JP2017002641A - Non-excavation drain pipe burying method - Google Patents

Non-excavation drain pipe burying method Download PDF

Info

Publication number
JP2017002641A
JP2017002641A JP2015119591A JP2015119591A JP2017002641A JP 2017002641 A JP2017002641 A JP 2017002641A JP 2015119591 A JP2015119591 A JP 2015119591A JP 2015119591 A JP2015119591 A JP 2015119591A JP 2017002641 A JP2017002641 A JP 2017002641A
Authority
JP
Japan
Prior art keywords
pipe
shaft
drain pipe
sheath
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015119591A
Other languages
Japanese (ja)
Other versions
JP6549911B2 (en
Inventor
敏孝 清水
Toshitaka Shimizu
敏孝 清水
剛 森口
Takeshi Moriguchi
剛 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DATA TOU KK
HOUSHOU-EG CORP
Mainmark Aquatek Co Ltd
TOTOKU CO Ltd
Original Assignee
DATA TOU KK
HOUSHOU-EG CORP
Mainmark Aquatek Co Ltd
TOTOKU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DATA TOU KK, HOUSHOU-EG CORP, Mainmark Aquatek Co Ltd, TOTOKU CO Ltd filed Critical DATA TOU KK
Priority to JP2015119591A priority Critical patent/JP6549911B2/en
Publication of JP2017002641A publication Critical patent/JP2017002641A/en
Application granted granted Critical
Publication of JP6549911B2 publication Critical patent/JP6549911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-excavation drain pipe burying method that may be executed readily in an urban area or a road with a heavy traffic at a low cost, at the same time facilitating maintenance and management.SOLUTION: A starting shaft 1 and an arrival shaft 2 are excavated from a ground surface, leaving a distance therebetween. An adit 3 is excavated from the starting shaft 1 toward the arrival shaft 2, at the same time advancing a sleeve pipe 10. The sleeve pipe 10 is made to penetrate through the adit 3, and installed inside the adit 3. A water-permeable drain pipe 4 is inserted and placed inside the sleeve pipe 10. Then, the sleeve pipe 10 is pulled out from the adit 3, leaving behind the drain pipe 4 inside the adit 3.SELECTED DRAWING: Figure 9

Description

この発明は、地盤の浅い部分の地下水を抜いて地下水位を低下させることにより、地盤の液状化を防ぐ地下水位低下工法に利用できる非開削ドレイン管埋設工法に関する。   The present invention relates to a non-cut-off drain pipe embedding method that can be used in a groundwater level lowering method that prevents ground liquefaction by removing groundwater from a shallow portion of the ground and lowering the groundwater level.

大きな地震が起こると、砂地地盤等では液状化が発生し、この結果、ライフラインの断絶、構造物の沈下及び倒壊等の被害を受けることになりかねない。
近年、この液状化を防ぐために、地盤の浅い部分の地下水を抜いて地下水位を低下させ、非液状化層の厚みを増大し、地下水位以深の液状化層への拘束圧を増強して液状化を抑制する地下水位低下工法が注目されている。
地下水位を低下させるためには、多孔のドレイン管を地中に埋設し、地中の雨水や湧水をドレイン管内に集めて排出するのが一般的である。
When a large earthquake occurs, liquefaction occurs in the sandy ground, and as a result, the lifeline may be interrupted, structures may be sunk and collapsed.
In recent years, in order to prevent this liquefaction, the groundwater level is reduced by lowering the groundwater in the shallow part of the ground, the thickness of the non-liquefied layer is increased, and the restraint pressure on the liquefied layer deeper than the groundwater level is increased to increase the liquid pressure. The groundwater level lowering method that suppresses the conversion is attracting attention.
In order to lower the groundwater level, a porous drain pipe is generally buried in the ground, and underground rainwater and spring water are collected in the drain pipe and discharged.

地中に埋設されるドレイン管として、プラスチック製細線を円筒状に編み込んで形成された中空ネット管(特許文献1)、線状合成樹脂を重ねた中空円筒状の排水材(特許文献2)、複数の糸状ストランドを螺旋状に溶融押出して筒状に形成した硬質合成樹脂の網目状樹脂管(特許文献3)が知られている。また、管状ではないがドレイン部材として、多数本のモノフィラメントをランダムなループ状に堆積して形成された硬質合成樹脂製の集排水処理材(特許文献4)やランダムな螺旋状の熱可塑性合成樹脂製線状物が点結合した平板上の立体網状構造体(特許文献5)が知られている。
さらに、前記特許文献1,2には、まず、ケーシングを地中へ縦方向に建込んで削孔し、次いでケーシング内にドレイン材を挿し込み、そしてケーシングを引き抜いてドレイン材を地中へ残置する工法が記載されている。その際、特許文献2では合成樹脂製のジョイントを用いて前記の排水材を継ぎ足して所定の長さにすることも記載されている。
さらに、特許文献6には、断面において凹凸となる環状の突条を有するプラスチック管が記載され、前記環状突条を鞘管の外周に形成された溝に嵌め込んで両側の樹脂管を連結する構造が説明されている。
As a drain pipe buried in the ground, a hollow net pipe (Patent Document 1) formed by weaving plastic thin wires into a cylindrical shape, a hollow cylindrical drainage material (Patent Document 2) overlaid with a linear synthetic resin, 2. Description of the Related Art A rigid synthetic resin network resin tube (Patent Document 3) is known in which a plurality of filamentous strands are melt-extruded in a spiral shape and formed into a cylindrical shape. Further, although not tubular, as a drain member, a hard synthetic resin drainage treatment material (Patent Document 4) or a random spiral thermoplastic synthetic resin formed by depositing a large number of monofilaments in a random loop shape A three-dimensional network structure (Patent Document 5) on a flat plate in which wire-like objects are point-connected is known.
Further, in Patent Documents 1 and 2, first, the casing is vertically built into the ground and drilled, then the drain material is inserted into the casing, and the casing is pulled out to leave the drain material in the ground. The construction method is described. At that time, Patent Document 2 also describes that the drainage material is added to a predetermined length by using a synthetic resin joint.
Furthermore, Patent Document 6 describes a plastic tube having an annular ridge that is uneven in cross section, and the resin tube on both sides is connected by fitting the annular ridge into a groove formed on the outer periphery of the sheath tube. The structure is explained.

しかし、ドレイン管は地中へ水平に埋設するのが広い範囲で集水効率を高める点から好ましいが、ドレイン管を水平に埋設するには、従来、埋設対象となる地盤を開削して、ドレイン管の直径よりも幅広く、ドレイン管の全長に達する長い溝を形成する。そして、溝内にドレイン管を配置してから、採石を被せ、さらに土を埋め戻している。
この開削工法は、構造物や既存埋設物が多い市街地や、交通量の多い道路では施工が困難である。また、開削によって出る多量の土砂の処理が難しいだけでなく、大規模な掘削工事が必要なためコスト高となる。しかも、埋設後は、地盤開削以外にドレイン管に近づく術がなく、埋設後の設備を維持管理するのが難しかった。
However, it is preferable to bury the drain pipe horizontally in the ground from the viewpoint of improving the water collection efficiency in a wide range. However, in order to bury the drain pipe horizontally, conventionally, the ground to be buried is excavated and drained. A long groove that is wider than the diameter of the tube and reaches the entire length of the drain tube is formed. Then, after arranging the drain pipe in the groove, it is covered with quarry and further backfilled with soil.
This open-cut method is difficult to construct in urban areas where there are many structures and existing buried objects, and roads with heavy traffic. Moreover, not only is it difficult to treat a large amount of earth and sand generated by excavation, but the cost is high because large-scale excavation work is required. Moreover, after burial, there was no way to approach the drain pipe other than ground excavation, and it was difficult to maintain and manage the facilities after burial.

特開2008−144558号公報JP 2008-144558 A 特開2004−100185号公報JP 2004-100185 A 特開2002−364785号公報JP 2002-364785 A 特開2002−275876号公報JP 2002-275876 A 特開2001−55719号公報JP 2001-55719 A 特開2007−64457号公報JP 2007-64457 A

この発明は、市街地や交通量の多い道路でも容易に施工でき、コストが低廉で維持管理が容易な設備となる非開削ドレイン管埋設工法の提供を課題とする。   An object of the present invention is to provide a non-cut-off drain pipe burying method that can be easily constructed even in urban areas and roads with a large amount of traffic, and that is inexpensive and easy to maintain.

本発明は、地面に距離をおいて掘削した発進立坑と到達立坑の間に横抗を貫通させ、横抗内に透水性のドレイン管を埋設する非開削ドレイン管埋設工法であって、地表から発進立坑及び到達立坑を掘削した後、前記発進立坑から到達立坑に向かって掘削と共に鞘管を推進させて横抗を形成し、同時に該横抗内に鞘管を設置し、次いで、前記鞘管内にドレイン管を配置し、次に、前記横抗から前記鞘管を引き抜いて、前記横抗内にドレイン管を残すことを特徴とする。ドレイン管は、透水性であって埋設土中で充分な耐圧性能を有するものであれば特に限定されないが、ポリプロピレンなどの紐状ストランドを螺旋状に溶融押し出しながら全体として管状に成形した熱可塑性樹脂の3次元網状構造体が好ましい。紐状ストランドとは前記特許文献等において太径モノフィラメントとか糸状ストランドあるいは線状合成樹脂とよばれているものである。   The present invention is a non-open-drain drain pipe burying method in which a lateral resistance is penetrated between a starting shaft and a reaching shaft that have been excavated at a distance from the ground, and a permeable drain pipe is embedded in the lateral resistance. After excavating the starting shaft and the reaching shaft, excavation from the starting shaft toward the reaching shaft and propelling the sheath tube to form a lateral shield, and simultaneously installing the sheath tube in the lateral shaft, A drain pipe is disposed on the side wall, and then the sheath pipe is pulled out from the side wall to leave the drain pipe in the side wall. The drain pipe is not particularly limited as long as it is water-permeable and has sufficient pressure resistance in the buried soil, but a thermoplastic resin formed into a tubular shape as a whole while melting and extruding a string-like strand such as polypropylene. The three-dimensional network structure is preferable. The string-like strand is called a large-diameter monofilament, a thread-like strand, or a linear synthetic resin in the above-mentioned patent documents.

