JP2017009332A - Surface temperature measurement method, heating method, surface temperature measurement device, and heating device - Google Patents

Surface temperature measurement method, heating method, surface temperature measurement device, and heating device Download PDF

Info

Publication number
JP2017009332A
JP2017009332A JP2015122620A JP2015122620A JP2017009332A JP 2017009332 A JP2017009332 A JP 2017009332A JP 2015122620 A JP2015122620 A JP 2015122620A JP 2015122620 A JP2015122620 A JP 2015122620A JP 2017009332 A JP2017009332 A JP 2017009332A
Authority
JP
Japan
Prior art keywords
heating
heated
temperature distribution
moving
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122620A
Other languages
Japanese (ja)
Other versions
JP6725216B2 (en
Inventor
森 俊二
Shunji Mori
俊二 森
政紀 西
Masanori Nishi
政紀 西
章浩 竹内
Akihiro Takeuchi
章浩 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Chubu Electric Power Co Inc filed Critical Fuji Electric Co Ltd
Priority to JP2015122620A priority Critical patent/JP6725216B2/en
Publication of JP2017009332A publication Critical patent/JP2017009332A/en
Application granted granted Critical
Publication of JP6725216B2 publication Critical patent/JP6725216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure appropriate surface temperature distribution even in cases where a surface to be heated is heated while moving a heating medium relatively thereto and the surface temperature distribution of the surface being heated changes in time.SOLUTION: Provided is a surface temperature measurement device for measuring the surface temperature distribution of a surface 1a being heated in cases where a heating object 1 having a surface 1a to be heated and an induction heating coil 2 having a small heating surface as compared with the surface 1a to be heated are relatively moved without touching and the surface 1a to be heated of the heating object 1 is heated, the device comprising: an infrared thermography 4 and a temperature detection unit 11 for measuring the temperature of each mesh area constituting the whole or part of temperature measurement area of the surface 1a to be heated contactlessly every sampling time and accumulating the measured temperatures during one move and heat process by relative movement of the induction heating coil 2 and the heating object 1; and a temperature distribution calculation unit 12 for finding the surface temperature distribution of the temperature measurement area on the basis of the average value of accumulated measured temperatures per mesh area each time one move and heat process is terminated.SELECTED DRAWING: Figure 1

Description

本発明は、被加熱面に対して加熱体を相対的に移動して被加熱面を加熱して被加熱面の表面温度分布が時間的に変化する場合であっても、適正な表面温度分布を測定することができる表面温度測定方法、加熱方法、表面温度測定装置、及び加熱装置に関する。   Even if the surface temperature distribution of the heated surface changes temporally by moving the heating body relative to the heated surface to heat the heated surface, the present invention provides an appropriate surface temperature distribution. The present invention relates to a surface temperature measurement method, a heating method, a surface temperature measurement device, and a heating device.

従来から、加熱対象物の被加熱面を非接触で加熱する方法として、高温の気体を吹き付けて被加熱面の熱伝達を使って加熱する方法、電熱線ヒータ等の高温の発熱体を加熱対象物の被加熱面に接近させ、発熱体からの輻射熱で加熱する方法、ランプヒータ等の赤外線を被加熱面に当て、赤外線による輻射熱で加熱する方法、電磁誘導コイルを用いて被加熱面に誘導電流を誘起させ、加熱対象物の材質による抵抗熱で被加熱面を加熱する方法などがある。   Conventionally, as a method of heating the heated surface of the object to be heated in a non-contact manner, a method in which a high-temperature gas is blown and heated using heat transfer of the heated surface, a heating element such as a heating wire heater is heated. A method of heating an object close to the surface to be heated and radiant heat from a heating element, a method of applying infrared rays such as a lamp heater to the surface to be heated and heating with radiant heat by infrared rays, and induction to the surface to be heated using an electromagnetic induction coil There is a method of inducing an electric current and heating a surface to be heated by resistance heat due to the material of the object to be heated.

ここで、発熱体などの加熱体の寸法より大きい被加熱面を加熱する場合、加熱体を移動して被加熱面を万遍なく撫でるように加熱している。この加熱体を移動させる方法としては、ロボットアーム先端の手首部に加熱体を装着し、ロボットのプログラムに従って加熱体を被加熱面の形状に合わせて移動している。   Here, when a surface to be heated larger than the size of the heating body such as a heating element is heated, the heating body is moved to heat the surface to be heated evenly. As a method of moving the heating body, the heating body is attached to the wrist portion at the tip of the robot arm, and the heating body is moved in accordance with the shape of the surface to be heated in accordance with the program of the robot.

一方、被加熱面の表面温度分布を測定する方法としては、熱電対を被加熱面に貼って測定する方法がある。しかし、熱電対を被加熱面に貼ることは、熱電対自体が加熱されてしまうこと、熱電対の陰の部分が加熱されにくいこと、被加熱面に傷が付くおそれがあること、被加熱面の大きさによっては熱電対の数が膨大となること、などの欠点がある。これに対し、赤外線サーモグラフィー(赤外線画像測定装置)を用いて被加熱面の表面温度分布を測定する方法は、赤外線サーモグラフィー自体が被加熱面に非接触であり、被加熱面の表面温度分布を画素単位で測定できるという利点がある。   On the other hand, as a method of measuring the surface temperature distribution of the heated surface, there is a method of measuring by attaching a thermocouple to the heated surface. However, sticking the thermocouple to the surface to be heated means that the thermocouple itself is heated, the shadow part of the thermocouple is difficult to be heated, the surface to be heated may be damaged, the surface to be heated Depending on the size, the number of thermocouples becomes enormous. On the other hand, the method of measuring the surface temperature distribution of the heated surface using an infrared thermography (infrared image measuring device) is that the infrared thermography itself is not in contact with the heated surface, and the surface temperature distribution of the heated surface is represented by a pixel. There is an advantage that it can be measured in units.

