JP2017011844A - Power transmission auxiliary device and wireless power supply system - Google Patents

Power transmission auxiliary device and wireless power supply system Download PDF

Info

Publication number
JP2017011844A
JP2017011844A JP2015123677A JP2015123677A JP2017011844A JP 2017011844 A JP2017011844 A JP 2017011844A JP 2015123677 A JP2015123677 A JP 2015123677A JP 2015123677 A JP2015123677 A JP 2015123677A JP 2017011844 A JP2017011844 A JP 2017011844A
Authority
JP
Japan
Prior art keywords
power transmission
power
auxiliary device
pair
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015123677A
Other languages
Japanese (ja)
Inventor
哲也 楠本
Tetsuya Kusumoto
哲也 楠本
齋藤 隆
Takashi Saito
隆 齋藤
善一 古田
Zenichi Furuta
善一 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2015123677A priority Critical patent/JP2017011844A/en
Priority to PCT/JP2016/002609 priority patent/WO2016203720A1/en
Publication of JP2017011844A publication Critical patent/JP2017011844A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power transmission auxiliary device and a wireless power supply system, capable of improving power transmission efficiency even if a low current amplitude distribution region exists when a current amplitude distribution continuously changes in a power transmission line.SOLUTION: A loop-shape coil 16 has an opening 20 in the interlinkage region of a magnetic flux generated in the vicinity of power lines 8, 9, so that power can be received by a magnetic field interlinked with the opening 20. Further, one or more power reception electrodes 18, 19 are respectively disposed between a pair of power lines 8, 9 and the coil 16, so that power can be received by an electric field from the power lines 8, 9. As a result, power can be transmitted by the electric field and the magnetic field from the power lines 8, 9, so that power transmission efficiency can be improved, even if a region having low current amplitude exists.SELECTED DRAWING: Figure 2

Description

本発明は、無線電力伝送に適した送電補助装置及び無線給電システムに関する。   The present invention relates to a power transmission auxiliary device and a wireless power feeding system suitable for wireless power transmission.

例えば、共鳴現象を利用する磁界共鳴型の無線給電システムが開発されている(例えば、特許文献1参照)。特許文献1記載の無線給電システムは、送電コイルから見て受電コイルとは反対側に磁性体を配置し、受電コイルから見て送電コイルとは反対側に磁性体を配置する技術を用いている。このとき送電コイルの磁界は磁性体により受電コイルの方向に指向性を持ち、受電コイルは磁性体により送電コイルの方向に指向性を持つ。その結果、送電コイルと受電コイルとの間の磁界の結合度が大きくなるので、磁気共鳴による電力の伝送効率を向上できるようになる。   For example, a magnetic field resonance type wireless power feeding system using a resonance phenomenon has been developed (see, for example, Patent Document 1). The wireless power feeding system described in Patent Document 1 uses a technique in which a magnetic body is disposed on the side opposite to the power receiving coil as viewed from the power transmitting coil, and a magnetic body is disposed on the side opposite to the power transmitting coil as viewed from the power receiving coil. . At this time, the magnetic field of the power transmission coil has directivity in the direction of the power reception coil by the magnetic material, and the power reception coil has directivity in the direction of the power transmission coil by the magnetic material. As a result, the degree of coupling of the magnetic field between the power transmission coil and the power reception coil is increased, so that the power transmission efficiency by magnetic resonance can be improved.

特開2010−239848号公報JP 2010-239848 A

発明者らは、例えばマスタがハーネス等の送電線路に通電しスレーブがこの送電線路に電界/磁界結合して受電する技術を開発している。このとき、例えば送電線路の線路長が送信電力の波長に対して長くなる等の影響から送電線路上の電流振幅分布が連続的に変化することになる。この場合、例えば電流振幅の低い位置に受電装置が設置されていると給電効率が著しく低下してしまう。   The inventors have developed a technique in which, for example, a master energizes a power transmission line such as a harness, and a slave receives electric power by coupling an electric field / magnetic field to the power transmission line. At this time, for example, the current amplitude distribution on the power transmission line continuously changes due to the influence that the line length of the power transmission line becomes longer with respect to the wavelength of the transmission power. In this case, for example, if the power receiving device is installed at a position where the current amplitude is low, the power supply efficiency is significantly reduced.

本発明の目的は、送電線路内において電流振幅分布が連続的に変化するときに電流振幅分布の低い領域が存在する場合であっても電力伝送効率を高めることができる送電補助装置及び無線給電システムを提供することにある。   An object of the present invention is to provide a power transmission auxiliary device and a wireless power feeding system capable of improving power transmission efficiency even when a region having a low current amplitude distribution exists when the current amplitude distribution continuously changes in the transmission line. Is to provide.

上記目的を達成するために、請求項1記載の発明は、交流電力が一対の送電線路に出力されることに応じて電流振幅分布が連続的に変化するようになっており、コイルが送電線路の周辺に生じる磁束の鎖交領域に開口が配置され、一対の受電電極が一対の送電線路に対応づけてそれぞれ1つ以上を配置して送電線路から電界により受電するように構成されている。   In order to achieve the above object, according to the first aspect of the present invention, the current amplitude distribution changes continuously in response to the output of AC power to a pair of power transmission lines, and the coil is a power transmission line. An opening is arranged in the interlinkage region of the magnetic flux generated around the pair, and a pair of power receiving electrodes are arranged so as to correspond to the pair of power transmission lines and each receive one or more from the power transmission line by an electric field.

この請求項1記載の発明によれば、コイルは送電線路の周辺に生じる磁束の鎖交領域に開口を設けているため、当該開口に鎖交する磁界により電力を受電する。また、受電電極は一対の送電線路に対応づけてそれぞれ1つ以上配置されているため、一対の送電線路から電界により電力を受電できる。この結果、送電線路から電界及び磁界により電力を効率良く伝送することができ、たとえ電流振幅の低い領域が存在する場合であっても電力伝送効率を高めることができる。また、電流振幅の高い領域においても磁界により電力を受電できる。   According to the first aspect of the present invention, since the coil is provided with the opening in the interlinkage region of the magnetic flux generated around the power transmission line, the coil receives power by the magnetic field interlinking with the opening. In addition, since one or more power receiving electrodes are disposed in association with a pair of power transmission lines, power can be received from the pair of power transmission lines by an electric field. As a result, electric power can be efficiently transmitted from the power transmission line by an electric field and a magnetic field, and the power transmission efficiency can be increased even when there is a region having a low current amplitude. In addition, power can be received by a magnetic field even in a region where the current amplitude is high.

第1実施形態において無線給電システムの構成を模式的に示す平面図The top view which shows typically the structure of a wireless power feeding system in 1st Embodiment 送電補助装置の構成について図1のII−II線に沿って模式的に示す縦断側面図A longitudinal side view schematically showing the configuration of the power transmission auxiliary device along the line II-II in FIG. 送電線路の一部と送電補助装置との関係を模式的に示す斜視図The perspective view which shows typically the relationship between a part of transmission line and a power transmission auxiliary device 無線給電システムの構成と送電線路に生じる定在波の分布(電流振幅分布、電圧振幅分布)の一例を概略的に示す図The figure which shows roughly an example of the structure of a radio | wireless electric power feeding system, and distribution (current amplitude distribution, voltage amplitude distribution) of the standing wave which arises in a transmission line 送電線路と受電アンテナとの設置形態の一例を概略的に示す図The figure which shows roughly an example of the installation form of a transmission line and a receiving antenna シミュレーション結果を概略的に示す図Diagram showing simulation results schematically (a)、(b)は第2実施形態における送電補助装置の構成について図1のII−II線に沿って模式的に示す縦断側面図(その1、その2)(A), (b) is a longitudinal side view schematically showing the configuration of the power transmission auxiliary device according to the second embodiment along the line II-II in FIG. 1 (No. 1, No. 2). 第3実施形態において送電補助装置の構成について図1のII−II線に沿って模式的に示す縦断側面図1 is a longitudinal side view schematically showing the configuration of the power transmission auxiliary device in the third embodiment along the line II-II in FIG. 第4実施形態において無線給電システムの構成を模式的に示す平面図The top view which shows typically the structure of a wireless power feeding system in 4th Embodiment 送電線路の一部と送電補助装置との関係を模式的に示す斜視図The perspective view which shows typically the relationship between a part of transmission line and a power transmission auxiliary device 第5実施形態において無線給電システムの構成を模式的に示す平面図The top view which shows typically the structure of a wireless power feeding system in 5th Embodiment 送電補助装置の構成について図11のXII−XII線に沿って模式的に示す縦断側面図A longitudinal side view schematically showing the configuration of the power transmission auxiliary device along the line XII-XII in FIG. 第6実施形態における送電補助装置の構成について図1のII−II線に沿って模式的に示す縦断側面図1 is a longitudinal side view schematically showing the configuration of the power transmission auxiliary device in the sixth embodiment along the line II-II in FIG.