前記鞘管、ドレイン管を前記発進立坑及び到達立坑で扱える長さの単位鞘管、単位ドレイン管とし、これを発進立坑から順次到達立坑へ向けて押込む工程と後進の単位鞘管及び単位ドレイン管を先進の単位鞘管及び単位ドレイン管に連繋させる工程を繰り返して、発進立坑から到達立坑に至る鞘管、ドレイン管としてあり、ドレイン管を到達立坑に到達させた後、到達立坑側に鞘管を引き抜き、到達立坑で鞘管を単位鞘管に分解して順次回収する工法とする場合もある。
鞘管と共に横坑に配置されたドレイン管に緊結パイプを挿し通し、さらに緊結パイプにプッシュロッドを貫通させ、プッシュロッドを利用して鞘管を到達立坑へ引き抜いたり、緊結パイプを発進立坑へ引き出したりすることがある。
The sheath and drain pipes are unit sheath pipes and unit drain pipes of a length that can be handled by the starting and reaching shafts, and the step of pushing the starting shafts from the starting shaft sequentially toward the reaching shaft and the backward unit sheath and unit drains. The process of connecting the pipe to the advanced unit sheath pipe and unit drain pipe is repeated to form a sheath pipe and drain pipe from the starting shaft to the reaching shaft, and after the drain tube reaches the reaching shaft, the sheath is placed on the reaching shaft side. In some cases, the pipe is pulled out, and the sheath pipe is disassembled into unit sheath pipes at the reaching shaft and is sequentially recovered.
Insert the tightening pipe through the drain pipe located in the side shaft along with the sheath pipe, and further penetrate the push rod through the tightening pipe. Using the push rod, pull out the sheath pipe to the arrival shaft, or pull the tightening pipe to the start shaft. Sometimes.

この発明の非開削ドレイン管埋設工法によれば、ドレイン管の埋設に地盤を開削する必要がないので、市街地や道路に比較的容易にドレイン管を埋設することが可能となる。
立坑と横坑の掘削が必要であるが、掘削量は少なく、掘削によって生ずる土砂の処理に要する費用も少なく施工コストも低く押えることができる。
ドレイン管でつながる発進立坑と到達立坑は、土中から除去した地中滞留水(ドレイン)の一次貯留タンクとして利用される。また、これら縦坑を利用して、ドレイン管内の清掃や点検、縦坑内に配置する排水ポンプの点検等の維持管理を容易に行うことができる。
According to the non-cut-off drain pipe burying method of the present invention, it is not necessary to cut the ground for burying the drain pipe, so that the drain pipe can be buried relatively easily in an urban area or a road.
Although excavation of vertical shafts and horizontal shafts is necessary, the amount of excavation is small, and the cost required for the treatment of earth and sand generated by excavation is small and the construction cost can be kept low.
The start shaft and the reach shaft connected by the drain pipe are used as primary storage tanks for the underground water (drain) removed from the soil. Moreover, using these vertical shafts, it is possible to easily perform maintenance and management such as cleaning and inspection of the drain pipe and inspection of the drainage pump disposed in the vertical shaft.

この発明のドレイン管は紐状ストランドを絡ませたものを利用できるので、ドレイン管として空隙が大きく透水性が高い。また紐状ストランドを絡ませた前記ドレイン管は頑丈で耐圧性が高いので、地盤の比較的深い位置に埋設可能であり、非液状化層の層厚を大きくすることができる。   Since the drain tube of the present invention entangled with string-like strands can be used, the drain tube has a large gap and high water permeability. In addition, the drain tube entangled with the string-like strand is strong and has high pressure resistance, so that it can be embedded in a relatively deep position of the ground, and the thickness of the non-liquefied layer can be increased.

ドレイン管設置部の平面図(工程1)。The top view of a drain pipe installation part (process 1). ドレイン管設置部の平面図(工程2)。The top view of a drain pipe installation part (process 2). ドレイン管設置部の平面図〔イ〕、〔ロ〕は一部を取り出して示した拡大図(工程2)。Plan views [b] and [b] of the drain pipe installation part are enlarged views (step 2) taken out partially. ドレイン管設置部の平面図〔イ〕、〔ロ〕は一部を取り出して示した拡大図(工程3,4)。Plan views [A] and [B] of the drain tube installation part are enlarged views (steps 3 and 4). ドレイン管設置部の平面図と一部を取り出して示した拡大図(工程5,6)。The top view of a drain pipe installation part, and the enlarged view which extracted and showed a part (process 5 and 6). ドレイン管設置部の平面図〔イ〕、〔ハ〕は一部を取り出して示した拡大図、〔ロ〕は側面図(工程7)。Plan views [A] and [C] of the drain pipe installation part are enlarged views showing a part thereof, and [B] is a side view (Step 7). ドレイン管設置部の平面図〔イ〕、〔ハ〕は一部を取り出して示した拡大図、〔ロ〕は側面図(工程8,9,10)。Plan views [A] and [C] of the drain pipe installation part are enlarged views showing a part thereof, and [B] is a side view (steps 8, 9, and 10). ドレイン管設置部の平面図〔イ〕、〔ロ〕は一部を取り出して示した拡大図。Plan views [A] and [B] of the drain pipe installation part are enlarged views showing a part extracted. ドレイン管設置部の平面図(工程11)。The top view of a drain pipe installation part (process 11). 単位鞘管の斜視図。The perspective view of a unit sheath tube. 単位ドレイン管の斜視図。The perspective view of a unit drain pipe. 単位緊結パイプの斜視図。The perspective view of a unit binding pipe. 単位緊結パイプに挿し込んだ状態のプッシュロッドを示した断面図。Sectional drawing which showed the push rod of the state inserted in the unit tight pipe. 単位ドレイン管の連結部を示した斜視図。The perspective view which showed the connection part of the unit drain pipe. 図14の管軸に沿った断面図。FIG. 15 is a cross-sectional view along the tube axis in FIG. 14. 連結外筒を分解して示す斜視図。The perspective view which decomposes | disassembles and shows a connection outer cylinder. 連結内筒の斜視図。The perspective view of a connection inner cylinder. 単位ドレイン管、連結内筒及び単位緊結パイプを透視して示す正面図。The front view which shows a unit drain pipe, a connection inner cylinder, and a unit tight pipe through seeing through. テールシールの状態を示した正面図。〔イ〕は装着時、〔ロ〕は鞘管を少し引抜いた状態。The front view which showed the state of the tail seal. [I] is when installed, [b] is a state in which the sheath tube is slightly pulled out. 加工装置の正面図。The front view of a processing apparatus. 加工装置の単位ドレイン管セット時における側面図。The side view at the time of the unit drain pipe set of a processing apparatus. 加工装置の単位ドレイン管セット時における正面図。The front view at the time of the unit drain pipe set of a processing apparatus. 加熱成形ローラの斜視図であり、[イ]は外観全体を示し、[ロ]は一部を破断して示している。It is a perspective view of a thermoforming roller, [A] shows the whole appearance, and [B] shows a part broken away.

以下、本発明の実施例を図面に基づいて詳細に説明する。数値はすべてこの実施例においてのものであり、実際には現場の状況に拠る。
本発明は、図1に示すように、地面に互いに距離をおいて掘削した発進立坑1と到達立坑2の間に横抗3を貫通させ、横抗3内に透水性のドレイン管4(図11)を埋設する非開削ドレイン管埋設工法である。
本実施例では、ドレイン管4を地表から4mの深さに、全長20mに亘って埋設する。
図1〜図9は、主として施工の工程を示し、図10以降に実施例において使用する部材ないし機材の詳細を図示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. All numerical values are in this example and actually depend on the situation in the field.
In the present invention, as shown in FIG. 1, a horizontal resistance 3 is inserted between a starting shaft 1 and a reaching shaft 2 excavated at a distance from each other on the ground, and a permeable drain pipe 4 (see FIG. 11) A non-cut-off drain pipe burying method for burying.
In this embodiment, the drain pipe 4 is buried at a depth of 4 m from the ground surface over a total length of 20 m.
1 to 9 mainly show construction steps, and FIG. 10 and subsequent figures show details of members or equipment used in the embodiment.

〔設備〕
発進立坑1と到達立坑2を設け、発進立坑1に発進坑口を、到達立坑2に到達坑口をそれぞれ設け、坑口機材3a、3bを取付ける。
発進立坑1は直径2.5m、到達立坑2は直径1.5mとして約20mの中心間距離をおいて設けられ、それぞれ地面から5.5mの深さである。
坑口機材3a、3bは、発進立坑1と到達立坑2の相互に対向した位置に配置される。
発進立坑1に推進機5が設置される。
推進機5は装着される機具を横坑3へその軸方向へ押し込む油圧機構と、装着される機具を必要に応じて回転させる駆動機構を備える。
また、発進立坑1には施工中に生じる掘削土砂や湧水(ドレイン)を除去するバケットやポンプが配置される。ポンプは到達立坑2にも配置される。
〔Facility〕
The starting shaft 1 and the reaching shaft 2 are provided, the starting shaft 1 is provided in the starting shaft 1, the reaching port is provided in the reaching shaft 2, and the wellhead equipment 3a, 3b is attached.
The starting shaft 1 has a diameter of 2.5 m and the reaching shaft 2 has a diameter of 1.5 m and is provided with a center-to-center distance of about 20 m, and each has a depth of 5.5 m from the ground.
The wellhead equipment 3a and 3b are arranged at positions where the start shaft 1 and the arrival shaft 2 face each other.
A propulsion machine 5 is installed in the start shaft 1.
The propulsion device 5 includes a hydraulic mechanism that pushes the equipment to be installed into the horizontal shaft 3 in the axial direction, and a drive mechanism that rotates the equipment to be installed as necessary.
Moreover, the starting shaft 1 is provided with a bucket and a pump for removing excavated sediment and spring water (drain) generated during construction. The pump is also arranged in the reaching shaft 2.

〔使用機材〕
使用機材の主なものは、前記の推進機5に加え、図3に示すように、仮管6、掘削カッター7、ブラシ型滞水ヘッド8及びスクリューコンベア9を有する掘削装置と、鞘管10、ドレイン管4、緊結パイプ11(図4)及びプッシュロッド12(図6)を有する配備用装置とを備える。これらに付属する部材については順次説明する。
[Equipment]
As shown in FIG. 3, the main equipment used is a drilling apparatus having a temporary pipe 6, a drilling cutter 7, a brush-type stagnant head 8 and a screw conveyor 9, and a sheath pipe 10, as shown in FIG. 3. And a deployment device having a drain pipe 4, a tightening pipe 11 (FIG. 4) and a push rod 12 (FIG. 6). The members attached to these will be described sequentially.

