JP2017017216A - Semiconductor composition and semiconductor ink - Google Patents

Semiconductor composition and semiconductor ink Download PDF

Info

Publication number
JP2017017216A
JP2017017216A JP2015133580A JP2015133580A JP2017017216A JP 2017017216 A JP2017017216 A JP 2017017216A JP 2015133580 A JP2015133580 A JP 2015133580A JP 2015133580 A JP2015133580 A JP 2015133580A JP 2017017216 A JP2017017216 A JP 2017017216A
Authority
JP
Japan
Prior art keywords
composition
unit
tft
semiconductor
mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015133580A
Other languages
Japanese (ja)
Inventor
餌取 秀樹
Hideki Etori
秀樹 餌取
純一 半那
Junichi Hanna
純一 半那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Tokyo Institute of Technology NUC
Original Assignee
DIC Corp
Tokyo Institute of Technology NUC
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Tokyo Institute of Technology NUC, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2015133580A priority Critical patent/JP2017017216A/en
Publication of JP2017017216A publication Critical patent/JP2017017216A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed TFT controlled in a variation of semiconductor characteristics (mobility).SOLUTION: A composition contains one or more kinds of organic semiconductor compounds and one or more kinds of organic solvents. Each of the organic semiconductor compounds comprises a unit A having a π-conjugated system structure and a unit B having an alkyl chain. The molecular weight of the unit A (the total sum of atomic weights of atoms constituting the unit A) and the molecular weight of the unit B (the total sum of atomic weights of atoms constituting the unit B) satisfy the following relational expression, and the weight percent concentration (wt.%) of the organic semiconductor compounds with respect to the total weight of the composition is within a range represented by expression 2.SELECTED DRAWING: None

Description

本発明は、薄膜トランジスタ(TFT)を製造するための原料たる、半導体組成物、半導体インクに関する。   The present invention relates to a semiconductor composition and a semiconductor ink, which are raw materials for producing a thin film transistor (TFT).

アモルファスシリコンや多結晶シリコンを半導体材料として用いてなる薄膜トランジスタ(TFT)が、液晶表示装置や有機EL表示装置などのスイッチング素子として広く用いられている。しかし、これらシリコンを用いたTFTは、その製造において、高温熱処理プロセスを有する事から、プラスチック基板を用いることになる次世代型フレキシブルディスプレイには耐熱性の問題から展開できない。これを解決するために、シリコンに代えて、有機半導体材料をチャネル(半導体層)に用いた有機TFTが提案されている。 Thin film transistors (TFTs) using amorphous silicon or polycrystalline silicon as a semiconductor material are widely used as switching elements in liquid crystal display devices and organic EL display devices. However, since these TFTs using silicon have a high-temperature heat treatment process in their manufacture, they cannot be developed for next-generation flexible displays that use plastic substrates due to heat resistance problems. In order to solve this, an organic TFT using an organic semiconductor material for a channel (semiconductor layer) instead of silicon has been proposed.

有機半導体材料はインク化することで、低温で印刷成膜出来るため、耐熱性の乏しいプラスチック基板に適用でき、フレキシブルディスプレイへの応用が、さらには、フレキシブルエレクトロニクスへの応用が期待されている。又、当初の課題であった「有機半導体はシリコン半導体に比べ、半導体特性(移動度)が低く、その結果、TFTの応答速度が遅く実用化は難しい」についても、近年、アモルファスシリコンの移動度を凌駕する有機半導体材料が開発されている。   Organic semiconductor materials can be formed into ink at a low temperature so that they can be printed at low temperatures, so they can be applied to plastic substrates with poor heat resistance, and are expected to be applied to flexible displays and further to flexible electronics. In addition, the mobility of amorphous silicon has recently been the subject of "the organic semiconductor has lower semiconductor characteristics (mobility) than the silicon semiconductor, and as a result, the TFT response speed is slow and difficult to put into practical use". Organic semiconductor materials surpassing these standards have been developed.

例えば、特許文献1には、ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン骨格を有する化合物が、真空蒸着膜で4.0cm/Vsの移動度を示すことが、特許文献2には、種々の置換基を有するV字型構造の化合物が、エッジキャスト法で成膜された単結晶薄膜で11cm/Vsという高い移動度を示すことが、非特許文献1には、2,7−ジオクチル[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(2,7−ジオクチルBTBT)が、ダブルインクジェット法で作製された単結晶膜で、特性のばらつきは大きいもの、最大で30cm/Vsという高い移動度を示すことが、又、特許文献3には、フェニル置換のナフトジカルコゲン化合物が0.7cm/Vsの移動度を示すことが開示されている。このように、アモルファスシリコンの移動度(0.5cm/Vs)を超えた半導体特性を示す有機半導体材料の報告が相次いでいる。 For example, Patent Document 1 discloses that a compound having a dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene skeleton has a vacuum deposition film of 4.0 cm 2 / Vs. According to Patent Document 2, a compound having a V-shaped structure having various substituents exhibits a high mobility of 11 cm 2 / Vs in a single crystal thin film formed by an edge casting method. However, Non-Patent Document 1 discloses that a single crystal film in which 2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene (2,7-dioctyl BTBT) is produced by a double ink jet method. in those variations in the characteristics is large, to exhibit high mobilities of up to 30 cm 2 / Vs, also in Patent Document 3, naphthodifuran chalcogen compound of phenyl substituted with mobility of 0.7 cm 2 / Vs To be disclosed It is. As described above, there are a number of reports on organic semiconductor materials exhibiting semiconductor characteristics exceeding the mobility (0.5 cm 2 / Vs) of amorphous silicon.

このように有機半導体の移動度は高まっているが、未だ実用化には至っていない。これは、印刷成膜によって製造したTFT(印刷TFT)の半導体特性(移動度)に、ばらつきが生じるためである。   Thus, although the mobility of organic semiconductors is increasing, it has not yet been put into practical use. This is because variation occurs in semiconductor characteristics (mobility) of TFTs (printing TFTs) manufactured by printing film formation.

とりわけ、絶縁層上に、ソース、ドレイン電極層を形成し、然る後、半導体層を形成する、ボトムゲートボトムコンタクト構造(図1)、及びボトムコンタクトトップゲート構造(図2)(以下、両構造を合わせてボトムコンタクト型構造と称す)のTFTで、この課題が顕著となる。ボトムコンタクト型構造では、絶縁層と電極層、両層を覆うように、半導体層を成膜するが(図1及び図2を参照)、絶縁層と電極層、両層の表面エネルギーに差が有るため、半導体インクが、表面エネルギーの低い層上ではじかれ、表面エネルギーの高い層上に集まるためと考えられる。   In particular, a source / drain electrode layer is formed on an insulating layer, and then a semiconductor layer is formed. A bottom gate bottom contact structure (FIG. 1) and a bottom contact top gate structure (FIG. 2) (hereinafter referred to as both This problem becomes conspicuous in a TFT having a structure called a bottom contact structure). In the bottom contact type structure, a semiconductor layer is formed so as to cover both the insulating layer and the electrode layer (see FIGS. 1 and 2), but there is a difference in the surface energy between the insulating layer and the electrode layer. Therefore, it is considered that the semiconductor ink is repelled on the low surface energy layer and collected on the high surface energy layer.

国際公開第2012/115236号International Publication No. 2012/115236 国際公開第2013/125599号International Publication No. 2013/125599 国際公開第2010/058692号International Publication No. 2010/058692

Nature、2011年、475巻、364頁Nature, 2011, 475, 364 Adv.Mater.、2011年、23巻、4347頁Adv. Mater. 2011, 23, 4347. Appl.Phys.Express、2014年、7巻、91601頁Appl. Phys. Express, 2014, 7, vol. 91601

本発明は前記課題を鑑みてなされたものであり、半導体特性(移動度)のばらつきが制御された、印刷TFTの提供を図るものである。   The present invention has been made in view of the above problems, and aims to provide a printed TFT in which variation in semiconductor characteristics (mobility) is controlled.

本発明者は前記目的を達成すべく、鋭意検討を重ね、特定の構造を有する有機半導体化合物を、特定の濃度で含む組成物又はインクを用いてTFTを製造することで、半導体特性(移動度)のばらつきが制御された、印刷TFTを提供出来ることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventor has intensively studied and manufactured a TFT using a composition or ink containing an organic semiconductor compound having a specific structure at a specific concentration, thereby obtaining semiconductor characteristics (mobility). The present invention has been completed by finding that it is possible to provide a printed TFT in which the variation of

すなわち、本発明は、
1.1種類以上の有機半導体化合物と、1種類以上の有機溶媒を含む組成物であって、
該有機半導体化合物は、π共役系構造を有するユニットAとアルキル鎖を有するユニットBからなり、該ユニットAの分子量(ユニットAを構成する原子の原子量の総和)と該ユニットBの分子量(ユニットBを構成する原子の原子量の総和)が下記関係式を満たし、
That is, the present invention
1.1 A composition comprising one or more organic semiconductor compounds and one or more organic solvents,
The organic semiconductor compound is composed of a unit A having a π-conjugated structure and a unit B having an alkyl chain. The molecular weight of the unit A (the sum of the atomic weights of the atoms constituting the unit A) and the molecular weight of the unit B (unit B) The sum of the atomic weights of the atoms constituting the

Figure 2017017216
該有機半導体化合物の組成物全重量に対する重量パーセント濃度(wt%)が、
Figure 2017017216
The weight percent concentration (wt%) relative to the total weight of the composition of the organic semiconductor compound is

Figure 2017017216
の範囲にあることを特徴とする組成物、
2.有機半導体化合物が、ユニットAとユニットBが単結合を介して構成されるものである1.に記載の組成物、
3.有機半導体化合物が、ユニットAが、互いに異なるか、又は互いに同一の2個のユニットBと単結合を介して構成されるものである1.に記載の組成物、
4.前記ユニットAが、多環式芳香族化合物から誘導される1価若しくは2価の基、又は多環式芳香族基を有する化合物から誘導される1価若しくは2価の基である、1.〜3.に記載の組成物、
5.前記ユニットAが、構成原子団中に−C≡C−構造を有する、1.〜4.に記載の組成物、
6.前記ユニットBが直鎖アルキル基である、1.〜5.に記載の組成物、
7.前記有機溶媒の沸点が130℃以上210℃以下の範囲にある1.〜6.に記載の組成物、
8.前記組成物を用いて得られる薄膜トランジスタ(TFT)の半導体の特性値(移動度)のばらつきを以下の方法で評価した際、変動係数が15%以下である1.〜7.に記載の組成物、
(1)1.〜7.に記載の組成物を用いて薄膜トランジスタ(TFT)を作製する(TFTは、ゲート電極に真空蒸着にて形成したアルミニウム(厚さ30nm)、ゲート絶縁層にケミカルベーパーデポジション法にて形成したポリパラクロロキシリレン(パリレンC)薄膜(厚さ500nm)、ソース電極及びドレイン電極にペンタフルオロチオフェノールで化学修飾した金(厚さ40nm、チャネル長L75nm、チャネル幅W5mm)、半導体層に請求項1〜7に記載の組成物0.1μLをドロップキャストして作製した層、以上よりなるボトムゲートボトムコンタクト型)、
(2)得られたTFTについて、ソース電極を接地し、ドレイン電極に−80Vを印加した状態で、デジタルマルチメーターを用いて、ゲート電極に0から−80V、電圧(V)をスイープ印加しながら、ドレイン電極に流れる電流(I)を測定し、√I−Vの傾きから、(i)式を用いて、半導体特性(移動度)を求める(単位はcm/V・s)、
Figure 2017017216
A composition characterized by being in the range of
2. 1. An organic semiconductor compound is composed of unit A and unit B via a single bond. A composition according to
3. 1. An organic semiconductor compound is one in which the unit A is different from each other or is formed through a single bond with two units B that are the same as each other. A composition according to
4). The unit A is a monovalent or divalent group derived from a polycyclic aromatic compound, or a monovalent or divalent group derived from a compound having a polycyclic aromatic group. ~ 3. A composition according to
5. The unit A has a —C≡C— structure in the constituent atomic group. ~ 4. A composition according to
6). The unit B is a linear alkyl group; ~ 5. A composition according to
7). 1. The boiling point of the organic solvent is in the range of 130 ° C. or higher and 210 ° C. or lower. ~ 6. A composition according to
8). When the variation in the characteristic value (mobility) of a semiconductor of a thin film transistor (TFT) obtained using the composition is evaluated by the following method, the coefficient of variation is 15% or less. ~ 7. A composition according to
(1) 1. ~ 7. A thin film transistor (TFT) is manufactured using the composition described in (a TFT is formed of aluminum (thickness 30 nm) formed by vacuum deposition on the gate electrode, and polyparaffin formed by chemical vapor deposition on the gate insulating layer. A chloroxylylene (parylene C) thin film (thickness 500 nm), gold (thickness 40 nm, channel length L 75 nm, channel width W 5 mm) chemically modified with pentafluorothiophenol on a source electrode and a drain electrode, and a semiconductor layer A layer prepared by drop-casting 0.1 μL of the composition according to 7, a bottom gate bottom contact type comprising the above),
(2) With respect to the obtained TFT, with the source electrode grounded and -80 V applied to the drain electrode, a digital multimeter was used to sweep-apply 0 to -80 V and voltage (V g ) to the gate electrode. However, the current (I d ) flowing through the drain electrode is measured, and the semiconductor characteristics (mobility) are obtained from the slope of √I d −V g using the equation (i) (unit: cm 2 / V · s). ),

Figure 2017017216
(式中、Wはチャネル幅、Lはチャネル長、μは移動度、Cはゲート絶縁層の単位面積当たりの電気容量、Vは閾値電圧を表す。)
(3)TFTを45個作製し、前記(2)の方法によって45個のTFTの半導体特性(移動度)を評価し、45個のTFTの半導体特性の変動係数を求める。
9.1.〜8.に記載の組成物からなるインク、
10.1.〜8.に記載の組成物、又は9.に記載のインクを用いて製造されるトランジスタ、
11.前記トランジスタが、ボトムコンタクト型構造である10.に記載のトランジスタ。
Figure 2017017216
(Wherein, W is the channel width, L is the channel length, μ is the mobility, C is the capacitance per unit area of the gate insulating layer, and V T is the threshold voltage.)
(3) 45 TFTs are manufactured, the semiconductor characteristics (mobility) of the 45 TFTs are evaluated by the method (2), and the coefficient of variation of the semiconductor characteristics of the 45 TFTs is obtained.
9.1. ~ 8. An ink comprising the composition according to claim 1,
10.1. ~ 8. 8. The composition according to 9, or A transistor manufactured using the ink described in 1.
11. 9. The transistor has a bottom contact structure. The transistor described in 1.