以下、送電補助装置の幾つかの実施形態について図面を参照しながら説明する。各実施形態間で同一の構成については、その前の実施形態に付した符号と同一の符号を付して後の実施形態では必要に応じて説明を省略し、異なる部分を中心に説明する。   Hereinafter, some embodiments of the power transmission auxiliary device will be described with reference to the drawings. About the same structure between each embodiment, the code | symbol same as the code | symbol attached | subjected to the previous embodiment is attached | subjected, description is abbreviate | omitted as needed in later embodiment, and it demonstrates centering on a different part.

(第1実施形態)
図1〜図6は第1実施形態の説明図を示す。以下に説明する図1等においてXYZ方向は互いに交差(例えば直交)する方向を示している。図4に全体構成例を示すように、無線給電システム1は、送電装置(マスタ)2及び受電装置(スレーブ)3a〜3eが電力線としての送電アンテナ4を通じて電界/磁界により結合されることで構成される。送電装置2には例えばバッテリ(図示せず:電力供給源)が接続され、このバッテリの電力に応じて送電アンテナ4を通じて複数の受電装置3a〜3eに電力を供給し、受電装置3a〜3eはこれらの供給電力に応じて動作する。無線給電システム1は電力線給電システムと同義である。この無線給電システム1は、特に車両用の各種センサ、アクチュエータの無線電力伝送に適用することが望ましい。
(First embodiment)
1 to 6 are explanatory diagrams of the first embodiment. In FIG. 1 and the like described below, the XYZ directions indicate directions that intersect (for example, orthogonal to each other). As shown in the overall configuration example in FIG. 4, the wireless power feeding system 1 is configured by coupling a power transmission device (master) 2 and power reception devices (slave) 3 a to 3 e by an electric field / magnetic field through a power transmission antenna 4 as a power line. Is done. For example, a battery (not shown: power supply source) is connected to the power transmission device 2, and power is supplied to the plurality of power reception devices 3 a to 3 e through the power transmission antenna 4 according to the power of the battery, and the power reception devices 3 a to 3 e are It operates according to these supplied powers. The wireless power feeding system 1 is synonymous with a power line power feeding system. This wireless power feeding system 1 is preferably applied particularly to wireless power transmission of various sensors and actuators for vehicles.

送電装置2は給電回路5に送電アンテナ4を接続して構成されると共に送電アンテナ4の一部(端部)に終端器7を接続して構成される。送電装置2の給電回路5は所定周波数(例えば数MHz)の交流電力(高周波電力、例えば正弦波電圧/電流)を送電アンテナ4に出力する。送電アンテナ4は図1及び図5に詳細を示すように一対の送電線(一対の送電線路相当)8、9を備えた撚り対線(ツイステッドペアケーブル)により構成される。図4に示すように、送電アンテナ4は、一対の送電線8,9を互いに対向して撚り合わせて形成される撚り対線を所定方向(一方向:例えばX方向)に所定長(数m程度)延設して配置される。なお、この所定方向とは、ある一直線状の方向であっても良いが、曲折、屈曲していても良い。   The power transmission device 2 is configured by connecting a power transmission antenna 4 to a power feeding circuit 5 and is configured by connecting a terminator 7 to a part (end portion) of the power transmission antenna 4. The power feeding circuit 5 of the power transmission device 2 outputs AC power (high frequency power, for example, sine wave voltage / current) having a predetermined frequency (for example, several MHz) to the power transmission antenna 4. As shown in detail in FIGS. 1 and 5, the power transmission antenna 4 is constituted by a twisted pair cable (twisted pair cable) having a pair of power transmission lines (equivalent to a pair of power transmission lines) 8 and 9. As shown in FIG. 4, the power transmission antenna 4 has a predetermined length (several meters) in a predetermined direction (one direction, for example, X direction) of twisted pair wires formed by twisting a pair of power transmission lines 8 and 9 facing each other. Degree) extended and arranged. The predetermined direction may be a certain straight direction, but may be bent or bent.

図4に示すように、受電装置3a〜3eは送電アンテナ4の近傍界に複数設置されており前記の所定方向の一部の複数の所定領域R1〜R5に受電アンテナ10を設置して構成され、この所定領域R1〜R5にて受電するように配置される。受電装置3a〜3eは図1に示すようにそれぞれ受電アンテナ10及び負荷回路11を備える。受電装置3aの設置個数は1つでも良い。   As shown in FIG. 4, a plurality of power receiving devices 3 a to 3 e are installed in the near field of the power transmitting antenna 4, and the power receiving antenna 10 is installed in a plurality of predetermined regions R <b> 1 to R <b> 5 in the predetermined direction. The power is arranged so as to receive power in the predetermined regions R1 to R5. The power receiving apparatuses 3a to 3e each include a power receiving antenna 10 and a load circuit 11 as shown in FIG. The number of power receiving devices 3a may be one.

図4に示すように、送電アンテナ4は、その一対の送電線8、9の端部が終端器7に結合されている。この終端器7は、例えば抵抗器などにより構成しても短絡線路により構成しても良い。終端器7が短絡線路により構成されるときには、一対の送電線8、9は、端部が結合された一対のツイスト線(撚り対線)を用いてループ状に構成されることになる。   As shown in FIG. 4, the power transmission antenna 4 has an end portion of a pair of power transmission lines 8 and 9 coupled to a terminator 7. This terminator 7 may be constituted by, for example, a resistor or a short circuit line. When the terminator 7 is configured by a short-circuit line, the pair of power transmission lines 8 and 9 are configured in a loop shape using a pair of twisted wires (twisted pair wires) whose ends are coupled.

図5に示すように、送電アンテナ4は、送電線8、9が撚り合わされることにより形成される撚部12を備えると共に、隣接する撚部12間に開口13を備える。全ての隣接する撚部12間の開口13のうち、特定の撚部12a間の開口13a(以下特定開口13aと称す)は他の撚部12間又は撚部12と12a間の開口より大きく設けられている。この特定開口13aの周辺(近傍界)には受電装置3a〜3eの受電アンテナ10が設置されている。   As shown in FIG. 5, the power transmission antenna 4 includes a twisted portion 12 formed by twisting power transmission lines 8 and 9, and includes an opening 13 between adjacent twisted portions 12. Among the openings 13 between all adjacent twisted portions 12, an opening 13a between specific twisted portions 12a (hereinafter referred to as a specific opening 13a) is provided larger than the openings between other twisted portions 12 or between the twisted portions 12 and 12a. It has been. The power receiving antennas 10 of the power receiving devices 3a to 3e are installed around the specific opening 13a (near field).

受電アンテナ10は、例えば開口14を備えたループ状のコイルにより構成され、送電アンテナ4の特定開口13aから発せられる磁束を受電アンテナ10の開口14に鎖交する。これにより、受電アンテナ10は送電アンテナ4から電磁誘導現象(主に磁界)に応じて受電できる。ここで、例えば特定開口13aの面と受電アンテナ10の開口14の面とが並行に配置されていても良いし、例えば受電アンテナ10の開口14が特定開口13aと例えば対向するように設置されていても良い。受電アンテナ10の開口14が特定開口13aと対向するように設置されていると、受電アンテナ10に鎖交する磁束をより多くすることができ、電力伝送効率を高めることができる。   The power receiving antenna 10 is configured by, for example, a loop-shaped coil having an opening 14, and magnetic flux generated from the specific opening 13 a of the power transmitting antenna 4 is linked to the opening 14 of the power receiving antenna 10. Thereby, the power receiving antenna 10 can receive power from the power transmitting antenna 4 according to the electromagnetic induction phenomenon (mainly magnetic field). Here, for example, the surface of the specific opening 13a and the surface of the opening 14 of the power receiving antenna 10 may be arranged in parallel. For example, the opening 14 of the power receiving antenna 10 is installed so as to face the specific opening 13a, for example. May be. If the opening 14 of the power receiving antenna 10 is installed so as to face the specific opening 13a, the magnetic flux interlinked with the power receiving antenna 10 can be increased, and the power transmission efficiency can be increased.

