JP2017015370A - Lining structure of refractory of cylindrical furnace and refractory - Google Patents

Lining structure of refractory of cylindrical furnace and refractory Download PDF

Info

Publication number
JP2017015370A
JP2017015370A JP2015135567A JP2015135567A JP2017015370A JP 2017015370 A JP2017015370 A JP 2017015370A JP 2015135567 A JP2015135567 A JP 2015135567A JP 2015135567 A JP2015135567 A JP 2015135567A JP 2017015370 A JP2017015370 A JP 2017015370A
Authority
JP
Japan
Prior art keywords
refractory
lining structure
shape
working surface
lower sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135567A
Other languages
Japanese (ja)
Inventor
後藤 潔
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015135567A priority Critical patent/JP2017015370A/en
Publication of JP2017015370A publication Critical patent/JP2017015370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lining structure of refractories capable of restricting damage of the refractory and facilitating its construction by dampening thermal stress of the lining refractory of a cylindrical furnace.SOLUTION: This invention employs a lining structure 1 of refractories for a cylindrical furnace that is configured in such a manner that refractories 2 are arranged in a ring-form under a state in which an operating surface 2a of the refractory 2 is faced inside the furnace and the refractories are stacked up in a vertical cylindrical shape, a shape of the operating surface 2a of the refractory 2 is a rectangular shape which is delimited by vertical sides that are parallel to each other and one side and the other side that are inclined with respect to the vertical sides, the refractories 2 wound in a ring form are aligned at vertical sides in the same height, and inclined one sides are arranged side by side to be in parallel to each other.SELECTED DRAWING: Figure 2

Description

本発明は、円筒状窯炉の耐火物の内張り構造及び耐火物に関する。   The present invention relates to a refractory lining structure and a refractory for a cylindrical kiln.

鉄鋼製造をはじめとする各種の窯炉には耐火物が内張りされている。耐火物は、熱衝撃で割れる、自身の熱膨張に起因する応力すなわち熱応力によって割れる、脱落する、剥落する、浮上する、スラグや溶融金属に侵されて溶損するなど、様々な形態で損耗する。これらを抑制することで内張りを長寿命化でき、窯炉操業の安定化やコスト削減を図ることができる。   Refractories are lined in various kilns including steel manufacturing. Refractories wear in various forms, such as cracking due to thermal shock, cracking due to their own thermal expansion or thermal stress, dropping off, peeling off, floating, eroding by slag and molten metal. . By suppressing these, the life of the lining can be extended, and the furnace operation can be stabilized and the cost can be reduced.

耐火物の材質改善や内張り構造の改善により、耐火物の損耗は抑制されてきた。これらのうちで熱応力割れや脱落、浮上の抑制は内張り構造の工夫が奏功してきた。たとえば特許文献1には窯炉の底部の耐火物の浮上を抑制するための構造が記載されている。また特許文献2には浸漬管下端のれんがの脱落を抑制するための構造が記載されている。また特許文献3には六角形状のれんが積み構造が記載されている。   The wear of refractories has been suppressed by improving the materials of refractories and improving the lining structure. Among these, the lining structure has been successfully used to suppress thermal stress cracking, falling off, and levitation. For example, Patent Document 1 describes a structure for suppressing the rise of a refractory at the bottom of a kiln. Patent Document 2 describes a structure for suppressing the falling off of the brick at the lower end of the dip tube. Patent Document 3 describes a hexagonal brick stack structure.

熱応力による耐火物の破壊は、窯炉が大型化するに従って、特に円筒状の窯炉の側壁で大きな問題となってきた。窯炉の側壁をれんが積みで内張りするには、リング巻きが選択されるのが普通である。リング巻きとは円筒の軸に垂直な面を仮定して、そこにばち形の耐火物を円周状に配置し、これを軸方向に層状に積み重ねていく図1のようなライニング方法である。   The destruction of refractories due to thermal stress has become a serious problem, especially on the side walls of cylindrical furnaces as the furnaces become larger. In order to line the side walls of the kiln with bricks, ring winding is usually selected. The ring winding is a lining method as shown in FIG. 1, in which a plane refractory is arranged circumferentially on a surface perpendicular to the axis of the cylinder, and this is stacked in layers in the axial direction. is there.

リング巻きでは円筒の円周方向の熱応力の逃げ場がなく、熱応力破壊が起こりやすい。熱応力を緩和するためにモルタル目地を厚くすると目地損耗が起こりやすくなり、またれんがが緩みやすくなり、れんがの脱落が懸念される。   In ring winding, there is no escape place for the thermal stress in the circumferential direction of the cylinder, and thermal stress failure is likely to occur. If the mortar joints are thickened to relieve thermal stress, joint wear is likely to occur, and the bricks are likely to loosen, which may cause the bricks to fall off.

特許文献3に記載の六角形状の耐火物ブロックにおいては、円周方向に生じる熱応力の一部が斜めの目地により軸方向の応力に変換される。この作用により六角形状の耐火物で構成された内張りは熱応力による割れが発生し難いと考えられる。   In the hexagonal refractory block described in Patent Document 3, a part of the thermal stress generated in the circumferential direction is converted into an axial stress by an oblique joint. Due to this action, it is considered that the lining composed of hexagonal refractory does not easily crack due to thermal stress.

しかしながら、六角形状の耐火物で内張りするには、特に作業の上でかなりの困難がある。通常、内張り作業は窯炉の鉄皮に倣って耐火物を築造していく。しかし鉄皮はひずんで曲率が当初の設計通りになっていない場合がある。耐火物は当初の設計通りの曲率に合わせて製造するので、倣って耐火物を築造していくと、鉄皮と耐火物の曲率が合わなくなる。これを修正するために耐火物を切断加工して曲率を修正する必要がある。六角形状の耐火物は縦横斜めの方向で周囲の耐火物と接しており、一つの耐火物を切断加工して修正すると、周囲の耐火物も切断加工して修正せざるを得ず、調節に非常に多くの手間が掛かる。さらに、六角柱状のれんがを成形するのは容易ではない。このことから六角形状の耐火物を実際に使用して内張りを築造するのは現実的ではない。   However, lining with a hexagonal refractory is quite difficult, especially on the job. Normally, the lining work is to build a refractory material following the iron furnace skin. However, the iron skin may be distorted and the curvature may not be as designed. Since the refractory is manufactured according to the curvature as originally designed, if the refractory is built by copying it, the curvature of the iron shell and the refractory will not match. In order to correct this, it is necessary to cut the refractory and correct the curvature. The hexagonal refractory is in contact with the surrounding refractories in the vertical and horizontal directions. If one refractory is cut and corrected, the surrounding refractory must be cut and corrected for adjustment. It takes a lot of time and effort. In addition, it is not easy to form a hexagonal brick. For this reason, it is not realistic to actually use a hexagonal refractory to build a lining.

また、特許文献3に記載された耐火物の施工方法においては、六角形状の耐火物がリング巻きされて構成された結果、上下に配置された耐火物同士が相互に継ぎ合わされるため、耐火物に加わる周方向の応力が何らかの原因で局所的に変化した場合、その応力変化の影響が上下のリング巻き構造に伝わりやすく、内張構造が不安定になる可能性がある。   Moreover, in the construction method of the refractory described in Patent Document 3, since the hexagonal refractory is formed by ring-wrapping, the refractories arranged above and below are joined to each other. When the circumferential stress applied to the wire locally changes for some reason, the effect of the stress change is easily transmitted to the upper and lower ring winding structures, and the lining structure may become unstable.

