JP2017005814A - Movable body - Google Patents

Movable body Download PDF

Info

Publication number
JP2017005814A
JP2017005814A JP2015115288A JP2015115288A JP2017005814A JP 2017005814 A JP2017005814 A JP 2017005814A JP 2015115288 A JP2015115288 A JP 2015115288A JP 2015115288 A JP2015115288 A JP 2015115288A JP 2017005814 A JP2017005814 A JP 2017005814A
Authority
JP
Japan
Prior art keywords
wheels
wheel
control unit
unit
travel control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015115288A
Other languages
Japanese (ja)
Inventor
秀樹 取田
Hideki Torita
秀樹 取田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Original Assignee
Toyota Motor East Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor East Japan Inc filed Critical Toyota Motor East Japan Inc
Priority to JP2015115288A priority Critical patent/JP2017005814A/en
Publication of JP2017005814A publication Critical patent/JP2017005814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a movable body that is able to advance straight and rotate so as to correspond to a moving speed input and an angular velocity input by a simple configuration.SOLUTION: A movable body comprises: a right wheel group 13R and a left wheel group 13L; a drive part 15 provided for each wheel 13; a common travel control part 17A that adjusts the rotating speed of each wheel 13 by controlling each drive part 15 so as to correspond to moving speed input and angular velocity input; and a detection part 19 provided for each wheel 13 and configured to detect the rotating speed of each wheel 13. Each wheel group 13R, 13L has omnidirectional wheels 13a. The movable body is able to advance straight and rotate by the forward and backward rotation of each wheel 13. The movable body is provided with a speed estimation part 47 that obtains an estimated rotating speed common to the wheels 13 for each wheel group 13R, 13L from the detected rotating speed of each wheel 13. Thereby, each drive part 15 is controlled by the common travel control part 17A on the basis of the estimated rotating speed.SELECTED DRAWING: Figure 2

Description

本発明は、全方向車輪を含む複数の車輪の回転を駆動制御して直進及び旋回する移動体に関する。   The present invention relates to a moving body that drives and controls rotation of a plurality of wheels including omnidirectional wheels to move straight and turn.

従来、全方向車輪を含む複数の車輪の回転を駆動制御して直進及び旋回する移動体として、例えば特許文献1などに記載の技術が知られている。   Conventionally, for example, a technique described in Patent Document 1 is known as a moving body that drives and controls rotation of a plurality of wheels including omnidirectional wheels to go straight and turn.

特許文献1には、一対の全方向車輪からなる前輪,一対のゴムタイヤからなる中間輪及び一対の全方向車輪からなる後輪が設けられた搬送車が提案されている。制御部において、経路指令部からの指令に基づく移動速度及び角速度が入力されると、これらに対応するように各車輪の駆動部毎に電流が制御され、各車輪の回転速度、向き、タイミング等が調整されて搬送車が直進及び旋回する。走行時には各車輪の回転速度が検出されており、各車輪の回転速度を経路指令部からの指令に対応する回転速度となるように各車輪が制御される。   Patent Document 1 proposes a transport vehicle provided with a front wheel composed of a pair of omnidirectional wheels, an intermediate wheel composed of a pair of rubber tires, and a rear wheel composed of a pair of omnidirectional wheels. In the control unit, when the moving speed and the angular velocity based on the command from the path command unit are input, the current is controlled for each wheel driving unit so as to correspond to these, and the rotational speed, direction, timing, etc. of each wheel. Is adjusted and the transport vehicle goes straight and turns. During traveling, the rotational speed of each wheel is detected, and each wheel is controlled so that the rotational speed of each wheel becomes the rotational speed corresponding to the command from the path command unit.

特開2014−24434号公報JP 2014-24434 A

しかしながら、特許文献1などの従来の搬送車では、路面状況や車輪の摩耗などの影響で、各車輪に空転やロック等のスリップが生じると、ハンドル角や走行速度にズレが生じて走行安定性が低下したり、オドメトリの精度が低下して走行軌跡の忠実度が悪化したりする。さらに車輪毎に回転速度を検出して制御されていたため、車輪毎の条件の違いにより、一部の車輪ではトルクを増加させて他の車輪ではトルクを減少させるようなことが起こり易く、各車輪と路面との間で作用する力が互いに逆方向となって効率を悪化させる。   However, in a conventional transport vehicle such as Patent Document 1, when slipping such as idling or locking occurs on each wheel due to the road surface condition or wheel wear, the steering angle and the traveling speed are deviated, resulting in traveling stability. Or the accuracy of the odometry is lowered and the fidelity of the running track is deteriorated. Furthermore, because the rotation speed was detected and controlled for each wheel, it is easy to increase torque on some wheels and decrease torque on other wheels due to differences in conditions for each wheel. The forces acting between the road surface and the road surface are opposite to each other, deteriorating efficiency.

そこで、本発明は、簡素な構成で指令入力に精度よく対応した直進及び旋回を行うことができる移動体を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a moving body that can perform straight traveling and turning with a simple configuration and accurately corresponding to a command input.

本発明のコンセプトは次の通りである。
[1] 全方向車輪を含む複数の車輪からなる左右の各車輪群と、前記複数の車輪のそれぞれに設けられた複数の駆動部と、指令入力に対応するように前記複数の駆動部を制御して前記複数の車輪の回転速度を調整する走行制御部と、前記複数の車輪それぞれの回転速度を検出する複数の検出部と、を備え、前記複数の車輪の回転により直進及び旋回可能な移動体において、
前記複数の検出部で検出された前記複数の車輪の検出回転速度から、前記各車輪群の前記複数の車輪に共通する推定回転速度を推定する速度推定部を備え、前記推定回転速度に基づいて前記走行制御部により前記複数の駆動部が制御される、移動体。
The concept of the present invention is as follows.
[1] Control each of the left and right wheel groups including a plurality of wheels including omnidirectional wheels, a plurality of drive units provided on each of the plurality of wheels, and the plurality of drive units so as to correspond to a command input. And a travel control unit that adjusts the rotational speeds of the plurality of wheels, and a plurality of detection units that detect the rotational speeds of the plurality of wheels, respectively, and a movement that can move straight and turn by the rotation of the plurality of wheels. In the body,
A speed estimation unit configured to estimate an estimated rotation speed common to the plurality of wheels of each wheel group from the detected rotation speeds of the plurality of wheels detected by the plurality of detection units, and based on the estimated rotation speed A moving body in which the plurality of driving units are controlled by the travel control unit.

[2] 前記走行制御部は、前記指令入力に対応するように前記複数の駆動部を制御する共通走行制御部と、前記駆動部毎に設けられて該各駆動部に対する前記共通走行制御部の制御の停止期間に該各駆動部を制御する個別走行制御部と、を備える、前記[1]に記載の移動体。 [2] The travel control unit includes a common travel control unit that controls the plurality of drive units so as to correspond to the command input, and a common travel control unit that is provided for each of the drive units and that is associated with the drive units. The moving body according to [1], further comprising: an individual traveling control unit that controls the driving units during a control stop period.