図1にXY平面の模式図を示すように、特定開口13aと受電アンテナ10の開口14とがXY方向に離間して配置されていても、図4に示すようにXY方向の同一領域内に設置されていても良い。また、送電アンテナ4は、特定開口13aが撚り対線を用いてその他の開口13より大きな領域となるように設けられていると、特定開口13aから生じさせる磁束をその他の開口13より多くできる。しかも、隣接する撚部12間の開口13に生じる磁束が隣同士で反転し互いに打ち消しあうため外部にノイズを出力しにくくなる。   As shown in the schematic diagram of the XY plane in FIG. 1, even if the specific opening 13a and the opening 14 of the power receiving antenna 10 are spaced apart in the XY direction, as shown in FIG. It may be installed. Moreover, the power transmission antenna 4 can increase the magnetic flux generated from the specific opening 13 a more than the other opening 13 when the specific opening 13 a is provided so as to be larger than the other opening 13 using a twisted pair wire. Moreover, since the magnetic flux generated in the opening 13 between the adjacent twisted portions 12 is reversed adjacent to each other and cancels each other, it becomes difficult to output noise to the outside.

さて、図1及び図3に示すように、特定開口13aの周辺(近傍界)には送電補助装置15が設置されている。送電補助装置15は各受電装置3a〜3eに対応したそれぞれの特定開口13a(図4参照)に設置される。送電補助装置15は、コイル16、キャパシタ17、及び、受電電極18を電気的に接続して構成される。コイル16は、例えば導線が螺旋筒状に巻回されることによりZ方向を法線方向とする開口20を備えるように構成され、巻数がn回(n≧1)の有限長ソレノイドにより構成される。このコイル16は、その開口20が送電アンテナ4から発せられる磁束を鎖交するように配置され、例えば送電アンテナ4が形成する磁場と交差(例えば直交)する方向に開口20の面法線方向を設けるように配置される。例えば図1及び図2に示すように、コイル16は、送電アンテナ4の特定開口13aのXY方向内側に位置して配設されると共に、例えば送電線8及び9間の対向領域にその少なくとも一部が設置されている。   Now, as shown in FIG.1 and FIG.3, the power transmission auxiliary device 15 is installed in the circumference (near field) of the specific opening 13a. The power transmission auxiliary device 15 is installed in each specific opening 13a (see FIG. 4) corresponding to each of the power receiving devices 3a to 3e. The power transmission auxiliary device 15 is configured by electrically connecting a coil 16, a capacitor 17, and a power receiving electrode 18. For example, the coil 16 is configured to include an opening 20 having a normal direction in the Z direction by winding a conductive wire in a spiral cylinder shape, and is configured by a finite length solenoid having n turns (n ≧ 1). The The coil 16 is arranged so that the opening 20 is linked with the magnetic flux generated from the power transmission antenna 4. For example, the surface normal direction of the opening 20 is set in a direction intersecting (for example, orthogonal to) the magnetic field formed by the power transmission antenna 4. Arranged to provide. For example, as shown in FIGS. 1 and 2, the coil 16 is disposed on the inner side of the specific opening 13 a of the power transmission antenna 4 in the XY direction, and at least one of the coils 16 is disposed in a facing region between the power transmission lines 8 and 9, for example. Department is installed.

このコイル16の両端子16a及び16b間にはキャパシタ17が接続されている。キャパシタ17は、給電回路5が出力する交流電力の周波数(例えば数MHz程度)と同一周波数にて共振するようにコイル16と並列接続されていることが望ましい。なお、キャパシタ17は設けても設けなくても良く、さらにキャパシタ17をこの接続形態で設けたとしても、給電回路5が出力する交流電力の周波数と同一周波数で共振するような容量値を設定しなくても良い。   A capacitor 17 is connected between both terminals 16 a and 16 b of the coil 16. The capacitor 17 is preferably connected in parallel with the coil 16 so as to resonate at the same frequency as the frequency of the AC power output from the power supply circuit 5 (for example, about several MHz). Note that the capacitor 17 may or may not be provided, and even if the capacitor 17 is provided in this connection form, a capacitance value that resonates at the same frequency as the frequency of the AC power output from the power feeding circuit 5 is set. It is not necessary.

例えば図2に示すように、コイル16が、XY平面に沿って円状に巻回されると共にZ方向に向けて螺旋状に巻回された有限長ソレノイドにより構成されているときには、キャパシタ17はその一端が有限長ソレノイドの螺旋筒状の上端ノード側となる端子16aに構造的に接続されており、その他端が有限長ソレノイドの螺旋筒状の下端ノード側となる端子16bに構造的に接続されている。   For example, as shown in FIG. 2, when the coil 16 is formed of a finite length solenoid wound in a circular shape along the XY plane and spirally wound in the Z direction, the capacitor 17 is One end thereof is structurally connected to the terminal 16a on the spiral cylindrical upper end node side of the finite length solenoid, and the other end is structurally connected to the terminal 16b on the spiral cylindrical lower end node side of the finite length solenoid. Has been.

一対の受電電極18、19がコイル16の周辺に設置されており、コイル16と短絡接続されている。これらの受電電極18、19は、コイル16のXY方向の外周に沿うと共に送電線8、9の内周に沿って各送電線8、9に対応してそれぞれ配置されている。これらの受電電極18、19は、それぞれ、例えば導電性部材が所定形状に成型されることで構成される。受電電極18、19は、例えば平板状部材をZ方向に立てた状態でXY平面方向に半円形に曲げ成型されることで所定形状に成形されている。受電電極18、19は、X−Y平面の円周方向においてどの領域でZ方向に切断しても同一の構造を備えている。   A pair of power receiving electrodes 18 and 19 are installed around the coil 16 and are short-circuited to the coil 16. These power receiving electrodes 18 and 19 are arranged along the outer circumference of the coil 16 in the XY direction and along the inner circumference of the power transmission lines 8 and 9, respectively, corresponding to the power transmission lines 8 and 9. Each of these power receiving electrodes 18 and 19 is configured, for example, by molding a conductive member into a predetermined shape. The power receiving electrodes 18 and 19 are formed in a predetermined shape by, for example, being bent into a semicircular shape in the XY plane direction with a flat plate-like member standing in the Z direction. The power receiving electrodes 18 and 19 have the same structure even if they are cut in the Z direction at any region in the circumferential direction of the XY plane.

これらの受電電極18、19は、送電アンテナ4のそれぞれの送電線8、9の内側に位置して特定開口13aの内側にその一部を設けて配置されている。受電電極18は送電線8との間に近接空間を設けて設置され、受電電極18と送電線8との間に電気力線が延びるように対向して構成される。受電電極19は送電線9との間に近接空間を設けて設置され、受電電極19と送電線9との間に電気力線が延びるよう対向して配置される。これにより、受電電極18、19は、送電アンテナ4と主に容量結合するように配置され、その受電面にて周辺に設置されるそれぞれの送電線8、9から主に電界を受電できる。   These power receiving electrodes 18 and 19 are located inside the respective power transmission lines 8 and 9 of the power transmission antenna 4 and are arranged with a part thereof inside the specific opening 13a. The power receiving electrode 18 is installed with a close space between the power transmission line 8 and is configured so as to face the electric force line between the power receiving electrode 18 and the power transmission line 8. The power receiving electrode 19 is provided with a close space between the power transmission line 9 and is disposed so as to face the electric force line between the power receiving electrode 19 and the power transmission line 9. Thereby, the power receiving electrodes 18 and 19 are arranged so as to be mainly capacitively coupled to the power transmission antenna 4, and can receive electric fields mainly from the respective power transmission lines 8 and 9 installed in the periphery on the power receiving surface.

これらの受電電極18、19のうち、一方の受電電極19はコイル16の一端の上端ノードとなる例えば端子16aにおいて電気的に短絡接続されている。他方の受電電極18はコイル16の他端の下端ノードとなる例えば端子16bにおいて電気的に短絡接続されている。   Of these power receiving electrodes 18 and 19, one power receiving electrode 19 is electrically short-circuited at, for example, a terminal 16 a serving as an upper end node of one end of the coil 16. The other power receiving electrode 18 is electrically short-circuited at, for example, a terminal 16b which is the lower end node of the other end of the coil 16.

前記した構成の作用について説明する。図4に示すように、給電回路5が送電アンテナ4に交流電力を出力すると送電アンテナ4には定在波を生じる。図4の定在波は例えば終端器7が短絡線路により構成されているときの例を示すものであり、受電装置3a〜3eの設置位置に応じた電流振幅分布及び電圧振幅分布を概略的に示す。このとき電流振幅や電圧振幅は送電アンテナ4の領域に応じて大きく変化する。   The operation of the above configuration will be described. As shown in FIG. 4, when the power feeding circuit 5 outputs AC power to the power transmission antenna 4, a standing wave is generated in the power transmission antenna 4. The standing wave of FIG. 4 shows an example when the terminator 7 is constituted by a short-circuit line, for example, and schematically shows the current amplitude distribution and the voltage amplitude distribution according to the installation positions of the power receiving devices 3a to 3e. Show. At this time, the current amplitude and voltage amplitude vary greatly depending on the region of the power transmission antenna 4.

