coating has a larger diameter than the first coating. By making the second coating have a larger diameter than the first coating, the amount of elastic deformation of the second coating made of the high friction coefficient elastic member is increased, the contact pressure is increased, and the torque transmission efficiency can be further increased. Moreover, the elastic contact force of the 1st film which consists of a high intensity | strength elastic member reduces, and can reduce a durable fall more effectively.

上記のように、第2被膜を第1被膜より大径とする場合において、第2被膜の軸方向両側に第1被膜を設けることにすると、高摩擦係数弾性部材からなる第2被膜が軸方向長さの全体にわたって均一に弾性接触することになり、トルク伝達効率をさらに高めることができる。   As described above, in the case where the second coating has a larger diameter than the first coating, when the first coating is provided on both sides in the axial direction of the second coating, the second coating made of the high friction coefficient elastic member is in the axial direction. The elastic contact is made uniformly over the entire length, and the torque transmission efficiency can be further increased.

また、第2被膜の軸方向両側に設けられた第1被膜のそれぞれが軸方向長さの全体にわたって弾性接触することになるため、第1被膜の弾性接触力のさらなる低減化を図ることができる。   In addition, since the first coatings provided on both sides in the axial direction of the second coating are in elastic contact over the entire axial length, the elastic contact force of the first coating can be further reduced. .

ここで、高強度弾性部材として水素化ニトリルゴムを挙げることができる。また、高摩擦係数弾性部材としてシリコンゴムを挙げることができる。   Here, hydrogenated nitrile rubber can be used as the high-strength elastic member. An example of the high friction coefficient elastic member is silicon rubber.

この発明においては、上記のように、高強度弾性部材からなる第1被膜と、高摩擦係数弾性部材からなる第2被膜の2種類の被膜を軸方向に並列して設けたことにより、高強度弾性部材からなる第1被膜によって駆動プーリとフリクションホイールの接触部での荷重および従動プーリとフリクションホイールとの接触部での荷重を支えることができ、第1被膜が過度に変形することがない耐久性の維持状態で高摩擦係数弾性部材からなる第2被膜によって高い伝達トルクを確保することができる。   In the present invention, as described above, the two types of coatings, the first coating made of a high-strength elastic member and the second coating made of a high friction coefficient elastic member, are provided in parallel in the axial direction. The first coating made of an elastic member can support the load at the contact portion between the driving pulley and the friction wheel and the load at the contact portion between the driven pulley and the friction wheel, and the first coating does not deform excessively. High transmission torque can be secured by the second coating film made of the elastic member having a high coefficient of friction in the state where the property is maintained.

この発明に係る動力伝達装置の実施の形態を示す概略図Schematic which shows embodiment of the power transmission device which concerns on this invention 図1の動力伝達部を拡大して示す正面図The front view which expands and shows the power transmission part of FIG. 図2のIII−III線に沿った断面図Sectional view along line III-III in FIG. 図3に示すフリクションホイールの一部を拡大して示す断面図Sectional drawing which expands and shows a part of friction wheel shown in FIG. フリクションホイールの他の例を示す断面図Sectional view showing another example of friction wheel

以下、この発明の実施の形態を図面に基づいて説明する。図1は、エンジン10のクランクシャフト11の軸端部に設けられたクランクシャフトプーリ12を駆動プーリとし、その駆動プーリ12の回転をフリクションホイール13を介して補機14の回転軸14aに取り付けられたフリクションプーリからなる従動プーリ15に動力伝達する動力伝達装置を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a crankshaft pulley 12 provided at the shaft end of a crankshaft 11 of an engine 10 is used as a driving pulley, and the rotation of the driving pulley 12 is attached to a rotating shaft 14 a of an auxiliary machine 14 via a friction wheel 13. 1 shows a power transmission device for transmitting power to a driven pulley 15 comprising a friction pulley.

ここで、フリクションホイール13は、特許文献1に記載のフリクションホイールと同様に、駆動プーリ12および従動プーリ15に対して接触、離反自在とされ、変位装置としてのアクチュエータAによって接触位置と離反位置とに変位されるようになっている。アクチュエータAとしては、特表2008−506342号公報に記載された偏心カムを用いたカムアクチュエータを採用することができるため、ここでは、アクチュエータAの詳細を省略し、フリクションホイール13を駆動プーリ12および従動プーリ15の双方と接触する接触位置に変位させた状態で示している。   Here, like the friction wheel described in Patent Document 1, the friction wheel 13 can be brought into contact with and separated from the drive pulley 12 and the driven pulley 15, and the contact position and the separation position are set by the actuator A as a displacement device. It is designed to be displaced. As the actuator A, a cam actuator using an eccentric cam described in JP-A-2008-506342 can be adopted. Therefore, the details of the actuator A are omitted here, and the friction wheel 13 is connected to the drive pulley 12 and It is shown in a state where it is displaced to a contact position that contacts both of the driven pulleys 15.