[3] 全方向車輪を含む複数の車輪と、前記車輪毎に設けられた複数の駆動部と、指令入力に対応するように前記複数の駆動部を制御して前記複数の車輪の回転速度を調整する走行制御部と、前記各車輪に設けられて各車輪の回転速度を検出する複数の検出部と、を備え、前記複数の車輪の回転により直進及び旋回可能な移動体において、
前記走行制御部は、前記指令入力に対応するように前記複数の駆動部を制御する共通走行制御部と、前記駆動部毎に設けられて該各駆動部に対する前記共通走行制御部の制御の停止期間に該各駆動部を制御する複数の個別走行制御部と、を備える、移動体。
[3] A plurality of wheels including omnidirectional wheels, a plurality of driving units provided for each of the wheels, and the plurality of driving units controlled so as to correspond to a command input to control the rotational speeds of the plurality of wheels. A traveling control unit to adjust, and a plurality of detection units that are provided on each of the wheels to detect the rotational speed of each wheel, and in a movable body that can go straight and turn by the rotation of the plurality of wheels,
The travel control unit is configured to control the plurality of drive units so as to correspond to the command input, and to stop control of the common travel control unit provided for each of the drive units. And a plurality of individual travel control units that control the respective drive units during a period.

[4] 前記個別走行制御部は、前記制御の停止期間に前記推定回転速度に基づいて前記各駆動部を制御する、前記[2]又は[3]に記載の移動体。
[5] 前記個別走行制御部は、前記制御の停止期間に予め設定された前記車輪の停止処理を行う、前記[2]又は[3]に記載の移動体。
[4] The moving body according to [2] or [3], wherein the individual traveling control unit controls each of the driving units based on the estimated rotation speed during a stop period of the control.
[5] The moving body according to [2] or [3], wherein the individual traveling control unit performs a stop process of the wheel set in advance during a stop period of the control.

[6] 前記検出回転速度に基づいて前記各車輪のスリップを検出するスリップ検出部を備え、前記走行制御部はスリップが検出された前記車輪の駆動部に対し回復処理を行う、前記[1]乃至[5]の何れかに記載の移動体。 [6] A slip detection unit that detects a slip of each wheel based on the detected rotational speed, and the travel control unit performs a recovery process on the drive unit of the wheel in which the slip is detected, [1] Thru | or the mobile body in any one of [5].

[7] 前記走行制御部は、前記駆動部へ供給する電流を分配するトルク分配部を備え、前記トルク分配部は、加速時及び減速時のうちの少なくとも一方において、前記複数の車輪における前側と後側とのトルク比を変化させる、前記[1]乃至[6]の何れかに記載の移動体。 [7] The travel control unit includes a torque distribution unit that distributes a current to be supplied to the drive unit, and the torque distribution unit includes a front side of the plurality of wheels in at least one of acceleration and deceleration. The moving body according to any one of [1] to [6], wherein the torque ratio with the rear side is changed.

本発明の移動体によれば、各車輪群における複数の車輪の検出回転速度から、その車輪群の車輪に共通する推定回転速度を推定し、推定回転速度に基づいて複数の駆動部を制御して各車輪の回転速度を調整するので、各車輪毎に回転速度を検出してそれぞれを独立に制御する場合のように、各車輪の条件の違いなどに起因して各車輪のトルクバランスが崩れて効率が悪化するようなことを確実に防止できる。   According to the moving body of the present invention, the estimated rotational speed common to the wheels of the wheel group is estimated from the detected rotational speeds of the plurality of wheels in each wheel group, and the plurality of drive units are controlled based on the estimated rotational speed. Because the rotation speed of each wheel is adjusted, the torque balance of each wheel is lost due to differences in the conditions of each wheel, as in the case where the rotation speed is detected for each wheel and controlled independently. Therefore, it is possible to reliably prevent the efficiency from deteriorating.

また、複数の車輪のうちの一部の車輪について、スリップや回転抵抗などにより不適切な回転速度が検出部で検出されたとき、その不適切な回転速度に基づいて、複数の車輪の駆動部が制御されることを防止できるとともに、不適切な回転速度に基づいて移動体の走行状態や軌跡が把握されることを防止できる。さらに、指令入力に対応する直進速度及び旋回速度を実現するための複数の車輪の制御が容易になる。従って、簡素な構成で指令入力に精度よく対応した直進及び旋回を行うことができる移動体を提供することができる。   In addition, when an inappropriate rotational speed is detected by a detection unit due to slip, rotation resistance, or the like for some of the plurality of wheels, a driving unit for the plurality of wheels is based on the inappropriate rotational speed. Can be prevented, and the traveling state and locus of the moving body can be prevented from being grasped based on an inappropriate rotational speed. Furthermore, it becomes easy to control a plurality of wheels for realizing a straight traveling speed and a turning speed corresponding to the command input. Therefore, it is possible to provide a moving body that can perform straight traveling and turning with a simple configuration and accurately corresponding to command input.

また本発明の移動体では、共通走行制御部の制御停止期間に各車輪の駆動部を個別に制御する個別走行制御部が設けられているので、何れかの駆動部に対する共通走行制御部の制御が共通制御部の処理により停止されたり通信等の装置の異常により停止されたりしたとき、個別走行制御部によりその駆動部を制御できる。   In the moving body of the present invention, since the individual travel control unit that individually controls the drive unit of each wheel is provided during the control stop period of the common travel control unit, the control of the common travel control unit for any of the drive units is provided. Is stopped by the process of the common control unit, or is stopped due to an abnormality of the apparatus such as communication, the drive unit can be controlled by the individual travel control unit.

例えば、共通制御部の制御が停止した駆動部に対し、個別走行制御部により推定回転速度に基づいて制御することで、走行を継続できる。また装置の異常等により共通制御部の制御が停止した駆動部に対し、個別走行制御部により予め設定された車輪の停止処理行うことで、滑らかに停止させることができる。さらに停止処理の設定により、一時的に制御が停止されて回復した場合にも滑らかに走行させることができ、容易に制御を復帰できる。
従って、本発明の移動体によれば、簡素な構成で指令入力に精度よく対応した直進及び旋回を行うことができる。
For example, the driving can be continued by controlling the driving unit in which the control of the common control unit is stopped based on the estimated rotational speed by the individual traveling control unit. Moreover, it can be made to stop smoothly by performing the stop process of the wheel previously set by the separate travel control part with respect to the drive part which the control of the common control part stopped due to the abnormality of the apparatus or the like. Furthermore, even if the control is temporarily stopped and recovered due to the setting of the stop process, the vehicle can run smoothly and the control can be easily restored.
Therefore, according to the moving body of the present invention, it is possible to perform straight traveling and turning corresponding to the command input with a simple configuration with high accuracy.