実開平03−009249号公報Japanese Utility Model Publication No. 03-009249 特開平09−279224号公報JP 09-279224 A 特開2012−112577号公報JP 2012-112777 A

本発明は上記問題に鑑みてなされたものであり、円筒状窯炉の内張り耐火物の熱応力を緩和することによって耐火物の破壊を抑制することが可能で、かつ築造も容易な耐火物の内張り構造を提供することを課題とする。
また、本発明は、円筒状窯炉における内張り耐火物に対する熱応力を緩和することが可能な耐火物を提供することを課題とする。
The present invention has been made in view of the above problems, and it is possible to suppress the destruction of the refractory by relaxing the thermal stress of the lining refractory in the cylindrical kiln, and the refractory can be easily built. It is an object to provide a lining structure.
Moreover, this invention makes it a subject to provide the refractory which can relieve | moderate the thermal stress with respect to the lining refractory in a cylindrical kiln.

本発明者らは、上記問題について鋭意検討した結果、円周方向に生じる熱応力の一部を斜めの目地によって軸方向の応力に変換して逃がし、かつ、上下のリング巻き構造に円周方向の応力の影響が直接及ばない内張り構造に想到し、本発明を完成するに到った。
すなわち、本発明の要旨とするところは以下の通りである。
As a result of intensive studies on the above problems, the present inventors have converted a part of the thermal stress generated in the circumferential direction into an axial stress through an oblique joint, and released it into the upper and lower ring winding structures in the circumferential direction. The inventors have conceived a lining structure that is not directly affected by the stress of the present invention, and have completed the present invention.
That is, the gist of the present invention is as follows.

(1) 円筒状窯炉の耐火物の内張り構造であって、
前記内張り構造は、前記耐火物の稼働面が窒炉内側に向けられた状態で前記耐火物がリング巻きに並べられ、かつ縦円筒に積み上げられた構造とされ、
前記耐火物の前記稼働面の形状が、互いに平行な上下辺と、前記上下辺に対して傾斜した一方の側辺と、他方の側辺とで区画された四辺形状とされ、
リング巻きされた前記耐火物は、前記上下辺が同じ高さに揃えられ、かつ、傾斜した前記一方の側辺同士が相互に平行に隣り合うように配置されている円筒状窯炉の耐火物の内張り構造。
(2) 前記耐火物の前記稼働面の形状が台形とされ、前記上下辺のうちの長辺と前記一方の側辺とのなす角が30°以上90°未満である(1)に記載の円筒状窯炉の耐火物の内張り構造。
(3) 前記耐火物の前記稼働面の形状が平行四辺形とされ、前記上下辺と前記一方及び他方の側辺とのなす鋭角が30°以上90°未満である(1)に記載の円筒状窯炉の耐火物の内張り構造。
(4) 前記内張り構造内に、
前記稼働面の形状が台形とされ、前記上下辺のうちの長辺と前記一方の側辺とのなす角が30°以上90°未満である第1耐火物と、
前記稼働面の形状が平行四辺形とされた耐火物であって、前記平行四辺形をなす前記上下辺と前記一方及び他方の側辺とのなす鋭角が、前記第1耐火物の前記長辺と前記一方の側辺または他方の側辺とがなす2つの角のうちの一方に等しい角度である第2耐火物とが混在している(1)に記載の円筒状窯炉の耐火物の内張り構造。
(5) 前記内張り構造内に、更に、
前記稼働面の形状が矩形とされた第3耐火物が混在している(4)に記載の円筒状窯炉の耐火物の内張り構造。
(6) (1)、(2)または(4)の何れか一項に記載の円筒状窯炉の耐火物の内張り構造に用いられる耐火物であり、
前記耐火物の稼働面の形状が、互いに平行な上下辺と、前記上下辺に対して傾斜した一方の側辺と、他方の側辺とで区画された台形状とされ、
前記上下辺のうちの長辺と、前記一方の側辺とのなす角が30°以上90°未満である耐火物。
(7) (1)、(3)または(4)の何れか一項に記載の円筒状窯炉の耐火物の内張り構造に用いられる耐火物であり、
前記耐火物の稼働面の形状が、互いに平行な上下辺と、前記上下辺に対して傾斜した前記一方及び他方の側辺とで区画された平行四辺形状とされ、
前記上下辺と前記一方及び他方の側辺とのなす鋭角が30°以上90°未満である耐火物。
(1) Cylindrical kiln refractory lining structure,
The lining structure is a structure in which the refractory is arranged in a ring winding with the working surface of the refractory facing the inside of the nitrogen furnace, and stacked in a vertical cylinder,
The shape of the working surface of the refractory is a quadrilateral shape defined by upper and lower sides parallel to each other, one side inclined with respect to the upper and lower sides, and the other side,
The refractory wound in a ring is a cylindrical refractory refractory in which the upper and lower sides are aligned at the same height and the inclined one side is adjacent to each other in parallel. Lining structure.
(2) The shape of the working surface of the refractory is a trapezoid, and an angle formed between a long side of the upper and lower sides and the one side is 30 ° or more and less than 90 °. Cylindrical furnace refractory lining structure.
(3) The cylinder according to (1), wherein a shape of the working surface of the refractory is a parallelogram, and an acute angle formed by the upper and lower sides and the one side and the other side is 30 ° or more and less than 90 °. Lined structure of refractories in a furnace.
(4) In the lining structure,
A shape of the working surface is a trapezoid, and a first refractory having an angle between a long side of the upper and lower sides and the one side of 30 ° or more and less than 90 °;
The working surface is a refractory having a parallelogram shape, and an acute angle formed between the upper and lower sides forming the parallelogram and the one side and the other side is the long side of the first refractory. And the second refractory having an angle equal to one of two angles formed by the one side or the other side is mixed (1). Lining structure.
(5) In the lining structure,
The refractory lining structure of the cylindrical kiln furnace according to (4), wherein the third refractory having a rectangular shape of the working surface is mixed.
(6) A refractory used for the lining structure of a refractory for a cylindrical kiln according to any one of (1), (2) or (4),
The shape of the working surface of the refractory is a trapezoid defined by upper and lower sides parallel to each other, one side inclined with respect to the upper and lower sides, and the other side,
A refractory having an angle between a long side of the upper and lower sides and the one side of 30 ° or more and less than 90 °.
(7) It is a refractory used for the lining structure of the refractory of the cylindrical kiln as described in any one of (1), (3) or (4),
The shape of the working surface of the refractory is a parallelogram defined by upper and lower sides parallel to each other and the one and other sides inclined with respect to the upper and lower sides,
A refractory having an acute angle between the upper and lower sides and the one side and the other side of 30 ° or more and less than 90 °.

本発明の内張り構造により、円周方向に生じる熱応力を緩和して耐火物の割れを抑制し、耐火物の緩みを避けつつ、内張り構造を安定して維持することができる。   According to the lining structure of the present invention, the thermal stress generated in the circumferential direction can be relaxed to suppress cracking of the refractory, and the lining structure can be stably maintained while avoiding loosening of the refractory.

従来の円筒状窯炉の内張り構造の例を示す斜視図。The perspective view which shows the example of the lining structure of the conventional cylindrical kiln furnace. 本発明の実施形態である円筒状窯炉の内張り構造の一例を示す斜視図。The perspective view which shows an example of the lining structure of the cylindrical kiln which is embodiment of this invention. 本発明の実施形態である耐火物の一例を稼働面から見た模式図。The schematic diagram which looked at an example of the refractory which is embodiment of this invention from the operation surface. 本発明の実施形態である耐火物の他の例を稼働面から見た模式図。The schematic diagram which looked at the other example of the refractory which is embodiment of this invention from the operation surface. 本発明の実施形態である円筒状窯炉の内張り構造の他の例を示す模式図。The schematic diagram which shows the other example of the lining structure of the cylindrical kiln which is embodiment of this invention. 本発明の実施形態である円筒状窯炉の内張り構造の他の例を示す模式図。The schematic diagram which shows the other example of the lining structure of the cylindrical kiln which is embodiment of this invention. 本発明の実施形態である円筒状窯炉の内張り構造の他の例を示す模式図。The schematic diagram which shows the other example of the lining structure of the cylindrical kiln which is embodiment of this invention.