前記掘削装置は、前記配備用装置の鞘管10と組み合わせて使用され、鞘管10の内部にスクリューコンベア9が配置される(図3)。スクリューコンベア9は、発進立坑1、到達立坑2の内部で作業ができる長さに分割されており、複数の単位スクリューコンベア9a(図3〔イ〕)が接続されている。スクリューコンベア9の発進側は推進機5に接続されて推進力と回転力を受けるようにされており、到達側には前記ブラシ型滞水ヘッド8が取り付けられている。ブラシ型滞水ヘッド8の先端側に掘削カッター7が取り付けられ、その到達立坑2側に回転ジョイント13を介して仮管6の基部が取り付けられている。仮管6も単位仮管6a(図3〔ロ〕)を接続して構成される。   The excavator is used in combination with the sheath tube 10 of the deployment device, and a screw conveyor 9 is disposed inside the sheath tube 10 (FIG. 3). The screw conveyor 9 is divided into lengths that can be operated inside the start shaft 1 and the arrival shaft 2, and a plurality of unit screw conveyors 9a (FIG. 3 [A]) are connected to the screw conveyor 9. The starting side of the screw conveyor 9 is connected to the propulsion unit 5 so as to receive a propulsive force and a rotational force, and the brush-type stagnation head 8 is attached to the reaching side. The excavation cutter 7 is attached to the tip end side of the brush-type stagnant head 8, and the base portion of the temporary pipe 6 is attached to the reach shaft 2 side via the rotary joint 13. The temporary pipe 6 is also configured by connecting the unit temporary pipe 6a (FIG. 3 [B]).

鞘管10は、複数の前記単位鞘管10aを接続して構成される。
単位鞘管10aは内径約440mm、長さ1mよりやや長い鋼管である。
単位鞘管10aは、図10に示すように、一端部に雄ネジ部14が設けられ、他端部に雌ネジ部15が設けられている。したがって、雄ネジ部14と雌ネジ部15を螺合することにより、複数の単位鞘管10aを順次連結していくことができる。この実施例では、発進立坑1と到達立坑2間の横抗3(約20m)を貫通させるのに20本の単位鞘管10aが必要ということになる。
The sheath tube 10 is configured by connecting a plurality of the unit sheath tubes 10a.
The unit sheath tube 10a is a steel tube having an inner diameter of about 440 mm and a length slightly longer than 1 m.
As shown in FIG. 10, the unit sheath tube 10 a is provided with a male screw portion 14 at one end and a female screw portion 15 at the other end. Therefore, the plurality of unit sheath tubes 10a can be sequentially connected by screwing the male screw portion 14 and the female screw portion 15 together. In this embodiment, 20 unit sheath pipes 10a are required to pass through the lateral resistance 3 (about 20 m) between the starting shaft 1 and the reaching shaft 2.

ドレイン管4(図11)は、複数の単位ドレイン管4aを接続して構成される。
単位ドレイン管4aは、ポリプロピレンのような熱可塑性樹脂の3次元網状構造体を外径400mm、内径220mmの筒形の壁に成形してあり、長さ1mである。
前記3次元網状構造体は、前記樹脂による直径約2mmのストランド(紐状体)を絡ませて、ストランドどうしの接点を接合したものである。この構造を有する管は耐圧強度が高く、土被り厚さ7m程度の圧力に耐えることができる。
単位ドレイン管4aは、この実施例において図11に示すように、両端部外周囲にそれぞれ2条の環状溝16が形成され、また、両端部の環状溝16間の外周面が不織布の透水性フィルタ材17で被覆され、さらに、その外周面が硬質樹脂製の網体18で被覆されている。
単位ドレイン管4aの外周囲を透水性フィルタ材17で被覆したことにより、地中に埋設したドレイン管4内に砂等が侵入してすぐに目詰まりして透水性が阻害されてしまうのを防止する。また、網体18は、単位ドレイン管4aを鞘管10内へ押し込む時に、透水性フィルタ材17の先端部が鞘管10内面との摩擦によりめくり上がって押し縮められるのを防止する。
The drain pipe 4 (FIG. 11) is configured by connecting a plurality of unit drain pipes 4a.
The unit drain tube 4a is formed by molding a three-dimensional network structure of a thermoplastic resin such as polypropylene into a cylindrical wall having an outer diameter of 400 mm and an inner diameter of 220 mm, and has a length of 1 m.
The three-dimensional network structure is a structure in which strands (strands) having a diameter of about 2 mm made of the resin are entangled and the contacts of the strands are joined. A tube having this structure has a high pressure resistance and can withstand a pressure of about 7 m in thickness.
In this embodiment, as shown in FIG. 11, the unit drain pipe 4a has two annular grooves 16 formed around the outer periphery of both ends, and the outer peripheral surface between the annular grooves 16 at both ends is made of a nonwoven fabric. It is covered with a filter material 17, and its outer peripheral surface is covered with a net 18 made of hard resin.
By covering the outer periphery of the unit drain pipe 4a with the water permeable filter material 17, sand or the like enters the drain pipe 4 buried in the ground and is immediately clogged, thereby impairing the water permeability. To prevent. Further, when the unit drain pipe 4a is pushed into the sheath pipe 10, the mesh body 18 prevents the distal end portion of the water permeable filter material 17 from being turned up due to friction with the inner face of the sheath pipe 10 and being compressed.

前記緊結パイプ11は、複数の単位緊結パイプ11a(図12)を接続して構成される。
単位緊結パイプ11aは外径約220mm、長さ1mよりやや長い鋼管である。
単位緊結パイプ11aは、図12に示すように、一端部に雄ネジ部19が設けられ、他端部に雌ネジ部20が設けられている。したがって、雄ネジ部19と雌ネジ部20を螺合することにより、複数の単位緊結パイプ11aを順次連結していくことができる。この実施例では、単位鞘管10aと同様に20本の単位緊結パイプ11aが必要ということになる。
The binding pipe 11 is configured by connecting a plurality of unit binding pipes 11a (FIG. 12).
The unit binding pipe 11a is a steel pipe having an outer diameter of about 220 mm and a length slightly longer than 1 m.
As shown in FIG. 12, the unit binding pipe 11a has a male screw part 19 at one end and a female screw part 20 at the other end. Therefore, by screwing the male screw portion 19 and the female screw portion 20, the plurality of unit tightening pipes 11a can be sequentially connected. In this embodiment, like the unit sheath tube 10a, 20 unit tight pipes 11a are necessary.

プッシュロッド12〔図13〕は、前記緊結パイプ11に貫通して配置されるロッドであって、やはり、複数個の単位プッシュロッド12aに分割されている。単位プッシュロッド12aは、長さ1mより少し長い程度の鋼棒であって、端部どうしを相互にネジ結合してプッシュロッド12に構成される。
単位プッシュロッド12aにはそれぞれスペーサ24が取り付けられプッシュロッド12の軸線が緊結パイプ11の軸線と略一致するようにされている。
The push rod 12 (FIG. 13) is a rod disposed through the binding pipe 11, and is divided into a plurality of unit push rods 12a. The unit push rod 12a is a steel rod that is slightly longer than 1 m in length, and is configured as a push rod 12 by screwing ends together.
Each unit push rod 12a is provided with a spacer 24 so that the axis of the push rod 12 substantially coincides with the axis of the binding pipe 11.

〔工法〕
次の工程を基本とする。なお、以下の工程は実施例に基づくものであり、本願発明の実施にここに掲げるすべての工程が必ず必要ということではない。ここに掲げる工程には同時に施工したり、順序を入れ替えて施工したり、均等の工程と置換したり、あるいは他の基本的ではない工程を付加したり、省略したりすることがある。
〔工程1〕(図1)
発進立坑1及び到達立坑2を掘削し、発進立坑1に設けた発進坑口に坑口機材3aを取付け、到達立坑2に設けた到達坑口に坑口機材3bを取り付ける。発進立坑1及び到達立坑2の側面は大きな円筒形に溶接した鋼材で土止めされ、前記の坑口機材3a,3bはこの側壁に設けた開口に取付けられる。発進立坑1に推進機5を発進坑口に向け設置する。破線は予定される横坑3である。
〔工程2〕(図2,3)
発進立坑1から到達立坑2へこれらの立坑間をつなぐ横坑3を掘削しながら複数の単位鞘管10aを順次接続して横坑3の掘削推進に合わせて押し込んでいく。すなわち、先端に掘削カッター7を取り付けた単位スクリューコンベア9a(図3)を単位鞘管10aの内部に嵌め込み、これらの発進側端部を推進機5に取付け、到達側端部を坑口機材3aが取り付けられた発進坑口に挿し込む。そして、単位スクリューコンベア9aが推進機5によって駆動回転されると共に、到達立坑2に向けて前記鞘管10と共に押し込まれる。
推進される鞘管10の外面と横坑3の内面との摩擦を軽減するために、鞘管10と前記スクリューコンベア9が備えたインナーケーシングとの間に細いチューブを通して生物分解性滑材(グリス)を前記鞘管10の外面と横坑3の内面との間に圧入してもよい。
[Method]
Based on the following process. In addition, the following processes are based on an Example, All the processes hung up here are not necessarily required for implementation of this invention. The processes listed here may be performed simultaneously, replaced in order, replaced with an equivalent process, added with other non-basic processes, or omitted.
[Step 1] (Fig. 1)
The start shaft 1 and the arrival shaft 2 are excavated, and the wellhead equipment 3 a is attached to the start well provided in the start shaft 1, and the well equipment 3 b is attached to the arrival well provided in the arrival shaft 2. The side surfaces of the starting shaft 1 and the reaching shaft 2 are earthed with a steel material welded into a large cylindrical shape, and the wellhead equipment 3a and 3b are attached to openings provided in the side walls. The propulsion machine 5 is installed in the start shaft 1 toward the start shaft. The broken line is the planned horizontal shaft 3.
[Step 2] (Figs. 2 and 3)
While excavating the horizontal shaft 3 connecting these vertical shafts from the start shaft 1 to the arrival shaft 2, a plurality of unit sheath pipes 10a are sequentially connected and pushed in accordance with the excavation of the horizontal shaft 3. That is, the unit screw conveyor 9a (FIG. 3) with the excavation cutter 7 attached to the tip is fitted into the unit sheath tube 10a, the start side ends thereof are attached to the propulsion unit 5, and the arrival side end is connected to the wellhead equipment 3a. Insert into the attached start pit. The unit screw conveyor 9 a is driven and rotated by the propulsion unit 5 and is pushed together with the sheath tube 10 toward the reaching shaft 2.
In order to reduce friction between the outer surface of the sheath tube 10 to be propelled and the inner surface of the horizontal shaft 3, a biodegradable lubricant (grease) is passed through a thin tube between the sheath tube 10 and the inner casing provided in the screw conveyor 9. ) May be press-fitted between the outer surface of the sheath tube 10 and the inner surface of the horizontal shaft 3.