本発明の実施形態に係る移動体の斜視図である。It is a perspective view of the mobile concerning the embodiment of the present invention. 本発明の実施形態に係る移動体の制御系を示すブロック図である。It is a block diagram which shows the control system of the moving body which concerns on embodiment of this invention.

以下、本発明の実施形態について図を用いて詳細に説明する。
図1に示すように、この実施形態の移動体10は、車体11と、車体11に配設された複数の車輪13と、車輪13毎に設けられた複数の駆動部15とを備えて構成されている。そしてこの移動体10は、図2に示すように、走行経路などの走行指令が入力される指令入力部21と、複数の駆動部15を制御する走行制御部17と、車輪13毎に設けられた複数の検出部19と、走行軌跡等を記録するオドメトリ部23と、各部間を接続するCAN通信系25と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the moving body 10 of this embodiment includes a vehicle body 11, a plurality of wheels 13 provided on the vehicle body 11, and a plurality of drive units 15 provided for each wheel 13. Has been. As shown in FIG. 2, the moving body 10 is provided for each of the wheels 13, a command input unit 21 to which a travel command such as a travel route is input, a travel control unit 17 that controls the plurality of drive units 15. In addition, a plurality of detection units 19, an odometry unit 23 that records a travel locus and the like, and a CAN communication system 25 that connects the units are provided.

複数の車輪13は、前後方向に延びる中心線Lの両側に左右対称に配設された2対の全方向車輪13aからなる前輪及び後輪と、1対のゴムタイヤ13bからなる中間輪と、を備え、中心線Lを挟んで左右にこれらの車輪13からなる右車輪群13Rと左車輪群13Lとが構成されている。この実施形態では、制御系の簡素化のため、全ての車輪13が中心線Lに直交する方向の車軸に、全て同じトレッドで配設されている。   The plurality of wheels 13 includes a front wheel and a rear wheel made up of two pairs of omnidirectional wheels 13a arranged symmetrically on both sides of a center line L extending in the front-rear direction, and an intermediate wheel made up of a pair of rubber tires 13b. And a right wheel group 13R and a left wheel group 13L made up of these wheels 13 on the left and right sides of the center line L. In this embodiment, in order to simplify the control system, all the wheels 13 are all disposed on the axle in the direction orthogonal to the center line L with the same tread.

ゴムタイヤ13bは、路面と十分な摩擦力で接地して前後に回転可能に配設されている。全方向車輪13aは、回転方向とは異なる方向、ここでは車輪13の回転方向に対して交差する方向に転動自在な複数の転動体27が外周に配列されている。   The rubber tire 13b is disposed so as to be able to rotate forward and backward while being brought into contact with the road surface with a sufficient frictional force. In the omnidirectional wheel 13a, a plurality of rolling elements 27 that can roll in a direction different from the rotation direction, here, a direction that intersects the rotation direction of the wheel 13, are arranged on the outer periphery.

ゴムタイヤ13b及び全方向車輪13aには、車輪13毎に駆動部15及び検出部19が設けられている。各駆動部15には、駆動モータ29と、駆動モータ29に電力を調整して供給する電流調整部31と、が設けられている。電流調整部31は、走行制御部17からの制御信号に従って駆動モータ29への電流量を調整し、各車輪13の正逆転の回転方向と回転速度を調整可能となっている。車輪13毎に検出部19が設けられており、各車輪13の回転速度が検出可能となっている。   The rubber tire 13 b and the omnidirectional wheel 13 a are provided with a drive unit 15 and a detection unit 19 for each wheel 13. Each drive unit 15 is provided with a drive motor 29 and a current adjustment unit 31 that adjusts and supplies power to the drive motor 29. The current adjusting unit 31 adjusts the amount of current to the drive motor 29 in accordance with a control signal from the traveling control unit 17 and can adjust the forward / reverse rotation direction and rotation speed of each wheel 13. A detection unit 19 is provided for each wheel 13 so that the rotational speed of each wheel 13 can be detected.

指令入力部21は、移動体10が走行するための情報、例えば車体11の移動速度と旋回速度等の角速度とを含む指令が入力される部位であり、ジョイスティック等のように走行中に操作することで走行指令が入力されるものであってもよく、予め記憶部等に記憶された走行経路等に基づいて走行指令が入力されるものであってもよい。この実施形態では、指令入力部21が予め設定された走行経路に基づいて走行指令を走行制御部17に入力するものとなっており、走行軌跡を記録するオドメトリ部23と一体となっている。   The command input unit 21 is a part to which information for traveling the moving body 10, for example, a command including a moving speed of the vehicle body 11 and an angular speed such as a turning speed, is input, and is operated during traveling like a joystick. Thus, a travel command may be input, or a travel command may be input based on a travel route or the like stored in advance in a storage unit or the like. In this embodiment, the command input unit 21 inputs a travel command to the travel control unit 17 based on a preset travel route, and is integrated with the odometry unit 23 that records a travel locus.

走行制御部17は、指令入力に対応するように複数の駆動部15を統一的に制御する共通走行制御部17Aと、各車輪13のドライバに設けられていて、駆動部15に対する共通走行制御部17Aからの制御の停止期間に、各駆動部15を制御する個別走行制御部としての補助速度制御部17Bとを備えている。   The travel control unit 17 is provided in a common travel control unit 17A that controls the plurality of drive units 15 in a unified manner so as to correspond to the command input, and a driver for each wheel 13, and a common travel control unit for the drive unit 15 An auxiliary speed control unit 17B as an individual travel control unit that controls each drive unit 15 is provided in the control stop period from 17A.

共通走行制御部17Aは、右車輪群13Rを制御するための右車輪群用制御部17Rと、左車輪群13Lを制御するための左車輪群用制御部17Lと、指令入力部21からの指令入力を目標ハンドル角や右車輪群13R及び左車輪群13Lの目標回転速度などの、各車輪群用制御部17R,17Lにより処理可能な情報に変換して各車輪群用制御部17R,17Lに供給する変換部33と、を備えている。   The common travel control unit 17A includes a right wheel group control unit 17R for controlling the right wheel group 13R, a left wheel group control unit 17L for controlling the left wheel group 13L, and a command from the command input unit 21. The input is converted into information that can be processed by each wheel group control unit 17R, 17L, such as the target handle angle and the target rotational speed of the right wheel group 13R and the left wheel group 13L, and is sent to each wheel group control unit 17R, 17L. And a conversion unit 33 to be supplied.