図2および図3に示すように、フリクションホイール13は、円筒状の接触輪13aと、その接触輪13aの内周に設けられた円板部13bと、その円板部13bの内周に設けられたボス部13cからなり、上記ボス部13c内に支持軸16が挿入され、その支持軸16とボス部13c間に組み込まれた転がり軸受17によって支持軸16を中心にしてフリクションホイール13が回転自在に支持されている。   As shown in FIGS. 2 and 3, the friction wheel 13 includes a cylindrical contact wheel 13a, a disk portion 13b provided on the inner periphery of the contact wheel 13a, and an inner periphery of the disk portion 13b. The support shaft 16 is inserted into the boss portion 13c, and the friction wheel 13 is rotated about the support shaft 16 by a rolling bearing 17 incorporated between the support shaft 16 and the boss portion 13c. It is supported freely.

転がり軸受17としてシール付きのものを採用しているが、ここでは、図示省略している。   A roller bearing 17 with a seal is employed as the rolling bearing 17 but is not shown here.

フリクションホイール13の接触輪13aの外径面には、一対の第1被膜18と、その一対の第1被膜18間に第2被膜19とが軸方向に並列する配置でもって設けられている。   On the outer diameter surface of the contact wheel 13 a of the friction wheel 13, a pair of first coatings 18 and a second coating 19 are provided between the pair of first coatings 18 in parallel in the axial direction.

第1被膜18は、高強度弾性部材からなり、一方、第2被膜19は、高摩擦係数弾性部材からなる。高強度弾性部材として、ここでは、水素化ニトリルゴムを採用しており、また、高摩擦係数弾性部材としてシリコンゴムを採用しているが、高強度弾性部材および高摩擦係数弾性部材はこれらに限定されるものではない。高摩擦係数弾性部材の摩擦係数は、対金属で1.0以上であることが好ましく、高強度弾性部材の強度は、ゴム強度でHs85以上であることが好ましい。   The first coating 18 is made of a high-strength elastic member, while the second coating 19 is made of a high friction coefficient elastic member. Here, hydrogenated nitrile rubber is adopted as the high-strength elastic member, and silicon rubber is adopted as the high-friction coefficient elastic member. However, the high-strength elastic member and the high-friction coefficient elastic member are limited to these. Is not to be done. The friction coefficient of the high-friction coefficient elastic member is preferably 1.0 or more for metal, and the strength of the high-strength elastic member is preferably Hs85 or more for rubber strength.

第1被膜18および第2被膜19のそれぞれは、加硫接着による手段を介して接触輪13aに一体化してもよく、あるいは、上記接触輪13aの外径面上に成形して一体化としてもよい。その第1被膜18および第2被膜19のそれぞれが接触輪13aに一体化された自然状態において、第2被膜19の外径は、図4に示すように、第1被膜18の外径より大径とされている。   Each of the first coating 18 and the second coating 19 may be integrated with the contact wheel 13a through a vulcanization adhesion means, or may be molded and integrated on the outer diameter surface of the contact wheel 13a. Good. In the natural state in which each of the first coating 18 and the second coating 19 is integrated with the contact wheel 13a, the outer diameter of the second coating 19 is larger than the outer diameter of the first coating 18, as shown in FIG. It is the diameter.

また、第1被膜18および第2被膜19は、駆動プーリ12に対する接触部および従動プーリ15に対する接触部で共に弾性接触して同一厚みとされ、その弾性接触部においてフリクションホイール13の駆動プーリ12に対する接触圧および従動プーリ15に対する接触圧が保持されると共に回転トルクの伝達が行われる。   Further, the first coating 18 and the second coating 19 are elastically brought into contact with each other at the contact portion with respect to the drive pulley 12 and the contact portion with respect to the driven pulley 15 to have the same thickness. The contact pressure and the contact pressure with respect to the driven pulley 15 are maintained, and rotational torque is transmitted.

このため、フリクションホイール13は、駆動プーリ12の回転により接触回転して、その駆動プーリ12の回転を従動プーリ15に伝達する。   For this reason, the friction wheel 13 rotates in contact with the rotation of the drive pulley 12 and transmits the rotation of the drive pulley 12 to the driven pulley 15.