特開平4−174327号公報JP-A-4-174327

ところで、上述したように、加熱体の寸法よりも大きい被加熱面を加熱する場合、加熱体を移動して被加熱面を万遍なく撫でるように加熱している。この場合、加熱体の直下では被加熱面が加熱されて表面温度は高くなるが、加熱体が移動すると、その表面温度が高くなった部分の被加熱面は冷却され、表面温度は低くなる。すなわち、被加熱面内の狭い部分では、加熱体の移動によって、加熱体がこの狭い部分に接近したときは加熱されて表面温度が上昇するが、この狭い部分を離れた後では放熱が継続して表面温度が低下する。そして、この狭い部分は、その後加熱体が再び接近するまで放熱を続け、加熱体が接近した時に再度加熱されて表面温度が上昇する。例えば、図3に示すように、被加熱面の狭い部分の表面温度は、周期的に急激な昇温と緩慢な降温とを繰り返すことになる。   By the way, as mentioned above, when heating the to-be-heated surface larger than the dimension of a heating body, the heating body is moved and it is heated so that a to-be-heated surface may be stroked uniformly. In this case, the surface to be heated is heated immediately below the heating body and the surface temperature is increased. However, when the heating body is moved, the surface to be heated in the portion where the surface temperature is increased is cooled and the surface temperature is decreased. In other words, in the narrow part of the heated surface, when the heating body approaches the narrow part due to the movement of the heating body, it is heated and the surface temperature rises, but after leaving the narrow part, the heat dissipation continues. As a result, the surface temperature decreases. The narrow portion continues to dissipate heat until the heating body approaches again, and is heated again when the heating body approaches to increase the surface temperature. For example, as shown in FIG. 3, the surface temperature of the narrow portion of the surface to be heated repeats rapid temperature rise and slow temperature fall periodically.

したがって、加熱体の寸法よりも大きい被加熱面を加熱する場合であって、加熱体による被加熱面全体に対する1つの移動加熱処理が行われる場合、この1つの移動加熱処理中における被加熱面の表面温度分布は時間的に変化することになる。すなわち、移動中の加熱体の位置によって被加熱面の表面温度分布が異なるものとなる。   Therefore, in the case of heating a surface to be heated that is larger than the size of the heating body, and when one moving heating process is performed on the entire surface to be heated by the heating body, The surface temperature distribution will change over time. That is, the surface temperature distribution of the heated surface varies depending on the position of the moving heating body.

ここで、加熱体による被加熱面に対する移動加熱処理を評価する場合、被加熱面の表面温度分布を用いることになる。しかし、加熱体の移動に伴って被加熱面の表面温度分布が変化するため、適正な移動加熱処理の評価を行うことができない。   Here, when evaluating the moving heat treatment for the heated surface by the heating body, the surface temperature distribution of the heated surface is used. However, since the surface temperature distribution of the surface to be heated changes with the movement of the heating body, it is not possible to evaluate the appropriate moving heat treatment.

なお、特許文献1には、サーモグラフィーを移動させ、赤外線温度画像を複数枚撮像し、広い面積の被加熱面の温度測定を行うものが記載されている。しかし、特許文献1に記載されたものは、被加熱面の表面温度の時間的変化に対応した表面温度分布を測定するものではない。   Japanese Patent Application Laid-Open No. H10-228667 describes a technique for moving a thermography, taking a plurality of infrared temperature images, and measuring the temperature of a heated surface with a large area. However, what is described in Patent Document 1 does not measure the surface temperature distribution corresponding to the temporal change of the surface temperature of the heated surface.

本発明は、上記に鑑みてなされたものであって、被加熱面に対して加熱体を相対的に移動して被加熱面を加熱して被加熱面の表面温度分布が時間的に変化する場合であっても、適正な表面温度分布を測定することができる表面温度測定方法、加熱方法、表面温度測定装置、及び加熱装置を提供することを目的とする。   The present invention has been made in view of the above, and the heating body is moved relative to the surface to be heated to heat the surface to be heated, and the surface temperature distribution of the surface to be heated changes temporally. Even if it is a case, it aims at providing the surface temperature measuring method, heating method, surface temperature measuring apparatus, and heating apparatus which can measure appropriate surface temperature distribution.

上述した課題を解決し、目的を達成するために、本発明にかかる表面温度測定方法は、被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有した加熱体とを非接触で相対的に移動させて前記加熱対象物の前記被加熱面を加熱する場合における前記被加熱面の表面温度分布を測定する表面温度測定方法であって、前記加熱体と前記加熱対象物との相対的移動による1つの移動加熱処理中に、前記被加熱面の全部または一部の温度測定領域を構成する各メッシュ領域毎の温度をサンプリング時間毎に非接触で測定して蓄積し、前記1つの移動加熱処理の終了毎に、蓄積された各メッシュ領域毎の測定温度の平均値をもとに前記温度測定領域の表面温度分布を求めることを特徴とする。   In order to solve the above-described problems and achieve the object, a surface temperature measurement method according to the present invention includes a heating object having a heated surface and a heating body having a heating surface smaller than the heated surface. A surface temperature measurement method for measuring a surface temperature distribution of the heated surface when the heated surface of the heated object is heated by relatively moving the heated object and the heated object and the heated object During one moving heating process by relative movement with an object, the temperature of each mesh area constituting the temperature measurement area of all or a part of the heated surface is measured and accumulated in a non-contact manner at every sampling time. The surface temperature distribution of the temperature measurement region is obtained on the basis of the average value of the measured temperatures for each accumulated mesh region every time the one moving heat treatment is completed.

また、本発明にかかる加熱方法は、上記の発明に記載の表面温度測定方法によって求められた前記温度測定領域の表面温度分布を用いて前記加熱体による前記加熱対象物の加熱制御を行うことを特徴とする。   Moreover, the heating method concerning this invention performs heating control of the said heating object by the said heating body using the surface temperature distribution of the said temperature measurement area | region calculated | required by the surface temperature measuring method as described in said invention. Features.

また、本発明にかかる加熱方法は、上記の発明において、前記加熱制御は、求められた表面温度分布が所望の温度分布となるように次の1つの移動加熱処理の変更制御を行うことを特徴とする。   Moreover, the heating method according to the present invention is characterized in that, in the above invention, the heating control performs change control of the following one moving heating process so that the obtained surface temperature distribution becomes a desired temperature distribution. And

また、本発明にかかる加熱方法は、上記の発明において、前記1つの移動加熱処理の変更制御は、前記加熱体と前記被加熱面との間の距離及び姿勢を含む移動経路の変更、移動加熱処理中の移動速度変更、前記加熱体の出力の変更のいずれか1以上の組み合わせであることを特徴とする。   Further, in the heating method according to the present invention, in the above invention, the change control of the one moving heating process is performed by changing the moving path including the distance and posture between the heating body and the heated surface, moving heating. It is a combination of one or more of a change in moving speed during processing and a change in output of the heating element.