横坑3の掘削が進行するのにつれて、掘削された土砂はスクリューコンベア9によって後方(発進側)に送られ、発進立坑1に吐き出される。掘削の進行に同期して前記の単位鞘管10aと単位スクリューコンベア9aを順次地中へ押込む。
この場合に、まず、仮管6(図2)を発進立坑1の発進坑口から到達立坑2へ向けて貫通させておくと、この貫通孔がガイドとなって、前記スクリューコンベア9と鞘管10の掘削と推進の方向が定まり、掘削推進作業を正確に行える。仮管6も単位仮管6aに分割されており、単位仮管6aの端部をねじ結合しながら推進機5で到達立坑2に向けて押込む。そして、仮管6の先端が到達立坑2に達したところで、仮管6の後端(発進側)に前記掘削カッター7を取付ける。さらに単位スクリューコンベア9aと単位鞘管10aを連結し、これらの後部を推進機5に装着する。仮管6は、工程の進行に伴って到達立坑2へ押し出されてくる毎に分解して回収する。
As the excavation of the horizontal shaft 3 progresses, the excavated earth and sand are sent backward (starting side) by the screw conveyor 9 and discharged to the starting vertical shaft 1. Synchronously with the progress of excavation, the unit sheath tube 10a and the unit screw conveyor 9a are sequentially pushed into the ground.
In this case, first, when the temporary pipe 6 (FIG. 2) is penetrated from the start shaft of the start shaft 1 toward the reach shaft 2, the through hole serves as a guide, and the screw conveyor 9 and the sheath tube 10 are guided. The direction of excavation and propulsion is determined and excavation and propulsion work can be performed accurately. The temporary pipe 6 is also divided into unit temporary pipes 6a, and is pushed toward the reaching shaft 2 by the propulsion device 5 while screwing the end portions of the unit temporary pipes 6a. And when the front-end | tip of the temporary pipe 6 reaches the reaching shaft 2, the said excavation cutter 7 is attached to the rear end (starting side) of the temporary pipe 6. FIG. Furthermore, the unit screw conveyor 9a and the unit sheath tube 10a are connected, and these rear parts are mounted on the propulsion device 5. The temporary pipe 6 is disassembled and collected every time it is pushed out to the reaching shaft 2 as the process proceeds.

先行する単位スクリューコンベア9aと単位鞘管10aの全体が発進坑口にすべて押し込まれてしまう前に発進立坑1内において次の単位スクリューコンベア9aの先端を先の単位スクリューコンベア9aの後端にネジ結合し、また、次の単位鞘管10aの雄ネジ部14を先の単位鞘管10aの雌ネジ部15に螺合させて結合する。このようにして、単位スクリューコンベア9aと単位鞘管10aを連結してスクリューコンベア9と鞘管10を形成する。鞘管10の先端が到達立坑2に到達すると、その内部のスクリューコンベア9は到達立坑2において、単位スクリューコンベア9aに分解されて回収され、鞘管10が横坑3に残置される。
すなわち、横抗3が形成されると同時にこの横抗3内に鞘管10が設置される。
Before the entire preceding unit screw conveyor 9a and the entire unit sheath tube 10a are pushed into the starting shaft, the tip of the next unit screw conveyor 9a is screwed to the rear end of the preceding unit screw conveyor 9a in the starting shaft 1 Further, the male thread portion 14 of the next unit sheath tube 10a is screwed into the female thread portion 15 of the previous unit sheath tube 10a to be coupled. In this manner, the screw conveyor 9 and the sheath tube 10 are formed by connecting the unit screw conveyor 9a and the unit sheath tube 10a. When the tip of the sheath pipe 10 reaches the reaching shaft 2, the screw conveyor 9 inside thereof is disassembled and recovered by the unit screw conveyor 9a in the reaching shaft 2, and the sheath tube 10 is left in the horizontal shaft 3.
That is, the sheath tube 10 is installed in the lateral resistance 3 at the same time as the lateral resistance 3 is formed.

〔工程3〕(図4〔イ〕)
単位ドレイン管4aと単位緊結パイプ11aを準備し、単位ドレイン管4aの内側に単位緊結パイプ11aを挿入して取付ける。単位緊結パイプ11aは雄ネジ部19を単位ドレイン管4aの一端から突出させておく。
〔工程4〕(図4)
単位緊結パイプ11aを備えた単位ドレイン管4a(図4〔イ〕)を発進立坑1から前記鞘管10内に、前記単位ドレイン管4aの端部どうし及び単位緊結パイプの端部どうしを順次接続しながら押し込み、発進立坑1と到達立坑2の間にドレイン管4と緊結パイプ11を挿入配置する。
[Step 3] (Fig. 4 [I])
A unit drain pipe 4a and a unit tight pipe 11a are prepared, and the unit tight pipe 11a is inserted and attached inside the unit drain pipe 4a. The unit tightening pipe 11a has a male thread portion 19 protruding from one end of the unit drain tube 4a.
[Step 4] (FIG. 4)
A unit drain pipe 4a (Fig. 4 [A]) having a unit tight pipe 11a is sequentially connected from the start shaft 1 into the sheath pipe 10 between the end portions of the unit drain pipe 4a and the end portions of the unit tight pipes. The drain pipe 4 and the tight pipe 11 are inserted and arranged between the starting shaft 1 and the reaching shaft 2.

単位ドレイン管4aを鞘管10内に押し込む際に、各単位ドレイン管4aの先端側外周囲に、生物分解性滑材(プラスチックを素材とするグリス)を盛り付けておく。このグリスは、単位ドレイン管4aを鞘管10内に押し込む際に鞘管10の内面に当たって均され、単位ドレイン管4aの外周面全面に塗布される。この結果、施工中に単位ドレイン管4a内へ泥水が侵入するのを防ぐことができ、また、鞘管10に対する単位ドレイン管4aの滑りを良くする。
前記グリスはドレイン管4が地中に埋設された後、土中の生物により分解されて消失するので、前記グリスによってドレイン管4の集水機能が阻害される恐れはなく、また、環境が汚染される心配もない。
When the unit drain pipe 4a is pushed into the sheath pipe 10, a biodegradable lubricant (grease made of plastic) is placed around the outer periphery on the tip side of each unit drain pipe 4a. The grease is leveled against the inner surface of the sheath tube 10 when the unit drain tube 4a is pushed into the sheath tube 10, and is applied to the entire outer peripheral surface of the unit drain tube 4a. As a result, muddy water can be prevented from entering the unit drain pipe 4a during construction, and the sliding of the unit drain pipe 4a with respect to the sheath pipe 10 is improved.
Since the grease is decomposed and disappeared by living organisms in the soil after the drain pipe 4 is buried in the ground, the water collecting function of the drain pipe 4 is not hindered by the grease, and the environment is contaminated. There is no worry about being done.

単位ドレイン管4aの端部どうしは、(図4〔イ〕)及び図14〜18に示すように、連結外筒21を用いて結合する。
連結外筒21は、変形し難い硬質合成樹脂を素材とし、周面に断面四角形の環状突条22を、この実施例において4条形成してあり、図16に示すように、横断面を2分割した一対の半割21a、21bより成る。
単位ドレイン管4aどうしを突き合わせ、両側の端部間に連結外筒21の半割21a、21bを被せ、単位ドレイン管4aの環状溝16に半割21a,21bの環状突条22を合わせ、さらにその外側に金属バンド23を巻き付けて固定する(図15)。
この連結作業は、単位ドレイン管4aを後端部の環状溝16が発進立坑1に残っている状態まで押し込んでから行う。
The end portions of the unit drain pipe 4a are coupled using a connecting outer cylinder 21, as shown in FIG. 4 [A] and FIGS.
The connecting outer cylinder 21 is made of hard synthetic resin which is hard to be deformed, and four annular ridges 22 having a quadrangular section are formed on the peripheral surface in this embodiment. As shown in FIG. It consists of a pair of divided halves 21a and 21b.
The unit drain tubes 4a are butted against each other, the halves 21a and 21b of the connecting outer cylinder 21 are covered between the end portions on both sides, the annular ridges 22 of the halves 21a and 21b are aligned with the annular groove 16 of the unit drain tube 4a, and The metal band 23 is wound around and fixed to the outside (FIG. 15).
This connecting operation is performed after the unit drain pipe 4a is pushed into the state where the annular groove 16 at the rear end portion remains in the start shaft 1.

連結外筒21は、径方向外側から簡単に単位ドレイン管4aの突き合わせ部分の外周面に被せることができ、作業が簡単である。また、突き合わせ部分の外周面に連結外筒21を被せて単位ドレイン管4aを連結してあるので、地震等の際にせん断力が加わっても単位ドレイン管4aの突き合わせ部分がずれ難い。さらに、断面四角形の環状溝16に断面四角形の環状突条22を嵌合させて取り付けてあるため、引っ張り強度も高い。そして、半割21a,21bとした連結外筒21は、取付け易く、また、成形しやすい。
連結外筒21は、半割とせず、側面を1か所で軸方向に切断した形状とし、切断した端部を両側へ開くようにして単位ドレイン管4aの端部を挟み付けるようにして取付けることもできる。
The connecting outer cylinder 21 can be easily put on the outer peripheral surface of the butted portion of the unit drain tube 4a from the outside in the radial direction, and the operation is simple. Further, since the unit drain tube 4a is connected by covering the outer peripheral surface of the butted portion with the connecting outer cylinder 21, the butted portion of the unit drain tube 4a is not easily displaced even if a shearing force is applied in the event of an earthquake or the like. Furthermore, since the annular ridge 22 having a square section is fitted and attached to the annular groove 16 having a square section, the tensile strength is high. And the connection outer cylinder 21 made into the half halves 21a and 21b is easy to attach and mold.
The connecting outer cylinder 21 is not divided in half, but is attached so that the side surface is cut in one axial direction and the end of the unit drain tube 4a is sandwiched with the cut ends opened to both sides. You can also.