円筒状の窯炉の内張り構造として、従来最も多く適用されるのが、図1に示すリング巻き構造である。図1に示す内張構造101は、稼働面102aが矩形とされたばち型の耐火物102が積み上げられて構成されている。耐火物102が熱膨張すると、生じた応力は円筒の軸方向(図1の上下方向)と円周方向に作用する。熱応力を緩和し、耐火物102の破壊を抑制するためには、耐火物102同士の間に膨張代を設置する必要がある。膨張代とは、耐火物の膨張を逃すための隙間などの余裕である。   As the lining structure of a cylindrical kiln, the ring winding structure shown in FIG. The lining structure 101 shown in FIG. 1 is configured by stacking beep-shaped refractories 102 having an operation surface 102a that is rectangular. When the refractory 102 is thermally expanded, the generated stress acts in the axial direction of the cylinder (vertical direction in FIG. 1) and the circumferential direction. In order to relieve the thermal stress and suppress the destruction of the refractory 102, it is necessary to install an expansion allowance between the refractories 102. The expansion allowance is a margin such as a gap for escaping expansion of the refractory.

軸方向の熱応力を緩和するためには、横目地(図1の水平方向の目地)に膨張代を設置し、円周方向の熱応力を緩和するためには、縦目地(図1の鉛直方向の目地)に膨張代を設置する。膨張代としては、ボール紙等の消失性の材料、モルタルなどが用いられる。ボール紙などの消失性材料は、耐火物102を加熱した際に焼失して膨張代となる。モルタルは、荷重を受けた際に厚み方向に収縮するので、この収縮分が膨張代として作用する。   In order to relieve the thermal stress in the axial direction, an expansion margin is installed in the horizontal joint (horizontal joint in FIG. 1), and in order to relieve the thermal stress in the circumferential direction, the vertical joint (vertical joint in FIG. 1). Install expansion allowances at the joints in the direction). As the expansion allowance, a disappearing material such as cardboard, mortar or the like is used. When the refractory material 102 is heated, the extinguishing material such as cardboard is burned off and becomes an expansion allowance. Since the mortar contracts in the thickness direction when it receives a load, the contraction acts as an expansion allowance.

軸方向に生じる応力に対する膨張代は耐火物102の膨張量を元に算出して適正に配置すればよい。これに対して円周方向に生じる応力に対する膨張代の取り方には注意を要する。膨張代の取り方が少ないと耐火物が割れ、他方、多く取り過ぎると、炉体を傾動させた際にライニングに緩みが生じ、耐火物が飛び出す場合がある。   The expansion allowance for the stress generated in the axial direction may be calculated based on the expansion amount of the refractory 102 and appropriately arranged. On the other hand, care must be taken in taking the expansion allowance for the stress generated in the circumferential direction. If the expansion allowance is small, the refractory is cracked. On the other hand, if the expansion is excessive, the lining may loosen when the furnace body is tilted, and the refractory may jump out.

そこで、ライニングの緩みを抑制しつつ円周方向に生じる熱応力を緩和するには、円周方向の熱応力を軸方向に変換させることが有効である。   Therefore, in order to relieve the thermal stress generated in the circumferential direction while suppressing the loosening of the lining, it is effective to convert the thermal stress in the circumferential direction into the axial direction.

本発明は、耐火物同士の間に設ける目地に着目し、縦目地を横目地に対し30°以上90°未満に傾斜させることにより、円周方向に生じる熱応力の一部を軸方向に変換させる。すなわち円周方向に生じた熱応力は、斜めの目地のずれを引き起こし、円周方向の応力と軸方向の応力に分割される。このため円周方向の熱応力は小さくなり、熱応力による耐火物の破壊は起こり難い。縦目地と横目地との角度は、90°より少しでも小さければ、少なからず軸方向へ熱応力を分割することが可能である。好ましくは、分割された円周方向の熱応力が耐火物の欠けや割れを生じさせない角度に、炉の使用条件に応じて設計する。発明者の検討では、80°以下にすれば熱応力を十分に分散することができる。一方30°未満では耐火物の形状が鋭角的となって割れや欠けが生じやすくなるため、30°以上とする。なおより好ましくは45〜75°である。   This invention pays attention to the joint provided between refractories, and converts a part of the thermal stress generated in the circumferential direction into the axial direction by inclining the vertical joint to 30 ° or more and less than 90 ° with respect to the horizontal joint. Let That is, the thermal stress generated in the circumferential direction causes an oblique joint displacement, and is divided into a circumferential stress and an axial stress. For this reason, the thermal stress in the circumferential direction is reduced, and the refractory is not easily destroyed by the thermal stress. If the angle between the vertical joint and the horizontal joint is slightly smaller than 90 °, it is possible to divide the thermal stress in the axial direction. Preferably, the design is made at an angle at which the divided circumferential thermal stress does not cause chipping or cracking of the refractory, depending on the use conditions of the furnace. According to the inventor's study, thermal stress can be sufficiently dispersed if the angle is 80 ° or less. On the other hand, if it is less than 30 °, the shape of the refractory becomes acute and cracks and chips are likely to occur. More preferably, it is 45 to 75 °.

以下、本発明の実施形態について、図面を参照して説明する。図2には、本実施形態の円筒状窯炉の耐火物の内張り構造の一例を部分斜視図で示す。
図2に示す内張り構造1は、図示略の円筒状の鉄皮の内側に備えられてなるものであり、耐火物2の稼働面2aが窒炉内側に向けられた状態で、耐火物2がリング巻きに並べられ、かつ縦円筒に積み上げられた構造とされている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a partial perspective view showing an example of the refractory lining structure of the cylindrical kiln of the present embodiment.
The lining structure 1 shown in FIG. 2 is provided inside a cylindrical iron shell (not shown), and the refractory 2 is in a state where the working surface 2a of the refractory 2 is directed to the inside of the nitrogen furnace. The structure is arranged in a ring winding and stacked in a vertical cylinder.

内張り構造1を構成する耐火物2は、図3に示すように、稼働面2aの形状が四辺形状とされたばち型の耐火物である。稼働面2aは、互いに平行な上辺2b及び下辺2cと、上辺2b及び下辺2cに対して傾斜した一方の側辺2dと、他方の側辺2eとで区画された四辺形状である。図3に示す四辺形状は台形とされている。図3に示す例では、下辺2cが長辺とされており、長辺と一方の側辺2dとのなす角αの取り得る範囲は30°以上90°未満とされている。図3に示す稼働面2aは等脚台形状とされており、下辺2cである長辺と他方の側辺2eとのなす角βも取り得る範囲が30°以上90°未満とされており、この2つの角度α、βは同一とされている。角度α及びβの一例として70°を例示できる。   As shown in FIG. 3, the refractory 2 constituting the lining structure 1 is a flake-type refractory whose working surface 2 a has a quadrilateral shape. The working surface 2a has a quadrilateral shape defined by an upper side 2b and a lower side 2c that are parallel to each other, one side 2d that is inclined with respect to the upper side 2b and the lower side 2c, and the other side 2e. The quadrilateral shape shown in FIG. 3 is a trapezoid. In the example shown in FIG. 3, the lower side 2c is a long side, and the possible range of the angle α formed by the long side and one side 2d is 30 ° or more and less than 90 °. The working surface 2a shown in FIG. 3 is in the shape of an isosceles trapezoid, and the range in which the angle β formed by the long side which is the lower side 2c and the other side 2e can be taken is 30 ° or more and less than 90 °, These two angles α and β are the same. An example of the angles α and β is 70 °.