送電アンテナ4は電力を外部に放射するときに特定開口13aから交流電力を大きく放射する。図1に示すように、受電アンテナ10は、送電アンテナ4の交流磁場による磁束を開口14に鎖交することで起電力を生じこの起電力により受電できる。この起電力は負荷回路11に供給される。このとき、送電補助装置15のコイル16もまた、送電アンテナ4から発せられる交流磁場による磁束を鎖交し誘導起電力を発生する。また、受電電極18、19は、それぞれ送電線8、9の周辺に配置されている。このため受電電極18、19は送電線8、9が発生する交流電力を電界により受電できる。また、キャパシタ17がコイル16と並列接続されており、給電回路5が供給する交流電力の周波数と同一周波数にて共振するように構成されている。このため、コイル16に通電する電流を極力増大させることができ、送電補助装置15のコイル16の開口20から発せられる交流磁場を大きくでき、受電アンテナ10に生じる誘導起電力を大きくできる。   The power transmission antenna 4 radiates AC power greatly from the specific opening 13a when radiating power to the outside. As shown in FIG. 1, the power receiving antenna 10 generates electromotive force by linking the magnetic flux generated by the alternating magnetic field of the power transmitting antenna 4 to the opening 14 and can receive power by this electromotive force. This electromotive force is supplied to the load circuit 11. At this time, the coil 16 of the power transmission auxiliary device 15 also links the magnetic flux generated by the AC magnetic field generated from the power transmission antenna 4 to generate an induced electromotive force. The power receiving electrodes 18 and 19 are arranged around the power transmission lines 8 and 9, respectively. Therefore, the power receiving electrodes 18 and 19 can receive AC power generated by the power transmission lines 8 and 9 by an electric field. The capacitor 17 is connected in parallel with the coil 16 and is configured to resonate at the same frequency as the frequency of the AC power supplied by the power feeding circuit 5. For this reason, the current flowing through the coil 16 can be increased as much as possible, the AC magnetic field generated from the opening 20 of the coil 16 of the power transmission auxiliary device 15 can be increased, and the induced electromotive force generated in the power receiving antenna 10 can be increased.

図6は発明者らによる回路シミュレーション結果を示している。この回路シミュレーション結果は、送電線8及び受電電極18間並びに送電線9及び受電電極19間の対向領域を同一とし、これらの結合特定を様々な容量Cpの値に変更したときの結果を示している。このシミュレーション結果は、図4に示す各位置Na、Nb、Nc(領域R4、R2、R3)に設置された受電装置3d、3b、3cへの給電量[dB]を示す。シミュレーション条件としては、XY平面において送電線8及び受電電極18が対向する対向長と送電線9及び受電電極19が対向する対向長とを同一値とし、コイル16のインダクタンス値を10[μH]、キャパシタ17の容量値を50[pF]としている。   FIG. 6 shows a circuit simulation result by the inventors. This circuit simulation result shows the result when the opposing regions between the power transmission line 8 and the power receiving electrode 18 and between the power transmission line 9 and the power receiving electrode 19 are the same, and the coupling specification is changed to various values of the capacitance Cp. Yes. This simulation result indicates the power supply [dB] to the power receiving devices 3d, 3b, and 3c installed at the respective positions Na, Nb, and Nc (regions R4, R2, and R3) illustrated in FIG. As simulation conditions, the opposing length in which the power transmission line 8 and the power receiving electrode 18 face each other on the XY plane and the opposing length in which the power transmission line 9 and the power receiving electrode 19 face each other have the same value, and the inductance value of the coil 16 is 10 [μH], The capacitance value of the capacitor 17 is 50 [pF].

図6に示すように、受電電極18、19をなくして容量Cpを設けないときには給電量が比較的低くなるが、容量Cpを設けることで給電量を増加できることがわかる。特に、適切(pFオーダー程度)な値の容量Cpで送電線路4及び受電電極18、19間を結合することで、受電装置3d、3b、3cがどのような位置Na、Nb、Nc(領域R4、R2、R3)に設置されたとしても、受電装置3d、3b、3cへの給電量を大幅に増加できることがわかる。   As shown in FIG. 6, when the power receiving electrodes 18 and 19 are eliminated and the capacitor Cp is not provided, the power supply amount is relatively low, but it can be seen that the power supply amount can be increased by providing the capacitor Cp. In particular, by connecting the power transmission line 4 and the power receiving electrodes 18 and 19 with a capacitance Cp having an appropriate value (about pF order), the power receiving devices 3d, 3b, and 3c can be in any position Na, Nb, Nc (region R4). , R2, R3), it can be seen that the amount of power supplied to the power receiving devices 3d, 3b, 3c can be greatly increased.

また、図6に示すように、受電装置3d、3b、3cの設置位置(領域)に応じて、この改善度が変化することが確認された。例えば電流振幅が大きく電圧振幅の小さい領域R3(位置Nc:図4参照)に受電装置3cが設置されているとき、この受電装置3cへの給電量の改善度は低い。しかし、例えば電流振幅が小さく電圧振幅の大きい領域R4(位置Na:図4参照)に受電装置3dが設置されているときには改善度が大幅に大きくなる。したがって、受電装置3dの受電アンテナ10が電流振幅の小さい領域に設置されているときに給電量を大幅に増加させることができ特に顕著な効果を奏する。   Moreover, as shown in FIG. 6, it was confirmed that this improvement degree changes according to the installation position (area | region) of the power receiving apparatus 3d, 3b, 3c. For example, when the power receiving device 3c is installed in the region R3 (position Nc: see FIG. 4) where the current amplitude is large and the voltage amplitude is small, the improvement in the amount of power supplied to the power receiving device 3c is low. However, for example, when the power receiving device 3d is installed in the region R4 (position Na: see FIG. 4) where the current amplitude is small and the voltage amplitude is large, the degree of improvement is greatly increased. Therefore, when the power receiving antenna 10 of the power receiving device 3d is installed in a region where the current amplitude is small, the power supply amount can be greatly increased, and a particularly remarkable effect is achieved.

定在波の電流が節となる位置Naでは電流振幅が小さくなるため、送電アンテナ4の周辺に発生する磁界も弱くなり、この磁界に応じて受電アンテナ10に誘起される誘導起電力も小さくなることが想定される。しかし、送電補助装置15を設けることで、送電線8、9、送電補助装置15及び受電アンテナ10間の相互誘導作用に応じて、受電アンテナ10の開口14側に生じさせる磁場を大きくでき、これにより受電装置3dへの給電量を大きくできると推定される。特に、この図6に示すシミュレーション結果を考慮すれば、送電補助装置15を設けることで、送電線8、9から発せられる電界による受電作用が強く働くことが推定され、この作用に応じて位置Na(領域R4)に設置された受電装置3dへの給電量を大幅に増大できる。   Since the current amplitude becomes small at the position Na where the current of the standing wave becomes a node, the magnetic field generated around the power transmission antenna 4 also becomes weak, and the induced electromotive force induced in the power receiving antenna 10 according to this magnetic field also becomes small. It is assumed that However, by providing the power transmission auxiliary device 15, the magnetic field generated on the opening 14 side of the power receiving antenna 10 can be increased according to the mutual induction action between the power transmission lines 8 and 9, the power transmission auxiliary device 15 and the power receiving antenna 10. Therefore, it is estimated that the amount of power supplied to the power receiving device 3d can be increased. In particular, in consideration of the simulation result shown in FIG. 6, it is estimated that the power receiving action due to the electric field emitted from the power transmission lines 8 and 9 works strongly by providing the power transmission auxiliary device 15, and the position Na is determined according to this action. The amount of power supplied to the power receiving device 3d installed in (region R4) can be significantly increased.