また、本発明にかかる表面温度測定装置は、被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有した加熱体とを非接触で相対的に移動させて前記加熱対象物の前記被加熱面を加熱する場合における前記被加熱面の表面温度分布を測定する表面温度測定装置であって、前記加熱体と前記加熱対象物との相対的移動による1つの移動加熱処理中に、前記被加熱面の全部または一部の温度測定領域を構成する各メッシュ領域毎の温度をサンプリング時間毎に非接触で測定して蓄積する温度測定部と、前記1つの移動加熱処理の終了毎に、蓄積された各メッシュ領域毎の測定温度の平均値をもとに前記温度測定領域の表面温度分布を求める温度分布算出部と、を備えたことを特徴とする。   Further, the surface temperature measuring apparatus according to the present invention is configured to move the heating target object having a heated surface and a heating body having a heating surface smaller than the heated surface by relatively moving them in a non-contact manner. A surface temperature measuring device for measuring a surface temperature distribution of the heated surface when the heated surface of the object is heated, wherein one moving heating process is performed by relative movement between the heated body and the heated object. A temperature measurement unit that measures and accumulates the temperature of each mesh region constituting the temperature measurement region of all or a part of the heated surface in a non-contact manner at every sampling time, and the one moving heating process And a temperature distribution calculation unit that obtains a surface temperature distribution of the temperature measurement region based on an average value of the measured temperatures for each accumulated mesh region at each end.

また、本発明にかかる加熱装置は、上記の発明に記載の表面温度測定装置によって求められた前記温度測定領域の表面温度分布を用いて前記加熱体による前記加熱対象物の加熱制御を行う加熱制御部を備えたことを特徴とする。   Moreover, the heating apparatus according to the present invention is a heating control that performs heating control of the object to be heated by the heating body using the surface temperature distribution of the temperature measurement region obtained by the surface temperature measuring apparatus according to the invention described above. It has the part.

また、本発明にかかる加熱装置は、上記の発明において、前記加熱制御部は、求められた表面温度分布が所望の温度分布となるように次の1つの移動加熱処理の変更制御を行うことを特徴とする。   Further, in the heating device according to the present invention, in the above invention, the heating control unit performs change control of the next one moving heating process so that the obtained surface temperature distribution becomes a desired temperature distribution. Features.

また、本発明にかかる加熱装置は、上記の発明において、前記加熱制御部は、前記加熱体と前記被加熱面との間の距離及び姿勢を含む移動経路の変更、移動加熱処理中の移動速度変更、前記加熱体の出力の変更のいずれか1以上の組み合わせを行って前記1つの移動加熱処理の変更制御を行うことを特徴とする。   In the heating device according to the present invention, in the above invention, the heating control unit may change a moving path including a distance and a posture between the heating body and the heated surface, and a moving speed during the moving heating process. One or more combinations of the change and the change of the output of the heating body are performed to perform change control of the one moving heating process.

本発明によれば、被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有した加熱体とを非接触で相対的に移動させて前記加熱対象物の前記被加熱面を加熱する場合における前記被加熱面の表面温度分布を測定する際、前記加熱体と前記加熱対象物との相対的移動による1つの移動加熱処理中に、前記被加熱面の全部または一部の温度測定領域を構成する各メッシュ領域毎の温度をサンプリング時間毎に非接触で測定して蓄積し、前記1つの移動加熱処理の終了毎に、蓄積された各メッシュ領域毎の測定温度の平均値をもとに前記温度測定領域の表面温度分布を求めるようにしている。このため、1つの移動加熱処理中に表面温度分布が時間変化する場合であっても、適正な表面温度分布を測定することができる。   According to the present invention, the object to be heated is moved in a non-contact manner relative to a heating object having a surface to be heated and a heating body having a heating surface smaller than the surface to be heated. When measuring the surface temperature distribution of the heated surface in the case of heating the surface, all or part of the heated surface during one moving heating process by relative movement of the heating body and the heating object The temperature of each mesh area constituting the temperature measurement area is measured and accumulated in a non-contact manner at every sampling time, and the average of the accumulated measurement temperature for each mesh area is accumulated at the end of the one moving heating process. The surface temperature distribution in the temperature measurement region is obtained based on the value. For this reason, even when the surface temperature distribution changes with time during one moving heat treatment, an appropriate surface temperature distribution can be measured.

図1は、本発明の実施の形態である加熱装置の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing an overall configuration of a heating apparatus according to an embodiment of the present invention. 図2は、被加熱面上を近接して移動する誘導加熱コイルの移動経路の一例を示す図である。FIG. 2 is a diagram illustrating an example of a moving path of the induction heating coil that moves close to the surface to be heated. 図3は、被加熱面上の点の温度の時間変化を示す図である。FIG. 3 is a diagram showing the time change of the temperature of the point on the surface to be heated. 図4は、表面温度分布の生成を説明する説明図である。FIG. 4 is an explanatory diagram for explaining the generation of the surface temperature distribution. 図5は、制御部による表面温度測定処理を含む移動加熱処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a moving heat treatment procedure including a surface temperature measurement process by the control unit. 図6は、1つの移動加熱処理の変更の設定の一例を示す模式図である。FIG. 6 is a schematic diagram illustrating an example of setting for changing one moving heating process. 図7は、1つの移動加熱処理における他の移動経路の一例を示す図である。FIG. 7 is a diagram illustrating an example of another movement path in one movement heating process. 図8は、被加熱面内の一部の領域を温度測定領域とする一例を示す図である。FIG. 8 is a diagram showing an example in which a part of the area to be heated is a temperature measurement area. 図9は、1つの移動加熱処理の移動経路が異なる場合における加熱開始点及び加熱終了点の位置を示す図である。FIG. 9 is a diagram showing the positions of the heating start point and the heating end point when the moving paths of one moving heating process are different.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(全体構成)
図1は、本発明の実施の形態である加熱装置の全体構成を示す模式図である。図1に示すように、加熱装置は、先端に加熱体としての誘導加熱コイル2が取り付けられたロボットアーム3、赤外線サーモグラフィー4、制御部5、表示部6、操作部7、及び、記憶部8を有する。また、制御部5は、温度検出部11、温度分布算出部12、加熱制御部13を有する。また、記憶部8は、目標表面温度分布情報D1、表面温度分布画像D2、加熱変更制御情報D3を有する。なお、制御部5には、誘導加熱コイル2及びロボットアーム3、赤外線サーモグラフィー4、表示部6、操作部7、記憶部8が接続される。
(overall structure)
FIG. 1 is a schematic diagram showing an overall configuration of a heating apparatus according to an embodiment of the present invention. As shown in FIG. 1, the heating device includes a robot arm 3 having an induction heating coil 2 as a heating body attached to the tip, an infrared thermography 4, a control unit 5, a display unit 6, an operation unit 7, and a storage unit 8. Have The control unit 5 includes a temperature detection unit 11, a temperature distribution calculation unit 12, and a heating control unit 13. The storage unit 8 includes target surface temperature distribution information D1, a surface temperature distribution image D2, and heating change control information D3. The induction heating coil 2 and the robot arm 3, the infrared thermography 4, the display unit 6, the operation unit 7, and the storage unit 8 are connected to the control unit 5.