図3に示す耐火物2を用いて内張り構造1を築造する場合は、耐火物2の稼働面2aを窒炉内部に向けた状態で、耐火物2をリング状に並べる。このとき、隣り合う耐火物2は、上辺2b及び下辺2cの向きが交互に逆になるように配置する。これにより、各耐火物2の側辺2d、2e同士が、互いに平行になるように隣り合う。これら側辺2d、2e同士の間には縦目地が形成されるが、この縦目地は、横目地に対して30°以上90°未満に傾斜されたものとなる。1層目のリング巻きの築造が完了したら、1層目と同様にして、1層目の上に2層目のリング巻き構造を築造する。1層目のリング巻き構造をなす耐火物2と2層目のリング巻き構造をなす耐火物2との間には、水平に伸びる横目地が形成される。また、1層目の縦目地と2層目の縦目地は、相互に連続しないように周方向にずらすことが望ましい。このようにしてリング巻き構造を順次積み重ねることで、縦円筒の内張り構造1が形成される。   When the lining structure 1 is constructed using the refractory 2 shown in FIG. 3, the refractory 2 is arranged in a ring shape with the working surface 2a of the refractory 2 facing the inside of the nitrogen furnace. At this time, the adjacent refractories 2 are arranged such that the directions of the upper side 2b and the lower side 2c are alternately reversed. Thereby, side 2d, 2e of each refractory 2 is adjacent so that it may become mutually parallel. A vertical joint is formed between the side edges 2d and 2e, and the vertical joint is inclined at 30 ° or more and less than 90 ° with respect to the horizontal joint. When the construction of the first layer ring winding is completed, the second layer ring winding structure is constructed on the first layer in the same manner as the first layer. A horizontal joint extending horizontally is formed between the refractory 2 forming the first layer ring winding structure and the refractory 2 forming the second layer ring winding structure. Further, it is desirable that the first layer vertical joint and the second layer vertical joint are shifted in the circumferential direction so as not to be continuous with each other. In this way, the ring winding structure is sequentially stacked to form the vertical cylindrical lining structure 1.

以上のようにして同一形状の稼働面2aを有する耐火物2を用いて内張り構造1を築造することで、リング巻きされた耐火物2の上辺及び下辺が同じ高さに揃えられ、かつ、傾斜した一方の側辺2d同士が相互に平行に隣り合うように配置される。また、一方の側辺2d同士の間に形成される縦目地は横目地に対して傾斜した目地となり、傾斜角度は30°以上90°未満の範囲となる。図3の耐火物2を用いた場合は横目地に対する縦目地の傾斜角度が70°になる。   By constructing the lining structure 1 using the refractory 2 having the operation surface 2a having the same shape as described above, the upper side and the lower side of the refractory 2 wound with the ring are aligned at the same height and inclined. The one side 2d is arranged so as to be adjacent to each other in parallel. Moreover, the vertical joint formed between the one side 2d is a joint inclined with respect to the horizontal joint, and the inclination angle is in a range of 30 ° or more and less than 90 °. When the refractory 2 of FIG. 3 is used, the inclination angle of the vertical joint with respect to the horizontal joint is 70 °.

リング巻きの築造時の曲率の調整は、稼働面2aをなす互いに平行な上辺2b及び下辺2cに対して垂直に切断する加工を耐火物に施し、この切断した耐火物を調整に用いることで、曲率の調整を容易に行うことができる。また、築造時に隣り合う耐火物2同士の間には、目地材としてのモルタルを挟んでもよく、挟まなくてもよい。   The adjustment of the curvature at the time of building the ring winding is performed by subjecting the refractory to cutting perpendicularly to the upper side 2b and the lower side 2c which are parallel to each other forming the working surface 2a, and using the cut refractory for adjustment. The curvature can be easily adjusted. Moreover, between the refractories 2 adjacent at the time of construction, the mortar as a joint material may be pinched | interposed and does not need to be pinched | interposed.

以上説明したように、図2に示す内張り構造1によれば、耐火物2の上辺2b及び下辺2cが同じ高さに揃えられ、かつ、傾斜した一方の側辺2d同士が相互に平行に隣り合うように配置されることで、側辺2d同士の間に形成される縦目地が横目地に対して傾斜した目地になる。これにより、耐火物2が熱膨張して円筒の円周方向に熱応力が作用したとしても、円周方向に生じた熱応力の一部を傾斜した目地によって軸方向に変換させることができ、円周方向の熱応力が小さくなり、熱応力による耐火物2の破壊を防止できる。   As described above, according to the lining structure 1 shown in FIG. 2, the upper side 2b and the lower side 2c of the refractory 2 are aligned at the same height, and the inclined one side 2d is adjacent to each other in parallel. By arrange | positioning so that it may fit, the vertical joint formed between the side edges 2d turns into a joint inclined with respect to the horizontal joint. Thereby, even if the refractory 2 is thermally expanded and thermal stress acts in the circumferential direction of the cylinder, a part of the thermal stress generated in the circumferential direction can be converted into the axial direction by the inclined joint, The thermal stress in the circumferential direction is reduced, and the destruction of the refractory 2 due to the thermal stress can be prevented.

また、耐火物2の上辺2b及び下辺2cが同じ高さに揃えられることで、リング巻きされた上下の耐火物2同士が相互に継ぎ合わされることがない。これにより、耐火物2に加わる周方向の応力が何らかの原因で局所的に変化した場合であっても、その応力変化の影響が上下のリング巻き構造にまで伝わる可能性が少なく、内張構造を安定に維持できる。   Moreover, the upper side 2b and the lower side 2c of the refractory 2 are aligned at the same height, so that the upper and lower refractories 2 wound in a ring are not joined together. Thereby, even when the circumferential stress applied to the refractory 2 is locally changed for some reason, the influence of the stress change is less likely to be transmitted to the upper and lower ring winding structures, and the lining structure is It can be maintained stably.

更に、耐火物2間の縦目地の位置が、軸方向に沿って上下に連続しないように、周方向にずらされているので、傾斜した縦目地によって変換された軸方向の応力は、縦目地の上下に配置された耐火物が受けるようになり、内張構造を安定化させることができる。   Further, since the position of the vertical joint between the refractories 2 is shifted in the circumferential direction so as not to be continuous up and down along the axial direction, the axial stress converted by the inclined vertical joint is the vertical joint. The refractory disposed at the top and bottom of the cradle is received, and the lining structure can be stabilized.

次に、本実施形態の円筒状窯炉の耐火物の内張り構造の変形例を説明する。
図4には、本発明に適用可能な耐火物の例を示す。
Next, a modified example of the refractory lining structure of the cylindrical kiln of the present embodiment will be described.
FIG. 4 shows an example of a refractory applicable to the present invention.

図4(a)に示す耐火物2は、稼働面の形状が等脚台形状であり、図3に示した耐火物2と同じである。   The refractory 2 shown in FIG. 4A has an isosceles trapezoidal shape on the operating surface, and is the same as the refractory 2 shown in FIG.