まとめると、送電アンテナ4の電流振幅の低い領域R4(位置Na)においては、送電アンテナ4による電圧振幅が高くなる(電圧が節、電流が腹)。この領域R4(位置Na)においては、送電補助装置15は電界を主結合として受電し、受電装置3dは送電補助装置15の受電電力に応じて給電量を高めることができる。逆に、送電アンテナ4の電圧振幅の低い領域R3(位置Nc)においては、送電アンテナ4の電流振幅が高くなる(電圧が腹、電流が節)。この領域R3では、送電補助装置15は磁界を主結合として受電し、受電装置3cは送電補助装置15の受電電力に応じて給電量を高めることができる。これにより、電流振幅分布、電圧振幅分布が連続的に変化する送電線8、9を適用した場合に、電流振幅、電圧振幅の異なる如何なる領域R1〜R5に受電装置3a〜3eを設置したとしても、当該受電装置3a〜3eへの給電量を高く保つことができる。   In summary, in the region R4 (position Na) where the current amplitude of the power transmission antenna 4 is low, the voltage amplitude by the power transmission antenna 4 becomes high (voltage is node and current is antinode). In this region R4 (position Na), the power transmission assisting device 15 receives the electric field as the main coupling, and the power receiving device 3d can increase the power supply amount according to the received power of the power transmission assisting device 15. Conversely, in the region R3 (position Nc) where the voltage amplitude of the power transmission antenna 4 is low, the current amplitude of the power transmission antenna 4 becomes high (the voltage is antinode and the current is node). In this region R <b> 3, the power transmission assisting device 15 receives power with the magnetic field as the main coupling, and the power receiving device 3 c can increase the power supply amount according to the received power of the power transmission assisting device 15. As a result, when the power transmission lines 8 and 9 in which the current amplitude distribution and the voltage amplitude distribution continuously change are applied, even if the power receiving devices 3a to 3e are installed in any region R1 to R5 having different current amplitude and voltage amplitude. The power supply amount to the power receiving devices 3a to 3e can be kept high.

本実施形態によれば、送電補助装置15はコイル16の開口20が送電線8、9の周辺に生じる磁束の鎖交領域に配置されているため開口20に鎖交する磁界により電力を受電できる。送電補助装置15は受電電極18、19が送電アンテナ4から電界を主結合として受電するように構成されている。このため、この受電作用に応じて受電装置3a〜3eに伝送する電力伝送効率を高めることができる。したがって、たとえ送電アンテナ4に電流振幅の低い領域(例えば領域R4)が存在する場合であっても、電力伝送効率を高めることができる。   According to the present embodiment, the power transmission auxiliary device 15 can receive power by the magnetic field interlinked with the opening 20 because the opening 20 of the coil 16 is disposed in the interlinkage region of the magnetic flux generated around the power transmission lines 8 and 9. . The power transmission auxiliary device 15 is configured such that the power receiving electrodes 18 and 19 receive power from the power transmitting antenna 4 with the electric field as the main coupling. For this reason, the power transmission efficiency transmitted to the power receiving apparatuses 3a to 3e according to the power receiving action can be increased. Therefore, even if the power transmission antenna 4 includes a region with a low current amplitude (for example, the region R4), the power transmission efficiency can be increased.

受電電極18、19は、コイル16の外周に沿って配置されているため、コイル16の開口20から発せられる磁界を遮ることなく設置できる。この結果、受電アンテナ10に発せられる磁界を極力高くできる。また、受電電極18、19は、平板状の面が送電線8、9にそれぞれ対向するように配置されており、送電線8、9から主に電界により受電する作用を大きくできる。   Since the power receiving electrodes 18 and 19 are disposed along the outer periphery of the coil 16, the power receiving electrodes 18 and 19 can be installed without blocking the magnetic field generated from the opening 20 of the coil 16. As a result, the magnetic field emitted to the power receiving antenna 10 can be made as high as possible. In addition, the power receiving electrodes 18 and 19 are arranged so that the flat surfaces thereof face the power transmission lines 8 and 9, respectively, and the action of receiving power from the power transmission lines 8 and 9 mainly by an electric field can be increased.

(第2実施形態)
図7(a)及び図7(b)は第2実施形態の追加説明図を示す。図7(a)、図7(b)は図2の送電補助装置15に代わる送電補助装置115、215の縦断側面図であり、第1実施形態と異なるところは、受電電極118、119、218、219の形状にある。第1実施形態と同一の機能を有する部分には同一の符号を付して必要に応じて説明を省略し、以下、異なる部分を中心に説明する。
(Second Embodiment)
FIG. 7A and FIG. 7B show additional explanatory views of the second embodiment. 7A and 7B are longitudinal side views of power transmission auxiliary devices 115 and 215 that replace the power transmission auxiliary device 15 of FIG. 2. The difference from the first embodiment is that of the power receiving electrodes 118, 119 and 218. 219 shape. Portions having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted as necessary. Hereinafter, different portions will be mainly described.

図7(a)に示す送電補助装置115は、受電電極118、119を備える。受電電極118、119は、それぞれX−Y平面に沿う半円環状(Y−Z断面では“(”又は“)”の括弧状)に構成される。受電電極118、119は、X−Y平面のコイル16の周方向においてどの位置で切断しても同一の「括弧状」の構造を備える。図7(a)に示すように、これらの受電電極118、119は、それぞれ送電線8、9と距離Wを保って配置されているが、この距離Wを極力短くすることが望ましく、これにより容量結合性を高めることができる。   The power transmission auxiliary device 115 illustrated in FIG. 7A includes power receiving electrodes 118 and 119. The power receiving electrodes 118 and 119 are each configured in a semi-annular shape along the XY plane (in the YZ cross section, “(” or “)” bracket shape). The power receiving electrodes 118 and 119 have the same “bracket-like” structure regardless of where they are cut in the circumferential direction of the coil 16 on the XY plane. As shown in FIG. 7A, these power receiving electrodes 118 and 119 are arranged at a distance W from the power transmission lines 8 and 9, respectively. However, it is desirable to shorten this distance W as much as possible. Capacitive coupling can be improved.

図7(b)に示す送電補助装置215は、受電電極218、219が例えばY−Z平面で一部分断されX−Y平面に沿った円環状(Y−Z断面ではC字状)に構成されている(図7(b)の切欠218a、219a参照)。これにより図7(a)に示す構成と比較してもさらに容量結合性を高めることができる。図7(a)及び図7(b)に示す例では、受電電極218、219は送電線8、9と一定の距離Wとなるように配置されているが、この距離Wを極力短くすることが望ましく、これにより容量結合性を高めることができる。   The power transmission auxiliary device 215 shown in FIG. 7B is configured in an annular shape (C-shaped in the YZ cross section) along the XY plane with the power receiving electrodes 218 and 219 partially cut along the YZ plane, for example. (See the notches 218a and 219a in FIG. 7B). As a result, even when compared with the configuration shown in FIG. In the example shown in FIGS. 7A and 7B, the power receiving electrodes 218 and 219 are arranged so as to be at a constant distance W from the power transmission lines 8 and 9, but this distance W should be shortened as much as possible. It is desirable to increase the capacitive coupling property.

(第3実施形態)
図8は第3実施形態の追加説明図を示す。図8は図7(a)に代えて示す模式的な縦断側面図であり、第1又は第2実施形態と異なるところは、誘電体21を送電線8と受電電極118との間に挿入すると共に、誘電体22を送電線9と受電電極119との間に挿入したところにある。図8に示すように、送電線8と受電電極118との間には比誘電率(εr)が1より高い誘電体21が設けられている。送電線9と受電電極119との間には比誘電率(εr)が1より高い誘電体22が設けられている。これにより、送電線8、9と受電電極118、119とのそれぞれの間の容量結合性を高めることができる。なお、図8は図7(a)の構成を前提として誘電体21、22を設けた例を示したが、例えば図2に示す送電補助装置15の受電電極18、19と送電線8、9とのそれぞれの間や、例えば図7(b)に示す送電補助装置215の受電電極218、219と送電線8、9とのそれぞれの間に、それぞれ誘電体21、22を設けても良い。
(Third embodiment)
FIG. 8 shows an additional explanatory diagram of the third embodiment. FIG. 8 is a schematic longitudinal side view shown in place of FIG. 7A, and differs from the first or second embodiment in that the dielectric 21 is inserted between the power transmission line 8 and the power receiving electrode 118. At the same time, the dielectric 22 is inserted between the power transmission line 9 and the power receiving electrode 119. As shown in FIG. 8, a dielectric 21 having a relative dielectric constant (εr) higher than 1 is provided between the power transmission line 8 and the power receiving electrode 118. A dielectric 22 having a relative dielectric constant (εr) higher than 1 is provided between the power transmission line 9 and the power receiving electrode 119. Thereby, the capacitive coupling between each of the power transmission lines 8 and 9 and the power receiving electrodes 118 and 119 can be improved. 8 shows an example in which the dielectrics 21 and 22 are provided on the premise of the configuration of FIG. 7A. For example, the power receiving electrodes 18 and 19 and the power transmission lines 8 and 9 of the power transmission auxiliary device 15 shown in FIG. The dielectrics 21 and 22 may be provided between the power receiving electrodes 218 and 219 and the power transmission lines 8 and 9 of the power transmission auxiliary device 215 shown in FIG.