本発明による半導体インクは、ぬれ性に優れることから、本半導体インクを原料に用いて印刷TFTを製造することで、半導体特性のばらつきが制御された印刷TFTを提供することが出来る。特に、半導体特性のばらつきが生じやすい、ボトムコンタクト型構造の印刷TFTにおいて、その効果が顕著に現れる。   Since the semiconductor ink according to the present invention is excellent in wettability, it is possible to provide a printed TFT in which variation in semiconductor characteristics is controlled by manufacturing the printed TFT using the semiconductor ink as a raw material. In particular, the effect is remarkable in a printed TFT having a bottom contact type structure in which variations in semiconductor characteristics are likely to occur.

ボトムゲートボトムコンタクト構造TFTを示す模式図である。It is a schematic diagram which shows a bottom gate bottom contact structure TFT. ボトムコンタクトトップゲート構造TFTを示す模式図である。It is a schematic diagram showing a bottom contact top gate structure TFT.

(有機半導体化合物)
本発明の組成物に使用する有機半導体化合物はπ共役系構造を有するユニットAとアルキル鎖を有するユニットBからなり、該ユニットAの分子量(ユニットAを構成する原子の原子量の総和)と該ユニットBの分子量(ユニットBを構成する原子の原子量の総和)が下記関係式を満たす。
(Organic semiconductor compound)
The organic semiconductor compound used in the composition of the present invention comprises a unit A having a π-conjugated structure and a unit B having an alkyl chain. The molecular weight of the unit A (the sum of the atomic weights of the atoms constituting the unit A) and the unit The molecular weight of B (the sum of the atomic weights of the atoms constituting the unit B) satisfies the following relational expression.

Figure 2017017216
Figure 2017017216

有機半導体化合物と溶媒からなる組成物は、前記したが如く印刷成膜の際のぬれ性に課題を有するが、ユニットAとユニットBが前記関係式(式1)を満たすことで、化合物を構成する原子団の中でアルキル鎖の占める割合が大きくなり、この課題が解決される。推定機構ではあるが、総原子団中のアルキル鎖の占める割合が大きくなることで、該有機化合物を含む組成物の表面エネルギーが下がり、ぬれ性が向上するためと考えられる。   A composition comprising an organic semiconductor compound and a solvent has a problem in wettability during printed film formation as described above, but the compound is formed by unit A and unit B satisfying the relational expression (formula 1). The proportion of the alkyl chain in the atomic group to be increased increases, and this problem is solved. Although it is a presumed mechanism, it is thought that when the proportion of the alkyl chain in the total atomic group is increased, the surface energy of the composition containing the organic compound is lowered and wettability is improved.

該有機半導体化合物の構造について、ユニットAとユニットBの結合の仕方に特に制限は無いが、下記一般式(1)の如く、ユニットAとユニットBが単結合を介して構成されるものであるか、又は、
一般式(2)の如く、ユニットAが、互いに異なるか、又は互いに同一の2個のユニットBと単結合を介して構成されるものを挙げることができる。
As for the structure of the organic semiconductor compound, there is no particular limitation on the way in which unit A and unit B are coupled, but unit A and unit B are configured through a single bond as shown in the following general formula (1). Or
As shown in the general formula (2), the unit A can be exemplified by two units B that are different from each other or configured through a single bond with the same unit B.

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

ここで、一般式(1)はユニットAとユニットBが単結合で接続していることを表す。一方、一般式(2)はユニットAに2つのユニットBが単結合で接続していることを表し、2つのユニットBは同一であっても異なっていても良い。   Here, the general formula (1) represents that the unit A and the unit B are connected by a single bond. On the other hand, the general formula (2) indicates that two units B are connected to the unit A by a single bond, and the two units B may be the same or different.

前記ユニットAの構造について、π共役系構造を有する構造であれば特に制限は無いが、半導体性能(電荷輸送性)を発現させる必要性から、多環式芳香族化合物(多環式アレーン又は多環式へテロアレーン)から誘導される1価の基(多環式アリール基又は多環式ヘテロアリール基)又は2価の基(多環式アリーレン基又は多環式ヘテロアリーレン基)、多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物から誘導される1価の基又は2価の基が好ましい。なお、前記多環式芳香族化合物及び前記多環式芳香族基は置換基を有していてもよい。   The structure of the unit A is not particularly limited as long as it has a π-conjugated structure. From the necessity of exhibiting semiconductor performance (charge transportability), polycyclic aromatic compounds (polycyclic arenes or polycyclic arenes). Monovalent group (polycyclic aryl group or polycyclic heteroaryl group) or divalent group (polycyclic arylene group or polycyclic heteroarylene group) derived from cyclic heteroarene), polycyclic A monovalent group or a divalent group derived from a compound having an aromatic group (polycyclic aryl group, polycyclic heteroaryl group, polycyclic arylene group, polycyclic heteroarylene group) is preferable. The polycyclic aromatic compound and the polycyclic aromatic group may have a substituent.

前記多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物とは、多環式芳香族基を分子中に有する化合物であれば特に制限は無いが、半導体インクとして、半導体性能及び溶媒溶解性の発現の必要性から、好ましくは、以下の一般式(3)〜(6)の化合物を挙げることができる。   The compound having the polycyclic aromatic group (polycyclic aryl group, polycyclic heteroaryl group, polycyclic arylene group, polycyclic heteroarylene group) is a polycyclic aromatic group in the molecule. Although there will be no restriction | limiting in particular if it is a compound to have, From the necessity of expression of semiconductor performance and solvent solubility as a semiconductor ink, Preferably, the compound of the following general formula (3)-(6) can be mentioned.

Figure 2017017216
(但し、Eは1価の多環式芳香族基を表す。)
Figure 2017017216
(However, E represents a monovalent polycyclic aromatic group.)

Figure 2017017216
(但し、Eは1価の多環式芳香族基を、Gは1価の単環式芳香族基表す。)
Figure 2017017216
(E represents a monovalent polycyclic aromatic group, and G represents a monovalent monocyclic aromatic group.)

Figure 2017017216
(但し、Eは1価の多環式芳香族基を、Cは炭素原子を表す。)
Figure 2017017216
(However, E represents a monovalent polycyclic aromatic group, and C represents a carbon atom.)

Figure 2017017216
(但し、Eは1価の多環式芳香族基を、Gは1価の単環式芳香族基表を、Cは炭素原子を表す。)
Figure 2017017216
(However, E represents a monovalent polycyclic aromatic group, G represents a monovalent monocyclic aromatic group table, and C represents a carbon atom.)

ここで、一般式(3)及び(4)は2個の芳香族基が単結合で接続していることを表す。一方、一般式(5)及び(6)は2個の芳香族基が三重結合(−C≡C−)で接続していることを表す。又、(3)及び(5)において、左右のE(多環式芳香族基)は同一であっても異なっていても良い。   Here, the general formulas (3) and (4) represent that two aromatic groups are connected by a single bond. On the other hand, the general formulas (5) and (6) represent that two aromatic groups are connected by a triple bond (—C≡C—). In (3) and (5), the left and right E (polycyclic aromatic groups) may be the same or different.

前記多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物から誘導される1価の基とは、前記多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物(例えば、一般式(3)〜(6))から一個の環炭素原子の一個の水素原子を除去することにより生成される基であり、前記多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物(例えば、一般式(3)〜(6))から誘導される2価の基とは、前記多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物から二個の環炭素原子のそれぞれ一個の水素原子を除去することにより生成される基である。   The monovalent group derived from a compound having the polycyclic aromatic group (polycyclic aryl group, polycyclic heteroaryl group, polycyclic arylene group, polycyclic heteroarylene group) One from a compound having a cyclic aromatic group (polycyclic aryl group, polycyclic heteroaryl group, polycyclic arylene group, polycyclic heteroarylene group) (for example, general formulas (3) to (6)) A group formed by removing one hydrogen atom of a ring carbon atom of the above-mentioned polycyclic aromatic group (polycyclic aryl group, polycyclic heteroaryl group, polycyclic arylene group, polycyclic A divalent group derived from a compound having a formula heteroarylene group (for example, general formulas (3) to (6)) is the polycyclic aromatic group (polycyclic aryl group, polycyclic hetero group). Aryl group, polycyclic arylene group, polycyclic heteroarylene ) From a compound having a a two ring groups formed by removing one hydrogen atom each carbon atoms.

以下に、ユニットAの母骨格となる、前記多環式芳香族化合物(多環式アレーン又は多環式へテロアレーン)、及び前記多環式芳香族基(多環式アリール基、多環式ヘテロアリール基、多環式アリーレン基、多環式ヘテロアリーレン基)を有する化合物の具体例を示すが、本発明で用いられるユニットAの母骨格となる化合物はこれらに限定されるものではない。なお、該化合物の任意の環原子から1個の水素原子を除去することにより生成される基が、一般式(1)で表されるユニットA(1価の基)、2個の水素原子を除去することにより生成される基が、一般式(2)で表されるユニットA(2価の基)となる。   Below, the polycyclic aromatic compound (polycyclic arene or polycyclic heteroarene), which is the mother skeleton of unit A, and the polycyclic aromatic group (polycyclic aryl group, polycyclic heterocycle) Specific examples of the compound having an aryl group, a polycyclic arylene group, and a polycyclic heteroarylene group) are shown below, but the compound that is the mother skeleton of the unit A used in the present invention is not limited to these. In addition, the group produced | generated by removing one hydrogen atom from arbitrary ring atoms of this compound is unit A (monovalent group) represented by the general formula (1), and two hydrogen atoms. The group produced by the removal becomes the unit A (divalent group) represented by the general formula (2).

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

ユニットBの構造について、アルキル鎖を有する構造であれば特に制限は無いが、好適な構造としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−エイコシル基などの直鎖アルキル基;
イソプロピル基、イソブチル基、イソペンチル基、ネオペンチル基、1−メチルペンチル基、4−メチル−2−ペンチル基、3,3−ジメチルブチル基、2−エチルブチル基、1−メチルヘキシル基、シクロヘキシルメチル基、tert−オクチル基、1−メチルヘプチル基、2−エチルヘキシル基、3−エチルヘプチル基、2−プロピルペンチル基、2,2−ジメチルヘプチル基、2,6−ジメチル−4−ヘプチル基、3,5,5−トリメチルヘキシル基、1−メチルデシル基、1−ヘキシルヘプチル基などの分岐アルキル基;
を挙げることができ、半導体特性(移動度)を向上させる観点から、直鎖アルキル基が好ましく、溶解性を確保する観点から、炭素数15以下の直鎖アルキル基が特に好ましい。
The structure of unit B is not particularly limited as long as it has an alkyl chain, but preferred structures include methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl. Group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group A linear alkyl group such as a group, n-heptadecyl group, n-octadecyl group, n-eicosyl group;
Isopropyl group, isobutyl group, isopentyl group, neopentyl group, 1-methylpentyl group, 4-methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, 1-methylhexyl group, cyclohexylmethyl group, tert-octyl group, 1-methylheptyl group, 2-ethylhexyl group, 3-ethylheptyl group, 2-propylpentyl group, 2,2-dimethylheptyl group, 2,6-dimethyl-4-heptyl group, 3,5 Branched alkyl groups such as 1,5-trimethylhexyl group, 1-methyldecyl group, 1-hexylheptyl group;
From the viewpoint of improving semiconductor characteristics (mobility), a linear alkyl group is preferable, and from the viewpoint of ensuring solubility, a linear alkyl group having 15 or less carbon atoms is particularly preferable.

以下に、本発明の組成物に使用する有機半導体化合物の具体例を示すが、本発明で用いられる化合物はこれらに限定されるものではない。   Although the specific example of the organic-semiconductor compound used for the composition of this invention below is shown, the compound used by this invention is not limited to these.

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

(溶媒)
本発明の組成物に使用する溶媒は何を用いても構わず、又2種以上の有機溶媒を混合して用いてもよい。具体的には、n−ヘキサン、n−オクタン、n−デカン、n−ドデカンなどの脂肪族系溶媒;シクロヘキサンなどの脂環式系溶媒;ベンゼン、トルエン、エチルベンゼン、クメン、o−キシレン、m−キシレン、p−キシレン、p−シメン、メシチレン、アニソール、2−メチルアニソール、3−メチルアニソール、4−メチルアニソール、2,5−ジメチルアニソール、3,5−ジメトキシトルエン、2,4−ジメチルアニソール、フェネトール、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、1,5−ジメチルテトラリン、n−プロピルベンゼン、n−ブチルベンゼン、n−ペンチルベンゼン、1,3,5−トリエチルベンゼン、1,3−ジメトキシベンゼン、1,4−ジエチルベンゼン、テトラリン、1−メチルナフタレン、クロロベンゼン、o−ジクロロベンゼン、トリクロロベンゼン等の芳香族系溶媒;テトラヒドロフラン、ジオキサン、エチレングリコールジエチルエーテル、アニソール、ベンジルエチルエーテル、エチルフェニルエーテル、ジフェニルエーテル、メチル−t−ブチルエーテル等のエーテル系溶媒;酢酸メチル、酢酸エチル、エチルセロソルブ、プロピレングリコールメチルエーテルアセテート等のエステル系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、2−ヘキサノン、2−ヘプタノン、3−ヘプタノン等のケトン系溶媒;その他ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミドなどが挙げられるが、これらに限定されることはない。
(solvent)
Any solvent may be used in the composition of the present invention, and two or more organic solvents may be mixed and used. Specifically, aliphatic solvents such as n-hexane, n-octane, n-decane and n-dodecane; alicyclic solvents such as cyclohexane; benzene, toluene, ethylbenzene, cumene, o-xylene, m- Xylene, p-xylene, p-cymene, mesitylene, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, 2,5-dimethylanisole, 3,5-dimethoxytoluene, 2,4-dimethylanisole, Phenetol, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, 1,5-dimethyltetralin, n-propylbenzene, n-butylbenzene, n-pentylbenzene, 1,3,5-triethylbenzene, 1 , 3-dimethoxybenzene, 1,4-diethylbenzene, tetralin, 1-methyl Aromatic solvents such as lunaphthalene, chlorobenzene, o-dichlorobenzene, trichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, ethylene glycol diethyl ether, anisole, benzyl ethyl ether, ethyl phenyl ether, diphenyl ether, methyl t-butyl ether Ester solvents such as methyl acetate, ethyl acetate, ethyl cellosolve, propylene glycol methyl ether acetate; alcohol solvents such as methanol, ethanol, isopropanol; acetone, methyl ethyl ketone, cyclohexanone, 2-hexanone, 2-heptanone, 3-heptanone, etc. Ketone solvents; other examples include, but are not limited to, dimethylformamide, dimethylsulfoxide, and diethylformamide. It will not be.