誘導加熱コイル2は、例えば、円状に巻かれたコイルである。誘導加熱コイル2は、ロボットアーム3によって位置及び姿勢を変えることができる。この誘導加熱コイル2の位置及び姿勢を含む移動経路、移動速度、及び出力は、制御部5のもとに制御される。誘導加熱コイル2は、導電性の加熱対象物1の被加熱面1aに接近させて移動し、被加熱面1aを加熱する。誘導加熱コイル2は、図示しない電源から供給される高周波電流によって磁界を発生し、加熱対象物1に渦電流を発生させ、その抵抗熱によって被加熱面1aを加熱する。被加熱面1aは、誘導加熱コイル2の寸法よりも大きいため、誘導加熱コイル2を移動させ、被加熱面1aを万遍なく撫でるように加熱する。なお、本実施の形態では、誘導加熱コイル2を被加熱面1aに対して移動させるようにしているが、被加熱面1aを誘導加熱コイル2に対して移動させるようにしてもよい。さらに、誘導加熱コイル2及び被加熱面1aの双方を移動させてもよい。すなわち、被加熱面1aと誘導加熱コイル2との位置関係が相対的に移動できる機構であればよい。   The induction heating coil 2 is, for example, a coil wound in a circular shape. The position and posture of the induction heating coil 2 can be changed by the robot arm 3. The movement path, the movement speed, and the output including the position and posture of the induction heating coil 2 are controlled under the control unit 5. The induction heating coil 2 moves close to the heated surface 1a of the conductive heating object 1 and heats the heated surface 1a. The induction heating coil 2 generates a magnetic field by a high-frequency current supplied from a power source (not shown), generates an eddy current in the heating object 1, and heats the heated surface 1a by the resistance heat. Since the heated surface 1a is larger than the size of the induction heating coil 2, the induction heating coil 2 is moved to heat the heated surface 1a so that it is evenly stroked. In this embodiment, the induction heating coil 2 is moved with respect to the heated surface 1a. However, the heated surface 1a may be moved with respect to the induction heating coil 2. Further, both the induction heating coil 2 and the heated surface 1a may be moved. That is, any mechanism can be used as long as the positional relationship between the heated surface 1a and the induction heating coil 2 can be moved relatively.

赤外線サーモグラフィー4は、所定サンプリング間隔で、被加熱面1aに対する赤外線領域の表面温度分布画像を撮像する。温度検出部11は、赤外線サーモグラフィー4が撮像した表面温度分布画像を取得し、記憶部8内に表面温度分布画像D2として蓄積する。   The infrared thermography 4 captures a surface temperature distribution image of the infrared region with respect to the heated surface 1a at a predetermined sampling interval. The temperature detection unit 11 acquires the surface temperature distribution image captured by the infrared thermography 4 and accumulates it as the surface temperature distribution image D2 in the storage unit 8.

温度分布算出部12は、1つの移動加熱処理の開始から終了までの間で所定サンプリング時間毎に蓄積された複数の表面温度分布画像D2内の対応する各画素の平均値を求め、この平均値による表面温度分布を求める。なお、平均値は、表面温度分布画像D2の各画素単位ではなく、予め設定されたメッシュ領域単位で求めてもよい。なお、予め設定されたメッシュ領域単位は隣接する複数の画素から構成される。また、各画素単位を予め設定されたメッシュ領域単位として取り扱っても良い。   The temperature distribution calculation unit 12 calculates an average value of each corresponding pixel in the plurality of surface temperature distribution images D2 accumulated every predetermined sampling time from the start to the end of one moving heating process, and this average value Obtain the surface temperature distribution by. Note that the average value may be obtained not in units of pixels in the surface temperature distribution image D2 but in units of mesh areas set in advance. The preset mesh area unit is composed of a plurality of adjacent pixels. Further, each pixel unit may be handled as a preset mesh area unit.

加熱制御部13は、記憶部8に記憶された目標表面温度分布情報D1が示す目標表面温度分布と温度分布算出部12が算出した表面温度分布とが同じ(許容範囲内)になるように、誘導加熱コイル2と被加熱面1aとの間の距離及び姿勢を含む移動経路の変更、移動加熱処理中の移動速度変更、誘導加熱コイル2の出力の変更のいずれか1以上を変更する次の1つの移動加熱処理を設定し、この設定した1つの移動加熱処理の実行を制御する。なお、移動加熱処理の変更は、記憶部8内の加熱変更制御情報D3を参照して決定される。   The heating control unit 13 is configured so that the target surface temperature distribution indicated by the target surface temperature distribution information D1 stored in the storage unit 8 and the surface temperature distribution calculated by the temperature distribution calculation unit 12 are the same (within an allowable range). Change one or more of a change of the movement path including the distance and posture between the induction heating coil 2 and the heated surface 1a, a change of the moving speed during the movement heating process, and a change of the output of the induction heating coil 2 One moving heating process is set, and execution of this set one moving heating process is controlled. In addition, the change of a moving heating process is determined with reference to the heating change control information D3 in the memory | storage part 8. FIG.

表示部6は、被加熱面1a、誘導加熱コイル2の移動経路及び移動状態、表面温度分布などの各種情報を表示出力する。   The display unit 6 displays and outputs various information such as the heated surface 1a, the moving path and moving state of the induction heating coil 2, and the surface temperature distribution.

操作部7は、制御部5に対する制御指示を行う。操作部7は、キーボードやポインティングデバイスによって実現される。   The operation unit 7 issues a control instruction to the control unit 5. The operation unit 7 is realized by a keyboard or a pointing device.

(移動加熱処理の詳細)
図2は、被加熱面1a上を近接して移動する誘導加熱コイル2の移動経路の一例を示す図である。また、図3は、被加熱面1a上の点P11の温度の時間変化を示す図である。さらに、図4は、表面温度分布の生成を説明する説明図である。
(Details of moving heat treatment)
FIG. 2 is a diagram illustrating an example of a moving path of the induction heating coil 2 that moves close to the surface to be heated 1a. Moreover, FIG. 3 is a figure which shows the time change of the temperature of the point P11 on the to-be-heated surface 1a. Further, FIG. 4 is an explanatory diagram for explaining the generation of the surface temperature distribution.

図2に示すように、誘導加熱コイル2は、被加熱面1a上に近接し、加熱開始点である点P1から移動経路L1を移動し、加熱終了点である点P2に移動した後、移動経路L2を介して点P1に戻る1つの移動加熱処理を繰り返す。移動経路L1は、図上、上下にジグザグに移動して被加熱面1aを万遍なく加熱する経路である。   As shown in FIG. 2, the induction heating coil 2 moves close to the surface to be heated 1a, moves from the point P1 that is the heating start point, moves to the point P2 that is the heating end point, and then moves. One moving heating process returning to the point P1 through the path L2 is repeated. The movement path L1 is a path for moving the surface to be heated 1a uniformly by moving up and down in a zigzag manner.