(第4実施形態)
図9及び図10は第4実施形態の追加説明図を示す。第4実施形態が第1実施形態と異なるところは、受電電極318a〜318f、319a〜319fが一対の送電線8、9のそれぞれに複数対向するように設けられているところにある。図9は図1に代えて示す無線給電システム301の模式的な平面図を示しており、図10は対向部分の斜視図を模式的に示している。無線給電システム301は送電補助装置315を備え、送電補助装置315は複数の受電電極318a〜318f、319a〜319fを備える。
(Fourth embodiment)
9 and 10 show additional explanatory views of the fourth embodiment. The fourth embodiment is different from the first embodiment in that power receiving electrodes 318a to 318f and 319a to 319f are provided so as to face each of the pair of power transmission lines 8 and 9. 9 shows a schematic plan view of a wireless power feeding system 301 shown in place of FIG. 1, and FIG. 10 schematically shows a perspective view of a facing portion. The wireless power feeding system 301 includes a power transmission auxiliary device 315, and the power transmission auxiliary device 315 includes a plurality of power receiving electrodes 318a to 318f and 319a to 319f.

図9及び図10に模式的な構造を示すように、複数の受電電極318a〜318f、319a〜319fは、送電線8、9とそれぞれ対向する部分が複数(2つ以上)に分離して設けられている。また図10に示すように、複数の受電電極318a〜318fは、コイル16の上端ノード側である端子16a側に短絡接続されており、複数の受電電極319a〜319fは、コイル16の下端ノード側である端子16b側に短絡接続されている。本実施形態においても前述した実施形態と同様の効果を奏する。   9 and 10, the plurality of power receiving electrodes 318a to 318f and 319a to 319f are provided with a plurality (two or more) of portions facing the power transmission lines 8 and 9, respectively. It has been. As shown in FIG. 10, the plurality of power receiving electrodes 318 a to 318 f are short-circuited to the terminal 16 a side which is the upper end node side of the coil 16, and the plurality of power receiving electrodes 319 a to 319 f are the lower end node side of the coil 16. Is short-circuited to the terminal 16b side. In the present embodiment, the same effects as those of the above-described embodiments are obtained.

(第5実施形態)
図11及び図12は第5実施形態の追加説明図を示す。この第5実施形態の無線給電システム401は、一対の送電線路(408、409)のうち、一方が単線408により構成され、他方が単線408から離間して配置されたグランド面409により構成される形態について示す。
(Fifth embodiment)
11 and 12 show additional explanatory views of the fifth embodiment. The wireless power feeding system 401 of the fifth embodiment includes a ground plane 409 in which one of the pair of power transmission lines (408, 409) is configured by a single wire 408 and the other is spaced apart from the single wire 408. It shows about form.

図11は図1に代わる模式的な平面図を示し、図12は図2に代わる模式的な縦断側面図を示す。図11に示すように、グランド面409が例えば平板状にX−Y方向に沿って設置されている。このグランド面409はアース面(等電位面相当)として設置される。単線408が、このグランド面409の面法線方向(例えばZ方向)に離間してグランド面409と並行に設けられている。本実施形態において「一対の送電線路」はこれらの単線408及びグランド面409により非平衡線路として構成される。   11 shows a schematic plan view instead of FIG. 1, and FIG. 12 shows a schematic vertical side view instead of FIG. As shown in FIG. 11, the ground surface 409 is installed along the XY direction, for example in flat form. The ground plane 409 is installed as an earth plane (equivalent potential plane). A single wire 408 is provided in parallel with the ground surface 409 so as to be separated in the surface normal direction (for example, the Z direction) of the ground surface 409. In the present embodiment, the “pair of power transmission lines” is configured as an unbalanced line by the single line 408 and the ground plane 409.

単線408は、グランド面409の面法線方向に離間して、1又は複数回XY方向に沿って巻回されることで前述実施形態の「特定開口13a」に相当する開口ループ413aを備える。給電回路5が、交流電力を単線408及びグランド面409に出力することで受電アンテナ10は開口ループ413aから大きな電力を受電でき、負荷回路11に電力を供給できる。   The single wire 408 includes an opening loop 413a that is spaced apart in the surface normal direction of the ground surface 409 and wound along the XY direction one or more times to correspond to the “specific opening 13a” of the above-described embodiment. When the power feeding circuit 5 outputs AC power to the single line 408 and the ground plane 409, the power receiving antenna 10 can receive large power from the opening loop 413 a and can supply power to the load circuit 11.

図11及び図12に示すように、開口ループ413aの周辺(近傍界)には送電補助装置415が設置されている。この送電補助装置415は、コイル16、キャパシタ17、単線用受電電極(受電電極相当)418、及び、グランド面用受電電極(受電電極相当)419を接続して構成される。コイル16、キャパシタ17の構成及び接続形態は、第1実施形態で説明したコイル16、キャパシタ17と同様である。   As shown in FIGS. 11 and 12, a power transmission auxiliary device 415 is installed in the vicinity (near field) of the opening loop 413a. The power transmission auxiliary device 415 is configured by connecting a coil 16, a capacitor 17, a single wire power receiving electrode (corresponding to a power receiving electrode) 418, and a ground surface power receiving electrode (corresponding to a power receiving electrode) 419. The configurations and connection forms of the coil 16 and the capacitor 17 are the same as those of the coil 16 and the capacitor 17 described in the first embodiment.

このコイル16は、単線408の開口ループ413aのXY方向内側に位置して配設され、コイル16の開口20の面法線方向がZ方向に向かうように配置される。これによりコイル16は、その開口20が単線408から発せられる磁束を鎖交するように配置され、例えば単線408が形成する磁場と交差(例えば直交)する方向に配置されている。   The coil 16 is disposed on the inner side in the XY direction of the opening loop 413a of the single wire 408, and is disposed so that the surface normal direction of the opening 20 of the coil 16 is directed in the Z direction. Thus, the coil 16 is arranged so that the opening 20 is linked with the magnetic flux generated from the single wire 408, and is arranged in a direction intersecting (eg, orthogonal to) the magnetic field formed by the single wire 408, for example.

このコイル16の両端子16a、16b間にはキャパシタ17が接続されている。キャパシタ17は、給電回路5が出力する交流電力の周波数と同一周波数にて共振するようにコイル16と並列接続されている。なお、キャパシタ17は設けても設けなくても良く、さらにキャパシタ17を接続形態で設けたとしても、給電回路5が出力する交流電力の周波数と同一周波数で共振するような容量値に設定しなくても良い。   A capacitor 17 is connected between both terminals 16 a and 16 b of the coil 16. The capacitor 17 is connected in parallel with the coil 16 so as to resonate at the same frequency as the frequency of the AC power output from the power feeding circuit 5. Note that the capacitor 17 may or may not be provided, and even if the capacitor 17 is provided in a connected form, it is not set to a capacitance value that resonates at the same frequency as the frequency of the AC power output from the power supply circuit 5. May be.

例えば、コイル16がX−Y平面に沿って環状に巻かれると共にZ方向に向けて螺旋状に巻回された有限長ソレノイドにより構成されているときには、キャパシタ17はその一端が有限長ソレノイドの螺旋筒状の上端ノードとなる端子16aに構造的に接続されており、その他端が有限長ソレノイドの螺旋筒状の下端ノードとなる端子16bに構造的に接続されている。   For example, when the coil 16 is formed of a finite length solenoid wound in a ring shape along the XY plane and spirally wound in the Z direction, the capacitor 17 has one end of a spiral of a finite length solenoid. The other end is structurally connected to a terminal 16b which is a spiral cylindrical lower end node of a finite length solenoid.

また単線用受電電極418はコイル16の例えばXY方向の外周に沿って配置されている。この単線用受電電極418は例えば導電性部材が所定形状(例えば平板状部材をX−Y方向の円形に曲げ成型)にされた状態で単線408の内側の開口ループ413aの内部にその一部を設けて配置されている。   The single-wire power receiving electrode 418 is disposed along the outer periphery of the coil 16 in the XY direction, for example. For example, a part of the power receiving electrode 418 for the single wire is placed inside the opening loop 413a inside the single wire 408 in a state where the conductive member is formed in a predetermined shape (for example, a flat plate member is bent into a circle in the XY direction). It is provided and arranged.