使用する溶媒は、好ましくは沸点が130℃以上210℃以下の範囲である。この範囲の沸点の溶媒を用いることで、乾燥が早すぎるために生ずる膜ムラや、乾燥が遅すぎるために生ずる膜形態や膜厚の不均一化を抑えることが出来る。 The solvent used preferably has a boiling point in the range of 130 ° C to 210 ° C. By using a solvent having a boiling point in this range, it is possible to suppress unevenness of the film caused by drying too early, and unevenness of the film form and film thickness caused by drying too late.

(組成物)
本発明の組成物は、1種類以上の前記有機半導体化合物と、1種類以上の前記有機溶媒を含む組成物であって、有機半導体化合物の、組成物全重量に対する重量パーセント濃度(wt%)が、
(Composition)
The composition of the present invention is a composition comprising one or more types of the organic semiconductor compound and one or more types of the organic solvent, and the organic semiconductor compound has a weight percent concentration (wt%) based on the total weight of the composition. ,

Figure 2017017216
Figure 2017017216

の範囲にあることを特徴とする組成物である。濃度下限につき、0.2wt%以上あることで、TFTチャネルとして機能するために必要な有機半導体層の膜厚を確保することが出来る。一方、濃度上限につき、290/(ユニットAの分子量)wt%以下とすることで、印刷成膜時の下層に対するぬれ性を確保することが出来る。
一般論として、有機半導体化合物を含む組成物をインクとして用いる際、有機半導体化合物の凝集力のため、該インクの表面エネルギーが高くなり、このことが、印刷の際のはじきの主原因となる。本発明の組成物は、有機半導体化合物の濃度を本発明の上限に抑えることで、はじきが抑えられ、良好な成膜性を確保することが出来る。
It is the composition characterized by existing in the range. When the concentration is 0.2 wt% or more for the lower limit of concentration, the film thickness of the organic semiconductor layer necessary to function as a TFT channel can be ensured. On the other hand, by setting the concentration upper limit to 290 / (molecular weight of unit A) wt% or less, it is possible to ensure wettability to the lower layer during printing film formation.
In general, when a composition containing an organic semiconductor compound is used as an ink, the surface energy of the ink increases due to the cohesive strength of the organic semiconductor compound, which is a main cause of repellency during printing. In the composition of the present invention, by controlling the concentration of the organic semiconductor compound to the upper limit of the present invention, the repelling can be suppressed and good film formability can be secured.

なお、該濃度上限を表す式「290/(ユニットAの分子量)」は、ユニットAの分子量が大きくなるほど、濃度上限が小さくなることを示しており、ユニットAの分子サイズ(分子量)が、該組成物の下層に対するぬれ性に負の影響を与え、ユニットAの分子量の増大にあたっては、濃度上限を下げることでぬれ性が確保出来る、という経験則から見出されたものである。   The formula “290 / (molecular weight of unit A)” representing the upper limit of concentration indicates that the upper limit of concentration decreases as the molecular weight of unit A increases, and the molecular size (molecular weight) of unit A This has been found from an empirical rule that the wettability of the lower layer of the composition is negatively affected and the wettability can be secured by lowering the concentration upper limit when the molecular weight of unit A is increased.

(その他の成分)
本発明の組成物は、前記有機半導体化合物と、前記有機溶媒を含めばよく、これら成
分から実質的になってもよい。ここで「実質的になる」とは、前記有機半導体化合物及
び前記有機溶媒の合計量が、組成物全体に対して、例えば90wt%以上、95wt%以上、98wt%以上、99wt%以上、又は100wt%である場合をいう。
(Other ingredients)
The composition of this invention should just contain the said organic-semiconductor compound and the said organic solvent, and may consist essentially of these components. Here, “substantially” means that the total amount of the organic semiconductor compound and the organic solvent is, for example, 90 wt% or more, 95 wt% or more, 98 wt% or more, 99 wt% or more, or 100 wt% with respect to the entire composition. %.

(TFT)
本発明の組成物又はインクを用いて製造されるTFTについて説明する。
TFTは、通常、ソース電極、ドレイン電極、ゲート電極、ゲート絶縁層、及び半導体層を有して成るものであり、各電極や各層の配置によって種々のタイプのTFTがあるが、本発明の組成物又はインクはTFTの種類に限定されることなく、何れのTFTにも使用することが出来る。TFTの種類については、アルドリッチ社の材料科学の基礎第6号「有機トランジスタの基礎」などを参照することが出来る。
(TFT)
A TFT manufactured using the composition or ink of the present invention will be described.
A TFT usually has a source electrode, a drain electrode, a gate electrode, a gate insulating layer, and a semiconductor layer, and there are various types of TFTs depending on the arrangement of each electrode and each layer. A thing or ink is not limited to the kind of TFT, and can be used for any TFT. For the types of TFTs, reference can be made to Aldrich's Material Science Fundamentals No. 6 “Organic Transistor Fundamentals”.

図1に示すボトムゲートボトムコンタクト型を一例に詳説すると、1は基板、2はゲート電極、3はゲート絶縁層、4は半導体層、5はソース電極、6はドレイン電極である。   Referring to the bottom gate bottom contact type shown in FIG. 1 as an example, 1 is a substrate, 2 is a gate electrode, 3 is a gate insulating layer, 4 is a semiconductor layer, 5 is a source electrode, and 6 is a drain electrode.

実デバイスとして広く検討の対象となっている構造は、ボトムコンタクト型(図1又は図2)である。この構造では、絶縁層(又は基板)上にソース電極及びドレイン電極を形成し、然る後に、絶縁層(又は基板)及び電極層を覆うようにして半導体層を形成する。一般論として、絶縁層と電極層(又は基板と電極層)の表面エネルギーは異なっており、従って、絶縁層と電極層(又は基板と電極層)、両層を覆うように、湿式法(印刷法)にて均質に半導体層を形成することは難しい。湿式法(印刷法)では、通常、表面エネルギーの低い下層から、表面エネルギーの高い下層に、インクが移動するためである。   The structure that is widely studied as an actual device is a bottom contact type (FIG. 1 or FIG. 2). In this structure, a source electrode and a drain electrode are formed over an insulating layer (or substrate), and then a semiconductor layer is formed so as to cover the insulating layer (or substrate) and the electrode layer. In general, the surface energy of the insulating layer and the electrode layer (or substrate and electrode layer) is different, and therefore the wet method (printing) so as to cover both the insulating layer and electrode layer (or substrate and electrode layer). Method), it is difficult to form a semiconductor layer uniformly. This is because, in the wet method (printing method), the ink usually moves from a lower layer having a low surface energy to a lower layer having a high surface energy.

本発明の組成物又はインクの特徴は、該ケースであっても、均質に半導体層を形成することが出来ることにある。   The feature of the composition or ink of the present invention is that a semiconductor layer can be uniformly formed even in the case.

TFTを形成する基板としては、ガラスや樹脂が用いられるが、フレキシブルなTFTを得るためには、ガラス製シート、樹脂製シートや、プラスチックフィルムを用いることが出来る。中でも、樹脂製シートやプラスチックフィルムを用いると、フレキシブル性に加え、軽量化を図ることができ、可搬性を高めることが出来るとともに、衝撃に対する耐性を向上出来るので好適である。材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等を挙げることが出来る。   As a substrate for forming the TFT, glass or resin is used. However, in order to obtain a flexible TFT, a glass sheet, a resin sheet, or a plastic film can be used. Among them, it is preferable to use a resin sheet or a plastic film because, in addition to flexibility, weight reduction can be achieved, portability can be improved, and resistance to impact can be improved. Examples of materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), and cellulose. Examples thereof include triacetate (TAC) and cellulose acetate propionate (CAP).

ゲート電極、ソース電極、及びドレイン電極の電極材料は、導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、酸化スズ、アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペースト、カーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等が用いられる。さらに、ドーピング等で導電率を向上させた公知の導電性ポリマー、例えば、導電性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体なども好適に用いられる。 The electrode material of the gate electrode, the source electrode, and the drain electrode is not particularly limited as long as it is a conductive material. Platinum, gold, silver, nickel, chromium, copper, iron, tin, tin oxide, antimony, indium tin oxide (ITO), fluorine-doped zinc oxide, carbon, graphite, glassy carbon, silver paste, carbon paste, lithium, beryllium, sodium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, sodium, sodium Potassium alloy, magnesium, lithium, aluminum, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, lithium / aluminum mixture And the like can be used. Furthermore, known conductive polymers whose conductivity is improved by doping or the like, for example, conductive polyaniline, conductive polypyrrole, conductive polythiophene, a complex of polyethylenedioxythiophene and polystyrenesulfonic acid, and the like are also preferably used.

電極の形成方法としては、上記材料を原料として蒸着やスパッタリング等の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極に形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によるレジストをパターン成膜し、然る後エッチングする方法がある。又導電性ポリマーの溶液あるいは分散液、導電性微粒子分散液を直接インクジェットによりパターニングしてもよいし、塗工膜からリソグラフやレーザーアブレーションなどにより形成してもよい。更に導電性ポリマーや導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法も用いることが出来る。   As a method for forming an electrode, a method of forming a conductive thin film formed using the above materials as a raw material by a method such as vapor deposition or sputtering on an electrode using a known photolithography method or a lift-off method, aluminum, copper, or the like There is a method in which a resist film is formed on a metal foil by thermal transfer, ink jet or the like, and then etched. Alternatively, the conductive polymer solution or dispersion, or the conductive fine particle dispersion may be directly patterned by ink jet, or may be formed from the coating film by lithography or laser ablation. Furthermore, a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste, or the like by a printing method such as relief printing, intaglio printing, planographic printing, or screen printing can also be used.

ゲート絶縁層は、パリレン、ポリスチレン、アクリル樹脂、ポリエステル樹脂などの熱可塑性樹脂;エポキシ樹脂、ウレタン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂などの熱硬化性樹脂;UV硬化性樹脂などの有機薄膜が好適に使用出来、さらには、酸化シリコン膜などの無機材料も用いることが出来る。   Gate insulating layer is a thermoplastic resin such as parylene, polystyrene, acrylic resin, polyester resin; thermosetting resin such as epoxy resin, urethane resin, phenol resin, unsaturated polyester resin, alkyd resin, melamine resin; UV curable resin An organic thin film such as a silicon oxide film can be preferably used, and an inorganic material such as a silicon oxide film can also be used.

ゲート絶縁層はスピンコート法、キャスト法、ディップ法、インクジェット法、ドクターブレード法、スクリーン印刷法、オフセット印刷法、凸版印刷法、反転印刷法、マイクロコンタクトプリント法、ワイヤーバーコート法、スプレーコート法、ディスペンス法等の公知の湿式成膜方法により薄膜を作製することが可能であり、必要に応じフォトリソグラフ法で必要な形状にパターニングしてもよい。   The gate insulating layer is formed by a spin coating method, a casting method, a dipping method, an ink jet method, a doctor blade method, a screen printing method, an offset printing method, a letterpress printing method, a reverse printing method, a micro contact printing method, a wire bar coating method, a spray coating method. The thin film can be produced by a known wet film forming method such as a dispensing method, and may be patterned into a necessary shape by a photolithographic method, if necessary.

半導体層は、上述した本発明の組成物又はインクを用いて成膜してなる層である。半導体層の膜厚は、特に制限されることはないが、通常、0.5nm〜1μmであり、2nm〜250nmであると好ましい。
又、半導体層は、結晶性を高め半導体特性の向上等を図ることを目的に、必要に応じて、成膜後にアニーリングを実施してもよい。アニーリングの温度は50〜200℃が好ましく、70〜200℃であるとさらに好ましく、時間は10分〜12時間が好ましく、1時間〜10時間がより好ましく、30分〜10時間であるとさらに好ましい。
The semiconductor layer is a layer formed by using the above-described composition or ink of the present invention. The thickness of the semiconductor layer is not particularly limited, but is usually 0.5 nm to 1 μm, and preferably 2 nm to 250 nm.
Further, the semiconductor layer may be annealed after film formation, if necessary, for the purpose of improving crystallinity and improving semiconductor characteristics. The annealing temperature is preferably 50 to 200 ° C, more preferably 70 to 200 ° C, and the time is preferably 10 minutes to 12 hours, more preferably 1 hour to 10 hours, and further preferably 30 minutes to 10 hours. .

成膜方法としては、例えば、スピンコート法、キャスト法、ディップ法、インクジェット法、ドクターブレード法、グラビア印刷法、スクリーン印刷法、オフセット印刷法、凸版印刷法、反転印刷法、マイクロコンタクトプリント法、ワイヤーバーコート法、スプレーコート法、ディスペンス法等の公知の湿式成膜方法を挙げることが出来る。   Examples of film forming methods include spin coating, casting, dipping, inkjet, doctor blade, gravure printing, screen printing, offset printing, letterpress printing, reverse printing, microcontact printing, Known wet film forming methods such as a wire bar coating method, a spray coating method, and a dispensing method can be exemplified.

(実施例1)
<組成物の製造>
下記有機半導体化合物(1)を、「Journal of Physical Chemistry B、2014年、118巻、1443頁」に記載の方法によって合成し、然る後、該化合物をp−キシレンに重量濃度0.4wt%となるように溶解し、組成物(1)を製造した。
Example 1
<Production of composition>
The following organic semiconductor compound (1) was synthesized by the method described in “Journal of Physical Chemistry B, 2014, 118, 1443”, and then the compound was added to p-xylene in a weight concentration of 0.4 wt%. It melt | dissolved so that it might become, and the composition (1) was manufactured.