図3に示すように、点P11の位置における温度は、上述した1つの移動加熱処理の繰り返しによって、最低温度Tbと最高温度Taとの間で温度変化する。この温度変化は、誘導加熱コイル2が加熱開始点である点P1に位置する時点t1から、移動経路L1,L2を介して再び点P1に位置する時点t2までの間での変化と同じ変化を繰り返す。この移動経路L1,L2を介した1回の移動加熱処理を「1つの移動加熱処理」と称する。なお、図3では、誘導加熱コイル2の移動経路、移動速度、出力が同じである1つの移動加熱処理を繰り返している。ここで、誘導加熱コイル2の移動経路、移動速度、出力の変更制御が行われる場合、上述した1つの移動加熱処理は異なるものとなる。   As shown in FIG. 3, the temperature at the position of the point P11 changes between the lowest temperature Tb and the highest temperature Ta by repeating one moving heating process described above. This temperature change is the same as the change from the time point t1 where the induction heating coil 2 is located at the point P1, which is the heating start point, to the time point t2 where the induction heating coil 2 is located again at the point P1 via the movement paths L1 and L2. repeat. One movement heating process via the movement paths L1 and L2 is referred to as “one movement heating process”. In FIG. 3, one moving heating process in which the moving path, moving speed, and output of the induction heating coil 2 are the same is repeated. Here, when the change control of the movement path, movement speed, and output of the induction heating coil 2 is performed, the above-described one movement heating process is different.

点P11の温度変化は、誘導加熱コイル2が点P11を通過する直前で温度が最低温度となっており、誘導加熱コイル2の点P11の通過開始とともに点P11の温度が急上昇している。その後、誘導加熱コイル2が点P11を通過完了すると、点P11の温度は、放熱等によって緩慢に低下する。   The temperature change at the point P11 is the lowest temperature immediately before the induction heating coil 2 passes through the point P11, and the temperature at the point P11 increases rapidly as the induction heating coil 2 starts passing through the point P11. Thereafter, when the induction heating coil 2 completes passing through the point P11, the temperature at the point P11 slowly decreases due to heat dissipation or the like.

図4の上部に示すように、各位置(各画素)の点P11,P12,P13の温度は、誘導加熱コイル2が移動する時間の経過に伴って変化する。ここで、温度検出部11は、被加熱面1a全体の表面温度分布画像D2を所定サンプリング時間ΔSごとに取得することによって、点P11,P12,P13などを含む各画素の温度変化(測定温度変化)を得ることができる。   As shown in the upper part of FIG. 4, the temperatures of the points P <b> 11, P <b> 12, P <b> 13 at each position (each pixel) change with the passage of time for the induction heating coil 2 to move. Here, the temperature detection unit 11 obtains the surface temperature distribution image D2 of the entire heated surface 1a at every predetermined sampling time ΔS, whereby the temperature change (measurement temperature change) of each pixel including the points P11, P12, P13, and the like. ) Can be obtained.

温度分布算出部12は、1つの移動加熱処理の時間Δt内で蓄積された複数の表面温度分布画像D2内の対応する各画素毎の測定温度の平均値を求める。例えば、点P11,P12,P13での平均値は、各点で時間Δt内で蓄積されたサンプリング数がN個である場合、それぞれ蓄積された測定温度を加算し、それぞれNで除算した平均値T11ave,T12ave,T13aveとなる。温度分布算出部12は、各画素毎の平均値の分布を表面温度分布として算出する。   The temperature distribution calculation unit 12 obtains the average value of the measured temperatures for each corresponding pixel in the plurality of surface temperature distribution images D2 accumulated within the time Δt of one moving heating process. For example, the average value at points P11, P12, and P13 is the average value obtained by adding the accumulated measured temperatures and dividing each by N when the number of samplings accumulated in time Δt at each point is N. T11ave, T12ave, and T13ave. The temperature distribution calculation unit 12 calculates an average value distribution for each pixel as a surface temperature distribution.

(移動加熱処理手順)
ここで、図5に示したフローチャートを参照して、制御部5による表面温度測定処理を含む移動加熱処理手順について説明する。まず、温度検出部11は、加熱制御部13が1つの移動加熱処理を開始したか否かを判断する(ステップS101)。1つの移動加熱処理が開始していない場合(ステップS101,No)には、この判断処理を繰り返す。一方、1つの移動加熱処理が開始した場合(ステップS101,Yes)には、所定サンプリング時間ごとに温度測定領域(被加熱面1a全体)の表面温度分布画像D2を赤外線サーモグラフィー4から取得して記憶部8に蓄積する(ステップS102)。
(Moving heat treatment procedure)
Here, with reference to the flowchart shown in FIG. 5, the moving heating process procedure including the surface temperature measurement process by the control part 5 is demonstrated. First, the temperature detection unit 11 determines whether or not the heating control unit 13 has started one moving heating process (step S101). If one moving heating process has not started (No in step S101), this determination process is repeated. On the other hand, when one moving heating process is started (step S101, Yes), the surface temperature distribution image D2 of the temperature measurement region (the entire heated surface 1a) is acquired from the infrared thermography 4 and stored every predetermined sampling time. It accumulates in the unit 8 (step S102).

その後、温度分布算出部12は、加熱制御部13が1つの移動加熱処理を終了したか否かを判断する(ステップS103)。この移動加熱処理の終了とは、図2では、誘導加熱コイル2が、図2に示した移動経路L1,L2を介して再び点P1に戻ったときである。   Thereafter, the temperature distribution calculation unit 12 determines whether or not the heating control unit 13 has completed one moving heating process (step S103). In FIG. 2, the end of the moving heating process is when the induction heating coil 2 returns to the point P1 again via the moving paths L1 and L2 shown in FIG.

1つの移動加熱処理が終了していない場合(ステップS103,No)には、ステップS102に移行して表面温度分布画像D2の取得及び蓄積の処理を繰り返す。一方、1つの移動加熱処理が終了した場合(ステップS103,Yes)、温度分布算出部12は、蓄積された複数の表面温度分布画像D2の各画素に対応する複数の温度の平均値を求め、この平均値による表面温度分布を算出する(ステップS104)。   If one moving heating process has not been completed (No at Step S103), the process proceeds to Step S102, and the process of acquiring and accumulating the surface temperature distribution image D2 is repeated. On the other hand, when one mobile heating process is completed (step S103, Yes), the temperature distribution calculation unit 12 obtains an average value of a plurality of temperatures corresponding to each pixel of the accumulated plurality of surface temperature distribution images D2, The surface temperature distribution based on this average value is calculated (step S104).