単位緊結パイプ11aは、その雄ネジ部19を先行の単位緊結パイプ11aの雌ネジ部20へねじ込んで結合する。
この工程4によって緊結パイプ11が発進立坑1と到達立坑2の間に配置されるが、ドレイン管4の内側に緊結パイプ11が存在するので、施工中の湧水がドレイン管4の内側に溜まるのを阻止でき、大量の湧水によって作業が邪魔されるのを防ぐことができる。
なお、連結内筒31を単位ドレイン管4aの接続に利用することがある(図17,18)。連結内筒31は、薄く強度が高い硬質合成樹脂製であり、その両端部に複数の係止爪32を形成してある。係止爪32は、先端が軸方向中央部に向くよう外側へ傾斜させて切起こしてあり、連結内筒31の端部を単位ドレイン管4aの内側へ挿入すると、連結内筒31を単位ドレイン管4aから引き抜こうとしても、前記係止爪32が単位ドレイン管4aの内周面に食い込んで抜くことはできず、抜け止めとなる。
The unit binding pipe 11a is coupled by screwing the male threaded portion 19 into the female threaded portion 20 of the preceding unit binding pipe 11a.
By this step 4, the tight pipe 11 is arranged between the start shaft 1 and the arrival shaft 2, but since the tight pipe 11 exists inside the drain pipe 4, spring water under construction accumulates inside the drain pipe 4. It is possible to prevent the work from being disturbed by a large amount of spring water.
The connecting inner cylinder 31 may be used for connecting the unit drain pipe 4a (FIGS. 17 and 18). The connecting inner cylinder 31 is made of a hard synthetic resin that is thin and high in strength, and has a plurality of locking claws 32 formed at both ends thereof. The locking claw 32 is tilted outward so that the tip is directed toward the axial center, and when the end of the connecting inner cylinder 31 is inserted inside the unit drain tube 4a, the connecting inner cylinder 31 is inserted into the unit drain. Even if it is going to be pulled out from the tube 4a, the locking claw 32 cannot bite into the inner peripheral surface of the unit drain tube 4a and cannot be pulled out, so that it is prevented from being pulled out.

この連結内筒31は、図18に示すように、地上において予めその一端部を単位ドレイン管4aの後端部における単位ドレイン管4aの内面と単位緊結パイプ11aの外面との間に存在する隙間を利用して挿入しておく。そして、単位ドレイン管4aを鞘管10内に後端部が露出するまで押し込んでから、露出した連結内筒31の他端部を後続の単位ドレイン管4aの前端部において前記のように、単位ドレイン管4aと単位緊結パイプ11aの外面との間に嵌入して、単位ドレイン管4aどうしを連結する。連結内筒31による単位ドレイン管4aの連結は、前記連結外筒21を被せる前に行う。
突き合わせた単位ドレイン管4aは、連結外筒21だけでなく連結内筒31でも連結されるので、単位ドレイン管4aの結合箇所における接合強度がさらに高まる。
なお、単位ドレイン管4aの加工方法については後述する。
As shown in FIG. 18, the connecting inner cylinder 31 has a gap existing between the inner surface of the unit drain pipe 4a and the outer surface of the unit tightening pipe 11a at the rear end of the unit drain pipe 4a in advance on the ground. Insert using. Then, after pushing the unit drain tube 4a into the sheath tube 10 until the rear end portion is exposed, the other end portion of the exposed connecting inner cylinder 31 is united at the front end portion of the subsequent unit drain tube 4a as described above. The unit drain pipe 4a is connected between the drain pipe 4a and the outer surface of the unit binding pipe 11a. The unit drain pipe 4a is connected by the connecting inner cylinder 31 before the connecting outer cylinder 21 is covered.
The unit drain pipe 4a that is abutted is connected not only by the connecting outer cylinder 21 but also by the connecting inner cylinder 31, so that the bonding strength at the connecting portion of the unit drain pipe 4a is further increased.
A processing method of the unit drain tube 4a will be described later.

〔工程5〕
緊結パイプ11の端部であって発進坑口から突出した部分に発進側緊結ナット25を螺合し(図5)、坑口機材3aに当接させる。また、緊結パイプ11の到達立坑側の端部にシールヘッド26を取り付けてドレイン管4の到達立坑2側の面に当接させ、これを緊結パイプ11に螺合させた到達側緊結ナット27で固定する。これにより、ドレイン管4が鞘管10内を到達立坑側へ移動できないようにされる。
[Step 5]
The start side tightening nut 25 is screwed into the end of the tightening pipe 11 that protrudes from the start shaft (FIG. 5), and is brought into contact with the wellhead equipment 3a. Further, a seal head 26 is attached to the end of the tightening pipe 11 on the reaching shaft side, is brought into contact with the surface of the drain pipe 4 on the reaching shaft 2 side, and this is screwed into the tightening pipe 11 with a reaching side tightening nut 27. Fix it. As a result, the drain pipe 4 is prevented from moving in the sheath pipe 10 toward the reaching shaft side.

〔工程6〕
鞘管10の発進立坑側端部(最後部)の周縁にテールシール30をネジと金属バンドを使って取り付ける(図5)。テールシール30は、可撓性と伸縮性を有する軟質合成樹脂を素材とし、図19に示すように、後端に向かって次第に径小となるテーパー筒状である。テールシール30の末端部の内径はドレイン管4の外径よりも僅かに小さな直径とされ、ドレイン管4の外面に接するようにされている。
〔工程7〕(図6)
発進立坑1から緊結パイプ11内に複数の単位プッシュロッド12aを順次接続しながら押し込み挿入して、プッシュロッド12を前記到達立坑に到達させる。各単位プッシュロッド12aには緊結パイプ11の内面に当接して移動するスペーサ24を有する。
到達立坑側では、鞘管10の先端に鞘管押出金具28を取付け、プッシュロッド12の先端に鞘管押出ヘッド29を取付けて、鞘管押出金具28に鞘管押出ヘッド29を押し当て、プッシュロッド12と鞘管10を連繋させる。
なお、連繋の構造はこのような押し当てに限らず、プッシュロッド12の押圧力が鞘管10に伝達される構造であればよく、プッシュロッド12と鞘管10間を固定する必要はない。
[Step 6]
A tail seal 30 is attached to the periphery of the start shaft side end portion (the rearmost portion) of the sheath tube 10 using a screw and a metal band (FIG. 5). The tail seal 30 is made of a soft synthetic resin having flexibility and stretchability, and has a tapered cylindrical shape that gradually decreases in diameter toward the rear end, as shown in FIG. The inner diameter of the end portion of the tail seal 30 is slightly smaller than the outer diameter of the drain tube 4 and is in contact with the outer surface of the drain tube 4.
[Step 7] (FIG. 6)
A plurality of unit push rods 12a are pushed in and inserted from the starting shaft 1 into the tight pipe 11 in order, and the push rod 12 reaches the reaching shaft. Each unit push rod 12 a has a spacer 24 that moves in contact with the inner surface of the binding pipe 11.
On the reach shaft side, the sheath tube push-out fitting 28 is attached to the tip of the sheath tube 10, the sheath tube push-out head 29 is attached to the tip of the push rod 12, the sheath tube push-out head 29 is pressed against the sheath tube push-out fitting 28, and the push The rod 12 and the sheath tube 10 are connected.
Note that the connecting structure is not limited to such pressing, and any structure that transmits the pressing force of the push rod 12 to the sheath tube 10 is not necessary, and there is no need to fix the push rod 12 and the sheath tube 10.

〔工程8〕(図7)
そして、プッシュロッド12を推進機5で押すと、鞘管押出ヘッド29が鞘管押出金具28を押し、鞘管10を到達立坑2に引き抜く。このとき、前記のように、ドレイン管4は緊結パイプ11と緊結ナット25,27及びシールヘッド26により軸方向で到達立坑2側への移動ができないようにされているので、鞘管10の移動と共にドレイン管4が到達立坑2側へ引きずられてくることはない。
また、鞘管10の後部では前記のテールシール30がその後縁部でドレイン管4の周面に接しながら移動する。すなわち、鞘管10が引き抜かれるにつれて湧水と共に土砂がドレイン管4と鞘管10との間に入り込むのが防止される。これにより、ドレイン管4と鞘管10の間に入り込んだ土砂によって引抜きの際の摩擦が増大して、プッシュロッド12を押す推進機5に過大な負荷がかかったり、鞘管10を移動させること自体が不能になったりすることを防止できる。
なお、この実施例においてはテールシール30を用いるが、工程としては鞘管10を到達立坑2に引き抜くことであり、その達成のために、工程7では鞘管10の先端に取付けた鞘管押出金具28とプッシュロッド12の先端に取付けた鞘管押出ヘッド29を連繋させ、プッシュロッド12で鞘管10を到達立坑2へ引き抜くことが基本である。したがって、前記ドレイン管4と鞘管10の間に入り込んだ土砂によって生じる引抜きの際の摩擦は他の手段によって解決してもよい。
[Step 8] (FIG. 7)
When the push rod 12 is pushed by the propulsion device 5, the sheath tube extrusion head 29 pushes the sheath tube extrusion fitting 28, and pulls the sheath tube 10 to the reaching shaft 2. At this time, as described above, the drain pipe 4 is prevented from moving in the axial direction by the fastening pipe 11, the fastening nuts 25 and 27, and the seal head 26, so that the sheath pipe 10 is moved. At the same time, the drain pipe 4 is not dragged to the reaching shaft 2 side.
Further, at the rear part of the sheath tube 10, the tail seal 30 moves while contacting the peripheral surface of the drain tube 4 at the rear edge. That is, as the sheath tube 10 is pulled out, soil and sand together with the spring water are prevented from entering between the drain tube 4 and the sheath tube 10. Thereby, the friction at the time of extraction is increased by the earth and sand that has entered between the drain pipe 4 and the sheath pipe 10, and an excessive load is applied to the propulsion unit 5 that pushes the push rod 12, or the sheath pipe 10 is moved. It can be prevented that it becomes impossible.
In this embodiment, the tail seal 30 is used. However, as a process, the sheath pipe 10 is pulled out to the reach shaft 2, and in order to achieve this, the sheath pipe extrusion attached to the tip of the sheath pipe 10 is performed in the process 7. Basically, the metal fitting 28 and the sheath tube extrusion head 29 attached to the tip of the push rod 12 are connected to each other, and the sheath tube 10 is pulled out to the reaching shaft 2 by the push rod 12. Therefore, the friction at the time of drawing caused by the earth and sand entering between the drain pipe 4 and the sheath pipe 10 may be solved by other means.

到達立坑2内に引き抜かれてくる単位鞘管10aと単位プッシュロッド12aをそれぞれ分解して回収する。すなわち、前記到達立坑2内に引き出した単位鞘管10aと単位プッシュロッド12aを順次後続のものから分離して回収すると共に、前記鞘管押出金具28と鞘管押出ヘッド29を次の単位鞘管10aと単位プッシュロッド12aに付け変え、前記工程7,8を繰り返しながら、前記発進立坑1から到達立坑2に向かって前記プッシュロッド12を押し出し、横抗3から鞘管10とプッシュロッド12を引き抜き、前記横抗3内にドレイン管4を残していく(図7)。
最後の単位鞘管10aは前記テールシール30とともに回収する。
結果として、横坑3内に緊結パイプ11を備えたドレイン管4が残置される。
The unit sheath tube 10a and the unit push rod 12a drawn into the reaching shaft 2 are disassembled and recovered. That is, the unit sheath tube 10a and the unit push rod 12a drawn into the reach shaft 2 are sequentially separated and recovered from the subsequent ones, and the sheath tube push-out fitting 28 and the sheath tube push head 29 are moved to the next unit sheath tube. 10a and the unit push rod 12a are replaced, and the steps 7 and 8 are repeated, the push rod 12 is pushed out from the starting shaft 1 toward the reaching shaft 2, and the sheath tube 10 and the push rod 12 are pulled out from the side 3 Then, the drain pipe 4 is left in the lateral resistance 3 (FIG. 7).
The last unit sheath tube 10 a is recovered together with the tail seal 30.
As a result, the drain pipe 4 having the tight pipe 11 is left in the horizontal shaft 3.