右車輪群用制御部17R及び左車輪群用制御部17Lのそれぞれには、制御信号生成部35と走行状態検出部37とが設けられている。制御信号生成部35は、各車輪13の駆動部15への制御信号を生成して出力する主速度制御部41と、走行状態に応じて各車輪13のトルク配分を調整するトルク分配部43と、スリップを回復するためのスリップ回復部45と、を備えている。また、走行状態検出部37は、各車輪群13R,13L毎に単一の推定回転速度を推定する速度推定部47と、各車輪13の空転やロック等のスリップを検出するスリップ検出部49と、を備えている。   Each of the right wheel group control unit 17R and the left wheel group control unit 17L is provided with a control signal generation unit 35 and a traveling state detection unit 37. The control signal generator 35 generates and outputs a control signal to the drive unit 15 of each wheel 13 and a torque distribution unit 43 that adjusts the torque distribution of each wheel 13 according to the running state. And a slip recovery part 45 for recovering the slip. Further, the traveling state detection unit 37 includes a speed estimation unit 47 that estimates a single estimated rotational speed for each of the wheel groups 13R and 13L, and a slip detection unit 49 that detects slippage of each wheel 13 such as idling or locking. It is equipped with.

主速度制御部41では、複数の車輪13の各駆動部15に車輪群13R,13L毎に同一のトルク又は所定の相関を有するトルクを出力させるための電流制御信号を生成して送信する。ここで、「所定の相関を有するトルク」とは、同じ車輪群13R,13Lを構成する前輪、中間輪及び後輪からなる複数の車輪13に供給するトルクを、主速度制御部41の単一の処理結果に基づいて、後述するトルク分配部43において走行状態に応じた配分で調整したものである。   The main speed control unit 41 generates and transmits a current control signal for causing the driving units 15 of the plurality of wheels 13 to output the same torque or torque having a predetermined correlation for each of the wheel groups 13R and 13L. Here, “torque having a predetermined correlation” means that torque supplied to a plurality of wheels 13 including front wheels, intermediate wheels, and rear wheels constituting the same wheel group 13R, 13L is a single torque of the main speed control unit 41. On the basis of the processing result, the torque distribution unit 43 described later adjusts the distribution according to the running state.

主速度制御部41では、例えば所定速度で直進する場合、右車輪群13Rを構成する全ての車輪13の各駆動部15と左車輪群13Lを構成する全ての車輪13の各駆動部15とに、同じ回転方向で同じトルクを出力するための単一の電流制御信号を送信する。所定速度で旋回する場合、右車輪群13Rを構成する全ての車輪13の各駆動部15に共通に同じ回転方向で同じトルクを出力するように、単一の右車輪用の電流制御信号を送信し、同時に、左車輪群13Lを構成する全ての車輪13の各駆動部15に共通に同じ回転方向で、右車輪用とは別のトルクを出力するための単一の左車輪用の電流制御信号を送信する。   In the main speed control unit 41, for example, when going straight at a predetermined speed, the drive units 15 of all the wheels 13 constituting the right wheel group 13R and the drive units 15 of all the wheels 13 constituting the left wheel group 13L. A single current control signal for outputting the same torque in the same rotational direction is transmitted. When turning at a predetermined speed, a current control signal for a single right wheel is transmitted so that the same torque is output in the same rotational direction in common to each drive unit 15 of all wheels 13 constituting the right wheel group 13R. At the same time, the current control for a single left wheel for outputting a torque different from that for the right wheel in the same rotational direction in common to the drive units 15 of all the wheels 13 constituting the left wheel group 13L. Send a signal.

トルク分配部43では、主速度制御部41において生成される単一の処理結果に基づき、加速時、減速時等の走行状態における加速度に応じてトルクの配分を調整する。ここでは、加速時及び減速時のうちの少なくとも一方において、複数の車輪13における前側と後側とのトルク比を変化させるのがよい。例えば、走行状態により荷重が増加する側でトルクを増加したり、荷重が減少する側でトルクを減少したりする。具体的には、加速時に後輪の駆動部15のトルクを増加し、減速時に前輪の駆動部15のトルクを増加する。   The torque distribution unit 43 adjusts the torque distribution according to the acceleration in the running state such as during acceleration and deceleration based on the single processing result generated by the main speed control unit 41. Here, it is preferable to change the torque ratio between the front side and the rear side of the plurality of wheels 13 in at least one of acceleration and deceleration. For example, the torque is increased on the side where the load increases depending on the running state, or the torque is decreased on the side where the load decreases. Specifically, the torque of the drive unit 15 for the rear wheels is increased during acceleration, and the torque of the drive unit 15 for the front wheels is increased during deceleration.

速度推定部47では、各車輪13の検出部19で検出された検出回転速度に基づいて、車輪群13R,13L毎に複数の車輪13に共通する回転速度を推定して推定回転速度として主速度制御部41に伝達するとともに、個別走行制御部としての補助速度制御部17Bに伝達する。ここで「回転速度を推定する」とは、予め設定された手順に従って単一の回転速度を求めることである。各車輪群13R,13Lは複数の車輪13を有し、車輪13毎に別の駆動部15により駆動されているため、各駆動部15から同一又は所定の相関のトルクを出力しても、各車輪13の摩耗や転がり抵抗の差、或いは雪道や凹凸等の路面状況の差などにより、一部の車輪13の回転が不足することや、過回転して車体11の移動に対応した適正な回転速度が検出されないことがある。そのため、速度推定部47では、検出部19から伝達された同じ車輪群13R,13Lにおける全ての車輪13の検出回転速度に基づいて、車輪群毎に適正な単一の推定回転速度を求める。   The speed estimation unit 47 estimates the rotation speed common to the plurality of wheels 13 for each of the wheel groups 13R and 13L based on the detected rotation speed detected by the detection unit 19 of each wheel 13, and the main speed as the estimated rotation speed. While transmitting to the control part 41, it transmits to the auxiliary speed control part 17B as an individual travel control part. Here, “estimating the rotational speed” means obtaining a single rotational speed in accordance with a preset procedure. Each wheel group 13R, 13L has a plurality of wheels 13, and each wheel 13 is driven by a separate driving unit 15. Therefore, even if the same or predetermined correlation torque is output from each driving unit 15, Due to wear of wheels 13, differences in rolling resistance, or differences in road conditions such as snowy roads and unevenness, etc., rotation of some wheels 13 is insufficient, or appropriate rotation corresponding to movement of the vehicle body 11 due to over-rotation. The rotation speed may not be detected. Therefore, the speed estimation unit 47 obtains an appropriate single estimated rotation speed for each wheel group based on the detected rotation speeds of all the wheels 13 in the same wheel group 13R, 13L transmitted from the detection unit 19.