Figure 2017017216
Figure 2017017216

<TFTの製造>
ガラス基板(図1の1に相当)上に金属マスクを用いてアルミニウムを真空蒸着法にて約30nmの厚さで成膜して、ゲート電極を形成した(図1の2に相当)。ここに、パリレン蒸着装置(ラボコーターPDS2010、日本パリレン製)を用いて、ジクロロ−ジパラキシリレン(DPX−C、日本パリレン製)を原料にして、ポリパラクロロキシリレン(パリレンC)薄膜(厚さ500nm)をケミカルベーパーデポジション(CVD)法にて作製し(図1の3に相当)、さらに、真空蒸着法によって、金薄膜(厚さ40nm)からなるソース・ドレイン電極をパターン形成した(図1の5と6に相当。チャネル長L(ソース電極−ドレイン電極間隔)を75μm、チャネル幅Wを5.0mmとした)。次に、このようにして得られた基板を、ペンタフルオロチオフェノールの0.1%エタノール溶液に1時間浸漬したのち、窒素ブローで乾燥し、前記組成物(1)の液滴0.1μLを、前記ソース・ドレイン電極の間にドロップキャスト(滴下)した後、自然濃縮により乾固させることで、有機半導体化合物(1)よりなる半導体層(図1の4に相当)を形成した。
<Manufacture of TFT>
A gate electrode was formed on a glass substrate (corresponding to 1 in FIG. 1) by depositing aluminum with a thickness of about 30 nm by vacuum deposition using a metal mask (corresponding to 2 in FIG. 1). Here, using a parylene vapor deposition apparatus (labor coater PDS2010, manufactured by Japan Parylene), dichloro-diparaxylylene (DPX-C, manufactured by Japan Parylene) as a raw material, a polyparachloroxylylene (Parylene C) thin film (thickness 500 nm) Was prepared by chemical vapor deposition (CVD) method (corresponding to 3 in FIG. 1), and further, source / drain electrodes made of a gold thin film (thickness 40 nm) were patterned by vacuum deposition (FIG. 1). Corresponding to 5 and 6. Channel length L (source electrode-drain electrode interval) was 75 μm and channel width W was 5.0 mm). Next, the substrate thus obtained was immersed in a 0.1% ethanol solution of pentafluorothiophenol for 1 hour, and then dried by nitrogen blowing, and 0.1 μL of a droplet of the composition (1) was added. The semiconductor layer (corresponding to 4 in FIG. 1) made of the organic semiconductor compound (1) was formed by drop-casting (dropping) between the source / drain electrodes, followed by drying by natural concentration.

<半導体特性(移動度)の評価>
このようにして得られたTFTについて、半導体特性(移動度)を評価した。半導体特性(移動度)は、ソース電極を接地し、ドレイン電極に−80Vを印加した状態で、デジタルマルチメーター(SMU237、ケースレー製)を用いて、ゲート電極に0から−80V、電圧(V)をスイープ印加しながら、ドレイン電極に流れる電流(I)を測定し、√I−Vの傾きから、(式3)を用いて求めた。単位はcm/V・sである。
<Evaluation of semiconductor characteristics (mobility)>
Semiconductor characteristics (mobility) of the TFT thus obtained were evaluated. The semiconductor characteristics (mobility) were measured using a digital multimeter (SMU237, manufactured by Keithley) with a source electrode grounded and -80 V applied to the drain electrode, and a voltage (V g ) Was swept, the current flowing through the drain electrode (I d ) was measured, and the value was obtained from (Equation 3) from the slope of √I d −V g . The unit is cm 2 / V · s.

Figure 2017017216
Figure 2017017216

(式中、Wはチャネル幅、Lはチャネル長、μは移動度、Cはゲート絶縁層の単位面積当たりの電気容量、Vは閾値電圧を表す) (Wherein, W is the channel width, L is the channel length, μ is the mobility, C is the capacitance per unit area of the gate insulating layer, and V T is the threshold voltage)

<半導体特性のばらつき評価>
前記方法によって、TFTを45個作製し、前記方法によって45個のTFTの半導体特性(移動度)を評価し、45個のTFTの半導体特性(移動度)の平均値、標準偏差より、ばらつきとして変動係数(C.V.値)を求めた。結果を表1に示す。
<Evaluation of variation in semiconductor characteristics>
45 TFTs are manufactured by the above method, and the semiconductor characteristics (mobility) of 45 TFTs are evaluated by the above method. From the average value and standard deviation of the semiconductor characteristics (mobility) of 45 TFTs, The coefficient of variation (CV value) was determined. The results are shown in Table 1.

(実施例2)
<組成物の製造>
下記有機半導体化合物(2)を、「Journal of Physical Chemistry B、2014年、118巻、1443頁」に記載の方法によって合成し、然る後、該化合物をp−キシレンに重量濃度0.4wt%となるように溶解し、組成物(2)を製造した。
(Example 2)
<Production of composition>
The following organic semiconductor compound (2) was synthesized by the method described in “Journal of Physical Chemistry B, 2014, 118, 1443”, and then the compound was added to p-xylene at a weight concentration of 0.4 wt%. It melt | dissolved so that it might become, and the composition (2) was manufactured.

Figure 2017017216
Figure 2017017216

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(2)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
TFT production, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 1 except that the composition (2) was used instead of the composition (1). The results are shown in Table 1.

(実施例3)
<有機半導体化合物の製造>
下記有機半導体化合物(3)の製造を以下の如くして実施した。
(Example 3)
<Manufacture of organic semiconductor compounds>
The following organic semiconductor compound (3) was produced as follows.

Figure 2017017216
Figure 2017017216

1,5−ジヒドロキシナフタレン 10.0g(62.4mmol)、よう素130mgに酢酸350mLを加え、室温で撹拌した。反応液を80℃に加熱し、臭素6.5mL(127mmol)の酢酸28mL溶液をゆっくり滴下した。80℃で撹拌5分後、反応液を室温まで空冷した。析出した緑色針状晶を濾取した。得られた固体を、酢酸200mLから再結晶し2,6−ジブロモ−1,5−ジヒドロキシナフタレン11.8g(収率、62.1%)を得た。   Acetic acid (350 mL) was added to 1,5-dihydroxynaphthalene (10.0 g, 62.4 mmol) and iodine (130 mg), and the mixture was stirred at room temperature. The reaction solution was heated to 80 ° C., and a solution of 6.5 mL (127 mmol) of bromine in 28 mL of acetic acid was slowly added dropwise. After stirring at 80 ° C. for 5 minutes, the reaction solution was air-cooled to room temperature. The precipitated green needle crystal was collected by filtration. The obtained solid was recrystallized from 200 mL of acetic acid to obtain 11.8 g (yield, 62.1%) of 2,6-dibromo-1,5-dihydroxynaphthalene.

2,6−ジブロモ−1,5−ジヒドロキナフタレン3.09g(9.72mmol)、4−(N,N−ジメチル)アミノピリジン0.68g(5.57mmol)にジクロロメタン90mLを加え、室温で撹拌した。懸濁液を氷冷し、5℃以下でトリフルオロメタンスルホン酸無水物3.3mL(2.13mmol)をゆっくり滴下した。氷冷下で2.5時間撹拌後、水60mL、1M塩酸10mLを加えて反応を停止した後、ジクロロメタンで抽出した。有機相を濃縮し得られた粗製物を、シリカゲルカラムクロマトグラフィー(クロロホルム)で分離精製することで2,6−ジブロモ−1,5−ビス(トリフルオロメチルスルホニルオキシ)ナフタレン3.97g(収率、70.1%)を得た。   Add 90 mL of dichloromethane to 3.09 g (9.72 mmol) of 2,6-dibromo-1,5-dihydroquinaphthalene and 0.68 g (5.57 mmol) of 4- (N, N-dimethyl) aminopyridine, and stir at room temperature. did. The suspension was ice-cooled, and 3.3 mL (2.13 mmol) of trifluoromethanesulfonic anhydride was slowly added dropwise at 5 ° C. or lower. After stirring for 2.5 hours under ice-cooling, the reaction was stopped by adding 60 mL of water and 10 mL of 1M hydrochloric acid, followed by extraction with dichloromethane. The crude product obtained by concentrating the organic phase was separated and purified by silica gel column chromatography (chloroform) to obtain 3.97 g of 2,6-dibromo-1,5-bis (trifluoromethylsulfonyloxy) naphthalene (yield) 70.1%).

アルゴン雰囲気下、よう化銅1.82g(9.60mmol)、ジクロロビストリフェニルホスフィンパラジウム(II)3.37g(4.80mmol)、2,6−ジブロモ−1,5−ビス(トリフルオロメチルスルホニルオキシ)ナフタレン28.0g(48.1mmol)にN,N−ジメチルホルムアミド340mL、ジイソプロピルアミン340mLを加え、室温で撹拌した。反応液へトリメチルシリルアセチレン13.8mL(48.1mmol)を加えた。室温で16時間撹拌後、反応液を水3L、1M塩酸50mLの混合液に注ぎ、生じた固形分を濾取、乾燥させた。得られた褐色粉末を、シリカゲルカラムクロマトグラフィー(ヘキサン)で分離精製することで2,6−ジブロモ−1,5−ビス(トリメチルシリルエチニル)ナフタレン16.3g(収率、71.0%)を得た。   Under an argon atmosphere, 1.82 g (9.60 mmol) of copper iodide, 3.37 g (4.80 mmol) of dichlorobistriphenylphosphine palladium (II), 2,6-dibromo-1,5-bis (trifluoromethylsulfonyloxy) ) 340 mL of N, N-dimethylformamide and 340 mL of diisopropylamine were added to 28.0 g (48.1 mmol) of naphthalene, and the mixture was stirred at room temperature. To the reaction solution, 13.8 mL (48.1 mmol) of trimethylsilylacetylene was added. After stirring at room temperature for 16 hours, the reaction solution was poured into a mixture of 3 L of water and 50 mL of 1M hydrochloric acid, and the resulting solid was collected by filtration and dried. The obtained brown powder was separated and purified by silica gel column chromatography (hexane) to obtain 16.3 g (yield, 71.0%) of 2,6-dibromo-1,5-bis (trimethylsilylethynyl) naphthalene. It was.

アルゴン雰囲気下、硫化ナトリウム九水和物26.6g(111mmol)にN−メチルピロリジノン776mLを加え、15分撹拌した。反応液へ、2,6−ジブロモ−1,5−ビス(トリメチルシリルエチニル)ナフタレン15.0g(25.8mmol)を加え、7時間加熱還流した。室温まで空冷した後、反応液を飽和塩化アンモニウム水溶液2.5Lに注ぎ、生じた固体を濾取、乾燥した。得られた黄色粉末を、クロロホルムに分散し、可溶分を濾取、濃縮した。得られた黄色粉末を、シリカゲルカラムクロマトグラフィー(クロロホルム)で分離精製することでナフト[2,1−b:6,5−b’]ジチオフェン3.40g(収率、54.9%)を得た。   Under an argon atmosphere, 776 mL of N-methylpyrrolidinone was added to 26.6 g (111 mmol) of sodium sulfide nonahydrate, and the mixture was stirred for 15 minutes. To the reaction solution, 15.0 g (25.8 mmol) of 2,6-dibromo-1,5-bis (trimethylsilylethynyl) naphthalene was added and heated to reflux for 7 hours. After air cooling to room temperature, the reaction solution was poured into 2.5 L of a saturated aqueous ammonium chloride solution, and the resulting solid was collected by filtration and dried. The obtained yellow powder was dispersed in chloroform, and the soluble component was collected by filtration and concentrated. The obtained yellow powder was separated and purified by silica gel column chromatography (chloroform) to obtain 3.40 g (yield, 54.9%) of naphtho [2,1-b: 6,5-b ′] dithiophene. It was.

アルゴン雰囲気下、ナフト[2,1−b:6,5−b’]ジチオフェン2.10g、(8.74mmol)にテトラヒドロフラン250mLを加え、−78℃に冷却した。反応液へn−ブチルリチウムの1.6mol/Lヘキサン溶液6.7mL(11mmol)をゆっくり滴下した。反応液を0℃に昇温し、さらに2時間撹拌した。0℃にて臭化n−デシル2.2mL(11mmol)を滴下した後、室温に昇温し、18時間撹拌した。反応液に水を加えて反応を停止した後、溶媒を留去した。得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン/クロロホルム=95/5)で分離精製することで2−デシルナフト[2,1−b:6,5−b’]ジチオフェン0.961g(収率、28.9%)を得た。   Under an argon atmosphere, 250 mL of tetrahydrofuran was added to 2.10 g of naphtho [2,1-b: 6,5-b ′] dithiophene (8.74 mmol) and cooled to −78 ° C. To the reaction solution, 6.7 mL (11 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction solution was warmed to 0 ° C. and further stirred for 2 hours. After dropwise addition of 2.2 mL (11 mmol) of n-decyl bromide at 0 ° C., the mixture was warmed to room temperature and stirred for 18 hours. Water was added to the reaction solution to stop the reaction, and then the solvent was distilled off. The obtained crude product was separated and purified by silica gel column chromatography (hexane / chloroform = 95/5) to give 0.961 g of 2-decylnaphtho [2,1-b: 6,5-b ′] dithiophene (yield, 28.9%).

アルゴン雰囲気下、2−デシルナフト[2,1−b:6,5−b’]ジチオフェン0.895g(2.35mmol)にテトラヒドロフラン50mLを加え、−78℃に冷却した。反応液へn−ブチルリチウムの1.6mol/Lヘキサン溶液2.5mL(3.58mmol)をゆっくり滴下した。反応液を室温に昇温し、さらに2.5時間撹拌した。反応液を−78℃に冷却し、よう素0.658g(2.59mmol)のテトラヒドロフラン16mL溶液をゆっくり滴下した後、室温に昇温し、16時間撹拌した。反応液に水を加えて反応を停止した後、溶媒を留去した。得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン)で分離精製することで2−デシル−7−ヨードナフト[2,1−b:6,5−b’]ジチオフェン0.550g(収率、46.2%)を得た。   Under an argon atmosphere, 50 mL of tetrahydrofuran was added to 0.895 g (2.35 mmol) of 2-decylnaphtho [2,1-b: 6,5-b ′] dithiophene and cooled to −78 ° C. To the reaction solution, 2.5 mL (3.58 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional 2.5 hours. The reaction solution was cooled to -78 ° C, and a solution of 0.658 g (2.59 mmol) of iodine in 16 mL of tetrahydrofuran was slowly added dropwise, and then the mixture was warmed to room temperature and stirred for 16 hours. Water was added to the reaction solution to stop the reaction, and then the solvent was distilled off. The obtained crude product was separated and purified by silica gel column chromatography (hexane) to give 0.550 g of 2-decyl-7-iodonaphtho [2,1-b: 6,5-b ′] dithiophene (yield, 46. 2%).