図4(b)に示す耐火物12は、稼働面12aの形状が不等脚台形状とされたばち型の耐火物である。稼働面12aは、互いに平行な上辺12b及び下辺12cと、上辺12b及び下辺12cに対して傾斜した一方の側辺12dと、他方の側辺12eとで区画されている。下辺12cが長辺とされており、下辺12c(長辺)と一方の側辺12dとのなす角αが30°以上90°未満とされている。一方、下辺12c(長辺)と他方の側辺12eとのなす角βは90°未満とされている。これら2つの角度α、βは異なる角度とされている。   The refractory 12 shown in FIG. 4B is a flake-type refractory in which the shape of the working surface 12a is an unequal leg trapezoid. The working surface 12a is partitioned by an upper side 12b and a lower side 12c that are parallel to each other, one side 12d that is inclined with respect to the upper side 12b and the lower side 12c, and the other side 12e. The lower side 12c is a long side, and an angle α formed by the lower side 12c (long side) and one side 12d is 30 ° or more and less than 90 °. On the other hand, the angle β formed by the lower side 12c (long side) and the other side 12e is less than 90 °. These two angles α and β are different angles.

図4(c)に示す耐火物22は、稼働面22aの形状が不等脚台形状であって、片方の側辺が垂直とされたばち型の耐火物である。稼働面22aは、互いに平行な上辺22b及び下辺22cと、上辺22b及び下辺22cに対して傾斜した一方の側辺22dと、上辺22b及び下辺22cに対して垂直な他方の側辺22eとで区画されている。下辺22c(長辺)と一方の側辺22dとのなす角αは30°以上90°未満とされている。   The refractory 22 shown in FIG. 4C is a flake-type refractory in which the shape of the operating surface 22a is an unequal leg trapezoid and one side is vertical. The working surface 22a is divided into an upper side 22b and a lower side 22c parallel to each other, one side 22d inclined with respect to the upper side 22b and the lower side 22c, and the other side 22e perpendicular to the upper side 22b and the lower side 22c. Has been. An angle α formed by the lower side 22c (long side) and one side 22d is 30 ° or more and less than 90 °.

図4(d)に示す耐火物32は、稼働面32aの形状が等脚台形状であって、下辺32c(長辺)の長さよりも高さが大きい縦長台形とされたばち型の耐火物である。稼働面32aは、互いに平行な上辺32b及び下辺32cと、上辺32b及び下辺32cに対してそれぞれ傾斜した一方及び他方の側辺32d、32eとで区画されている。下辺32c(長辺)と各側辺32d、32eとのなす角α、βは30°以上90°未満の範囲とされ、角度α及びβは同じ角度とされている。   The refractory 32 shown in FIG. 4 (d) is a torch-shaped refractory in which the working surface 32a has an isosceles trapezoidal shape and is a vertically long trapezoid whose height is larger than the length of the lower side 32c (long side). It is a thing. The working surface 32a is partitioned by an upper side 32b and a lower side 32c that are parallel to each other, and one and the other side sides 32d and 32e that are inclined with respect to the upper side 32b and the lower side 32c, respectively. Angles α and β formed by the lower side 32c (long side) and the side sides 32d and 32e are in a range of 30 ° or more and less than 90 °, and the angles α and β are the same angle.

図4(e)に示す耐火物42は、稼働面42aの形状が平行四辺形状とされたばち型の耐火物である。稼働面42aは、互いに平行な上辺42b及び下辺42cと、上辺42b及び下辺42cに対して傾斜し、かつ相互に平行な一方及び他方の側辺42d、42eとで区画されている。下辺42cと一方の側辺42dとのなす角γが狭角とされ、γが30°以上90°未満の範囲とされている。角度γの限定理由は、図3に示した耐火物の角度αと同様である。   The refractory 42 shown in FIG. 4 (e) is a flake-type refractory whose working surface 42a has a parallelogram shape. The operating surface 42a is partitioned by an upper side 42b and a lower side 42c that are parallel to each other, and one and the other side sides 42d and 42e that are inclined with respect to the upper side 42b and the lower side 42c and are parallel to each other. An angle γ formed by the lower side 42c and one side 42d is a narrow angle, and γ is in a range of 30 ° or more and less than 90 °. The reason for limiting the angle γ is the same as the angle α of the refractory shown in FIG.

図4(f)に示す耐火物52は、稼働面52aの形状が不等脚台形状であって、片方の側辺の傾斜角度が90°を超えたばち型の耐火物である。稼働面52aは、互いに平行な上辺52b及び下辺52cと、上辺52b及び下辺52cに対して傾斜した一方の側辺52dと、他方の側辺52eとで区画されている。下辺52c(長辺)と一方の側辺52dとのなす角αが30°以上90°未満とされている。一方、下辺52c(長辺)と他方の側辺52eとのなす角βは90°超とされている。   The refractory 52 shown in FIG. 4 (f) is a flake-type refractory in which the shape of the working surface 52a is an unequal leg trapezoid and the inclination angle of one side exceeds 90 °. The working surface 52a is partitioned by an upper side 52b and a lower side 52c that are parallel to each other, one side 52d that is inclined with respect to the upper side 52b and the lower side 52c, and the other side 52e. An angle α formed by the lower side 52c (long side) and one side 52d is 30 ° or more and less than 90 °. On the other hand, the angle β formed by the lower side 52c (long side) and the other side 52e is more than 90 °.

本発明の円筒状窯炉の耐火物の内張り構造は、上述した耐火物2〜52のいずれかを単独で用いることができ、また、いずれかの耐火物2〜52の2種以上を組み合わせて用いることができる。以下、図4に示した耐火物2〜52を用いた内張り構造の例について図5〜7を参照して説明する。   The lining of the refractory for the cylindrical kiln of the present invention can use any one of the refractories 2 to 52 described above alone, or combine two or more of any of the refractories 2 to 52. Can be used. Hereinafter, an example of the lining structure using the refractories 2 to 52 shown in FIG. 4 will be described with reference to FIGS.

図5(a)〜(c)に示す内張り構造61〜63は、図4(a)の等脚台形状の耐火物2を用いた例である。
図5(a)に示す内張り構造61は、長辺が下向きになるように配置された台形状の耐火物2fが左下から中央上に斜めに並んだ構造である。
また、図5(b)に示す内張り構造62は、長辺が下向きになるように配置された台形状の耐火物2fが中央下から左上に斜めに並んだ構造である。
更に、図5(c)に示す内張り構造63は、長辺が下向きになるように配置された台形状の耐火物2fが中央下から中央上に向けてジグザグに並んだ構造である。
The lining structures 61 to 63 shown in FIGS. 5A to 5C are examples using the refractory 2 having an isosceles trapezoidal shape shown in FIG.
The lining structure 61 shown in FIG. 5A is a structure in which trapezoidal refractories 2f arranged with their long sides facing downward are arranged obliquely from the lower left to the center.
Further, the lining structure 62 shown in FIG. 5B is a structure in which trapezoidal refractories 2f arranged so that the long sides face downward are arranged obliquely from the lower center to the upper left.
Further, the lining structure 63 shown in FIG. 5C is a structure in which trapezoidal refractories 2f arranged so that the long sides face downward are arranged in a zigzag from the center bottom to the center top.

次に、図5(d)〜(f)に示す内張り構造64〜66は、図4(c)に示した片脚辺が垂直な台形状の耐火物22を用いた例である。
図5(d)に示す内張り構造64は、各耐火物22の一方の側辺22dが相互に付き合わされた結果、斜めの縦目地80がすべて右下がりに傾斜した構造である。
また、図5(e)に示す内張り構造65は、各耐火物22の一方の側辺22dが相互に付き合わされた結果、斜めの縦目地81が左下がりに傾斜したリング巻きと、斜めの縦目地82が右下がりに傾斜したリング巻きとが交互に積層された構造である。
更に、図5(f)に示す内張り構造66は、各リング巻きに、右下がりの縦目地83と左下がりの縦目地84とが混在する構造である。
Next, the lining structures 64 to 66 shown in FIGS. 5D to 5F are examples using the trapezoidal refractory 22 having a single leg side shown in FIG. 4C.
The lining structure 64 shown in FIG. 5 (d) is a structure in which the oblique vertical joints 80 are all inclined downward to the right as a result of the one side 22 d of each refractory 22 being attached to each other.
Further, the lining structure 65 shown in FIG. 5 (e) has a structure in which one side 22d of each refractory 22 is attached to each other. The joint 82 has a structure in which ring windings inclined downward to the right are alternately stacked.
Further, the lining structure 66 shown in FIG. 5 (f) is a structure in which the ring windings are mixed with a vertical joint 83 with a lower right and a vertical joint 84 with a lower left.