推定方法は任意であり、例えば、予め設定した基準に基づいて各車輪13の検出回転速度を判定処理し、基準を満たす車輪13の検出回転速度を推定回転速度として用いることができる。具体的には、各車輪群13R,13L毎に、一部の車輪13の回転速度に予め設定された異常状態が検出されたとき、異常状態が検出された車輪13の検出回転速度を除外して、残りが同じであればその検出回転速度を推定回転速度として採用することも可能である。また、加速時、順行時、減速時に場合分けし、それぞれで選択基準を設けてもよい。例えば、加速時には最も検出回転速度が低いもの、減速時には最も検出速度が高いものを推定回転速度として採用することもできる。   The estimation method is arbitrary. For example, it is possible to determine the detected rotational speed of each wheel 13 based on a preset reference, and use the detected rotational speed of the wheel 13 that satisfies the standard as the estimated rotational speed. Specifically, when an abnormal state preset for the rotational speeds of some of the wheels 13 is detected for each of the wheel groups 13R and 13L, the detected rotational speed of the wheel 13 in which the abnormal state is detected is excluded. If the rest remains the same, the detected rotational speed can be adopted as the estimated rotational speed. In addition, the selection criteria may be set for each of the cases of acceleration, forward travel, and deceleration. For example, the one with the lowest detected rotational speed during acceleration and the highest detected speed during deceleration can be adopted as the estimated rotational speed.

スリップ検出部49では、各検出部19で検出された車輪13の検出回転速度に基づいて、一部の車輪13のロックや空転等のスリップを検出し、スリップ検出信号を送信する。
この実施形態では、スリップ検出信号が速度推定部47に伝達されると、スリップを生じた車輪13の検出回転速度を推定処理から除外するように構成されている。
In the slip detection part 49, based on the detected rotational speed of the wheel 13 detected by each detection part 19, slips, such as a lock | rock of some wheels 13 and idling, are detected, and a slip detection signal is transmitted.
In this embodiment, when the slip detection signal is transmitted to the speed estimation unit 47, the detected rotation speed of the wheel 13 that has caused the slip is excluded from the estimation process.

一方、スリップ回復部45では、スリップが検出された車輪13に対し、主速度制御部41の制御を停止したり、推定回転速度に基づいてスリップを回復するのに適した制御信号を送信することで、回復処理を行う。   On the other hand, the slip recovery unit 45 transmits a control signal suitable for stopping the control of the main speed control unit 41 or recovering the slip based on the estimated rotational speed to the wheel 13 in which the slip is detected. Then, the recovery process is performed.

個別走行制御部としての補助速度制御部17Bは、各車輪13の駆動部15毎にドライバに設けられていて、各車輪13の駆動部15に対する共通走行制御部17Aからの制御の停止期間に駆動部15を制御するものである。補助速度制御部17Bには、共通走行制御部17Aにおける制御の停止期間に行う制御手順が設定されている。例えば、共通走行制御部17Aにおける制御の停止期間に、速度推定部47から推定回転速度が伝達されるとともに、検出部19から検出回転速度が伝達されている場合には、推定回転速度に基づいて駆動部を制御し、検出回転速度を推定回転速度に合わせるための処理を行ってもよい。また、CAN通信系25の切断等により、共通走行制御部17Aから全く信号が伝達されない場合には、制御の停止期間に予め補助速度制御部17Bに設定されている車輪13の停止処理を行うようにしてもよい。その場合、共通走行制御部17Aからの信号が伝達可能な他の車輪13の駆動部15には、共通走行制御部17Aから同様の車輪13の停止処理を行うのがよい。   The auxiliary speed control unit 17B as an individual travel control unit is provided in the driver for each drive unit 15 of each wheel 13 and is driven during a control stop period from the common travel control unit 17A for the drive unit 15 of each wheel 13. The unit 15 is controlled. In the auxiliary speed control unit 17B, a control procedure to be performed during a control stop period in the common travel control unit 17A is set. For example, when the estimated rotational speed is transmitted from the speed estimating unit 47 and the detected rotational speed is transmitted from the detecting unit 19 during the control stop period in the common travel control unit 17A, based on the estimated rotational speed. You may perform the process for controlling a drive part and matching a detected rotational speed with an estimated rotational speed. In addition, when no signal is transmitted from the common travel control unit 17A due to disconnection of the CAN communication system 25 or the like, the wheel 13 stop process set in advance in the auxiliary speed control unit 17B is performed during the control stop period. It may be. In that case, it is preferable to perform the same stop process of the wheels 13 from the common travel control unit 17A to the drive units 15 of the other wheels 13 to which a signal from the common travel control unit 17A can be transmitted.

次に、このような移動体10の動作について説明する。
経路指令PC等の指令入力部21から移動速度と角速度を含む走行指令が主速度制御部41に入力されると、変換部33において、ハンドル角、右車輪群13Rの回転速度、左車輪群13Lの回転速度に変換され、右車輪群用制御部17Rと左車輪群用制御部17Lとにそれぞれ伝達される。
右車輪群用制御部17Rの各主速度制御部41及びトルク分配部43で同一又は所定相関を有する電流制御信号を生成し、右車輪群13Rを構成する複数の車輪13の各駆動部15へCAN通信系25により送信する。また、左車輪群用制御部17Lの各主速度制御部41及びトルク分配部43で同一又は所定相関を有する電流制御信号を生成して、左車輪群13Lを構成する複数の車輪13の各駆動部15へCAN通信系25により送信する。
Next, the operation of such a moving body 10 will be described.
When a travel command including a moving speed and an angular speed is input from the command input unit 21 such as a route command PC to the main speed control unit 41, the conversion unit 33 causes the steering wheel angle, the rotational speed of the right wheel group 13R, and the left wheel group 13L. And is transmitted to the right wheel group control unit 17R and the left wheel group control unit 17L, respectively.
The main speed control unit 41 and the torque distribution unit 43 of the right wheel group control unit 17R generate current control signals having the same or a predetermined correlation, and send to the driving units 15 of the plurality of wheels 13 constituting the right wheel group 13R. It is transmitted by the CAN communication system 25. Further, the main speed control unit 41 and the torque distribution unit 43 of the left wheel group control unit 17L generate current control signals having the same or predetermined correlation, and drive each of the plurality of wheels 13 constituting the left wheel group 13L. The data is transmitted to the unit 15 by the CAN communication system 25.