その後、加熱制御部13は、算出された表面温度分布が、記憶部8に予め記憶された目標表面温度分布情報D1が示す目標表面温度分布と同じになったか否かを判断する(ステップS105)。表面温度分布が目標表面温度分布と同じか否かの判断は、各画素あるいは各メッシュ毎の差が許容範囲内に収まっているか否かである。加熱制御部13は、表面温度分布が目標表面温度分布と同じになった場合(ステップS105,Yes)には、さらに、加熱処理の終了指示があるか否かを判断する(ステップS106)。加熱処理の終了指示があった場合(ステップS106,Yes)には、本処理を終了する。一方、加熱処理の終了指示がない場合(ステップS106,No)には、ステップS101に移行し、現在の1つの移動加熱処理を変えずに上述した処理を繰り返す。   Thereafter, the heating control unit 13 determines whether or not the calculated surface temperature distribution is the same as the target surface temperature distribution indicated by the target surface temperature distribution information D1 stored in advance in the storage unit 8 (step S105). . The determination of whether or not the surface temperature distribution is the same as the target surface temperature distribution is whether or not the difference for each pixel or each mesh is within an allowable range. When the surface temperature distribution becomes the same as the target surface temperature distribution (step S105, Yes), the heating control unit 13 further determines whether or not there is an instruction to end the heating process (step S106). If there is an instruction to end the heating process (step S106, Yes), this process ends. On the other hand, if there is no instruction to end the heating process (No at Step S106), the process proceeds to Step S101, and the above process is repeated without changing the current one moving heating process.

一方、加熱制御部13は、表面温度分布が目標表面温度分布と同じでないと判断した場合(ステップS105,No)には、誘導加熱コイル2と被加熱面1aとの間の距離及び姿勢を含む移動経路の変更、移動加熱処理中の移動速度変更、誘導加熱コイル2の出力の変更のいずれか1以上を変更する次の1つの移動加熱処理を設定し(ステップS107)、ステップS101に移行し、設定された次の1つの移動加熱処理による上述した処理を繰り返す。   On the other hand, when the heating control unit 13 determines that the surface temperature distribution is not the same as the target surface temperature distribution (No in step S105), the heating control unit 13 includes the distance and posture between the induction heating coil 2 and the heated surface 1a. The next one moving heating process is set to change any one or more of the moving path change, the moving speed change during the moving heating process, and the output change of the induction heating coil 2 (step S107), and the process proceeds to step S101. Then, the above-described process by the next set moving heat process is repeated.

例えば、ステップS107による次の1つの移動加熱処理の設定は、図6に示すように、表面温度分布上の点(画素)PAが目標表面温度分布上の点PAよりも温度が高い場合には、移動経路Aの点PAで誘導加熱コイル2と被加熱面1aとの間の距離d1を、温度差に対応する距離da増大して誘導加熱コイル2を位置2aに変更し、被加熱面1aから離隔する設定を行う。一方、表面温度分布上の点PAが目標表面温度分布上の点PAよりも温度が低い場合、移動経路Aの点PAで誘導加熱コイル2と被加熱面1aとの間の距離d1を、温度差に対応する距離db減少して誘導加熱コイル2を位置2bに変更し、被加熱面1aに近接する設定を行う。   For example, the setting of the next moving heating process in step S107 is performed when the point (pixel) PA on the surface temperature distribution is higher than the point PA on the target surface temperature distribution as shown in FIG. The distance d1 between the induction heating coil 2 and the heated surface 1a at the point PA of the moving path A is increased by a distance da corresponding to the temperature difference, and the induction heating coil 2 is changed to the position 2a, and the heated surface 1a Set to separate from. On the other hand, when the point PA on the surface temperature distribution is lower than the point PA on the target surface temperature distribution, the distance d1 between the induction heating coil 2 and the surface to be heated 1a at the point PA on the movement path A is set to the temperature The distance db corresponding to the difference is decreased, the induction heating coil 2 is changed to the position 2b, and the setting close to the heated surface 1a is performed.

なお、上述した実施の形態による移動経路は、図2に示したように、被加熱面1aを図上、上下にジグザグ移動するものであったが、これに限らず、図7に示すように、移動経路L1が終了する点P2から、図上、左右にジグザグ移動する移動経路L3を経て、加熱開始点である点P1に移動加熱処理しつつ戻るようにすることが好ましい。   As shown in FIG. 2, the movement path according to the above-described embodiment is a zigzag movement of the heated surface 1 a up and down in the drawing, but not limited to this, as shown in FIG. 7. It is preferable to return from the point P2 where the movement path L1 ends to the point P1 which is the heating start point through the movement path L3 which moves in a zigzag direction on the right and left while performing the moving heating process.

また、上述した実施の形態による加熱制御は、算出された表面温度分布が目標表面温度分布となるように制御するものであったが、単に表面温度分布を均一にする場合、被加熱面1a全体の平均温度と、算出した表面温度分布の各画素の温度との温度差を求め、この温度差をなくすような、1つの移動加熱処理の変更制御を行うようにしてもよい。   In addition, the heating control according to the above-described embodiment is such that the calculated surface temperature distribution becomes the target surface temperature distribution. However, when the surface temperature distribution is simply made uniform, the entire surface to be heated 1a is controlled. The temperature difference between the average temperature and the temperature of each pixel of the calculated surface temperature distribution may be obtained, and change control of one moving heating process may be performed so as to eliminate this temperature difference.

さらに、図8に示すように、上述した実施の形態による温度測定領域は、被加熱面1a全体の領域Eであったが、これに限らず、温度測定領域を、被加熱面1a内の一部の領域E1としてもよい。   Furthermore, as shown in FIG. 8, the temperature measurement region according to the above-described embodiment is the region E of the entire heated surface 1a. However, the temperature measurement region is not limited to this, and the temperature measurement region is a region within the heated surface 1a. It is good also as the area | region E1 of a part.

また、図9に示すように、1つの移動加熱処理の移動経路は、被加熱面1aに対して異なる移動経路L11,L12となる場合がある。この各移動経路L11,L12の加熱開始点及び加熱終了点である点P1は、同一点である。   Moreover, as shown in FIG. 9, the movement path | route of one movement heating process may become different movement paths L11 and L12 with respect to the to-be-heated surface 1a. The point P1 which is the heating start point and the heating end point of each of the movement paths L11 and L12 is the same point.