図3および図4に示すように、フリクションホイール13の外径面に高強度弾性部材からなる第1被膜18と、高摩擦係数弾性部材からなる第2被膜19を軸方向に並列して設け、その第1被膜18および第2被膜19をフリクションホイール13に相対する駆動プーリ12および従動プーリ15のそれぞれに弾性接触させることにより、高強度弾性部材からなる第1被膜18によって駆動プーリ12とフリクションホイール13の接触部での接触荷重および従動プーリ15とフリクションホイール13との接触部での接触荷重が支えられ、高摩擦係数弾性部材からなる第2被膜19によって高い伝達トルクが確保されることになる。   As shown in FIGS. 3 and 4, a first coating 18 made of a high-strength elastic member and a second coating 19 made of a high friction coefficient elastic member are provided in parallel in the axial direction on the outer diameter surface of the friction wheel 13, The first coating 18 and the second coating 19 are brought into elastic contact with the driving pulley 12 and the driven pulley 15 facing the friction wheel 13, respectively, so that the driving pulley 12 and the friction wheel are formed by the first coating 18 made of a high-strength elastic member. The contact load at the contact portion 13 and the contact load at the contact portion between the driven pulley 15 and the friction wheel 13 are supported, and a high transmission torque is secured by the second coating 19 made of a high friction coefficient elastic member. .

また、第1被膜18が高強度弾性部材からなるため、その第1被膜18および第2被膜19のそれぞれが過度に弾性変形することがなく、耐久性の低下を抑制することができる。   Moreover, since the 1st film 18 consists of a high intensity | strength elastic member, each of the 1st film 18 and the 2nd film 19 does not elastically deform excessively, and can suppress a durable fall.

図3に示す場合では、第2被膜19を第1被膜18より大径とし、その第2被膜19の軸方向両側に一対の第1被膜18を設けているため、第2被膜19は駆動プーリ12および従動プーリ15の外径面に対して軸方向長さの全体にわたって均一に弾性接触することになる。このため、第1被膜18と第2被膜19を同径とする場合に比較して、高摩擦係数弾性部材からなる第2被膜19の弾性変形量が多く、効率の高いトルク伝達とすることができる。   In the case shown in FIG. 3, since the second coating 19 has a larger diameter than the first coating 18 and a pair of first coatings 18 are provided on both axial sides of the second coating 19, the second coating 19 is a driving pulley. 12 and the outer diameter surface of the driven pulley 15 are in elastic contact uniformly over the entire length in the axial direction. For this reason, compared with the case where the 1st film 18 and the 2nd film 19 are made into the same diameter, the amount of elastic deformation of the 2nd film 19 which consists of a high friction coefficient elastic member is large, and it can be set as efficient torque transmission. it can.

また、第2被膜19の弾性変形量が多くなることによって高強度弾性部材からなる第1被膜18の弾性接触力が低減し、耐久性の低下をより効果的に抑制することができる。   Moreover, the elastic contact force of the 1st film 18 which consists of a high intensity | strength elastic member reduces by the amount of elastic deformation of the 2nd film 19 increasing, and the fall of durability can be suppressed more effectively.

図4においては、フリクションホイール13の外径面に一対の第1被膜18と、その第1被膜18間に一つの第2被膜19を設けるようにしたが、第1被膜18および第2被膜19の数はこれに限定されるものではない。図5においては、4つの第1被膜18と3つの第2被膜19を軸方向に交互に設けるようにしている。   In FIG. 4, a pair of first coatings 18 and one second coating 19 are provided between the first coatings 18 on the outer diameter surface of the friction wheel 13, but the first coating 18 and the second coating 19 are provided. The number of is not limited to this. In FIG. 5, four first coatings 18 and three second coatings 19 are alternately provided in the axial direction.

図4および図5のいずれの場合も、フリクションホイール13の外径面に第1被膜18および第2被膜19を設けるようにしたが、駆動プーリ12および従動プーリ15の外径面に第1被膜18および第2被膜19を設けるようにしてもよい。   4 and 5, the first coating 18 and the second coating 19 are provided on the outer diameter surface of the friction wheel 13, but the first coating is applied to the outer diameter surfaces of the drive pulley 12 and the driven pulley 15. 18 and the second coating 19 may be provided.