この単線用受電電極418は単線408との間に近接空間を設けており当該単線用受電電極418と単線408との間に電気力線が延びて容量結合するよう構成される。この単線用受電電極418は、単線408の内側に沿って例えば単線408との間に所定距離離間して配置される。単線用受電電極418はその周辺に位置する単線408との間で主に電界により受電するために設けられる。これにより単線用受電電極418は単線408と容量結合するように配置される。   The single-wire power receiving electrode 418 is provided with a close space between the single wire 408, and electric lines of force extend between the single-wire power receiving electrode 418 and the single wire 408 so as to be capacitively coupled. The single-wire power receiving electrode 418 is arranged along the inner side of the single wire 408 and separated from the single wire 408 by a predetermined distance, for example. The single-wire power receiving electrode 418 is provided to receive power mainly by an electric field between the single-wire power receiving electrode 418 and the single wire 408 positioned in the vicinity thereof. Thus, the single-wire power receiving electrode 418 is disposed so as to be capacitively coupled to the single wire 408.

他方、グランド面用受電電極419はグランド面409に対応して配置される。このグランド面用受電電極419は例えば導電性部材が所定形状(例えば平板状部材を円環板状に打ち抜き成型)にされた状態でグランド面409のZ方向の周辺に位置して設置されており、グランド面用受電電極419とグランド面409との間に電気力線が延びて容量結合するように配置される。図11及び図12に示す例では、グランド面用受電電極419は平円環板状に形成され、この平円環板状の面とグランド面409の板状の面とが対向配置されている。   On the other hand, the ground plane power receiving electrode 419 is arranged corresponding to the ground plane 409. The ground-surface power receiving electrode 419 is installed, for example, in the vicinity of the ground surface 409 in the Z direction in a state in which the conductive member has a predetermined shape (for example, a flat plate member is punched into a ring shape). The electric lines of force extend between the ground plane power receiving electrode 419 and the ground plane 409 so as to be capacitively coupled. In the example shown in FIGS. 11 and 12, the ground plane power receiving electrode 419 is formed in a flat annular plate shape, and the flat annular plate-like surface and the plate-like surface of the ground surface 409 are arranged to face each other. .

単線用受電電極418は、コイル16の一端の例えば上端ノードとなる端子16aにて例えば短絡接続されている。また、グランド面用受電電極419は、コイル16の他端の例えば下端ノードとなる端子16bにて例えば短絡接続されている。この結果、本実施形態における非平衡タイプの送電線路408、409に適用した電気的構成でも、第1実施形態の送電線8、9に適用した電気的構成と同様の関係となり、前述の実施形態と同様の効果を奏する。   The single-wire power receiving electrode 418 is short-circuited, for example, at a terminal 16 a serving as an upper end node of one end of the coil 16. In addition, the ground-side power receiving electrode 419 is short-circuited, for example, at a terminal 16 b that is, for example, a lower end node of the other end of the coil 16. As a result, the electrical configuration applied to the unbalanced type transmission lines 408 and 409 in the present embodiment also has the same relationship as the electrical configuration applied to the transmission lines 8 and 9 in the first embodiment. Has the same effect as.

また、グランド面用受電電極419は、図11及び図12に示すように、コイル16のXY方向の外周に設置されていることが望ましく、この場合、コイル16の開口20を遮らないようにできるため、受電アンテナ10へ発せられる磁界を極力大きくできる。   Further, as shown in FIGS. 11 and 12, the ground surface power receiving electrode 419 is preferably installed on the outer periphery in the XY direction of the coil 16, and in this case, the opening 20 of the coil 16 can be prevented from being blocked. Therefore, the magnetic field emitted to the power receiving antenna 10 can be increased as much as possible.

(第6実施形態)
図13は第6実施形態の追加説明図を示す。図13は図2に代わる模式的な縦断側面図を示す。本実施形態が第1実施形態と異なるところは、一対の受電電極518、519が一対の送電線8、9に対応づけて、その外周に設置されているところにある。
(Sixth embodiment)
FIG. 13 is an additional explanatory diagram of the sixth embodiment. FIG. 13 shows a schematic longitudinal side view instead of FIG. This embodiment is different from the first embodiment in that a pair of power receiving electrodes 518 and 519 are installed on the outer periphery of the pair of power transmission lines 8 and 9.

送電補助装置515は、一対の受電電極518、519を備える。この一対の受電電極518、519はコイル16の周辺に設置されており、コイル16と短絡接続されている。これらの受電電極518、519は、コイル16のXY方向の外周に沿うと共に送電線8、9の外周に沿って各送電線8、9に対応してそれぞれ配置されている。受電電極518、519のその他の構成は受電電極18、19と同様の構成であるため、その説明を省略する。このような第6実施形態においても前述実施形態と同様の作用効果を奏するようになる。   The power transmission auxiliary device 515 includes a pair of power receiving electrodes 518 and 519. The pair of power receiving electrodes 518 and 519 are installed around the coil 16 and are short-circuited to the coil 16. These power receiving electrodes 518 and 519 are arranged along the outer circumference of the coil 16 in the XY direction and along the outer circumference of the power transmission lines 8 and 9, respectively, corresponding to the power transmission lines 8 and 9. The other configurations of the power receiving electrodes 518 and 519 are the same as those of the power receiving electrodes 18 and 19, and thus the description thereof is omitted. Also in the sixth embodiment, the same operational effects as those of the above-described embodiment are obtained.

(他の実施形態)
前述した実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。これらの各実施形態の構成は適宜組み合わせて適用できることは言うまでもない。特に図7を用いて説明した第3実施形態の誘電体21、22は、図2、図7(a)、図7(b)の各構造に関わらず、図12に示す単線用受電電極418と単線408との間、又は、グランド面用受電電極419とグランド面409との間に設けても良い。特に図6(b)のように、一部切欠218a、219aを設けた円環状の受電電極218、219と送電線8、9との間に、図7に示した誘電体21、22を挿入し、給電回路5が出力する交流電力の周波数をキャパシタ17とコイル16の共振周波数として送電した場合に、電力伝送効率を大幅に増大可能な望ましい形態となる。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and for example, the following modifications or expansions are possible. It goes without saying that the configurations of these embodiments can be applied in appropriate combinations. In particular, the dielectrics 21 and 22 of the third embodiment described with reference to FIG. 7 have the single-wire power receiving electrode 418 shown in FIG. 12 regardless of the structures of FIG. 2, FIG. 7A and FIG. And the single wire 408 or between the ground plane power receiving electrode 419 and the ground plane 409. In particular, as shown in FIG. 6B, the dielectrics 21 and 22 shown in FIG. 7 are inserted between the annular power receiving electrodes 218 and 219 provided with partially cutouts 218a and 219a and the power transmission lines 8 and 9, respectively. Then, when power is transmitted with the frequency of the AC power output from the power supply circuit 5 as the resonance frequency of the capacitor 17 and the coil 16, the power transmission efficiency can be significantly increased.

「一対の送電線路」としては、前述した形態に挙げた形態に限られず、例えば平行2線路に適用しても良い。すなわち、送電線8、9を平行に設置した形態に適用しても良い。   The “pair of power transmission lines” is not limited to the above-described forms, and may be applied to, for example, parallel two lines. That is, you may apply to the form which installed the power transmission lines 8 and 9 in parallel.

図面中、1、301、401は無線給電システム、2は送電装置、3a〜3eは受電装置、8,9は送電線(送電線路)、15、115、215、315、415、515は送電補助装置、16はコイル、20は開口、408は単線(送電線路)、409はグランド面(送電線路、等電位面)、18,19;118,119;218,219;318a〜318f,319a〜319f;418,419;518,519は一対の受電電極、R1〜R5は領域(所定領域)、を示す。   In the drawings, 1, 301 and 401 are wireless power feeding systems, 2 is a power transmission device, 3a to 3e are power reception devices, 8 and 9 are power transmission lines (power transmission lines), 15, 115, 215, 315, 415 and 515 are power transmission assists. Device, 16 is a coil, 20 is an opening, 408 is a single wire (power transmission line), 409 is a ground plane (power transmission line, equipotential surface), 18, 19; 118, 119; 218, 219; 318a to 318f, 319a to 319f 418, 419; 518, 519 are a pair of power receiving electrodes, and R1 to R5 are regions (predetermined regions).