図5(g)に示す内張り構造69は、図4(a)の等脚台形状の耐火物2と、図4(c)の片脚辺が垂直な台形状の耐火物22とを組み合わせた例である。この内張り構造69は、等脚台形状の耐火物2で構成されたリング巻きと、片脚辺が垂直な台形状の耐火物22で構成されたリング巻きとが交互に積層されている。   The lining structure 69 shown in FIG. 5G is a combination of the isosceles trapezoidal refractory 2 of FIG. 4A and the trapezoidal refractory 22 of FIG. It is an example. In this lining structure 69, ring winding composed of a refractory material 2 having an isosceles trapezoidal shape and ring winding composed of a trapezoidal refractory material 22 having one leg side perpendicular to each other are alternately stacked.

この例の耐火物2及び耐火物22について、各側辺2d、22dの傾斜角度αは、同じ角度であってもよく、異なる角度であってもよい。本例の場合、耐火物2及び耐火物22は、1つのリング巻きに同時に使用しないため、角度αが異なる角度であってもよい。   Regarding the refractory 2 and the refractory 22 in this example, the inclination angle α of each of the side edges 2d and 22d may be the same angle or different angles. In the case of this example, since the refractory 2 and the refractory 22 are not used simultaneously for one ring winding, the angle α may be different.

次に、図6(a)〜(b)に示す内張り構造67、68は、図4(e)に示した平行四辺形の耐火物42を用いた例である。
図6(a)に示す内張り構造67は、各耐火物42の側辺42d、42eが相互に付き合わされた結果、すべての斜めの縦目地85が左下がりに傾斜した構造である。
また、図6(b)に示す内張り構造68は、斜めの縦目地86が左下がりに傾斜したリング巻きと、斜めの縦目地が右下がりに傾斜したリング巻きとが交互に積層された構造である。
Next, the lining structures 67 and 68 shown in FIGS. 6A to 6B are examples in which the parallelogram refractory 42 shown in FIG. 4E is used.
The lining structure 67 shown in FIG. 6A is a structure in which all the oblique vertical joints 85 are inclined downwardly to the left as a result of the sides 42d and 42e of the refractories 42 being attached to each other.
Moreover, the lining structure 68 shown in FIG. 6B is a structure in which the ring windings in which the diagonal vertical joints 86 are inclined downward to the left and the ring windings in which the diagonal vertical joints are inclined downward to the right are alternately stacked. is there.

次に、図7(a)〜(c)に示す内張り構造70、71、72は、図4(a)の台形状の耐火物2(第1耐火物)と、図4(c)の片側の側辺が垂直な台形状の耐火物22(第1耐火物)と、図4(e)の平行四辺形状の耐火物42(第2耐火物)とを適宜組み合わせた例である。   Next, the lining structures 70, 71, 72 shown in FIGS. 7A to 7C are the trapezoidal refractory 2 (first refractory) of FIG. 4A and one side of FIG. 4C. This is an example in which the trapezoidal refractory 22 (first refractory) having a vertical side is and the parallelogram refractory 42 (second refractory) of FIG.

図7(a)に示す内張り構造70は、台形状の耐火物2からなるリング巻きと、平行四辺形状の耐火物42からなるリング巻きとが交互に積層された構造である。
また、図7(b)に示す内張り構造71は、片側の側辺が垂直な台形状の耐火物22からなるリング巻きと、平行四辺形状の耐火物42からなるリング巻きとが交互に積層された構造である。
The lining structure 70 shown in FIG. 7A is a structure in which a ring winding made of a trapezoidal refractory 2 and a ring winding made of a parallelogram refractory 42 are alternately stacked.
In the lining structure 71 shown in FIG. 7B, ring winding made of a trapezoidal refractory 22 whose one side is vertical and ring winding made of a parallelogram refractory 42 are alternately laminated. Structure.

図7(a)及び図7(b)に示す例の耐火物2、22及び42については、各側辺2d、22d、42dの傾斜角度αはそれぞれ、同じ角度であってもよく、異なる角度であってもよい。図7(a)及び図7(b)に示す例の場合、耐火物2、22及び42は、1つのリング巻きに同時に使用されないため、角度αが異なる角度であってもよい。   For the refractories 2, 22 and 42 in the example shown in FIGS. 7A and 7B, the inclination angles α of the side edges 2d, 22d and 42d may be the same angle or different angles. It may be. In the example shown in FIG. 7A and FIG. 7B, the refractories 2, 22 and 42 are not used simultaneously for one ring winding, and therefore the angle α may be different.

図7(c)に示す内張り構造72は、耐火物2、22、42を全て組み合わせた例であり、台形状の耐火物2と平行四辺形状の耐火物42とを交互に並べてなるリング巻きと、片側の側辺が垂直な台形状の耐火物22からなるリング巻きとが交互に積層された構造である。   The lining structure 72 shown in FIG. 7 (c) is an example in which all the refractories 2, 22, and 42 are combined, and a ring winding formed by alternately arranging trapezoidal refractories 2 and parallelogram-shaped refractories 42. The ring winding made of the trapezoidal refractory 22 whose one side is vertical is alternately laminated.

次に、図7(d)に示す内張り構造73は、台形状の耐火物2(第1耐火物)、片側の側辺が垂直な台形状の耐火物22(第1耐火物)、平行四辺形状の耐火物42(第2耐火物)及び矩形の耐火物82(第3耐火物)を組み合わせた例である。   Next, the lining structure 73 shown in FIG. 7D includes a trapezoidal refractory 2 (first refractory), a trapezoidal refractory 22 (first refractory) with one side being vertical, and parallel four sides. This is an example in which a shape refractory 42 (second refractory) and a rectangular refractory 82 (third refractory) are combined.

図7(c)及び図7(d)に示す例の耐火物2、22及び42については、耐火物2、22の側辺2d、22dの傾斜角度αまたはβと、耐火物42の側辺42dの鋭角の角度γは、同じ角度にすることが望ましい。本例の場合は、耐火物2、22及び42が、1つのリング巻きを築造する際に同時に使用されるため、耐火物同士の間に隙間を設けないために、角度αまたはβと角度γとは同じ角度とすることが好ましい。   For the refractories 2, 22 and 42 in the example shown in FIGS. 7C and 7D, the inclination angles α or β of the sides 2d and 22d of the refractories 2 and 22 and the sides of the refractory 42 are shown. The acute angle γ of 42d is preferably the same angle. In the case of this example, since the refractories 2, 22 and 42 are used simultaneously when constructing one ring winding, in order not to provide a gap between the refractories, the angle α or β and the angle γ Are preferably at the same angle.