〔工程9〕
前記の発進側緊結ナット25と到達側緊結ナット27を取り外し、また、シールヘッド26を取り除いて、前記工程5において到達立坑2側への移動ができないようにされていたドレイン管4の移動不可、すなわち、緊結パイプ11とドレイン管4との拘束を解除する。
〔工程10〕
プッシュロッド12の先端と緊結パイプ11の先端を緊結パイプ引出し金具33で連繋させ、推進機5を前記とは逆に引き作動させる。すると、プッシュロッド12は前記とは逆に発進立坑2側へ引き出され、緊結パイプ11とプッシュロッド12はドレイン管4から発進立坑1に引き出される(図8)。そして、発進立坑1側で単位緊結パイプ11aと単位プッシュロッド12aに分解され回収される。
〔工程11〕
前記工程10を繰り返して、発進立坑1と到達立坑2間の横坑3にドレイン管4のみが残置される(図9)。
単位ドレイン管4aの突き合わせ部分の外周面に連結外筒21を被せ、単位ドレイン管4aの環状溝16に連結外筒21の環状突条22を嵌合させてあるので、地震等によって単位ドレイン管4aの連結部分がずれたり、引き離され難い。
単位ドレイン管4aの環状溝16は熱溶融によって形成してあるので、環状溝16を形成した部分の強度が低下せず、しかも、環状溝16の溝面が平坦となって環状突条22をしっかり嵌合することができるため、さらに単位ドレイン管4aどうしの連結強度が増す。
そして、横抗3内に残されたドレイン管4には土中滞留水が集まって湧水となり、ドレイン管4を通って発進立坑1及び到達立坑2に集水される。発進立坑1及び到達立坑2に集水された湧水はポンプで地上に送られ排水される。
なお、図9では、横坑3の発進立坑1側、到達立坑2側の開口が坑口機材3a、3bにより閉じられ、蛇口34を取り付けて応急処置がなされている。
[Step 9]
The start-side tightening nut 25 and the reaching-side tightening nut 27 are removed, and the seal head 26 is removed so that the drain pipe 4 that cannot be moved to the reaching shaft 2 side in the step 5 cannot be moved. That is, the restraint between the tight pipe 11 and the drain pipe 4 is released.
[Step 10]
The tip of the push rod 12 and the tip of the tight pipe 11 are connected by the tight pipe pull-out fitting 33, and the propulsion device 5 is pulled and operated in the reverse manner. Then, contrary to the above, the push rod 12 is pulled out to the start shaft 2 side, and the tight pipe 11 and the push rod 12 are pulled out from the drain pipe 4 to the start shaft 1 (FIG. 8). And it is decomposed | disassembled and collect | recovered by the unit tight pipe 11a and the unit push rod 12a by the start shaft 1 side.
[Step 11]
By repeating the step 10, only the drain pipe 4 is left in the horizontal shaft 3 between the starting shaft 1 and the reaching shaft 2 (FIG. 9).
Since the connecting outer cylinder 21 is put on the outer peripheral surface of the butted portion of the unit drain pipe 4a, and the annular protrusion 22 of the connecting outer cylinder 21 is fitted into the annular groove 16 of the unit drain pipe 4a, the unit drain pipe is caused by an earthquake or the like. It is difficult for the connecting portion of 4a to shift or be separated.
Since the annular groove 16 of the unit drain tube 4a is formed by heat melting, the strength of the portion where the annular groove 16 is formed does not decrease, and the groove surface of the annular groove 16 becomes flat and the annular protrusion 22 is formed. Since it can fit firmly, the connection strength of unit drain pipe 4a increases further.
Then, the accumulated water in the soil gathers in the drain pipe 4 left in the lateral side 3 and becomes spring water, and is collected through the drain pipe 4 to the starting vertical shaft 1 and the reaching vertical shaft 2. Spring water collected in the starting shaft 1 and the reaching shaft 2 is pumped to the ground and drained.
In FIG. 9, the openings of the horizontal shaft 3 on the start shaft 1 side and the arrival shaft 2 side are closed by the shaft materials 3a and 3b, and a faucet 34 is attached to perform emergency treatment.

〔単位ドレイン管の加工〕
単位ドレイン管4aの環状溝16は、単位ドレイン管4aの壁を構成する3次元網状構造体の外面を熱溶融させて形成される。
環状溝16を形成するには、図20〜23に示す加工装置100を用いる。
加工装置100は、対向して立設された前部支持台101及び後部支持台102と、前部支持台101と後部支持台102の間に設置された管受け台103と、前部支持台101と管受け台103の間において、前部支持台101近傍の上方に上下揺動可能に設けられた加熱ローラ104を備える。
[Processing of unit drain pipe]
The annular groove 16 of the unit drain tube 4a is formed by thermally melting the outer surface of the three-dimensional network structure constituting the wall of the unit drain tube 4a.
In order to form the annular groove 16, the processing apparatus 100 shown in FIGS.
The processing apparatus 100 includes a front support table 101 and a rear support table 102 that are erected in opposition to each other, a tube receiving table 103 that is installed between the front support table 101 and the rear support table 102, and a front support table. A heating roller 104 is provided between 101 and the tube receiving base 103 so as to be swingable up and down above the vicinity of the front support base 101.

後部支持台102は前部支持台101に対して遠近に移動が可能であり、前部支持台101及び後部支持台102の対向面にはそれぞれ回転盤105を設けてある。前後の回転盤105の対向する面には複数の支持爪106を突出し、前部支持台101の回転盤105はモータ107で回転駆動されるようになっている。
図21に示すように、管受け台103の上端には断面半円形の受け部108が設けられ、受け部108の上面には複数の支持ローラ109が周方向に等間隔で設置されている。
The rear support table 102 can be moved in the distance from the front support table 101, and a rotating disk 105 is provided on each of the opposing surfaces of the front support table 101 and the rear support table 102. A plurality of support claws 106 protrude from opposing surfaces of the front and rear rotating plates 105, and the rotating plate 105 of the front support base 101 is driven to rotate by a motor 107.
As shown in FIG. 21, a receiving portion 108 having a semicircular cross section is provided at the upper end of the tube receiving base 103, and a plurality of support rollers 109 are installed at equal intervals in the circumferential direction on the upper surface of the receiving portion 108.

加熱ローラ104は、中空の円筒形であり、外周囲には断面四角形のフランジ113が2条形成されている(図21、図23)。
また、加熱ローラ104は、支柱110から上下揺動可能に張り出した揺動アーム111の先端に取り付けられ、揺動アーム111に連結したチェーン112を巻き上げることにより上昇し、チェーン112を巻き戻すと自重で下降するようになっている。加熱ローラ104の下方には、加熱ローラ104の下限位置を規制するストッパ114を設けてある(図21)。ストッパ114は上下に位置を調節可能とされている。
加熱ローラ104の内部にはヒータ115を搭載してあり、加熱ローラ104全体を単位ドレイン管4aの素材である熱可塑性樹脂の融点以上の温度に加熱できるようになっている(図23のロ)。
The heating roller 104 has a hollow cylindrical shape, and two flanges 113 having a square cross section are formed on the outer periphery (FIGS. 21 and 23).
The heating roller 104 is attached to the tip of a swing arm 111 projecting from the support column 110 so as to swing up and down. The heating roller 104 rises by winding up the chain 112 connected to the swing arm 111, and when the chain 112 is rewound, It comes to descend at. A stopper 114 that restricts the lower limit position of the heating roller 104 is provided below the heating roller 104 (FIG. 21). The position of the stopper 114 can be adjusted up and down.
A heater 115 is mounted inside the heating roller 104 so that the entire heating roller 104 can be heated to a temperature equal to or higher than the melting point of the thermoplastic resin that is the material of the unit drain tube 4a (b in FIG. 23). .

加工装置100で環状溝41を形成するには、まず、後部支持台102を後退させて前部支持台101から遠ざけておき、図22に示すように、管受け台103の支持ローラ109の上に単位ドレイン管4aを載せる。
次いで、後部支持台102を前進させて前部支持台101と後部支持台102で単位ドレイン管4aを挟み、前部支持台101及び後部支持台102の支持爪106を単位ドレイン管4aの両端面に食い込ませる。
この状態で前部支持台101の回転盤105を回転させると、単位ドレイン管4a及び後部支持台102の回転盤105が回転する。
In order to form the annular groove 41 by the processing apparatus 100, first, the rear support base 102 is moved backward from the front support base 101, and as shown in FIG. The unit drain tube 4a is placed on the surface.
Next, the rear support base 102 is advanced to sandwich the unit drain tube 4a between the front support base 101 and the rear support base 102, and the support claws 106 of the front support base 101 and the rear support base 102 are attached to both end surfaces of the unit drain pipe 4a. To bite into.
When the turntable 105 of the front support base 101 is rotated in this state, the turntable 105 of the unit drain pipe 4a and the rear support base 102 is rotated.