各駆動部15では、電流制御信号を受信することで、個別走行制御部としての補助速度制御部17Bで処理されずに、電流制御信号が電流調整部31へ伝達される。そして、右車輪群13Rの各駆動モータ29に同一又は所定相関を有する電流制御信号が供給されて、右車輪群13Rの複数の車輪13が同一又は所定相関を有するトルクで回転駆動される。また、左車輪群13Lでも同様に、左車輪群13Lの複数の車輪13が同一又は所定相関を有するトルクで回転駆動される。
これにより、右車輪群13Rにおける複数の車輪13が制御された回転速度で前転又は後転するとともに、左車輪群13Lにおける複数の車輪13が、制御された回転速度で前転又は後転することで、指令入力に対応するように移動体10が直進又は旋回する。
Each drive unit 15 receives the current control signal, so that the current control signal is transmitted to the current adjustment unit 31 without being processed by the auxiliary speed control unit 17B as the individual travel control unit. Then, a current control signal having the same or predetermined correlation is supplied to each drive motor 29 of the right wheel group 13R, and the plurality of wheels 13 of the right wheel group 13R are rotationally driven with a torque having the same or predetermined correlation. Similarly, in the left wheel group 13L, the plurality of wheels 13 of the left wheel group 13L are rotationally driven with the same or predetermined torque.
As a result, the plurality of wheels 13 in the right wheel group 13R rolls forward or backward at a controlled rotational speed, and the plurality of wheels 13 in the left wheel group 13L rolls forward or backward at a controlled rotational speed. Thus, the moving body 10 goes straight or turns so as to correspond to the command input.

移動体10が走行する際、車輪13毎に設けられた検出部19により、全ての車輪13の回転速度がそれぞれ検出されて、検出回転速度がそれぞれ共通走行制御部17Aの各車輪群用制御部17R,17Lに設けられた走行状態検出部37に送信されている。
走行状態検出部37では、各車輪13の検出回転速度が速度推定部47に伝達され、車輪群13R,13L毎に複数の車輪13に共通する推定回転速度が求められ、車輪群13R,13L毎に単一の推定回転速度として推定される。この各車輪群13R,13L毎の推定回転速度はそれぞれ制御信号生成部35に送信される。
また走行状態検出部37では、各車輪13の検出回転速度がスリップ検出部49に伝達され、各車輪群13R,13Lの単一の推定回転速度と各車輪群13R,13Lにおける複数の車輪13の検出回転速度とに基づいてスリップが検出される。
When the moving body 10 travels, the detection unit 19 provided for each wheel 13 detects the rotational speeds of all the wheels 13, and the detected rotational speeds are respectively control units for the respective wheel groups of the common travel control unit 17A. It is transmitted to the traveling state detection part 37 provided in 17R, 17L.
In the traveling state detection unit 37, the detected rotation speed of each wheel 13 is transmitted to the speed estimation unit 47, and an estimated rotation speed common to the plurality of wheels 13 is obtained for each of the wheel groups 13R and 13L, and for each wheel group 13R and 13L. Is estimated as a single estimated rotational speed. The estimated rotational speed for each of the wheel groups 13R and 13L is transmitted to the control signal generator 35, respectively.
In the running state detection unit 37, the detected rotation speed of each wheel 13 is transmitted to the slip detection unit 49, and the single estimated rotation speed of each wheel group 13R, 13L and the plurality of wheels 13 in each wheel group 13R, 13L. A slip is detected based on the detected rotational speed.

制御信号生成部35では、各車輪群13R,13L毎の推定回転速度が主速度制御部41に伝達される。主速度制御部41では、上述のように、指令入力部21からの走行指令が変換部33で各車輪群13R,13L毎に変換された指令回転速度が伝達されているため、推定回転速度を指令回転速度に変化させるために必要な制御量が求められ、出力される。
またこの制御信号生成部35では、主速度制御部41で得られた制御量がトルク分配部43に伝達される。ここでは、前輪、中間輪、後輪における車輪13の駆動部15のトルクが走行状態に応じたトルク配分となるように、各駆動部15に送信する制御量を所定の相関で調整する。ここでは加速時及び減速時のうちの少なくとも一方で、複数の車輪13における前側と後側とのトルク比を変化させる。
これにより制御信号が生成され、CAN通信系25を介して各車輪13の駆動部15に伝達される。そしてこの制御信号により、上述のように各車輪13の回転が制御されることで、車輪群13R,13L毎の推定回転速度に基づいて走行制御部17により複数の駆動部15が制御されることになる。
In the control signal generator 35, the estimated rotational speed for each wheel group 13 </ b> R, 13 </ b> L is transmitted to the main speed controller 41. In the main speed control unit 41, as described above, the command rotational speed obtained by converting the travel command from the command input unit 21 by the conversion unit 33 for each of the wheel groups 13R and 13L is transmitted. A control amount necessary for changing to the command rotational speed is obtained and output.
In the control signal generator 35, the control amount obtained by the main speed controller 41 is transmitted to the torque distributor 43. Here, the control amount transmitted to each drive unit 15 is adjusted with a predetermined correlation so that the torque of the drive unit 15 of the wheel 13 in the front wheel, the intermediate wheel, and the rear wheel becomes a torque distribution according to the traveling state. Here, the torque ratio between the front side and the rear side of the plurality of wheels 13 is changed at least one of acceleration and deceleration.
As a result, a control signal is generated and transmitted to the drive unit 15 of each wheel 13 via the CAN communication system 25. And by this control signal, the rotation of each wheel 13 is controlled as described above, so that the plurality of drive units 15 are controlled by the travel control unit 17 based on the estimated rotation speed for each of the wheel groups 13R and 13L. become.

なお、スリップ検出部49でスリップが検出された場合は、制御信号生成部35のスリップ回復部45において、推定回転速度に基づいてスリップを回復するのに適した制御信号を生成して送信する。ここで、スリップが検出された車輪13の駆動部15に対し、車輪13の回転速度を推定回転速度にする補正制御を行ってもよい。また、スリップが検出された車輪13の駆動部15に対する共通走行制御部17Aの制御を停止し、補助速度制御部17Bによりスリップの回復処理を行うことも可能である。   When slip is detected by the slip detection unit 49, the slip recovery unit 45 of the control signal generation unit 35 generates and transmits a control signal suitable for recovering the slip based on the estimated rotational speed. Here, correction control may be performed on the driving unit 15 of the wheel 13 in which the slip is detected so that the rotational speed of the wheel 13 is set to the estimated rotational speed. It is also possible to stop the common travel control unit 17A from controlling the drive unit 15 of the wheel 13 in which slip has been detected, and to perform slip recovery processing by the auxiliary speed control unit 17B.

このような制御により、移動体10の移動中には、速度推定部47において推定された右車輪群13Rの単一の推定回転速度と左車輪群13Lの単一の推定回転速度がオドメトリ部23に伝達されていて、各推定回転速度から移動体10の速度及び角速度を求めて走行経路を積算している。   By such control, during the movement of the moving body 10, the single estimated rotational speed of the right wheel group 13 </ b> R and the single estimated rotational speed of the left wheel group 13 </ b> L estimated by the speed estimation unit 47 are the odometry unit 23. And the travel route is integrated by obtaining the speed and angular velocity of the moving body 10 from each estimated rotational speed.