図5〜7に示した内張り構造はいずれも、図2に示した内張り構造と同等の効果を有する。すなわち、図5〜7に示した内張り構造61〜73は、耐火物の上辺及び下辺が同じ高さに揃えられ、かつ、傾斜した一方の側辺同士が相互に平行に隣り合うように配置されるので、側辺同士の間に形成される縦目地が横目地に対して傾斜した目地になり、耐火物が熱膨張して円筒の円周方向に熱応力が作用したとしても、円周方向に生じた熱応力の一部を傾斜した目地によって軸方向に変換させることができ、円周方向の熱応力が小さくなり、熱応力による耐火物の破壊を防止できる。   Any of the lining structures shown in FIGS. 5 to 7 has the same effect as the lining structure shown in FIG. That is, the lining structures 61 to 73 shown in FIGS. 5 to 7 are arranged such that the upper side and the lower side of the refractory are aligned at the same height, and the inclined one sides are adjacent to each other in parallel. Therefore, even if the vertical joint formed between the side edges becomes a joint that is inclined with respect to the horizontal joint, and the refractory is thermally expanded and thermal stress is applied in the circumferential direction of the cylinder, the circumferential direction A part of the thermal stress generated in the axis can be converted into the axial direction by the inclined joint, the thermal stress in the circumferential direction is reduced, and the destruction of the refractory due to the thermal stress can be prevented.

本発明は、図5〜図7に示した内張り構造に限られず、本発明の範囲から逸脱しない範囲で、様々な耐火物の組み合わせからなる内張り構造を採用できる。   The present invention is not limited to the lining structure shown in FIGS. 5 to 7, and a lining structure composed of various refractory combinations can be employed without departing from the scope of the present invention.

実施例として、円筒状の鉄皮に、図2に示す内張り構造をMgO−Cれんがからなる耐火物を用いて築造し、内部を加熱して耐火物の損傷状況を調査した。   As an example, a lining structure shown in FIG. 2 was constructed on a cylindrical iron skin using a refractory made of MgO-C brick, and the inside was heated to investigate the damage state of the refractory.

鉄皮は内径2000mm、高さ1050mの縦型円筒状とし、厚みは12mmとした。耐火物として炭素含有量10質量%のMgO−Cれんがを使用し、図2に示す内張り構造を築造した。リング巻き一段あたりの高さは75mmとした。耐火物の厚みすなわち耐火物の稼働面から鉄皮接触面までの長さは300mmとした。リング巻きにおける円周方向の耐火物分割数は40とした。本実施例では、耐火物の稼働面及び稼働面に平行な断面の形状を等脚台形とし、長辺(下辺)と側辺との成す角が60°のものを用いた。目地にはモルタルは使用せずに耐火物のみを築造した。   The iron skin was a vertical cylindrical shape with an inner diameter of 2000 mm and a height of 1050 m, and the thickness was 12 mm. The lining structure shown in FIG. 2 was constructed using MgO—C brick with a carbon content of 10% by mass as the refractory. The height per ring winding was 75 mm. The thickness of the refractory, that is, the length from the working surface of the refractory to the iron skin contact surface was 300 mm. The number of refractory divisions in the circumferential direction in the ring winding was 40. In this example, the working surface of the refractory and the shape of the cross section parallel to the working surface were made to be isosceles trapezoids, and the angle between the long side (lower side) and the side was 60 °. Only refractory was built on the joints without using mortar.

築造後、ガスバーナーを用いて内張り内面を1400℃まで約4℃/分で昇温し、1時間保持し、その後、約4℃/分で常温まで冷却した。   After the construction, the inner surface of the lining was heated to 1400 ° C. at about 4 ° C./min using a gas burner, held for 1 hour, and then cooled to room temperature at about 4 ° C./min.

冷却後に内張り構造を解体し、耐火物の状況を調査した。実施例に用いた耐火物は、全数の25%程度の耐火物に角欠けが生じていたにすぎず、本発明の効果が発揮された。   After cooling, the lining structure was dismantled and the situation of refractories was investigated. As for the refractory used in the examples, only about 25% of the total number of refractories had chipped corners, and the effects of the present invention were exhibited.

一方、比較例としては、図1に示す内張り構造を様式でMgO−Cれんがからなる耐火物を用いて築造し、内部を加熱して耐火物の損傷状況を調査した。   On the other hand, as a comparative example, the lining structure shown in FIG. 1 was constructed using a refractory made of MgO-C brick in a manner, and the inside was heated to investigate the damage state of the refractory.

鉄皮は内径2000mm、高さ1050mの縦型円筒状とし厚みは12mmとした。耐火物として炭素含有量10質量%のMgO−Cれんがを使用し、図1に示す内張り構造を築造した。れんがの稼働面及び稼働面に平行な断面形状は矩形とし、リング巻きにおける一段あたりの高さは75mmとし、円周方向のれんが分割数は40とした。耐火物の厚みすなわち稼働面から鉄皮接触面までの長さは300mmとした。目地にはモルタルは使用せずに耐火物を築造した。   The iron skin was a vertical cylindrical shape with an inner diameter of 2000 mm and a height of 1050 m, and the thickness was 12 mm. An lining structure shown in FIG. 1 was constructed using MgO—C brick having a carbon content of 10 mass% as a refractory. The working surface of the brick and the cross-sectional shape parallel to the working surface were rectangular, the height per step in the ring winding was 75 mm, and the number of bricks in the circumferential direction was 40. The thickness of the refractory, that is, the length from the working surface to the iron skin contact surface was 300 mm. A refractory was constructed at the joint without using mortar.

ガスバーナーを用いて内張り内面を1400℃まで約4℃/分で昇温し1時間保持し、約4℃/分で常温まで冷却した。   Using a gas burner, the inner surface of the lining was heated to 1400 ° C. at about 4 ° C./min, held for 1 hour, and cooled to room temperature at about 4 ° C./min.

冷却後に内張りを解体し、れんがの状況を調査した。図1の従来法で築造された比較例の耐火物には、ほぼ全数に内面に平行な亀裂あるいは角欠けが生じていた。   After cooling, the lining was dismantled and the situation of brick was investigated. In the refractories of the comparative example constructed by the conventional method of FIG. 1, almost all of the refractories had cracks or corner chips parallel to the inner surface.

1、61〜73…耐火物の内張り構造、2、12、22、32、52…台形状の耐火物、42…平行四辺形状の耐火物、2a、12a,22a,32a,42a,52a…稼働面、2b、12b、22b、32b、52b…上辺、2c、12c、22c、32c、52c…下辺、2d、12d、22d、32d、52d…一方の側辺、2e、12e、22e、32e、52e…他方の側辺。   DESCRIPTION OF SYMBOLS 1,61-73 ... Lining structure of refractory material 2, 12, 22, 32, 52 ... Trapezoid refractory, 42 ... Parallelogram refractory, 2a, 12a, 22a, 32a, 42a, 52a ... Operation Surface, 2b, 12b, 22b, 32b, 52b ... Upper side, 2c, 12c, 22c, 32c, 52c ... Lower side, 2d, 12d, 22d, 32d, 52d ... One side, 2e, 12e, 22e, 32e, 52e ... the other side.