次に、加熱ローラ104を下降させて、加熱ローラ104のフランジ113を単位ドレイン管4aの外周に押し当てる。単位ドレイン管4aの外周面において加熱ローラ104が当った部分は、加熱ローラ104の熱(ポリプロピレンの場合200〜220℃)で溶融されて陥没し、加熱ローラ104は次第に下降する。
この時、単位ドレイン管4aは回転しているので、単位ドレイン管4aの外周には周方向に沿って溝が形成される。加熱ローラ104の接触で溶融した樹脂ストランドが加熱ローラ104に付着するような場合は、薄い耐熱性フィルムやアルミホイル等を巻き付けてから押圧する。
加熱ローラ104は、フランジ113よりも内側の部分が単位ドレイン管4aに接触しない高さでストッパ114により下降が制限され、単位ドレイン管4aの一端部にフランジ113の断面と同形状の環状溝16が2条形成される。ストッパ114の高さを調節することで前記環状溝16の深さを調節できる。また、単位ドレイン管4aの管径が変わった場合にも適応できる。
なお、環状溝16が形成される速度は、紐状ストランドの太さや密度、気温による。
Next, the heating roller 104 is lowered, and the flange 113 of the heating roller 104 is pressed against the outer periphery of the unit drain tube 4a. The portion of the outer peripheral surface of the unit drain pipe 4a that is hit by the heating roller 104 is melted and depressed by the heat of the heating roller 104 (200 to 220 ° C. in the case of polypropylene), and the heating roller 104 gradually descends.
At this time, since the unit drain tube 4a is rotating, a groove is formed along the circumferential direction on the outer periphery of the unit drain tube 4a. When the resin strand melted by the contact with the heating roller 104 adheres to the heating roller 104, a thin heat resistant film or aluminum foil is wound and then pressed.
The lowering of the heating roller 104 is restricted by a stopper 114 at a height at which the portion inside the flange 113 does not contact the unit drain tube 4a, and an annular groove 16 having the same shape as the cross section of the flange 113 is formed at one end of the unit drain tube 4a. 2 are formed. The depth of the annular groove 16 can be adjusted by adjusting the height of the stopper 114. Further, the present invention can be applied when the diameter of the unit drain pipe 4a is changed.
The speed at which the annular groove 16 is formed depends on the thickness and density of the string-like strands and the temperature.

単位ドレイン管4aの一端部に環状溝16を形成した後、加熱ローラ104を上昇させると共に、後部支持台102を後退させて単位ドレイン管4aを解放し、さらに、単位ドレイン管4aを前後逆にして加工装置100にセットし、同様にして単位ドレイン管4aの他端部にも2条の環状溝16を形成する。加熱ローラ104を単位ドレイン管4aの両端部に相当する箇所に配置しておけば、単位ドレイン管4aを前後逆に置き直す必要はない。
このように熱溶融によって環状溝16を形成するので、切削屑が出ず、また、環状溝16を形成した部分の強度が低下しない。むしろ、環状溝16の内面は樹脂ストランドが溶けて、溝面に露出するストランド端面同士をつなぎ合わされて強度が向上する。さらに、溝面が平坦となって前記連結外筒21の環状突条22をしっかり嵌合することができる。このため、単位ドレイン管4a間の連結箇所は強固に連結される。
After the annular groove 16 is formed at one end of the unit drain tube 4a, the heating roller 104 is raised, the rear support 102 is moved backward to release the unit drain tube 4a, and the unit drain tube 4a is turned upside down. In the same manner, two annular grooves 16 are formed at the other end of the unit drain tube 4a. If the heating roller 104 is disposed at a position corresponding to both ends of the unit drain tube 4a, it is not necessary to replace the unit drain tube 4a in the reverse direction.
Thus, since the annular groove 16 is formed by heat melting, cutting waste does not come out and the strength of the portion where the annular groove 16 is formed does not decrease. Rather, resin strands melt on the inner surface of the annular groove 16, and the strand end surfaces exposed on the groove surface are joined together to improve the strength. Further, the groove surface is flat, and the annular protrusion 22 of the connecting outer cylinder 21 can be firmly fitted. For this reason, the connection location between the unit drain pipes 4a is firmly connected.

本発明は上記実施例に限定されない。
単位鞘管、単位緊結パイプ及び単位プッシュロッドの連結構造は、連結強度が高く、着脱可能なものであればよく、ねじ結合に限らない。
一つの発進立坑1と複数の到達立坑2の間に横抗3を貫通させ、横抗3内にそれぞれドレイン管4を設置する集水構造も可能である。
単位鞘管、単位ドレイン管、単位緊結パイプ等の寸法は、地盤の状態や湧水量に応じて適宜変更できる。
The present invention is not limited to the above embodiments.
The connecting structure of the unit sheath tube, the unit tight pipe and the unit push rod is not limited to the screw connection as long as it has a high connection strength and is detachable.
A water collecting structure is also possible in which a lateral resistance 3 is inserted between one start shaft 1 and a plurality of arrival shafts 2 and drain pipes 4 are respectively installed in the lateral resistance 3.
The dimensions of the unit sheath pipe, unit drain pipe, unit tight pipe, and the like can be appropriately changed according to the state of the ground and the amount of spring water.

1 発進立坑
2 到達立坑
3 横抗
4 ドレイン管
4a 単位ドレイン管
5 推進機
6 仮管
7 掘削カッター
8 ブラシ型滞水ヘッド
9 スクリューコンベア
9a 単位スクリューコンベア
10 鞘管
10a 単位鞘管
11 緊結パイプ
11a 単位緊結パイプ
12 プッシュロッド
12a 単位プッシュロッド
13 回転ジョイント
14 雄ネジ部
15 雌ネジ部
16 環状溝
17 フィルタ材
18 網体
19 雄ネジ部
20 雌ネジ部
21 連結外筒
22 環状突条
23 金属バンド
24 スペーサ
25 発進側緊結ナット
26 シールヘッド
27 到達側緊結ナット
28 鞘管押出金具
29 鞘管押出ヘッド
30 テールシール
31 連結内筒
32 係止爪
33 緊結パイプ引出し金具
34 蛇口

100 加工装置
101 前部支持台
102 後部支持台
103 管受け台
104 加熱ローラ
105 回転盤
106 支持爪
107 モータ
108 受け部
109 支持ローラ
110 支柱
111 揺動アーム
112 チェーン
113 フランジ
114 ストッパ
115 ヒータ
DESCRIPTION OF SYMBOLS 1 Start shaft 2 Reach shaft 3 Side resistance 4 Drain pipe 4a Unit drain pipe 5 Propulsion machine 6 Temporary pipe 7 Excavation cutter 8 Brush type stagnant head 9 Screw conveyor 9a Unit screw conveyor 10 Sheath pipe 10a Unit sheath pipe 11 Tightening pipe 11a Unit Tightening pipe 12 Push rod 12a Unit push rod 13 Rotating joint 14 Male thread part 15 Female thread part 16 Annular groove 17 Filter material 18 Net body 19 Male thread part 20 Female thread part 21 Connecting outer cylinder 22 Annular ridge 23 Metal band 24 Spacer 25 Start-side tightening nut 26 Seal head 27 Reaching-side tightening nut 28 Sheath tube extrusion fitting 29 Sheath tube extrusion head 30 Tail seal 31 Inner cylinder 32 Locking claw 33 Tightening pipe pull-out fitting 34 Faucet

DESCRIPTION OF SYMBOLS 100 Processing apparatus 101 Front support stand 102 Rear support stand 103 Pipe support base 104 Heating roller 105 Turntable 106 Support claw 107 Motor 108 Support part 109 Support roller 110 Post 111 Swing arm 112 Chain 113 Flange 114 Stopper 115 Heater

Claims (9)