アルゴン雰囲気下、よう化銅0.0039g(0.021mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.0011g(0.00093mmol)、2−デシル−7−ヨードナフト[2,1−b:6,5−b’]ジチオフェン0.104(0.205mmol)にテトラヒドロフラン0.4mL、トリエチルアミン0.2mLを加え、室温で撹拌した。反応液へエチニルベンゼン0.0391g(0.383mmol)のテトラヒドロフラン0.2mL溶液を加え、室温で5時間撹拌した。反応液を水30mLに注ぎ、生じた沈殿を濾過、得られた固体をメタノールで洗浄し、クロロホルムに溶かして濃縮した。得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン)で分離した。得られた粗製物をアセトンから再結晶することで有機半導体化合物(3)たる2−デシル−7−(フェニルエチニル)ナフト[2,1−b:6,5−b’]ジチオフェン0.113g(収率、46.5%)を得た。
H NMR(300MHz,CDCl):δ8.244(d,J=8.7Hz,1H),δ8.182(s,1H),δ8.146(d,J=8.7Hz,1H),δ7.941(d,J=8.7Hz,1H),δ7.891(d,J=8.7Hz,1H),δ7.681(s,1H),δ7.577−7.606(m,2H),δ7.377−7.428(m,3H),δ3.025(t,J=7.2Hz,2H),δ1.776−1.875(m,2H),δ1.386−1.512(m,14H),δ0.878(t,J=5.7Hz,3H).
FD−MS:[M]+=480.3。
Under an argon atmosphere, 0.0039 g (0.021 mmol) of copper iodide, 0.0011 g (0.00093 mmol) of tetrakis (triphenylphosphine) palladium (0), 2-decyl-7-iodonaphtho [2,1-b: 6 , 5-b ′] dithiophene 0.104 (0.205 mmol) was added tetrahydrofuran 0.4 mL and triethylamine 0.2 mL and stirred at room temperature. A solution of 0.0391 g (0.383 mmol) of ethynylbenzene in 0.2 mL of tetrahydrofuran was added to the reaction solution, and the mixture was stirred at room temperature for 5 hours. The reaction mixture was poured into 30 mL of water, the resulting precipitate was filtered, and the resulting solid was washed with methanol, dissolved in chloroform and concentrated. The obtained crude product was separated by silica gel column chromatography (hexane). The obtained crude product was recrystallized from acetone to give organic semiconductor compound (3) 2-decyl-7- (phenylethynyl) naphtho [2,1-b: 6,5-b ′] dithiophene 0.113 g ( Yield, 46.5%).
1 H NMR (300 MHz, CDCl 3 ): δ 8.244 (d, J = 8.7 Hz, 1H), δ 8.182 (s, 1H), δ 8.146 (d, J = 8.7 Hz, 1H), δ7 .941 (d, J = 8.7 Hz, 1H), δ7.891 (d, J = 8.7 Hz, 1H), δ7.681 (s, 1H), δ7.577-7.606 (m, 2H) , Δ 7.377-7.428 (m, 3H), δ 3.025 (t, J = 7.2 Hz, 2H), δ 1.77-1.875 (m, 2H), δ 1.386-1.512 ( m, 14H), δ 0.878 (t, J = 5.7 Hz, 3H).
FD-MS: [M] + = 480.3.

<組成物の製造>
有機半導体化合物(1)のかわりに有機半導体化合物(3)を用いた以外は実施例(1)と同様にして、組成物(3)を製造した。
<Production of composition>
A composition (3) was produced in the same manner as in Example (1) except that the organic semiconductor compound (3) was used instead of the organic semiconductor compound (1).

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(3)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
TFT production, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 1 except that the composition (3) was used instead of the composition (1). The results are shown in Table 1.

(実施例4)
<有機半導体化合物の製造>
有機半導体化合物(4)の製造を以下の如くして実施した。
Example 4
<Manufacture of organic semiconductor compounds>
Production of the organic semiconductor compound (4) was carried out as follows.

Figure 2017017216
Figure 2017017216

2,6−ジブロモ−1,5−ジヒドロキシナフタレン3.18g(10.0mmol)、にジクロロメタン300mLを加え、室温で撹拌した。反応液へ、ピリジン2.0mL(24.8mmol)、無水酢酸5.0mL(30.5mmol)をゆっくり滴下し、1時間加熱還流した。室温まで空冷した後、1N塩酸30mLを加えて反応を停止した。反応液をジクロロメタンで抽出し、硫酸マグネシウムで乾燥させ濃縮乾固した。得られた粗製物を、メタノールで洗浄することで2,6−ジブロモ−1,5−ジアセトキシナフタレン3.97g(収率、98.7%)を得た。   To 3.18 g (10.0 mmol) of 2,6-dibromo-1,5-dihydroxynaphthalene, 300 mL of dichloromethane was added and stirred at room temperature. To the reaction solution, 2.0 mL (24.8 mmol) of pyridine and 5.0 mL (30.5 mmol) of acetic anhydride were slowly added dropwise and heated to reflux for 1 hour. After air cooling to room temperature, 30 mL of 1N hydrochloric acid was added to stop the reaction. The reaction solution was extracted with dichloromethane, dried over magnesium sulfate and concentrated to dryness. The obtained crude product was washed with methanol to obtain 3.97 g (yield, 98.7%) of 2,6-dibromo-1,5-diacetoxynaphthalene.

アルゴン雰囲気下、CuI0.0568g(0.30mmol)、ジクロロビス(ベンゾニトリル)パラジウム(II)0.172g(0.45mmol)、2,6−ジブロモ−1,5−ジアセトキシナフタレン2.96g(7.31mmol)にテトラヒドロフラン7.5mL、ジイソプロピルアミン2.5mLを加え、室温で撹拌した。反応液へトリメチルシリルアセチレン2.2mL(17.9mmol)を加えた。室温で17時間撹拌後、生じた固形分を濾取し、濾液を乾燥させた。得られた褐色粉末を、シリカゲルカラムクロマトグラフィー(ヘキサン/クロロホルム=30/70)で分離精製し2,6−ビス(トリメチルシリルエチニル)−1,5−ジアセトキシナフタレン1.36g(収率、43%)を得た。   Under argon atmosphere, CuI 0.0568 g (0.30 mmol), dichlorobis (benzonitrile) palladium (II) 0.172 g (0.45 mmol), 2,6-dibromo-1,5-diacetoxynaphthalene 2.96 g (7. 31 mmol) was added with 7.5 mL of tetrahydrofuran and 2.5 mL of diisopropylamine, and stirred at room temperature. To the reaction solution, 2.2 mL (17.9 mmol) of trimethylsilylacetylene was added. After stirring at room temperature for 17 hours, the resulting solid was collected by filtration and the filtrate was dried. The resulting brown powder was separated and purified by silica gel column chromatography (hexane / chloroform = 30/70) to obtain 1.36 g of 2,6-bis (trimethylsilylethynyl) -1,5-diacetoxynaphthalene (yield, 43%). )

アルゴン雰囲気下、n−テトラブチルアンモニウムフルオリドの1.0mol/Lテトラヒドロフラン溶液8.76mL(8.76mmol)、モレキュラーシーブス4A2.16gに、テトラヒドロフラン109mLを加え室温で1時間撹拌した。反応液へ、2,6−ビス(トリメチルシリルエチニル)−1,5−ジアセトキシナフタレン1.20g(2.75mmol)のテトラヒドロフラン溶液36mLを加え、加熱還流下で15時間撹拌した。室温に冷却させた後、反応液を濾過した。濾液を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させ濃縮乾固した。得られた粗製物をシリカゲルカラムクロマトグラフィー(クロロホルム)で分離精製することでナフト[1,2−b:5,6−b’]ジフラン0.33g(収率、58%)を得た。   Under an argon atmosphere, 109 mL of tetrahydrofuran was added to 8.76 mL (8.76 mmol) of a 1.0 mol / L tetrahydrofuran solution of n-tetrabutylammonium fluoride and 2.16 g of Molecular Sieves 4A, and the mixture was stirred at room temperature for 1 hour. To the reaction solution was added 36 mL of a tetrahydrofuran solution of 1.20 g (2.75 mmol) of 2,6-bis (trimethylsilylethynyl) -1,5-diacetoxynaphthalene, and the mixture was stirred for 15 hours under heating to reflux. After cooling to room temperature, the reaction solution was filtered. The filtrate was washed with saturated brine, dried over magnesium sulfate and concentrated to dryness. The obtained crude product was separated and purified by silica gel column chromatography (chloroform) to obtain 0.33 g (yield, 58%) of naphtho [1,2-b: 5,6-b ′] difuran.

アルゴン雰囲気下、ナフト[1,2−b:5,6−b’]ジフラン2.90g、(13.9mmol)、N,N,N‘,N’−テトラメチルエチレンジアミン2.3mL(16mmol)にテトラヒドロフラン100mLを加え、−78℃に冷却した。反応液へn−ブチルリチウムの1.6mol/Lヘキサン溶液4.8mL(7.6mmol)をゆっくり滴下した。反応液を室温に昇温し、さらに2時間撹拌した。室温にて臭化n−デシル1.6mL(7.54mmol)を滴下した後、室温に昇温し、18時間撹拌した。反応液に水を加えて反応を停止した後、溶媒を留去した。得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン)で分離精製することで2−デシルナフト[1,2−b:5,6−b’]ジフラン1.18g(収率、24%)を得た。   Under argon atmosphere, naphtho [1,2-b: 5,6-b ′] difuran 2.90 g, (13.9 mmol), N, N, N ′, N′-tetramethylethylenediamine to 2.3 mL (16 mmol) Tetrahydrofuran 100mL was added and it cooled at -78 degreeC. To the reaction solution, 4.8 mL (7.6 mmol) of a 1.6 mol / L hexane solution of n-butyllithium was slowly added dropwise. The reaction was warmed to room temperature and stirred for an additional 2 hours. After dropwise addition of 1.6 mL (7.54 mmol) of n-decyl bromide at room temperature, the mixture was warmed to room temperature and stirred for 18 hours. Water was added to the reaction solution to stop the reaction, and then the solvent was distilled off. The obtained crude product was separated and purified by silica gel column chromatography (hexane) to obtain 1.18 g (yield, 24%) of 2-decylnaphtho [1,2-b: 5,6-b ′] difuran. .

アルゴン雰囲気下、2−デシルナフト[1,2−b:5,6−b’]ジフラン0.70g(2.00mmol)にクロロホルム30mL、酢酸30mLを加え、0℃に冷却した。反応液へN−ヨードスクシンイミド0.49g(2.2mmol)を少しずつ加えた。反応液を室温に昇温し、一晩撹拌した。溶媒を留去し、得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン)で分離精製することで2−デシル−7−ヨードナフト[1,2−b:5,6−b’]ジフラン0.24g(2.00mmol)0.28g(収率、25%)を得た。   Under an argon atmosphere, 30 mL of chloroform and 30 mL of acetic acid were added to 0.70 g (2.00 mmol) of 2-decylnaphtho [1,2-b: 5,6-b ′] difuran and cooled to 0 ° C. To the reaction solution, 0.49 g (2.2 mmol) of N-iodosuccinimide was added little by little. The reaction was warmed to room temperature and stirred overnight. The solvent was distilled off, and the resulting crude product was separated and purified by silica gel column chromatography (hexane) to give 0.24 g of 2-decyl-7-iodonaphtho [1,2-b: 5,6-b ′] difuran. 0.28 g (yield, 25%) was obtained (2.00 mmol).

アルゴン雰囲気下、よう化銅0.0056g(0.029mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.017g(0.0017mmol)、2−デシル−7−ヨードナフト[1,2−b:5,6−b’]ジフラン0.15g(0.32mmol)にテトラヒドロフラン0.6mL、トリエチルアミン0.2mLを加え、室温で撹拌した。反応液へエチニルベンゼン0.046g(0.45mmol)のテトラヒドロフラン0.2mL溶液を加え、室温で30分撹拌した。反応液を水30mLに注ぎ、生じた沈殿を濾過、得られた固体をメタノールで洗浄し、クロロホルムに溶かして濃縮した。得られた粗製物をシリカゲルカラムクロマトグラフィー(ヘキサン)で分離精製することで有機半導体化合物(4)たる2−デシル−7−(フェニルエチニル)ナフト[1,2−b:5,6−b’]ジフラン0.11g(収率、75%)を得た。   Under an argon atmosphere, 0.0056 g (0.029 mmol) of copper iodide, 0.017 g (0.0017 mmol) of tetrakis (triphenylphosphine) palladium (0), 2-decyl-7-iodonaphtho [1,2-b: 5 , 6-b ′] difuran (0.65 mL) and triethylamine (0.2 mL) were added to 0.15 g (0.32 mmol) and stirred at room temperature. To the reaction solution was added a solution of 0.046 g (0.45 mmol) of ethynylbenzene in 0.2 mL of tetrahydrofuran, and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was poured into 30 mL of water, the resulting precipitate was filtered, and the resulting solid was washed with methanol, dissolved in chloroform and concentrated. The obtained crude product was separated and purified by silica gel column chromatography (hexane) to give 2-decyl-7- (phenylethynyl) naphtho [1,2-b: 5,6-b ′] as the organic semiconductor compound (4). ] Obtained 0.11 g (yield, 75%) of difuran.