以上のように、この移動体によれば、各車輪群13R,13Lにおける複数の車輪13の検出回転速度から、その車輪群13R,13Lの車輪13に共通する推定回転速度を推定し、推定回転速度に基づいて複数の駆動部15を制御して各車輪13の回転速度を調整する。したがって、各車輪13毎に回転速度を検出してそれぞれを独立に制御する場合のように、各車輪13の条件の違いなどに起因して各車輪13のトルクバランスが崩れて効率が悪化することを確実に防止できる。   As described above, according to this moving body, the estimated rotational speed common to the wheels 13 of the wheel groups 13R and 13L is estimated from the detected rotational speeds of the plurality of wheels 13 in the wheel groups 13R and 13L, and the estimated rotation speed is estimated. Based on the speed, the plurality of drive units 15 are controlled to adjust the rotational speed of each wheel 13. Therefore, as in the case where the rotational speed is detected for each wheel 13 and each is controlled independently, the torque balance of each wheel 13 is lost due to the difference in conditions of each wheel 13 and the efficiency is deteriorated. Can be reliably prevented.

また、複数の車輪13のうちの一部の車輪13について、スリップや回転抵抗などにより不適切な回転速度が検出部で検出されたときは、その不適切な回転速度に基づいて、複数の車輪13の駆動部15が制御されることを防止できる。加えて、不適切な回転速度に基づいて移動体10の走行状態や軌跡が把握されることを防止できる。
さらに、指令入力に対応する直進速度及び旋回速度を実現するための複数の車輪13の制御が容易である。
従って、簡素な構成で指令入力に精度よく対応した直進及び旋回を行うことができる。
In addition, when an inappropriate rotational speed is detected by a detection unit due to slip, rotational resistance, or the like for some of the wheels 13, the plurality of wheels are based on the inappropriate rotational speed. It is possible to prevent the thirteen drive units 15 from being controlled. In addition, it is possible to prevent the traveling state and locus of the moving body 10 from being grasped based on an inappropriate rotation speed.
Furthermore, it is easy to control the plurality of wheels 13 for realizing the straight traveling speed and the turning speed corresponding to the command input.
Therefore, it is possible to perform straight running and turning corresponding to the command input with a simple configuration with high accuracy.

また、この移動体10によれば、共通走行制御部17Aの制御停止期間に各車輪13の駆動部15を個別に制御する個別走行制御部としての補助速度制御部17Bが設けられているので、何れかの駆動部15に対する共通走行制御部17Aの制御が共通走行制御部17Aの処理により停止されたり、CAN通信系25等の異常により停止されたりしたときは、補助速度制御部17Bによりその駆動部15を制御できる。   Further, according to the moving body 10, since the auxiliary speed control unit 17B as an individual travel control unit that individually controls the drive unit 15 of each wheel 13 is provided during the control stop period of the common travel control unit 17A, When the control of the common travel control unit 17A for any one of the drive units 15 is stopped by the process of the common travel control unit 17A or stopped due to an abnormality in the CAN communication system 25 or the like, the drive is performed by the auxiliary speed control unit 17B. The unit 15 can be controlled.

例えば、共通走行制御部17Aの制御が停止した駆動部15に対し、補助速度制御部17Bにより推定回転速度に基づいて制御することで、走行を継続できる。また、装置の異常等により共通走行制御部17Aの制御が停止した駆動部15に対しは、補助速度制御部17Bにより予め設定された車輪13の停止処理を行うことで、滑らかに停止させることができる。さらに、停止処理の設定により、一時的に制御が停止されて回復した場合にも滑らかに走行させることができ、容易に制御を復帰できる。
従って、簡素な構成で指令入力に精度よく対応した直進及び旋回を行うことができる。
For example, traveling can be continued by controlling the driving unit 15 in which the control of the common traveling control unit 17A is stopped based on the estimated rotational speed by the auxiliary speed control unit 17B. Further, for the drive unit 15 in which the control of the common travel control unit 17A is stopped due to an abnormality of the device or the like, a stop process for the wheel 13 preset by the auxiliary speed control unit 17B is performed, so that the drive unit 15 can be smoothly stopped. it can. Furthermore, even when the control is temporarily stopped and recovered due to the setting of the stop process, the vehicle can run smoothly, and the control can be easily restored.
Therefore, it is possible to perform straight running and turning corresponding to the command input with a simple configuration with high accuracy.

なお、上記実施の形態は本発明の範囲内において適宜変更可能である。
例えば上記実施形態では、右車輪群13R及び左車輪群13Lの前輪及び後輪が全方向車輪13aからなり、中間輪がゴムタイヤ13bからなる例について説明したが、車輪の数や配置は何ら限定されず、車輪の数や配置に応じた制御を実施することで、容易に本発明を適用することが可能である。
In addition, the said embodiment can be suitably changed within the scope of the present invention.
For example, in the above-described embodiment, an example in which the front wheels and the rear wheels of the right wheel group 13R and the left wheel group 13L are made of omnidirectional wheels 13a and the intermediate wheels are made of rubber tires 13b has been described. First, the present invention can be easily applied by performing control according to the number and arrangement of wheels.

10:移動体
11:車体
13:車輪
13a:全方向車輪
13b:ゴムタイヤ
13R:右車輪群
13L:左車輪群
15:駆動部
17:走行制御部
17A:共通走行制御部
17B:補助速度制御部(個別走行制御部)
17R:右車輪群用制御部
17L:左車輪群用制御部
19:検出部
21:指令入力部
23:オドメトリ部
25:CAN通信系
27:転動体
29:駆動モータ
31:電流調整部
33:変換部
35:制御信号生成部
37:走行状態検出部
41:主速度制御部
43:トルク分配部
45:スリップ回復部
47:速度推定部
49:スリップ検出部
10: mobile body 11: vehicle body 13: wheel 13a: omnidirectional wheel 13b: rubber tire 13R: right wheel group 13L: left wheel group 15: drive unit 17: travel control unit 17A: common travel control unit 17B: auxiliary speed control unit ( Individual travel control unit)
17R: right wheel group control unit 17L: left wheel group control unit 19: detection unit 21: command input unit 23: odometry unit 25: CAN communication system 27: rolling element 29: drive motor 31: current adjustment unit 33: conversion Unit 35: control signal generation unit 37: travel state detection unit 41: main speed control unit 43: torque distribution unit 45: slip recovery unit 47: speed estimation unit 49: slip detection unit

Claims (7)