Claims (12)

送電装置(2)が一対の送電線路(8,9;408,409)に電流振幅分布が連続的に変化するように交流電力を出力し受電装置(3a〜3e)が所定領域(R1〜R5)の送電線路から受電するように構成され、
前記一対の送電線路に電流振幅分布が連続的に変化するように交流電力が出力されることに応じて前記送電線路の周辺に生じる磁束の鎖交領域に開口(20)が配置されたコイル(16)と、
前記一対の送電線路に対応づけてそれぞれ1つ以上を配置し前記送電線路から電界により受電する一対の受電電極(18,19;118,119;218,219;318a〜318f,319a〜319f;418,419;518,519)と、
を備える送電補助装置。
The power transmission device (2) outputs AC power so that the current amplitude distribution continuously changes to the pair of power transmission lines (8, 9; 408, 409), and the power reception devices (3a to 3e) have predetermined regions (R1 to R5). ) To receive power from the transmission line,
A coil in which an opening (20) is arranged in an interlinkage region of magnetic flux generated around the transmission line in response to output of AC power so that a current amplitude distribution continuously changes in the pair of transmission lines. 16)
A pair of power receiving electrodes (18, 19; 118, 119; 218, 219; 318a to 318f, 319a to 319f; 418), each of which is disposed in correspondence with the pair of power transmission lines and receives electric power from the power transmission line by an electric field. , 419; 518, 519), and
A power transmission auxiliary device.
請求項1記載の送電補助装置において、
前記一対の受電電極は前記コイルの外周に沿って配置される送電補助装置。
In the power transmission auxiliary device according to claim 1,
The pair of power receiving electrodes are power transmission auxiliary devices arranged along an outer periphery of the coil.
請求項1または2記載の送電補助装置において、
前記一対の受電電極はそれぞれ板状に構成された受電面を含み、これらの受電面が前記一対の送電線路のそれぞれに対向するように設置される送電補助装置。
The power transmission auxiliary device according to claim 1 or 2,
Each of the pair of power receiving electrodes includes a power receiving surface configured in a plate shape, and the power receiving auxiliary device is installed so that these power receiving surfaces face each of the pair of power transmission lines.
請求項1から3の何れか一項に記載の送電補助装置において、
前記一対の受電電極(318a〜318f,319a〜319f)は前記一対の送電線路のそれぞれに複数対向するように設けられる送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 3,
The pair of power receiving electrodes (318a to 318f, 319a to 319f) is a power transmission auxiliary device provided so as to be opposed to each of the pair of power transmission lines.
請求項1から4の何れか一項に記載の送電補助装置において、
前記一対の送電線路と前記一対の受電電極との間にそれぞれ誘電体(21,22)をさらに備える送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 4,
A power transmission auxiliary device further comprising a dielectric (21, 22) between the pair of power transmission lines and the pair of power receiving electrodes, respectively.
請求項1から5の何れか一項に記載の送電補助装置において、
前記交流電力の周波数と同一周波数で共振するように前記コイルに電気的に接続されたキャパシタ(17)をさらに備える送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 5,
A power transmission auxiliary device further comprising a capacitor (17) electrically connected to the coil so as to resonate at the same frequency as the frequency of the AC power.
請求項1から6の何れか一項に記載の送電補助装置において、
前記一対の送電線路(8,9)は互いに対向して配置され、前記コイル(16)は前記一対の送電線路の対向領域にその少なくとも一部が配置されている送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 6,
The pair of power transmission lines (8, 9) are disposed to face each other, and the coil (16) is a power transmission auxiliary device in which at least a part of the coil (16) is disposed in an opposed region of the pair of power transmission lines.
請求項1から7の何れか一項に記載の送電補助装置において、
前記一対の送電線路(8,9)は、端部が接続された一対のツイスト線を備える送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 7,
The pair of power transmission lines (8, 9) is a power transmission auxiliary device including a pair of twisted wires to which ends are connected.
請求項1から7の何れか一項に記載の送電補助装置において、
前記一対の送電線路(408,409)は、一方が単線(408)、他方が前記単線から離間して配置された等電位面(409)を備えた非平衡線路により構成される送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 7,
The pair of power transmission lines (408, 409) is a power transmission auxiliary device constituted by a non-equilibrium line having an equipotential surface (409) in which one is a single line (408) and the other is spaced apart from the single line.
請求項1から9の何れか一項に記載の送電補助装置において、
前記受電装置(3a〜3e)は複数設置され、これらの複数の受電装置に対応して配置される送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 9,
A plurality of power receiving devices (3a to 3e) are installed, and a power transmission auxiliary device is arranged corresponding to the plurality of power receiving devices.
請求項1から10の何れか一項に記載の送電補助装置において、
前記受電電極(18,19;118,119;218,219;318a〜318f,319a〜319f;418,419)は、前記一対の送電線路と前記コイルとの間にそれぞれ1つ以上対応して配置されている送電補助装置。
In the power transmission auxiliary device according to any one of claims 1 to 10,
One or more of the power receiving electrodes (18, 19; 118, 119; 218, 219; 318a to 318f, 319a to 319f; 418, 419) are arranged in correspondence with each other between the pair of power transmission lines and the coils. Power transmission auxiliary equipment.
請求項1から11の何れか一項に記載の送電補助装置(15、115、215、315、415、515)と、送電装置(2)と、受電装置(3a〜3e)とを備える無線給電システム。   Wireless power feeding comprising the power transmission auxiliary device (15, 115, 215, 315, 415, 515) according to any one of claims 1 to 11, a power transmission device (2), and a power receiving device (3a to 3e). system.
JP2015123677A 2015-06-19 2015-06-19 Power transmission auxiliary device and wireless power supply system Pending JP2017011844A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015123677A JP2017011844A (en) 2015-06-19 2015-06-19 Power transmission auxiliary device and wireless power supply system
PCT/JP2016/002609 WO2016203720A1 (en) 2015-06-19 2016-05-30 Power transmission auxiliary device and wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123677A JP2017011844A (en) 2015-06-19 2015-06-19 Power transmission auxiliary device and wireless power supply system

Publications (1)

Publication Number Publication Date
JP2017011844A true JP2017011844A (en) 2017-01-12

Family

ID=57545335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123677A Pending JP2017011844A (en) 2015-06-19 2015-06-19 Power transmission auxiliary device and wireless power supply system

Country Status (2)

Country Link
JP (1) JP2017011844A (en)
WO (1) WO2016203720A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053945A1 (en) * 2017-09-12 2019-03-21 株式会社村田製作所 Power transmission device and power receiving device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626302B2 (en) * 2012-09-26 2014-11-19 株式会社日本自動車部品総合研究所 Communications system
JP6142413B2 (en) * 2013-06-28 2017-06-07 株式会社エクォス・リサーチ Antenna coil unit
JP6032366B2 (en) * 2013-07-01 2016-11-24 株式会社村田製作所 Wireless power transmission system
JP6059102B2 (en) * 2013-07-10 2017-01-11 株式会社日本自動車部品総合研究所 Power supply system

Also Published As

Publication number Publication date
WO2016203720A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
EP3761329B1 (en) Coil module, wireless charging emission device, wireless charging receiving device, wireless charging system and mobile terminal
CN110289156B (en) Coil winding, coil module, transmitting device, receiving device, system and terminal
EP2700143B1 (en) Resonance type non-contact power feeding system, power transmission side apparatus and in-vehicle charging apparatus of resonance type non-contact power feeding system
CN105720695A (en) Inductive wireless power transfer systems
CN104242480A (en) Leakage preventing device of electromagnetic wave
US7034767B2 (en) Helical coil, Magnetic core antenna
JP2018011475A (en) Receiving device and radio transmission system
AU2002215265A1 (en) An antenna device
JP6148501B2 (en) Power transmission system
WO2016203720A1 (en) Power transmission auxiliary device and wireless power supply system
EP3319207B1 (en) Wireless power transmission device for transmitting power using magnetic field and electric field, and wireless power receiving device for receiving power from the wireless power transmission device
CN105720699A (en) Inductive wireless power transfer systems
CN104919329A (en) TEM resonator-type RF antenna device for a magnetic resonance imaging system
JP2011229202A (en) Wireless power transmission coil
JP6171726B2 (en) Manufacturing method of non-contact power feeding device
KR101371058B1 (en) Coil assembly for power transmission, coil assembly for power receiving and wireless power transfer apparatus using electric resonance
JP6173588B2 (en) Antenna device
JP6567329B2 (en) Resonator
RU2619087C2 (en) Circular ferromagnetic core of high-frequency transformer, extended along cylinder axle
JP2012235630A (en) Wireless power feeding coil unit
JP7287402B2 (en) Wireless power supply system
KR20180071669A (en) Antenna for power transmitting unit
JP2017195707A (en) Wireless power supply device
JP6195502B2 (en) Antenna device
JP2012039230A (en) Antenna device