上述した実施の形態では、誘導加熱コイル2の相対的移動による1つの移動加熱処理中に、被加熱面1aの全部または一部の温度測定領域を構成する各画素毎あるいは各メッシュ領域毎の温度をサンプリング時間毎に非接触で測定して蓄積し、1つの移動加熱処理の終了毎に、蓄積された各画素あるいは各メッシュ領域毎の測定温度の平均値をもとに温度測定領域の表面温度分布を求めるようにしている。この結果、1つの移動加熱処理中に、各画素あるいは各メッシュ領域の温度が時間変化する場合であっても、適正な表面温度分布を得ることができる。さらに、この実施の形態では、得られた適正な表面温度分布をもとに加熱制御を行うようにしているので、精度の高い加熱処理を行うことができる。   In the embodiment described above, the temperature for each pixel or each mesh region constituting the temperature measurement region of all or a part of the heated surface 1a during one moving heating process by relative movement of the induction heating coil 2. The surface temperature of the temperature measurement area is measured based on the average value of the accumulated measurement temperature for each pixel or each mesh area at the end of one moving heating process. The distribution is obtained. As a result, an appropriate surface temperature distribution can be obtained even if the temperature of each pixel or each mesh region changes with time during one moving heat treatment. Furthermore, in this embodiment, since heating control is performed based on the obtained appropriate surface temperature distribution, heat treatment with high accuracy can be performed.

なお、上述した実施の形態では、加熱体の一例として誘導加熱コイル2を示したがこれに限らず、電熱線ヒータ等の高温の発熱体やランプヒータ等の赤外線照射体などの加熱体であってもよい。   In the above-described embodiment, the induction heating coil 2 is shown as an example of the heating body. However, the present invention is not limited to this, and the heating body may be a high-temperature heating element such as a heating wire heater or an infrared irradiation body such as a lamp heater. May be.

また、上述した加熱対象物は、導電性を有する材料であったが、例えば、カーボンなどの導電性フィラーが混入された合成樹脂であってもよい。さらに、導電性の加熱対象物の被加熱面上に、重合反応で硬化させる樹脂系などの塗料が塗布されているものであってもよい。この場合の加熱制御は、加熱対象物に塗布された塗料の焼付け処理を行うものである。   Moreover, although the heating object mentioned above was a material which has electroconductivity, the synthetic resin in which electroconductive fillers, such as carbon, were mixed may be sufficient, for example. Furthermore, a coating material such as a resin system that is cured by a polymerization reaction may be applied to the heated surface of the conductive object to be heated. In this case, the heating control is to perform a baking treatment of the paint applied to the object to be heated.

なお、被加熱面1aの表面温度分布を測定する表面温度測定装置は、温度測定部(赤外線サーモグラフィー4及び温度検出部11)と、温度分布算出部12とによって構成される。   The surface temperature measuring device that measures the surface temperature distribution of the heated surface 1a includes a temperature measuring unit (infrared thermography 4 and temperature detecting unit 11) and a temperature distribution calculating unit 12.

また、上述した実施の形態では赤外線サーモグラフィー4を利用していたが、一定領域の表面温度を測定できる複数の赤外線温度計測装置により領域ごとに温度を測定し、領域ごとの温度を表面温度分布として利用しても良い。   In the above-described embodiment, the infrared thermography 4 is used. However, the temperature is measured for each region by a plurality of infrared temperature measuring devices capable of measuring the surface temperature of a certain region, and the temperature for each region is used as the surface temperature distribution. May be used.

1 加熱対象物
1a 被加熱面
2 誘導加熱コイル
3 ロボットアーム
4 赤外線サーモグラフィー
5 制御部
6 表示部
7 操作部
8 記憶部
11 温度検出部
12 温度分布算出部
13 加熱制御部
D1 目標表面温度分布情報
D2 表面温度分布画像
D3 加熱変更制御情報
L1,L2,L3,L11,L12 移動経路
P1,P2,P11,P12,P13 点
t1,t2 時点
Ta 最高温度
Tb 最低温度
Δt 時間
DESCRIPTION OF SYMBOLS 1 Heating object 1a Heated surface 2 Induction heating coil 3 Robot arm 4 Infrared thermography 5 Control part 6 Display part 7 Operation part 8 Memory | storage part 11 Temperature detection part 12 Temperature distribution calculation part 13 Heating control part D1 Target surface temperature distribution information D2 Surface temperature distribution image D3 Heating change control information L1, L2, L3, L11, L12 Movement path P1, P2, P11, P12, P13 Point t1, t2 Time point Ta maximum temperature Tb minimum temperature Δt Time

Claims (8)