12 駆動プーリ
13 フリクションホイール
15 従動プーリ
18 第1被膜
19 第2被膜
12 Driving pulley 13 Friction wheel 15 Driven pulley 18 First coating 19 Second coating

Claims (4)

駆動プーリと従動プーリの間にフリクションホイールを設け、そのフリクションホイールを弾性部材からなる被膜を介して前記駆動プーリおよび前記従動プーリの双方に弾性接触し、前記フリクションホイールの接触摩擦によって駆動プーリの回転を従動プーリに伝達する動力伝達装置において、
前記被膜が、高強度弾性部材からなる第1被膜と、高摩擦係数弾性部材からなる第2被膜の2種類からなり、その第1被膜と第2被膜を軸方向に並列したことを特徴とする動力伝達装置。
A friction wheel is provided between the driving pulley and the driven pulley, and the friction wheel is elastically contacted with both the driving pulley and the driven pulley through a film made of an elastic member, and the driving pulley is rotated by contact friction of the friction wheel. In the power transmission device that transmits the following to the driven pulley,
The coating comprises two types of a first coating made of a high strength elastic member and a second coating made of a high friction coefficient elastic member, and the first coating and the second coating are arranged in parallel in the axial direction. Power transmission device.
前記第2被膜を前記第1被膜より大径とした請求項1に記載の動力伝達装置。   The power transmission device according to claim 1, wherein the second coating has a larger diameter than the first coating. 前記第2被膜の軸方向両側に前記第1被膜を設けた請求項2に記載の動力伝達装置。   The power transmission device according to claim 2, wherein the first coating is provided on both axial sides of the second coating. 前記高強度弾性部材が水素化ニトリルゴムからなり、前記高摩擦係数弾性部材がシリコンゴムからなる請求項1乃至3のいずれか1項に記載の動力伝達装置。   The power transmission device according to any one of claims 1 to 3, wherein the high-strength elastic member is made of hydrogenated nitrile rubber, and the high-friction coefficient elastic member is made of silicon rubber.
JP2015136761A 2015-07-08 2015-07-08 Power transmission device Withdrawn JP2017020536A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015136761A JP2017020536A (en) 2015-07-08 2015-07-08 Power transmission device
PCT/JP2016/069916 WO2017006934A1 (en) 2015-07-08 2016-07-05 Motive power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136761A JP2017020536A (en) 2015-07-08 2015-07-08 Power transmission device

Publications (1)

Publication Number Publication Date
JP2017020536A true JP2017020536A (en) 2017-01-26

Family

ID=57685658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136761A Withdrawn JP2017020536A (en) 2015-07-08 2015-07-08 Power transmission device

Country Status (2)

Country Link
JP (1) JP2017020536A (en)
WO (1) WO2017006934A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120961A (en) * 1976-04-06 1977-10-11 Yoshitarou Tanaka Method of manufacturing tension pulley for agricultural machine
JPH0518451A (en) * 1991-05-08 1993-01-26 Ricoh Co Ltd Drive transmitting mechanism
JPH0674311A (en) * 1992-08-27 1994-03-15 Ricoh Co Ltd Torque transmission and use thereof
JP3871673B2 (en) * 2003-12-10 2007-01-24 耕作 上田 Rotating device for rotating plate in advertising equipment
JP2007231978A (en) * 2006-02-27 2007-09-13 Mitsuboshi Belting Ltd Toothed belt and tooth portion reinforcing material to be used for the same

Also Published As

Publication number Publication date
WO2017006934A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
CN104105897B (en) Isolator decoupler
CN101932856B (en) Torsional decoupler
US9291217B2 (en) Pulley assembly with radially oriented decoupling mechanism
US20160169302A1 (en) Pulley device with embedded unidirectional clutch
JP2017503984A (en) Isolating decoupler
GB2448837A (en) CVT using a belt and driving method
JP2003207034A (en) Over-running clutch pulley with composite seal member
CN103925304B (en) One-way clutch decoupler for transmitting torque between belt pulley and axis
JP3811569B2 (en) Engine crankshaft, accessory pulley unit
WO2017006934A1 (en) Motive power transmission device
JP6406447B2 (en) Auxiliary drive device for vehicle
WO2017006915A1 (en) Motive power transmission device
JP2017155804A (en) Pulley unit
JP6009905B2 (en) Rotation fluctuation absorbing damper pulley
JP2013210080A5 (en)
JP6702103B2 (en) Vehicle accessory drive with improved roller durability
JP2007162814A (en) One-way clutch built-in type pulley device
JP2008101692A (en) One way clutch
JP6658101B2 (en) Pulley unit
JP2006002837A (en) One-way clutch and pulley device with built-in one-way clutch
JP2007040376A (en) One-way clutch and pulley device incorporated with one-way clutch
JP2017150525A (en) Pulley unit
JP4455150B2 (en) One-way clutch and bearing combined one-way clutch
JP2007315460A (en) Spring clutch
JP2004232703A (en) Rolling bearing equipped with one-way clutch function

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171005