H NMR(300MHz,CDCl):δ8.16−8.12(m,2H),δ7.70(dd,J=8.4Hz,J=3.3Hz,2H),δ7.61−7.63(m,2H),δ7.40(m,3H),δ7.26(s,1H),δ6.55(s,1H),δ2.88(t,J=7.2Hz,2H),δ1.76−1.88(m,2H),δ1.19−1.51(m,14H),δ0.86(t,J=6.9Hz,3H).
FD−MS:[M]+=448.2
1 H NMR (300 MHz, CDCl 3 ): δ 8.16-8.12 (m, 2H), δ 7.70 (dd, J = 8.4 Hz, J = 3.3 Hz, 2H), δ 7.61-7. 63 (m, 2H), δ 7.40 (m, 3H), δ 7.26 (s, 1H), δ 6.55 (s, 1H), δ 2.88 (t, J = 7.2 Hz, 2H), δ1 .76-1.88 (m, 2H), δ 1.19-1.51 (m, 14H), δ 0.86 (t, J = 6.9 Hz, 3H).
FD-MS: [M] + = 448.2

<組成物の製造>
有機半導体化合物(1)のかわりに有機半導体化合物(4)を用いた以外は実施例(1)と同様にして、組成物(4)を製造した。
<Production of composition>
A composition (4) was produced in the same manner as in Example (1) except that the organic semiconductor compound (4) was used instead of the organic semiconductor compound (1).

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(4)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
TFT production, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 1 except that the composition (4) was used instead of the composition (1). The results are shown in Table 1.

(実施例5)
<有機半導体化合物の製造>
下記有機半導体化合物(5)の製造を以下の如くして実施した。
(Example 5)
<Manufacture of organic semiconductor compounds>
The following organic semiconductor compound (5) was produced as follows.

Figure 2017017216
Figure 2017017216

[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(以下、BTBTと記す)(6g、25mmol)をジクロロメタン300mLに加え、窒素ガス雰囲気下で−10℃になるまで攪拌した。次に塩化アルミニウム(13.3g、0.1mol)を加え、−70℃まで降温した。−70℃到達後、ヘキサン酸クロライド(3.37g、25mmol)を20分かけて滴下し、3.5時間撹拌した。反応液を水600gに添加した後、ジクロロメタン200g加え、分液ロートへ移送した。下層を水300gで2回分液洗浄した後、有機層を濃縮した。析出物をトルエン250gに加熱溶解後、室温で再結晶して、2−(ヘキシル−1−オン)−BTBTの黄色結晶、7.4g得た(収率88%)。 [1] benzothieno [3,2-b] [1] benzothiophene (hereinafter referred to as BTBT) (6 g, 25 mmol) was added to 300 mL of dichloromethane, and the mixture was stirred until it reached −10 ° C. in a nitrogen gas atmosphere. Next, aluminum chloride (13.3 g, 0.1 mol) was added, and the temperature was lowered to -70 ° C. After reaching −70 ° C., hexanoic acid chloride (3.37 g, 25 mmol) was added dropwise over 20 minutes and stirred for 3.5 hours. After adding the reaction solution to 600 g of water, 200 g of dichloromethane was added and transferred to a separatory funnel. The lower layer was separated and washed twice with 300 g of water, and then the organic layer was concentrated. The precipitate was dissolved in 250 g of toluene with heating, and recrystallized at room temperature to obtain 7.4 g of yellow crystals of 2- (hexyl-1-one) -BTBT (yield 88%).

次いで、2−(ヘキシル−1−オン)−BTBT(6.8g、20mmol)、85.5%水酸化カリウム(3.5g、53 mmol)、ヒドラジン一水和物(6.5 g、124mmol)をジエチレングリコール300mLに加え、窒素雰囲気下で攪拌し、100℃まで昇温し、1時間撹拌した。その後、170℃まで昇温させ、デカンターを用いて反応系から水分を除去し、4時間加熱撹拌した。室温まで冷却後、反応溶液中に析出した固形物をろ過して回収し、水、エタノールの順に洗浄した。洗浄後の固形物を70℃で真空乾燥して、2−ヘキシル−BTBT6.0g得た(収率92%)。 Then 2- (hexyl-1-one) -BTBT (6.8 g, 20 mmol), 85.5% potassium hydroxide (3.5 g, 53 mmol), hydrazine monohydrate (6.5 g, 124 mmol) Was added to 300 mL of diethylene glycol, stirred under a nitrogen atmosphere, heated to 100 ° C., and stirred for 1 hour. Then, it heated up to 170 degreeC, the water | moisture content was removed from the reaction system using the decanter, and it heat-stirred for 4 hours. After cooling to room temperature, the solid matter precipitated in the reaction solution was collected by filtration and washed with water and ethanol in this order. The solid after washing was vacuum dried at 70 ° C. to obtain 6.0 g of 2-hexyl-BTBT (yield 92%).

更に、2−ヘキシル−BTBT(6.0g、18.5mmol)をクロロホルム200mLに溶解後0℃に冷却し、臭素3.7g(23.1mmol)を20分かけて滴下した。0℃で更に0.5時間撹拌した後、室温まで昇温し、3時間攪拌し反応を停止した。水加えを分液して下層を取り、濃縮乾固して粗製固体を得た。この固体をアセトンから再結晶して2−ヘキシル−7−ブロモBTBTの白色結晶、4.3g(収率、58%)を得た。 Furthermore, 2-hexyl-BTBT (6.0 g, 18.5 mmol) was dissolved in 200 mL of chloroform and then cooled to 0 ° C., and 3.7 g (23.1 mmol) of bromine was added dropwise over 20 minutes. The mixture was further stirred at 0 ° C. for 0.5 hour, then warmed to room temperature and stirred for 3 hours to stop the reaction. Water was added and the lower layer was taken and concentrated to dryness to give a crude solid. This solid was recrystallized from acetone to obtain 4.3 g (yield, 58%) of white crystals of 2-hexyl-7-bromoBTBT.

最後に、2−ヘキシル−7−ブロモBTBT(202mg、0.5mmol)にヨウ化銅(0.11g、0.6mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.08g、0.1mmol)、トリエチルアミン36mLを加え、室温で窒素ガスを15分間バブリングした。窒素雰囲気下で1−エチニル−4−ペンチルベンゼン0.93g(5.4mmol)を加え、35℃に昇温後、30分間加熱撹拌した。その後、85℃まで昇温後、40時間加熱撹拌した。室温まで冷却した後、反応液を水250mLに加えた。生成した固形物をろ集してアセトン100mLで洗浄した。得られた固形物を50℃に加熱したシクロヘキサン500mLに溶解後、この溶液にシリカゲル2g及び金属スカベンジャー2gを加えてスラリーを調製した。スラリーを50℃で1時間撹拌後、シリカゲル及び金属スカベンジャーをろ別除去し、ろ液から再結晶することで、式(5)で表される化合物の白色粉末114mg(収率46%)を得た。 Finally, 2-hexyl-7-bromoBTBT (202 mg, 0.5 mmol) and copper iodide (0.11 g, 0.6 mmol), bis (triphenylphosphine) palladium (II) dichloride (0.08 g, .0. 1 mmol) and 36 mL of triethylamine were added, and nitrogen gas was bubbled for 15 minutes at room temperature. Under a nitrogen atmosphere, 0.93 g (5.4 mmol) of 1-ethynyl-4-pentylbenzene was added, and the temperature was raised to 35 ° C., followed by heating and stirring for 30 minutes. Then, after heating up to 85 degreeC, it heated and stirred for 40 hours. After cooling to room temperature, the reaction solution was added to 250 mL of water. The produced solid was collected by filtration and washed with 100 mL of acetone. The obtained solid was dissolved in 500 mL of cyclohexane heated to 50 ° C., and 2 g of silica gel and 2 g of a metal scavenger were added to this solution to prepare a slurry. After stirring the slurry at 50 ° C. for 1 hour, the silica gel and the metal scavenger were removed by filtration and recrystallized from the filtrate to obtain 114 mg (yield 46%) of a white powder of the compound represented by the formula (5). It was.

HNMR(300MHz,CDCl):δ 8.08(d,1H,J=1.8Hz,H−6),7.83(d,1H,J=8.2Hz,H−9),7.78(d,1H,J=7.8Hz,H−4),7.72(s,1H,H−1),7.57(dd,1H,J=8.2Hz,H−8),7.44(d,2H,H−2’,−6’of Ph),7.29(dd,1H,J=7.8Hz,H−3),7.16(d,2H,H−3’,−5’of Ph),2.77(t,2H,J=7Hz,BTBT−CH),2.63(t,2H,Ph−CH),1.70(quint.2H,J=7Hz,Ph−CHCH),1.63(quint.2H,J=7Hz,BTBT−CHCH),1.55−1.27(m,10H,CH x5)0.88(t,6H,J=7Hz,CHx2).
FD−MS:[M]=494.2
1 HNMR (300 MHz, CDCl 3 ): δ 8.08 (d, 1H, J = 1.8 Hz, H-6), 7.83 (d, 1H, J = 8.2 Hz, H-9), 7. 78 (d, 1H, J = 7.8 Hz, H-4), 7.72 (s, 1H, H-1), 7.57 (dd, 1H, J = 8.2 Hz, H-8), 7 .44 (d, 2H, H-2 ′, −6 ′ of Ph), 7.29 (dd, 1H, J = 7.8 Hz, H-3), 7.16 (d, 2H, H-3 ′ , −5 ′ of Ph), 2.77 (t, 2H, J = 7 Hz, BTBT-CH 2 ), 2.63 (t, 2H, Ph—CH 2 ), 1.70 (quint. 2H, J = 7Hz, Ph-CH 2 CH 2 ), 1.63 (quint.2H, J = 7Hz, BTBT-CH 2 CH 2), 1.55-1.27 (m, 10H, CH 2 x ) 0.88 (t, 6H, J = 7Hz, CH 3 x2).
FD-MS: [M] + = 494.2

<組成物の製造>
有機半導体化合物(1)のかわりに有機半導体化合物(5)を用いた以外は実施例(1)と同様にして、組成物(5)を製造した。
<Production of composition>
A composition (5) was produced in the same manner as in Example (1) except that the organic semiconductor compound (5) was used instead of the organic semiconductor compound (1).

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(5)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
A TFT was manufactured, semiconductor characteristics (mobility) were evaluated, and semiconductor characteristics were evaluated for variation in the same manner as in Example 1 except that the composition (5) was used instead of the composition (1). The results are shown in Table 1.

(実施例6)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)の濃度を0.2wt%とした以外は、実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
(Example 6)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except for setting the concentration of the organic semiconductor compound (1) to 0.2 wt%, in the same manner as in Example 1, the manufacture of the composition, the manufacture of the TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were performed. Carried out. The results are shown in Table 1.

(実施例7)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)の濃度を1.2wt%とした以外は、実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
(Example 7)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (1) was changed to 1.2 wt%, in the same manner as in Example 1, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were performed. Carried out. The results are shown in Table 1.

(実施例8)
<組成物の製造>
実施例5に記載した方法にて下記有機半導体化合物(6)を合成し、然る後、該化合物をp−キシレンに重量濃度0.4wt%となるように溶解し、組成物(6)を製造した。
(Example 8)
<Production of composition>
The following organic semiconductor compound (6) was synthesized by the method described in Example 5, and then the compound was dissolved in p-xylene so as to have a weight concentration of 0.4 wt% to obtain a composition (6). Manufactured.

Figure 2017017216
Figure 2017017216

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(6)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
TFT production, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 1 except that the composition (6) was used instead of the composition (1). The results are shown in Table 1.

(実施例9)
<有機半導体化合物の製造>
下記有機半導体化合物(7)の製造を以下の如くして実施した。
Example 9
<Manufacture of organic semiconductor compounds>
The following organic semiconductor compound (7) was produced as follows.

Figure 2017017216
Figure 2017017216

Liquid Crystals、31、137−1380(2004)に記載の方法で得た2−デシル−BTBT、4.96g(13mmol)を320mLのジクロロメタンに溶解後−50℃に冷却し、発煙硝酸の1.2Mジクロロメタン溶液24mLを30分かけて滴下した。−50℃で更に2時間撹拌した後、26mLの飽和炭酸水素ナトリウム水溶液を加え反応を停止した。分液して下層を取り、10%食塩水で洗浄、無水硫酸マグネシウムで乾燥し濃縮乾固して粗製固体を得た。この固体を2‐ブタノンから再結晶し、2−デシル−7−ニトロBTBTの黄色結晶、3.72g(収率、67%)を得た。   2-decyl-BTBT obtained by the method described in Liquid Crystals, 31, 137-1380 (2004), 4.96 g (13 mmol) was dissolved in 320 mL of dichloromethane, cooled to −50 ° C., and 1.2 M of fuming nitric acid. 24 mL of dichloromethane solution was added dropwise over 30 minutes. After further stirring at −50 ° C. for 2 hours, 26 mL of saturated aqueous sodium hydrogen carbonate solution was added to stop the reaction. The lower layer was separated by separation, washed with 10% brine, dried over anhydrous magnesium sulfate and concentrated to dryness to obtain a crude solid. This solid was recrystallized from 2-butanone to obtain yellow crystals of 2-decyl-7-nitroBTBT, 3.72 g (yield, 67%).

次いで、2−デシル−7−ニトロBTBT 2.56g(6mmol)、錫粉末1.84gを酢酸30mLに懸濁し、約70℃で加熱、撹拌下、濃塩酸5.4mLをゆっくりと滴下した。さらに100℃で1時間反応後、10℃以下に冷却し固体を濾取した。
この固体をクロロホルム約100mLに分散し、濃アンモニア水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮乾固し粗製固体を得た。この固体をシリカゲルカラム(クロロホルム/シクロヘキサン=1/1、1%トリエチルアミンを添加)で分離精製し、石油ベンジンから再結晶して微灰色の2−アミノ−7−デシルBTBT 1.72g(収率、72%)を得た。
Next, 2.56 g (6 mmol) of 2-decyl-7-nitroBTBT and 1.84 g of tin powder were suspended in 30 mL of acetic acid, and 5.4 mL of concentrated hydrochloric acid was slowly added dropwise with stirring and heating at about 70 ° C. Furthermore, after reacting at 100 ° C. for 1 hour, the mixture was cooled to 10 ° C. or lower and the solid was collected by filtration.
This solid was dispersed in about 100 mL of chloroform, washed sequentially with concentrated aqueous ammonia and saturated brine, dried over anhydrous magnesium sulfate, and concentrated to dryness to obtain a crude solid. This solid was separated and purified on a silica gel column (chloroform / cyclohexane = 1/1, 1% triethylamine added) and recrystallized from petroleum benzine to give 1.72 g of a fine gray 2-amino-7-decyl BTBT (yield, 72%).