被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有した加熱体とを非接触で相対的に移動させて前記加熱対象物の前記被加熱面を加熱する場合における前記被加熱面の表面温度分布を測定する表面温度測定方法であって、
前記加熱体と前記加熱対象物との相対的移動による1つの移動加熱処理中に、前記被加熱面の全部または一部の温度測定領域を構成する各メッシュ領域毎の温度をサンプリング時間毎に非接触で測定して蓄積し、
前記1つの移動加熱処理の終了毎に、蓄積された各メッシュ領域毎の測定温度の平均値をもとに前記温度測定領域の表面温度分布を求めることを特徴とする表面温度測定方法。
In the case of heating the surface to be heated of the object to be heated by relatively moving the object to be heated having a surface to be heated and the heating body having a heating surface smaller than the surface to be heated in a non-contact manner. A surface temperature measurement method for measuring a surface temperature distribution of the heated surface,
During one moving heating process by relative movement of the heating body and the heating object, the temperature of each mesh region constituting the temperature measurement region of all or a part of the heated surface is not determined every sampling time. Measured and accumulated by contact,
A surface temperature measurement method for obtaining a surface temperature distribution of the temperature measurement region based on an average value of the measured temperatures for each accumulated mesh region every time the one moving heating process is completed.
請求項1に記載の表面温度測定方法によって求められた前記温度測定領域の表面温度分布を用いて前記加熱体による前記加熱対象物の加熱制御を行うことを特徴とする加熱方法。   A heating method, wherein heating control of the heating object by the heating body is performed using a surface temperature distribution in the temperature measurement region obtained by the surface temperature measurement method according to claim 1. 前記加熱制御は、求められた表面温度分布が所望の温度分布となるように次の1つの移動加熱処理の変更制御を行うことを特徴とする請求項2に記載の加熱方法。   The heating method according to claim 2, wherein the heating control performs change control of the next one moving heating process so that the obtained surface temperature distribution becomes a desired temperature distribution. 前記1つの移動加熱処理の変更制御は、前記加熱体と前記被加熱面との間の距離及び姿勢を含む移動経路の変更、移動加熱処理中の移動速度変更、前記加熱体の出力の変更のいずれか1以上の組み合わせであることを特徴とする請求項3に記載の加熱方法。   The change control of the one moving heating process includes a change of a moving path including a distance and a posture between the heating body and the surface to be heated, a moving speed change during the moving heating process, and a change of the output of the heating body. The heating method according to claim 3, wherein the combination is any one or more. 被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有した加熱体とを非接触で相対的に移動させて前記加熱対象物の前記被加熱面を加熱する場合における前記被加熱面の表面温度分布を測定する表面温度測定装置であって、
前記加熱体と前記加熱対象物との相対的移動による1つの移動加熱処理中に、前記被加熱面の全部または一部の温度測定領域を構成する各メッシュ領域毎の温度をサンプリング時間毎に非接触で測定して蓄積する温度測定部と、
前記1つの移動加熱処理の終了毎に、蓄積された各メッシュ領域毎の測定温度の平均値をもとに前記温度測定領域の表面温度分布を求める温度分布算出部と、
を備えたことを特徴とする表面温度測定装置。
In the case of heating the surface to be heated of the object to be heated by relatively moving the object to be heated having a surface to be heated and the heating body having a heating surface smaller than the surface to be heated in a non-contact manner. A surface temperature measuring device for measuring a surface temperature distribution of the heated surface,
During one moving heating process by relative movement of the heating body and the heating object, the temperature of each mesh region constituting the temperature measurement region of all or a part of the heated surface is not determined every sampling time. A temperature measurement unit that measures and accumulates by contact;
A temperature distribution calculation unit for obtaining a surface temperature distribution of the temperature measurement region based on an average value of the measured temperatures for each accumulated mesh region at the end of the one mobile heating process;
A surface temperature measuring device comprising:
請求項5に記載の表面温度測定装置によって求められた前記温度測定領域の表面温度分布を用いて前記加熱体による前記加熱対象物の加熱制御を行う加熱制御部を備えたことを特徴とする加熱装置。   A heating control unit that performs heating control of the heating object by the heating body using the surface temperature distribution of the temperature measurement region obtained by the surface temperature measuring device according to claim 5. apparatus. 前記加熱制御部は、求められた表面温度分布が所望の温度分布となるように次の1つの移動加熱処理の変更制御を行うことを特徴とする請求項6に記載の加熱装置。   The heating apparatus according to claim 6, wherein the heating control unit performs change control of the next one moving heating process so that the obtained surface temperature distribution becomes a desired temperature distribution. 前記加熱制御部は、前記加熱体と前記被加熱面との間の距離及び姿勢を含む移動経路の変更、移動加熱処理中の移動速度変更、前記加熱体の出力の変更のいずれか1以上の組み合わせを行って前記1つの移動加熱処理の変更制御を行うことを特徴とする請求項7に記載の加熱装置。   The heating control unit is any one or more of a change of a movement path including a distance and a posture between the heating body and the surface to be heated, a change of a moving speed during a movement heating process, and a change of an output of the heating body. The heating apparatus according to claim 7, wherein the change control of the one moving heating process is performed by combining.
JP2015122620A 2015-06-18 2015-06-18 Surface temperature measuring method, heating method, surface temperature measuring device, and heating device Active JP6725216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122620A JP6725216B2 (en) 2015-06-18 2015-06-18 Surface temperature measuring method, heating method, surface temperature measuring device, and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122620A JP6725216B2 (en) 2015-06-18 2015-06-18 Surface temperature measuring method, heating method, surface temperature measuring device, and heating device

Publications (2)

Publication Number Publication Date
JP2017009332A true JP2017009332A (en) 2017-01-12
JP6725216B2 JP6725216B2 (en) 2020-07-15

Family

ID=57761488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122620A Active JP6725216B2 (en) 2015-06-18 2015-06-18 Surface temperature measuring method, heating method, surface temperature measuring device, and heating device

Country Status (1)

Country Link
JP (1) JP6725216B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111904254A (en) * 2019-05-10 2020-11-10 善肴控股株式会社 Cooking instruction device, cooking system and cooking instruction method
CN115885883A (en) * 2022-12-06 2023-04-04 西南大学 Intelligent heat preservation lamp control system and method for livestock breeding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174327A (en) * 1989-12-26 1992-06-22 Hitachi Ltd Infrared rays temperature image measuring method and device and heating device which is equipped with it, control method of heating temperature, and film-forming device
JP2008232897A (en) * 2007-03-22 2008-10-02 Railway Technical Res Inst Peel detection method of concrete structure by active infrared method
US20100111511A1 (en) * 2008-10-31 2010-05-06 Nir Merry Use of infrared camera for real-time temperature monitoring and control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174327A (en) * 1989-12-26 1992-06-22 Hitachi Ltd Infrared rays temperature image measuring method and device and heating device which is equipped with it, control method of heating temperature, and film-forming device
JP2008232897A (en) * 2007-03-22 2008-10-02 Railway Technical Res Inst Peel detection method of concrete structure by active infrared method
US20100111511A1 (en) * 2008-10-31 2010-05-06 Nir Merry Use of infrared camera for real-time temperature monitoring and control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111904254A (en) * 2019-05-10 2020-11-10 善肴控股株式会社 Cooking instruction device, cooking system and cooking instruction method
CN111904254B (en) * 2019-05-10 2023-08-29 善肴控股株式会社 Cooking indication device, cooking system and cooking indication method
CN115885883A (en) * 2022-12-06 2023-04-04 西南大学 Intelligent heat preservation lamp control system and method for livestock breeding
CN115885883B (en) * 2022-12-06 2024-04-05 西南大学 Intelligent heat preservation lamp control system and method for livestock breeding

Also Published As

Publication number Publication date
JP6725216B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6662957B2 (en) Ion reforming
JP2017009332A (en) Surface temperature measurement method, heating method, surface temperature measurement device, and heating device
US10974466B2 (en) Dynamic heater control for automated fiber placement machines
JP2015140989A (en) Coating and drying device and coating and drying method
CN105351981A (en) Heating method and heating device
JP2006013517A (en) Temperature measurement device using variation in magnetic field
JP2011198730A (en) Movable heating system
TWI491488B (en) Temperature control sequence determining device, molding device, program, recording medium, and temperature control sequence determining method
CN108956691B (en) Test method of device for measuring in-plane thermal conductivity coefficient by linear pulse induction thermal excitation
JPWO2017169462A1 (en) Thermophysical property measuring method and thermophysical property measuring device
JP2015219210A (en) Thermal fatigue test method and test piece
JP6369109B2 (en) Paint drying apparatus and paint drying method
JP6243252B2 (en) Induction heating method
JP6796971B2 (en) Induction heating device and induction heating method
JP6330495B2 (en) Paint drying apparatus and paint drying method
JP5414068B2 (en) Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
JP2018037166A (en) Induction heating device and induction heating method
JP6830775B2 (en) Induction heating device and induction heating method
AU2020403944A1 (en) System for curing and/or inspecting a pipeline lining and method for curing and/or inspecting a pipeline lining
JP6620610B2 (en) Method for estimating surface heat flux of heat-treated members
Ratto et al. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis
JP2020011244A (en) Heating device
RU167045U1 (en) DEVICE FOR MEASURING THERMO-EMF OF MATERIALS
US20200307035A1 (en) Steerable heat source
JP2019507333A5 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20150723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190718

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6725216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250