地面に距離をおいて掘削した発進立坑と到達立坑の間に横抗を貫通させ、横抗内に透水性のドレイン管を埋設する施工法であって、
地表から発進立坑及び到達立坑を掘削した後、発進立坑から到達立坑に向かって横坑を形成すると同時に鞘管を推進させて該横抗内に鞘管を設置し、次に、前記鞘管内にドレイン管を配置し、次いで、前記横抗から前記鞘管を引き抜いて、前記横抗内にドレイン管を残置することを特徴とした非開削ドレイン管埋設工法。
It is a construction method that penetrates the lateral resistance between the starting shaft and the reaching shaft excavated at a distance from the ground, and embeds a permeable drain pipe in the lateral resistance,
After excavating the starting shaft and the reaching shaft from the surface, the lateral shaft is formed from the starting shaft to the reaching shaft, and at the same time, the sheath tube is propelled to install the sheath tube in the lateral shaft, and then in the sheath tube A non-cut-off drain pipe burying method characterized in that a drain pipe is arranged, and then the sheath pipe is pulled out from the lateral resistance, and the drain pipe is left in the lateral resistance.
鞘管、ドレイン管を前記発進立坑内及び到達立坑内で扱える長さの単位鞘管、単位ドレイン管とし、これらを発進立坑から順次到達立坑へ向けて押込む工程と先進の単位鞘管及び単位ドレイン管に後進の単位ドレイン管を連結する工程を繰り返して、到達立坑に至る鞘管、ドレイン管としてあり、ドレイン管を到達立坑に到達させた後、到達立坑側に鞘管を引出し、到達立坑で鞘管を単位鞘管に分解して順次回収することを特徴とした請求項1に記載の非開削ドレイン管埋設工法。   The sheath and drain pipes are unit sheath pipes and unit drain pipes of a length that can be handled in the above-mentioned start shafts and reach shafts, and the process of pushing them in order from the start shaft to the reach shaft and advanced unit sheath tubes and units The process of connecting the reverse unit drain pipe to the drain pipe is repeated to form the sheath pipe and drain pipe leading to the reaching shaft, and after the drain pipe reaches the reaching shaft, the sheath pipe is drawn to the reaching shaft side, and the reaching shaft is reached. The non-open-drain drain pipe embedding method according to claim 1, wherein the sheath pipe is disassembled into unit sheath pipes and sequentially recovered. ドレイン管にプッシュロッドを貫通させ、プッシュロッドの先端と鞘管の先端を連繋させ、プッシュロッドを発進立坑側から押し出すことにより、鞘管を到達立坑へ引き抜くことを特徴とした請求項1又は2に記載の非開削ドレイン管埋設工法。   The push rod is passed through the drain pipe, the tip of the push rod and the tip of the sheath pipe are connected, and the push rod is pushed out from the start shaft side, thereby pulling out the sheath pipe to the reaching shaft. Non-cut-off drain pipe burying method described in 1. 地面に距離をおいて掘削した発進立坑と到達立坑の間に横抗を貫通させ、横抗内に透水性のドレイン管を埋設する施工法であって、
地表から発進立坑及び到達立坑を掘削した後、発進立坑から到達立坑に向かって横坑を形成すると同時に鞘管を推進させて該横抗内に鞘管を設置し、次に、前記鞘管内に緊結パイプを挿入してあるドレイン管を配置し、次いで、前記横抗から前記鞘管を引き抜いて、前記横抗内にドレイン管と緊結パイプを残置し、さらに、前記緊結パイプをドレイン管から引き抜いてドレイン管だけを横坑に残置することを特徴とした非開削ドレイン管埋設工法。
It is a construction method that penetrates the lateral resistance between the starting shaft and the reaching shaft excavated at a distance from the ground, and embeds a permeable drain pipe in the lateral resistance,
After excavating the starting shaft and the reaching shaft from the surface, the lateral shaft is formed from the starting shaft to the reaching shaft, and at the same time, the sheath tube is propelled to install the sheath tube in the lateral shaft, and then in the sheath tube A drain pipe into which a tight pipe is inserted is arranged, and then the sheath pipe is pulled out from the lateral resistance, the drain pipe and the tight pipe are left in the lateral resistance, and the tight pipe is further pulled out from the drain pipe. Non-open-drain drain pipe burying method characterized by leaving only the drain pipe in the horizontal shaft.
鞘管及び緊結パイプを挿入してあるドレイン管を、前記発進立坑及び到達立坑で扱える長さの単位鞘管及び単位緊結パイプ付きドレイン管とし、これらを発進立坑から順次到達立坑へ向けて押込む工程と先進の単位鞘管及び単位緊結パイプ付きドレイン管に後進の単位鞘管及び単位緊結パイプ付きドレイン管を連結する工程を繰り返して、到達立坑に至る鞘管、緊結パイプ付きドレイン管としてあり、緊結パイプ付きドレイン管を到達立坑に到達させた後、到達立坑側に鞘管を引き抜き、到達立坑で鞘管を単位鞘管に分解して順次回収し、ついで緊結パイプを発進立坑側に引出し、発進立坑で緊結パイプを単位緊結パイプに分解して順次回収することを特徴とした請求項4に記載の非開削ドレイン管埋設工法。   The drain pipe into which the sheath pipe and the tight pipe are inserted is made into a unit sheath pipe and a drain pipe with the unit tight pipe of a length that can be handled by the start shaft and the reach shaft, and these are sequentially pushed from the start shaft to the reach shaft. Repeating the process and the step of connecting the reverse unit sheath tube and the drain pipe with the unit tight pipe to the advanced unit sheath pipe and the drain pipe with the unit tight pipe, the sheath pipe leading to the final shaft, the drain pipe with the tight pipe, After letting the drain pipe with the tight pipe reach the arrival shaft, pull out the sheath pipe to the arrival shaft side, disassemble the sheath pipe into unit sheath pipes in the arrival shaft and sequentially collect it, and then draw the tight pipe to the start shaft side, The non-cut-off drain pipe burying method according to claim 4, wherein the tight pipe is disassembled into unit tight pipes and sequentially recovered at the start shaft. 緊結パイプにプッシュロッドを貫通させ、プッシュロッドの先端と鞘管の先端を連繋させ、プッシュロッドを発進立坑側から押し込むことにより、鞘管を到達立坑へ引き抜き、鞘管の引抜き完了後、緊結パイプ内に残置されたプッシュロッドの先端と緊結パイプの先端を連繋させ、プッシュロッドを発進立坑側へ引き出すことにより、緊結パイプを発進立坑へ引出して回収することを特徴とした請求項4又は5に記載の非開削ドレイン管埋設工法。   Push the push rod through the tight pipe, connect the tip of the push rod and the tip of the sheath pipe, push the push rod from the start shaft side, pull the sheath pipe to the arrival shaft, and after the sheath pipe is pulled out, the tight pipe The tip of the push rod left inside and the tip of the binding pipe are connected to each other, and by pulling out the push rod to the start shaft side, the connection pipe is pulled out to the start shaft and collected. Non-cut-off drain pipe burying method described. 鞘管を引き抜くとき、鞘管の発進立坑側端部に、筒状であって後部周縁がドレイン管の周面に接して移動可能な形状のテールシールを取り付けることを特徴とした請求項1〜6のいずれか一つに記載の非開削ドレイン管埋設工法。   When the sheath pipe is pulled out, a tail seal having a cylindrical shape and a shape in which the rear peripheral edge is movable in contact with the peripheral surface of the drain pipe is attached to the end of the sheath pipe on the start shaft side. 6. The non-open-drain drain pipe burying method according to any one of 6 above. 単位ドレイン管を発進側坑口へ押込むとき、単位ドレイン管の先端側外周囲に、生物分解性プラスチックを素材とするグリスを盛り付けて、前記鞘管内に単位ドレイン管を押し込むことを特徴とした請求項2または5に記載の非開削ドレイン管埋設工法。   When the unit drain pipe is pushed into the starting side wellhead, grease made of biodegradable plastic is placed around the outer periphery of the tip side of the unit drain pipe, and the unit drain pipe is pushed into the sheath pipe. Item 6. The non-cut-off drain pipe burying method according to Item 2 or 5. 前記ドレイン管が、外周面を透水性フィルタ材で被覆され、さらに、該透水性フィルタ材の外周面を硬質樹脂製の網体で被覆されたものであることを特徴とした請求項1〜8のいずれか一つに記載の非開削ドレイン管埋設工法。   9. The drain pipe according to claim 1, wherein the outer peripheral surface is covered with a water permeable filter material, and the outer peripheral surface of the water permeable filter material is further covered with a net made of hard resin. The non-open-cut drain pipe embedding method according to any one of the above.
JP2015119591A 2015-06-12 2015-06-12 Non-cut drain pipe burial method Active JP6549911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015119591A JP6549911B2 (en) 2015-06-12 2015-06-12 Non-cut drain pipe burial method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119591A JP6549911B2 (en) 2015-06-12 2015-06-12 Non-cut drain pipe burial method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016112995A Division JP6564347B2 (en) 2016-06-06 2016-06-06 Drain tube, manufacturing method thereof, and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2017002641A true JP2017002641A (en) 2017-01-05
JP6549911B2 JP6549911B2 (en) 2019-07-24

Family

ID=57751758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119591A Active JP6549911B2 (en) 2015-06-12 2015-06-12 Non-cut drain pipe burial method

Country Status (1)

Country Link
JP (1) JP6549911B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165444A (en) * 2017-03-28 2018-10-25 日鐵住金建材株式会社 Flange structure of fitting member
JP2020033714A (en) * 2018-08-28 2020-03-05 株式会社ウイングス Drain pipe laying construction method
JP2022021533A (en) * 2020-07-22 2022-02-03 アサヒエンジニアリング株式会社 Forming method of adit, and adit
JP7202029B1 (en) 2021-08-05 2023-01-11 株式会社勝永 collection pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265011A (en) * 1986-12-30 1988-11-01 Akio Yamamoto Underdrainage pipe
JPS6443612A (en) * 1987-08-10 1989-02-15 Komatsu Kensetsu Kogyo Kk Water collecting work
JPH02136418A (en) * 1988-11-17 1990-05-25 Sumitomo Metal Ind Ltd Anti-liquefaction perforated drain pipe and manufacture thereof
JP2002004769A (en) * 2000-06-22 2002-01-09 Komatsu Ltd Permeable-pipe laying construction method by pipe jacking method and its cutoff device
KR20100079623A (en) * 2008-12-31 2010-07-08 (주) 하나엠씨 Draining corrugated pipe
JP2015034408A (en) * 2013-08-09 2015-02-19 三和機材株式会社 Burying method of horizontal drain material and burying apparatus of horizontal drain material
JP2015098739A (en) * 2013-11-20 2015-05-28 株式会社ココム Water permeable pipe, composite water permeable pipe, and construction method for them using propulsion method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265011A (en) * 1986-12-30 1988-11-01 Akio Yamamoto Underdrainage pipe
JPS6443612A (en) * 1987-08-10 1989-02-15 Komatsu Kensetsu Kogyo Kk Water collecting work
JPH02136418A (en) * 1988-11-17 1990-05-25 Sumitomo Metal Ind Ltd Anti-liquefaction perforated drain pipe and manufacture thereof
JP2002004769A (en) * 2000-06-22 2002-01-09 Komatsu Ltd Permeable-pipe laying construction method by pipe jacking method and its cutoff device
KR20100079623A (en) * 2008-12-31 2010-07-08 (주) 하나엠씨 Draining corrugated pipe
JP2015034408A (en) * 2013-08-09 2015-02-19 三和機材株式会社 Burying method of horizontal drain material and burying apparatus of horizontal drain material
JP2015098739A (en) * 2013-11-20 2015-05-28 株式会社ココム Water permeable pipe, composite water permeable pipe, and construction method for them using propulsion method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165444A (en) * 2017-03-28 2018-10-25 日鐵住金建材株式会社 Flange structure of fitting member
JP2020033714A (en) * 2018-08-28 2020-03-05 株式会社ウイングス Drain pipe laying construction method
JP2022021533A (en) * 2020-07-22 2022-02-03 アサヒエンジニアリング株式会社 Forming method of adit, and adit
JP7202029B1 (en) 2021-08-05 2023-01-11 株式会社勝永 collection pipe
JP2023023656A (en) * 2021-08-05 2023-02-16 株式会社勝永 Water collecting pipe

Also Published As

Publication number Publication date
JP6549911B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP2017002641A (en) Non-excavation drain pipe burying method
JP6749740B2 (en) Drain pipe laying method
KR101742786B1 (en) Apparatus for digging underground hole and constructing casing, and method for constructing casing using this same
JP5787315B2 (en) Precast retaining wall propulsion method
JP6564347B2 (en) Drain tube, manufacturing method thereof, and manufacturing apparatus thereof
JP6295454B2 (en) Permeable pipes and composite permeated pipes and their construction methods by the propulsion method
JP2017223050A (en) Drain pipe and method for manufacturing the same
JP5182903B2 (en) Osmotic structure, water collecting facility with osmotic structure, and installation method of osmotic structure
JP2021085166A (en) Double sheath pipe for drain pipe installation and installation method of non-excavation drain pipe
JP2018091038A (en) Pipe drawing-out method of existing wellhole
JP4467477B2 (en) Entrance entrance for propulsion pipe, structure of entrance for arrival, and water stop method for entrance entrance
JP2006194044A (en) Installation method for water drain pipe in toe of slope on back of levee body, water draining method for seepage water on back of levee body, and water drain structure for seepage water
JP2647691B2 (en) Method and apparatus for laying underground pipes
JP2022130793A (en) Drain cartridge for underground drain channel in land developed by banking, and forming method of underground drain channel in land developed by banking using the drain cartridge
JP6542825B2 (en) Construction method of underground structure
JP2007138544A (en) Method of pulling out existing pile
JP6135001B2 (en) Construction method of drainage material
JP2000345791A (en) Starting method and arriving method for shield machine
JP2015178727A (en) Horizontal drain hole installation method and device thereof
JP7202029B1 (en) collection pipe
JP2018044338A (en) Burial method for object, and object for use in the same
JP6132672B2 (en) Existing pipe renewal method
JP6831147B1 (en) Method of forming lateral resistance and lateral resistance
JP6252939B2 (en) Method and apparatus for burying horizontal drain material
JP2876274B2 (en) Pipe burial method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R150 Certificate of patent or registration of utility model

Ref document number: 6549911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314803

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250