更に、2−アミノ−7−デシルBTBT 1.58g(4mmol)にジクロロメタン60mLを加え、−15℃冷却下、トリフルオロボレート・エーテル錯体864mg、亜硝酸t‐ブチル504mgを滴下した。約1時間で反応温度を5℃まで上げた後、沃素1.6g、沃化カリウム1.32g、沃化テトラブチルアンモニウム100mgのジクロロメタン−THF混液(1:2)12mLの溶液を加えた。加熱環流下、8時間反応した後、クロロホルムで希釈し、10%チオ硫酸ナトリウム、5M水酸化ナトリウム、10%食塩水で順次洗い、無水硫酸ナトリウムで乾燥し、濃縮乾固した。得られた濃褐色の粗製固体をシリカゲルカラム(クロロホルム/シクロヘキサン=1/1)で精製し、クロロホルム−メタノールから結晶化した。次いでリグロインから再結晶し、2−デシル−7−ヨードBTBTを912mg得た(収率、45%)。   Further, 60 mL of dichloromethane was added to 1.58 g (4 mmol) of 2-amino-7-decyl BTBT, and 864 mg of trifluoroborate / ether complex and 504 mg of t-butyl nitrite were added dropwise under cooling at −15 ° C. After raising the reaction temperature to 5 ° C. in about 1 hour, a solution of 1.6 g of iodine, 1.32 g of potassium iodide and 100 mg of tetrabutylammonium iodide in a dichloromethane-THF mixture (1: 2) 12 mL was added. The mixture was reacted for 8 hours under reflux with heating, diluted with chloroform, washed successively with 10% sodium thiosulfate, 5M sodium hydroxide, and 10% brine, dried over anhydrous sodium sulfate, and concentrated to dryness. The obtained dark brown crude solid was purified by a silica gel column (chloroform / cyclohexane = 1/1) and crystallized from chloroform-methanol. Subsequently, recrystallization from ligroin yielded 912 mg of 2-decyl-7-iodoBTBT (yield, 45%).

前記の如くして得られた2−デシル−7−ヨードBTBT(253mg、0.5mmol)にヨウ化銅(0.11g、0.6mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.08g、0.1mmol)、トリエチルアミン36mLを加え、室温で窒素ガスを15分間バブリングした。窒素雰囲気下で1−エチニル−4−ペンチルベンゼン0.93g(5.4mmol)を加え、35℃に昇温後、30分間加熱撹拌した。その後、85℃まで昇温後、40時間加熱撹拌した。室温まで冷却した後、反応液を水250mLに加えた。生成した固形物をろ集してアセトン100mLで洗浄した。得られた固形物を50℃に加熱したシクロヘキサン500mLに溶解後、この溶液にシリカゲル2g及び金属スカベンジャー2gを加えてスラリーを調製した。スラリーを50℃で1時間撹拌後、シリカゲル及び金属スカベンジャーをろ別除去し、ろ液から再結晶することで、式(7)で表される化合物の白色結晶93mg(収率34%)を得た。   2-decyl-7-iodoBTBT (253 mg, 0.5 mmol) obtained as described above was added to copper iodide (0.11 g, 0.6 mmol), bis (triphenylphosphine) palladium (II) dichloride (0 0.08 g, 0.1 mmol) and 36 mL of triethylamine were added, and nitrogen gas was bubbled at room temperature for 15 minutes. Under a nitrogen atmosphere, 0.93 g (5.4 mmol) of 1-ethynyl-4-pentylbenzene was added, and the temperature was raised to 35 ° C., followed by heating and stirring for 30 minutes. Then, after heating up to 85 degreeC, it heated and stirred for 40 hours. After cooling to room temperature, the reaction solution was added to 250 mL of water. The produced solid was collected by filtration and washed with 100 mL of acetone. The obtained solid was dissolved in 500 mL of cyclohexane heated to 50 ° C., and 2 g of silica gel and 2 g of a metal scavenger were added to this solution to prepare a slurry. After stirring the slurry at 50 ° C. for 1 hour, the silica gel and the metal scavenger were removed by filtration and recrystallized from the filtrate to obtain 93 mg (yield 34%) of white crystals of the compound represented by the formula (7). It was.

HNMR(300MHz,CDCl):δ 8.08(d,1H,J=1.8Hz,H−6),7.83(d,1H,J=8.2Hz,H−9),7.78(d,1H,J=7.8Hz,H−4),7.72(s,1H,H−1),7.57(dd,1H,J=8.2Hz,H−8),7.44(d,2H,H−2’,−6’of Ph),7.29(dd,1H,J=7.8Hz,H−3),7.16(d,2H,H−3’,−5’of Ph),2.77(t,2H,J=7Hz,BTBT−CH),2.63(t,2H,Ph−CH),1.70(quint.2H,J=7Hz,Ph−CHCH),1.63(quint.2H,J=7Hz,BTBT−CHCH),1.55−1.27(m,18H,CH x9),0.88(t,6H,J=7Hz,CHx2).
FD−MS:[M]=550.3
1 HNMR (300 MHz, CDCl 3 ): δ 8.08 (d, 1H, J = 1.8 Hz, H-6), 7.83 (d, 1H, J = 8.2 Hz, H-9), 7. 78 (d, 1H, J = 7.8 Hz, H-4), 7.72 (s, 1H, H-1), 7.57 (dd, 1H, J = 8.2 Hz, H-8), 7 .44 (d, 2H, H-2 ′, −6 ′ of Ph), 7.29 (dd, 1H, J = 7.8 Hz, H-3), 7.16 (d, 2H, H-3 ′ , −5 ′ of Ph), 2.77 (t, 2H, J = 7 Hz, BTBT-CH 2 ), 2.63 (t, 2H, Ph—CH 2 ), 1.70 (quint. 2H, J = 7Hz, Ph-CH 2 CH 2 ), 1.63 (quint.2H, J = 7Hz, BTBT-CH 2 CH 2), 1.55-1.27 (m, 18H, CH 2 x ), 0.88 (t, 6H, J = 7Hz, CH 3 x2).
FD-MS: [M] + = 550.3

<組成物の製造>
有機半導体化合物(1)のかわりに有機半導体化合物(7)を用いた以外は実施例(1)と同様にして、組成物(7)を製造した。
<Production of composition>
A composition (7) was produced in the same manner as in Example (1) except that the organic semiconductor compound (7) was used instead of the organic semiconductor compound (1).

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(7)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
TFT production, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 1 except that the composition (7) was used instead of the composition (1). The results are shown in Table 1.

(実施例10)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(7)の濃度を0.2wt%とした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表1に示す。
(Example 10)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except for setting the concentration of the organic semiconductor compound (7) to 0.2 wt%, in the same manner as in Example 9, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variation in semiconductor characteristics were performed. Carried out. The results are shown in Table 1.

(実施例11)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(7)の濃度を0.8wt%とした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 11)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (7) was changed to 0.8 wt%, in the same manner as in Example 9, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were performed. Carried out. The results are shown in Table 2.

(実施例12)
<有機半導体化合物の製造>
1−エチニル−4−ペンチルベンゼン(5.4mmol)にかえて、1−エチニル−4−エチルベンゼン(5.4mmol)を用いた以外は実施例5と同様にして、下記有機半導体化合物(8)を合成した。
(Example 12)
<Manufacture of organic semiconductor compounds>
In the same manner as in Example 5 except that 1-ethynyl-4-ethylbenzene (5.4 mmol) was used instead of 1-ethynyl-4-pentylbenzene (5.4 mmol), the following organic semiconductor compound (8) was prepared. Synthesized.

Figure 2017017216
Figure 2017017216

<組成物の製造>
有機半導体化合物(1)のかわりに有機半導体化合物(8)を用いた以外は実施例(1)と同様にして、組成物(8)を製造した。
<Production of composition>
A composition (8) was produced in the same manner as in Example (1) except that the organic semiconductor compound (8) was used instead of the organic semiconductor compound (1).

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(8)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
A TFT was manufactured, semiconductor characteristics (mobility) were evaluated, and semiconductor characteristics were evaluated for variation in the same manner as in Example 1 except that the composition (8) was used instead of the composition (1). The results are shown in Table 2.

(実施例13)
<組成物の製造>
下記有機半導体化合物(9)を、「Chemistry of Materials、2014年、27巻、3809頁」に記載の方法によって合成し、然る後、該化合物をp−キシレンに重量濃度0.4wt%となるように溶解し、組成物(9)を製造した。
(Example 13)
<Production of composition>
The following organic semiconductor compound (9) was synthesized by the method described in “Chemistry of Materials, 2014, Vol. 27, p. 3809”, and the compound was then added to p-xylene at a weight concentration of 0.4 wt%. Thus, a composition (9) was produced.

Figure 2017017216
Figure 2017017216

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(9)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
TFT production, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 1 except that the composition (9) was used instead of the composition (1). The results are shown in Table 2.

(実施例14)
<組成物の製造>
下記有機半導体化合物(10)を、「Chemistry of Materials、2014年、27巻、3809頁」に記載の方法によって合成し、然る後、該化合物をp−キシレンに重量濃度0.4wt%となるように溶解し、組成物(10)を製造した。
(Example 14)
<Production of composition>
The following organic semiconductor compound (10) was synthesized by the method described in “Chemistry of Materials, 2014, Vol. 27, p. 3809”, and the compound was then added to p-xylene at a weight concentration of 0.4 wt%. Thus, a composition (10) was produced.

Figure 2017017216
Figure 2017017216

<TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
組成物(1)のかわりに、組成物(10)を用いた以外は、実施例1と同様にして、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
<Production of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
A TFT was manufactured, semiconductor characteristics (mobility) were evaluated, and semiconductor characteristics were evaluated for variation in the same manner as in Example 1 except that the composition (10) was used instead of the composition (1). The results are shown in Table 2.

(実施例15)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(9)の濃度を0.9wt%(溶液を50℃に加温)とした以外は、実施例13と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 15)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (9) was 0.9 wt% (the solution was heated to 50 ° C.), the production of the composition, the production of the TFT, and the semiconductor characteristics (mobility) were the same as in Example 13. And evaluation of variation in semiconductor characteristics. The results are shown in Table 2.

(実施例16)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(9)の濃度を0.2wt%とした以外は、実施例13と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 16)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except for setting the concentration of the organic semiconductor compound (9) to 0.2 wt%, in the same manner as in Example 13, the manufacture of the composition, the manufacture of the TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were performed. Carried out. The results are shown in Table 2.

(実施例17)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
溶媒をp−キシレンにかえて、モノクロロベンゼンにした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 17)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the solvent was changed to monochlorobenzene instead of p-xylene, the production of the composition, the production of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were carried out in the same manner as in Example 9. . The results are shown in Table 2.

(実施例18)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
溶媒をp−キシレンにかえて、アニソールにした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 18)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the solvent was changed to anisole instead of p-xylene, the production of the composition, the production of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variation in semiconductor characteristics were carried out in the same manner as in Example 9. The results are shown in Table 2.

(実施例19)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
溶媒をp−キシレンにかえて、メシチレンにした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 19)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the solvent was changed to mesitylene instead of p-xylene, production of the composition, production of TFT, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed in the same manner as in Example 9. The results are shown in Table 2.

(実施例20)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
溶媒をp−キシレンにかえて、o−ジクロロベンゼンにした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 20)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except for changing the solvent to p-xylene and using o-dichlorobenzene, in the same manner as in Example 9, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were performed. Carried out. The results are shown in Table 2.

(実施例21)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
溶媒をp−キシレンにかえて、テトラリンにした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表2に示す。
(Example 21)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the solvent was changed to tetralin instead of p-xylene, production of the composition, production of TFT, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were carried out in the same manner as in Example 9. The results are shown in Table 2.

(比較例1)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)のかわりに、有機半導体化合物(11)を用いた以外は実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 1)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
In the same manner as in Example 1 except that the organic semiconductor compound (11) was used instead of the organic semiconductor compound (1), the production of the composition, the production of TFT, the evaluation of semiconductor characteristics (mobility), the semiconductor characteristics Variation evaluation was performed. The results are shown in Table 3.

Figure 2017017216
Figure 2017017216

(比較例2)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)の濃度を0.1wt%とした以外は、実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 2)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (1) was set to 0.1 wt%, the production of the composition, the production of the TFT, the evaluation of the semiconductor characteristics (mobility), and the evaluation of the variation of the semiconductor characteristics were performed in the same manner as in Example 1. Carried out. The results are shown in Table 3.

(比較例3)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)の濃度を1.3wt%とした以外は、実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 3)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except for setting the concentration of the organic semiconductor compound (1) to 1.3 wt%, in the same manner as in Example 1, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variation in semiconductor characteristics were performed. Carried out. The results are shown in Table 3.

(比較例4)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(7)の濃度を0.1wt%とした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 4)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except for setting the concentration of the organic semiconductor compound (7) to 0.1 wt%, in the same manner as in Example 9, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variation in semiconductor characteristics were performed. Carried out. The results are shown in Table 3.

(比較例5)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(7)の濃度を0.9wt%とした以外は、実施例9と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 5)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (7) was set to 0.9 wt%, in the same manner as in Example 9, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variation in semiconductor characteristics were performed. Carried out. The results are shown in Table 3.

(比較例6)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)のかわりに、有機半導体化合物(12)(国際公開第2014/038708号実施例17に記載の方法で合成)を用いた以外は実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 6)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
In the same manner as in Example 1, except that the organic semiconductor compound (12) (synthesized by the method described in Example 17 of International Publication No. 2014/038708) was used instead of the organic semiconductor compound (1). Manufacturing, TFT manufacturing, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed. The results are shown in Table 3.

Figure 2017017216
Figure 2017017216

(比較例7)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(1)のかわりに、有機半導体化合物(13)(Chemistry of Materials、2014年、27巻、3809頁に記載の方法で合成)を用いた以外は実施例1と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 7)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
In the same manner as in Example 1 except that the organic semiconductor compound (13) (synthesized by the method described in Chemistry of Materials, 2014, Vol. 27, page 3809) was used instead of the organic semiconductor compound (1). Manufacturing of products, manufacturing of TFT, evaluation of semiconductor characteristics (mobility), and evaluation of variation in semiconductor characteristics were performed. The results are shown in Table 3.