Claims (7)

円筒状窯炉の耐火物の内張り構造であって、
前記内張り構造は、前記耐火物の稼働面が窒炉内側に向けられた状態で前記耐火物がリング巻きに並べられ、かつ縦円筒に積み上げられた構造とされ、
前記耐火物の前記稼働面の形状が、互いに平行な上下辺と、前記上下辺に対して傾斜した一方の側辺と、他方の側辺とで区画された四辺形状とされ、
リング巻きされた前記耐火物は、前記上下辺が同じ高さに揃えられ、かつ、傾斜した前記一方の側辺同士が相互に平行に隣り合うように配置されている円筒状窯炉の耐火物の内張り構造。
A refractory lining structure for a cylindrical kiln,
The lining structure is a structure in which the refractory is arranged in a ring winding with the working surface of the refractory facing the inside of the nitrogen furnace, and stacked in a vertical cylinder,
The shape of the working surface of the refractory is a quadrilateral shape defined by upper and lower sides parallel to each other, one side inclined with respect to the upper and lower sides, and the other side,
The refractory wound in a ring is a cylindrical refractory refractory in which the upper and lower sides are aligned at the same height and the inclined one side is adjacent to each other in parallel. Lining structure.
前記耐火物の前記稼働面の形状が台形とされ、前記上下辺のうちの長辺と前記一方の側辺とのなす角が30°以上90°未満である請求項1に記載の円筒状窯炉の耐火物の内張り構造。   2. The cylindrical kiln according to claim 1, wherein a shape of the working surface of the refractory is a trapezoid, and an angle formed between a long side of the upper and lower sides and the one side is 30 ° or more and less than 90 °. Furnace refractory lining structure. 前記耐火物の前記稼働面の形状が平行四辺形とされ、前記上下辺と前記一方及び他方の側辺とのなす鋭角が30°以上90°未満である請求項1に記載の円筒状窯炉の耐火物の内張り構造。   The cylindrical kiln according to claim 1, wherein a shape of the working surface of the refractory is a parallelogram, and an acute angle formed by the upper and lower sides and the one side and the other side is 30 ° or more and less than 90 °. Refractory lining structure. 前記内張り構造内に、
前記稼働面の形状が台形とされ、前記上下辺のうちの長辺と前記一方の側辺とのなす角が30°以上90°未満である第1耐火物と、
前記稼働面の形状が平行四辺形とされた耐火物であって、前記平行四辺形をなす前記上下辺と前記一方及び他方の側辺とのなす鋭角が、前記第1耐火物の前記長辺と前記一方の側辺または他方の側辺とがなす2つの角のうちの一方に等しい角度である第2耐火物とが混在している請求項1に記載の円筒状窯炉の耐火物の内張り構造。
In the lining structure,
A shape of the working surface is a trapezoid, and a first refractory having an angle between a long side of the upper and lower sides and the one side of 30 ° or more and less than 90 °;
The working surface is a refractory having a parallelogram shape, and an acute angle formed between the upper and lower sides forming the parallelogram and the one side and the other side is the long side of the first refractory. 2 and the second refractory having an angle equal to one of two angles formed by the one side or the other side is mixed. Lining structure.
前記内張り構造内に、更に、
前記稼働面の形状が矩形とされた第3耐火物が混在している請求項4に記載の円筒状窯炉の耐火物の内張り構造。
In the lining structure,
The refractory lining structure for a cylindrical kiln according to claim 4, wherein a third refractory having a rectangular shape on the working surface is mixed.
請求項1、2または4の何れか一項に記載の円筒状窯炉の耐火物の内張り構造に用いられる耐火物であり、
前記耐火物の稼働面の形状が、互いに平行な上下辺と、前記上下辺に対して傾斜した一方の側辺と、他方の側辺とで区画された台形状とされ、
前記上下辺のうちの長辺と、前記一方の側辺とのなす角が30°以上90°未満である耐火物。
It is a refractory used for the refractory lining structure of the cylindrical kiln according to any one of claims 1, 2, or 4.
The shape of the working surface of the refractory is a trapezoid defined by upper and lower sides parallel to each other, one side inclined with respect to the upper and lower sides, and the other side,
A refractory having an angle between a long side of the upper and lower sides and the one side of 30 ° or more and less than 90 °.
請求項1、3または4の何れか一項に記載の円筒状窯炉の耐火物の内張り構造に用いられる耐火物であり、
前記耐火物の稼働面の形状が、互いに平行な上下辺と、前記上下辺に対して傾斜した前記一方及び他方の側辺とで区画された平行四辺形状とされ、
前記上下辺と前記一方及び他方の側辺とのなす鋭角が30°以上90°未満である耐火物。
It is a refractory used for the refractory lining structure of the cylindrical kiln according to any one of claims 1, 3 and 4.
The shape of the working surface of the refractory is a parallelogram defined by upper and lower sides parallel to each other and the one and other sides inclined with respect to the upper and lower sides,
A refractory having an acute angle between the upper and lower sides and the one side and the other side of 30 ° or more and less than 90 °.
JP2015135567A 2015-07-06 2015-07-06 Lining structure of refractory of cylindrical furnace and refractory Pending JP2017015370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135567A JP2017015370A (en) 2015-07-06 2015-07-06 Lining structure of refractory of cylindrical furnace and refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135567A JP2017015370A (en) 2015-07-06 2015-07-06 Lining structure of refractory of cylindrical furnace and refractory

Publications (1)

Publication Number Publication Date
JP2017015370A true JP2017015370A (en) 2017-01-19

Family

ID=57827750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135567A Pending JP2017015370A (en) 2015-07-06 2015-07-06 Lining structure of refractory of cylindrical furnace and refractory

Country Status (1)

Country Link
JP (1) JP2017015370A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537885U (en) * 1978-09-04 1980-03-11
JPH03594U (en) * 1989-05-22 1991-01-07
JPH06317384A (en) * 1993-05-07 1994-11-15 Toshiba Ceramics Co Ltd Side wall structure of annular industrial furnace
JPH07252517A (en) * 1994-03-10 1995-10-03 Tokyo Yogyo Co Ltd Aod furnace
JPH09279224A (en) * 1996-04-10 1997-10-28 Nippon Steel Corp Immersion pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537885U (en) * 1978-09-04 1980-03-11
JPH03594U (en) * 1989-05-22 1991-01-07
JPH06317384A (en) * 1993-05-07 1994-11-15 Toshiba Ceramics Co Ltd Side wall structure of annular industrial furnace
JPH07252517A (en) * 1994-03-10 1995-10-03 Tokyo Yogyo Co Ltd Aod furnace
JPH09279224A (en) * 1996-04-10 1997-10-28 Nippon Steel Corp Immersion pipe

Similar Documents

Publication Publication Date Title
TWI294956B (en) Industrial kiln
US9194013B2 (en) Hot blast stove dome and hot blast stove
JP2000248305A (en) Stave cooler
CN202382575U (en) High-temperature furnace top lining reinforcing beam structure with central flue
JP2017015370A (en) Lining structure of refractory of cylindrical furnace and refractory
RU2670821C2 (en) Arch brick, cylindrical internal lining of tubular rotary kiln and tubular rotary kiln
JP2003114090A (en) Cement rotary kiln and repair method therefor
JP5819552B1 (en) Furnace wall structure of heating furnace and manufacturing method thereof
JP6396477B2 (en) Brick for refractory ceramic lining and corresponding refractory ceramic lining
JP2017067381A (en) Furnace wall structure for heating furnace
JP4826323B2 (en) Refractory lining structure in rotary melting furnace and rotary melting furnace
JP6221797B2 (en) Kiln furnace and furnace construction method
JP5907107B2 (en) Blast furnace bottom structure
JP2006200824A (en) Reverse inclination lining structure for furnace having contraction part structure
JPH06281132A (en) Burner tile made of ceramic fiber
JP5103797B2 (en) Refractory hearth of walking hearth furnace
CN210290413U (en) Heat preservation is taken off nail
JP4026528B2 (en) Stave cooler
JP6781813B1 (en) Coke furnace Carbonization chamber How to suppress overhang of furnace wall
JP7072420B2 (en) Skid post
JP2004116926A (en) Burner tile and its support method
JP2019015412A (en) Refractory structure of furnace bottom corner part of electric furnace
JP6428692B2 (en) Refractory structure
JP6226483B2 (en) Circulation tube of vacuum degasser
JPH07266024A (en) Structure of furnace bottom in molten metal vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924