全方向車輪を含む複数の車輪からなる左右の各車輪群と、前記複数の車輪のそれぞれに設けられた複数の駆動部と、指令入力に対応するように前記複数の駆動部を制御して前記複数の車輪の回転速度を調整する走行制御部と、前記複数の車輪それぞれの回転速度を検出する複数の検出部と、を備え、前記複数の車輪の回転により直進及び旋回可能な移動体において、
前記複数の検出部で検出された前記複数の車輪の検出回転速度から、前記各車輪群の前記複数の車輪に共通する推定回転速度を推定する速度推定部を備え、前記推定回転速度に基づいて前記走行制御部により前記複数の駆動部が制御される、移動体。
The left and right wheel groups comprising a plurality of wheels including omnidirectional wheels, the plurality of drive units provided on each of the plurality of wheels, and the plurality of drive units corresponding to the command input to control the plurality of drive units In a moving body that includes a travel control unit that adjusts the rotation speed of a plurality of wheels, and a plurality of detection units that detect the rotation speed of each of the plurality of wheels, and that can move straight and turn by the rotation of the plurality of wheels,
A speed estimation unit configured to estimate an estimated rotation speed common to the plurality of wheels of each wheel group from the detected rotation speeds of the plurality of wheels detected by the plurality of detection units, and based on the estimated rotation speed A moving body in which the plurality of driving units are controlled by the travel control unit.
前記走行制御部は、前記指令入力に対応するように前記複数の駆動部を制御する共通走行制御部と、前記駆動部毎に設けられて該駆動部に対する前記共通走行制御部の制御の停止期間に該駆動部を制御する複数の個別走行制御部と、を備える、請求項1に記載の移動体。   The travel control unit includes a common travel control unit that controls the plurality of drive units to correspond to the command input, and a stop period of control of the common travel control unit that is provided for each of the drive units. The mobile body according to claim 1, further comprising: a plurality of individual traveling control units that control the driving unit. 全方向車輪を含む複数の車輪と、前記車輪毎に設けられた複数の駆動部と、指令入力に対応するように前記複数の駆動部を制御して前記複数の車輪の回転速度を調整する走行制御部と、前記各車輪に設けられて各車輪の回転速度を検出する複数の検出部と、を備え、前記複数の車輪の回転により直進及び旋回可能な移動体において、
前記走行制御部は、前記指令入力に対応するように前記複数の駆動部を制御する共通走行制御部と、前記駆動部毎に設けられて該駆動部に対する前記共通走行制御部の制御の停止期間に該駆動部を制御する複数の個別走行制御部と、を備える、移動体。
A plurality of wheels including omnidirectional wheels, a plurality of driving units provided for each of the wheels, and a travel for adjusting the rotational speeds of the plurality of wheels by controlling the plurality of driving units so as to correspond to a command input In a movable body that includes a control unit and a plurality of detection units that are provided on each wheel and detects the rotation speed of each wheel, and that can move straight and turn by the rotation of the plurality of wheels,
The travel control unit includes a common travel control unit that controls the plurality of drive units to correspond to the command input, and a stop period of control of the common travel control unit that is provided for each of the drive units. And a plurality of individual travel control units that control the drive unit.
前記個別走行制御部は、前記制御の停止期間に前記推定回転速度に基づいて前記各駆動部を制御する、請求項2又は3に記載の移動体。   4. The moving body according to claim 2, wherein the individual traveling control unit controls each of the driving units based on the estimated rotation speed during a stop period of the control. 前記個別走行制御部は、前記制御の停止期間に予め設定された前記車輪の停止処理を行う、請求項2又は3に記載の移動体。   The mobile object according to claim 2 or 3, wherein the individual travel control unit performs a stop process of the wheel set in advance during a stop period of the control. 前記検出回転速度に基づいて前記各車輪のスリップを検出するスリップ検出部を備え、前記走行制御部はスリップが検出された前記車輪の駆動部に対し回復処理を行う、請求項1乃至5の何れかに記載の移動体。   The slip detection part which detects the slip of each said wheel based on the said detected rotational speed is provided, The said travel control part performs a recovery process with respect to the drive part of the said wheel by which the slip was detected. The moving body according to Crab. 前記走行制御部は、前記駆動部へ供給する電流を分配するトルク分配部を備え、前記トルク分配部は、加速時及び減速時のうちの少なくとも一方において、前記複数の車輪における前側と後側とのトルク比を変化させる、請求項1乃至6の何れかに記載の移動体。   The travel control unit includes a torque distribution unit that distributes a current to be supplied to the drive unit, and the torque distribution unit includes a front side and a rear side of the plurality of wheels in at least one of acceleration and deceleration. The moving body according to any one of claims 1 to 6, wherein the torque ratio is changed.
JP2015115288A 2015-06-05 2015-06-05 Movable body Pending JP2017005814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115288A JP2017005814A (en) 2015-06-05 2015-06-05 Movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115288A JP2017005814A (en) 2015-06-05 2015-06-05 Movable body

Publications (1)

Publication Number Publication Date
JP2017005814A true JP2017005814A (en) 2017-01-05

Family

ID=57751985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115288A Pending JP2017005814A (en) 2015-06-05 2015-06-05 Movable body

Country Status (1)

Country Link
JP (1) JP2017005814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052863A1 (en) * 2017-09-18 2019-03-21 Kuka Deutschland Gmbh Determination of movements of omnidirectional platforms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052863A1 (en) * 2017-09-18 2019-03-21 Kuka Deutschland Gmbh Determination of movements of omnidirectional platforms

Similar Documents

Publication Publication Date Title
CN102107660B (en) Motion control unit for vehicle based on jerk information
CN1325298C (en) Method and device for controlling vehicle
US20140379220A1 (en) Vehicle with independently driven multiple axes, and controller which independently drives multiple axles
WO2015190349A1 (en) Drive control device with traction control function for right-left independent drive vehicle
JP6502074B2 (en) Vehicle braking / driving force control device
CN105459848A (en) Vehicle control device and vehicle control method
WO2015107943A1 (en) Vehicle control device of four-wheel independent drive vehicle for when one wheel is lost
JP4524597B2 (en) Driving force distribution device for four-wheel independent drive vehicle
CN104139777A (en) Vehicle running control apparatus and method
JP4845839B2 (en) Electric drive vehicle
JP2008040936A (en) Traveling control device of automated guided vehicle
US7434646B2 (en) On-demand four wheel drive system
JP2008141875A (en) Running system and drive control device
JP2017005814A (en) Movable body
JP4725431B2 (en) Driving force estimation device for electric vehicle, automobile and driving force estimation method for electric vehicle
JP2014024434A (en) Carrier
CN112026535A (en) Control method and control system of distributed four-wheel-drive electric vehicle
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
CN110402215B (en) Setting a torque distribution between the wheels of an axle of a motor vehicle by actuating an operating unit
EP4071022A1 (en) Systems and methods for speed control of wheels of a vehicle
JP2004336910A (en) Driving control device for vehicle
JP7348262B2 (en) Step-by-step detection of the appearance of torque steer
KR102200093B1 (en) Control method of motor driven power steering system
JP2009035221A (en) Running controller for vehicle and method therefor
JP2006528571A (en) Control system for cars that are at least temporarily operated on four wheels