Figure 2017017216
Figure 2017017216

(比較例8)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(9)の濃度を0.1wt%とした以外は、実施例13と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 8)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (9) was set to 0.1 wt%, in the same manner as in Example 13, the manufacture of the composition, the manufacture of TFT, the evaluation of semiconductor characteristics (mobility), and the evaluation of variations in semiconductor characteristics were performed. Carried out. The results are shown in Table 3.

(比較例9)
<組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価>
有機半導体化合物(9)の濃度を1.0wt%とした以外は、実施例13と同様にして、組成物の製造、TFTの製造、半導体特性(移動度)の評価、半導体特性のばらつき評価を実施した。結果を表3に示す。
(Comparative Example 9)
<Manufacture of composition, manufacture of TFT, evaluation of semiconductor characteristics (mobility), evaluation of variation in semiconductor characteristics>
Except that the concentration of the organic semiconductor compound (9) was set to 1.0 wt%, in the same manner as in Example 13, the manufacture of the composition, the manufacture of the TFT, the evaluation of the semiconductor characteristics (mobility), and the evaluation of the variation of the semiconductor characteristics were performed. Carried out. The results are shown in Table 3.

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

Figure 2017017216
Figure 2017017216

表1に示したが如く、本発明の組成物をインクとして用いて製造したTFT(実施例1〜12)は、C.V.値が15%未満であるのに対し、本発明外の組成物をインクとして用いて製造したTFT(比較例1〜6)はC.V.値が30%以上であり、前者で、半導体特性(移動度)のばらつきが大きく抑えられていることが分かる。   As shown in Table 1, TFTs (Examples 1 to 12) produced using the composition of the present invention as inks were manufactured using C.I. V. While the value is less than 15%, TFTs manufactured using compositions other than the present invention as inks (Comparative Examples 1 to 6) have C.I. V. The value is 30% or more, and it can be seen that variation in semiconductor characteristics (mobility) is largely suppressed in the former.

本発明の組成物又はインクを原料にして、製造された印刷TFTは、半導体特性(移動度)のばらつきが抑えられることから、フレキシブルエレクトロニクスへの利用が可能である。   A printed TFT manufactured using the composition or ink of the present invention as a raw material can be used for flexible electronics because variation in semiconductor characteristics (mobility) is suppressed.

1:基板、2:ゲート電極、3:ゲート絶縁層、4:半導体層、5:ソース電極、6:ドレイン電極 1: substrate, 2: gate electrode, 3: gate insulating layer, 4: semiconductor layer, 5: source electrode, 6: drain electrode

Claims (11)

1種類以上の有機半導体化合物と、1種類以上の有機溶媒を含む組成物であって、
該有機半導体化合物は、π共役系構造を有するユニットAとアルキル鎖を有するユニットBからなり、該ユニットAの分子量(ユニットAを構成する原子の原子量の総和)と該ユニットBの分子量(ユニットBを構成する原子の原子量の総和)が下記関係式を満たし、
Figure 2017017216
該有機半導体化合物の組成物全重量に対する重量パーセント濃度(wt%)が、
Figure 2017017216
の範囲にあることを特徴とする組成物。
A composition comprising one or more organic semiconductor compounds and one or more organic solvents,
The organic semiconductor compound is composed of a unit A having a π-conjugated structure and a unit B having an alkyl chain. The molecular weight of the unit A (the sum of the atomic weights of the atoms constituting the unit A) and the molecular weight of the unit B (unit B) The sum of the atomic weights of the atoms constituting the
Figure 2017017216
The weight percent concentration (wt%) relative to the total weight of the composition of the organic semiconductor compound is
Figure 2017017216
The composition characterized by existing in the range of.
有機半導体化合物が、ユニットAとユニットBが単結合を介して構成されるものである請求項1に記載の組成物。 The composition according to claim 1, wherein the organic semiconductor compound comprises unit A and unit B via a single bond. 有機半導体化合物が、ユニットAが、互いに異なるか、又は互いに同一の2個のユニットBと単結合を介して構成されるものである請求項1に記載の組成物。 The composition according to claim 1, wherein the organic semiconductor compound is composed of two units B that are different from each other or identical to each other and a single bond. 前記ユニットAが、多環式芳香族化合物から誘導される1価若しくは2価の基、又は多環式芳香族基を有する化合物から誘導される1価若しくは2価の基である、請求項1〜3に記載の組成物。 The unit A is a monovalent or divalent group derived from a polycyclic aromatic compound, or a monovalent or divalent group derived from a compound having a polycyclic aromatic group. The composition according to -3. 前記ユニットAが、構成原子団中に−C≡C−構造を有する、請求項1〜4に記載の組成物。 The composition according to claim 1, wherein the unit A has a —C≡C— structure in a constituent atomic group. 前記ユニットBが直鎖アルキル基である、請求項1〜5に記載の組成物。 The composition according to claim 1, wherein the unit B is a linear alkyl group. 前記有機溶媒の沸点が130℃以上210℃以下の範囲にある請求項1〜6に記載の組成物。 The composition according to claim 1, wherein the boiling point of the organic solvent is in the range of 130 ° C. or higher and 210 ° C. or lower. 前記組成物を用いて得られる薄膜トランジスタ(TFT)の半導体の特性値(移動度)のばらつきを以下の方法で評価した際、変動係数が15%以下である請求項1〜7に記載の組成物。
(1)請求項1〜7に記載の組成物を用いて薄膜トランジスタ(TFT)を作製する(TFTは、ゲート電極に真空蒸着にて形成したアルミニウム(厚さ30nm)、ゲート絶縁層にケミカルベーパーデポジション法にて形成したポリパラクロロキシリレン(パリレンC)薄膜(厚さ500nm)、ソース電極及びドレイン電極にペンタフルオロチオフェノールで化学修飾した金(厚さ40nm、チャネル長L75nm、チャネル幅W5mm)、半導体層に請求項1〜7に記載の組成物0.1μLをドロップキャストして作製した層、以上よりなるボトムゲートボトムコンタクト型)。
(2)得られたTFTについて、ソース電極を接地し、ドレイン電極に−80Vを印加した状態で、デジタルマルチメーターを用いて、ゲート電極に0から−80V、電圧(V)をスイープ印加しながら、ドレイン電極に流れる電流(I)を測定し、√I−Vの傾きから、(i)式を用いて、半導体特性(移動度)を求める(単位はcm/V・s)。
Figure 2017017216
(式中、Wはチャネル幅、Lはチャネル長、μは移動度、Cはゲート絶縁層の単位面積当たりの電気容量、Vは閾値電圧を表す。)
(3)TFTを45個作製し、前記(2)の方法によって45個のTFTの半導体特性(移動度)を評価し、45個のTFTの半導体特性の変動係数を求める。
The composition according to any one of claims 1 to 7, wherein the coefficient of variation is 15% or less when a variation in the characteristic value (mobility) of a semiconductor of a thin film transistor (TFT) obtained by using the composition is evaluated by the following method. .
(1) A thin film transistor (TFT) is produced using the composition according to claims 1 to 7 (TFT is aluminum (thickness 30 nm) formed by vacuum deposition on the gate electrode, and chemical vapor deposition is applied to the gate insulating layer. Polyparachloroxylylene (parylene C) thin film (thickness 500 nm) formed by the position method, gold chemically modified with pentafluorothiophenol on the source and drain electrodes (thickness 40 nm, channel length L 75 nm, channel width W 5 mm) A layer produced by drop-casting 0.1 μL of the composition according to claim 1 on a semiconductor layer, a bottom gate bottom contact type comprising the above).
(2) With respect to the obtained TFT, with the source electrode grounded and -80 V applied to the drain electrode, a digital multimeter was used to sweep-apply 0 to -80 V and voltage (V g ) to the gate electrode. However, the current (I d ) flowing through the drain electrode is measured, and the semiconductor characteristics (mobility) are obtained from the slope of √I d −V g using the equation (i) (unit: cm 2 / V · s). ).
Figure 2017017216
(Wherein, W is the channel width, L is the channel length, μ is the mobility, C is the capacitance per unit area of the gate insulating layer, and V T is the threshold voltage.)
(3) 45 TFTs are manufactured, the semiconductor characteristics (mobility) of the 45 TFTs are evaluated by the method (2), and the coefficient of variation of the semiconductor characteristics of the 45 TFTs is obtained.
請求項1〜8に記載の組成物からなるインク。 An ink comprising the composition according to claim 1. 請求項1〜8に記載の組成物、又は請求項9に記載のインクを用いて製造されるトランジスタ。 A transistor manufactured using the composition according to claim 1 or the ink according to claim 9. 前記トランジスタが、ボトムコンタクト型構造である請求項10に記載のトランジスタ。 The transistor according to claim 10, wherein the transistor has a bottom contact type structure.
JP2015133580A 2015-07-02 2015-07-02 Semiconductor composition and semiconductor ink Pending JP2017017216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015133580A JP2017017216A (en) 2015-07-02 2015-07-02 Semiconductor composition and semiconductor ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015133580A JP2017017216A (en) 2015-07-02 2015-07-02 Semiconductor composition and semiconductor ink

Publications (1)

Publication Number Publication Date
JP2017017216A true JP2017017216A (en) 2017-01-19

Family

ID=57831092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133580A Pending JP2017017216A (en) 2015-07-02 2015-07-02 Semiconductor composition and semiconductor ink

Country Status (1)

Country Link
JP (1) JP2017017216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988325A (en) * 2018-01-03 2019-07-09 中国科学院化学研究所 A kind of high crystalline state two dimension conjugated polymer film of large-area ultrathin and its preparation method and application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283786A (en) * 2008-05-23 2009-12-03 Hiroshima Univ Organic semiconductor composition
JP2013545286A (en) * 2010-10-07 2013-12-19 ジョージア・テック・リサーチ・コーポレーション Field effect transistor and manufacturing method thereof
JP2014013912A (en) * 2004-11-03 2014-01-23 Merck Patent Gmbh Method of manufacturing organic field-effect transistor
WO2014038708A1 (en) * 2012-09-10 2014-03-13 Dic株式会社 Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
JP2014193861A (en) * 2007-03-07 2014-10-09 Univ Kentucky Res Found Silylethynylated heteroacenes and electronic devices made therewith
JP2015053497A (en) * 2011-03-10 2015-03-19 国立大学法人東京工業大学 Organic semiconductor material
WO2015137304A1 (en) * 2014-03-12 2015-09-17 Dic株式会社 Compound, organic semiconductor material containing same, organic semiconductor ink, and organic transistor
WO2016031707A1 (en) * 2014-08-26 2016-03-03 富士フイルム株式会社 Organic semiconductor device, method of manufacturing same, and topochemical polymerizable organic semiconductor compound
JP2016050207A (en) * 2014-08-29 2016-04-11 日本化薬株式会社 Novel condensed polycyclic aromatic compound and use therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013912A (en) * 2004-11-03 2014-01-23 Merck Patent Gmbh Method of manufacturing organic field-effect transistor
JP2014193861A (en) * 2007-03-07 2014-10-09 Univ Kentucky Res Found Silylethynylated heteroacenes and electronic devices made therewith
JP2009283786A (en) * 2008-05-23 2009-12-03 Hiroshima Univ Organic semiconductor composition
JP2013545286A (en) * 2010-10-07 2013-12-19 ジョージア・テック・リサーチ・コーポレーション Field effect transistor and manufacturing method thereof
JP2015053497A (en) * 2011-03-10 2015-03-19 国立大学法人東京工業大学 Organic semiconductor material
WO2014038708A1 (en) * 2012-09-10 2014-03-13 Dic株式会社 Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
WO2015137304A1 (en) * 2014-03-12 2015-09-17 Dic株式会社 Compound, organic semiconductor material containing same, organic semiconductor ink, and organic transistor
WO2016031707A1 (en) * 2014-08-26 2016-03-03 富士フイルム株式会社 Organic semiconductor device, method of manufacturing same, and topochemical polymerizable organic semiconductor compound
JP2016050207A (en) * 2014-08-29 2016-04-11 日本化薬株式会社 Novel condensed polycyclic aromatic compound and use therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988325A (en) * 2018-01-03 2019-07-09 中国科学院化学研究所 A kind of high crystalline state two dimension conjugated polymer film of large-area ultrathin and its preparation method and application

Similar Documents

Publication Publication Date Title
KR101741568B1 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
US8952181B2 (en) Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
KR20230106556A (en) Fused Polycyclic Heteroaromatic Compound, Organic Thin Film Including Compound and Electronic Device Including Organic Thin Film
KR20120043009A (en) Novel organic semiconductive material and electronic device using the same
JP6047261B2 (en) Compound, organic semiconductor material containing the same, organic semiconductor ink, and organic transistor
JP6656508B2 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
JP5664897B2 (en) A method for producing a film-like body containing a π-electron conjugated compound having a benzene ring, and a method for producing the π-electron conjugated compound.
JP5141154B2 (en) [1] Benzochalcogeno [3,2-b] [1] Compound having benzochalcogenophene skeleton and organic transistor using the same
JP6656506B2 (en) Benzothienobenzothiophene derivative, organic semiconductor material, and organic transistor
JP2017017216A (en) Semiconductor composition and semiconductor ink
JP6597087B2 (en) ORGANIC COMPOUND, PROCESS FOR PRODUCING THE SAME, ORGANIC SEMICONDUCTOR MATERIAL CONTAINING THE SAME, AND ORGANIC TRANSISTOR CONTAINING THE SAME
JP7494456B2 (en) Biphenylene derivative, organic semiconductor layer, and organic thin film transistor
JP6252032B2 (en) Benzodifuran derivatives and organic thin film transistors
JP2018008885A (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
WO2016071140A1 (en) Phenacene compounds for organic electronics
JP6413863B2 (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
JP6551163B2 (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
JP6780365B2 (en) Heteroacene derivatives, organic semiconductor layers, and organic thin film transistors
JP2018035110A (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
JP2016102087A (en) Organic crystal structure, and organic semiconductor material containing organic compound for producing the structure
JP6686559B2 (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
JP6364878B2 (en) Organic thin film transistor
JP2012158581A (en) Substituted benzochalcogenoacene compound
JP2017226629A (en) Heteroacene derivative, organic semiconductor layer, and organic thin-film transistor
TW201038619A (en) Oligomeric and polymeric semiconductors based on thienothiazoles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200210