JP2017002540A - Demolition method for structure - Google Patents

Demolition method for structure Download PDF

Info

Publication number
JP2017002540A
JP2017002540A JP2015116463A JP2015116463A JP2017002540A JP 2017002540 A JP2017002540 A JP 2017002540A JP 2015116463 A JP2015116463 A JP 2015116463A JP 2015116463 A JP2015116463 A JP 2015116463A JP 2017002540 A JP2017002540 A JP 2017002540A
Authority
JP
Japan
Prior art keywords
detonator
interval
blasting
detonation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015116463A
Other languages
Japanese (ja)
Other versions
JP6482958B2 (en
Inventor
野間 達也
Tatsuya Noma
達也 野間
利宗 宮地
Toshimune Miyaji
利宗 宮地
卓 桑本
Taku Kuwamoto
卓 桑本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2015116463A priority Critical patent/JP6482958B2/en
Publication of JP2017002540A publication Critical patent/JP2017002540A/en
Application granted granted Critical
Publication of JP6482958B2 publication Critical patent/JP6482958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately set a blasting condition to suit progress in demolition work, when demolishing a structure by blasting.SOLUTION: When a structure is demolished by sequentially detonating a plurality of explosive-loaded detonators at a prescribed detonation interval, the following steps are taken: dividing the structure into a plurality of regions; setting an order of demolition for each of the regions; determining the amount of the explosive to be loaded per detonator and a detonation interval among the detonators in each of the regions; and sequentially detonating the detonators installed according to the order of demolition. The amount of the explosive loaded per detonator is reduced and the detonation interval among the detonators is made shorter, as a remaining mass of the structure becomes smaller.SELECTED DRAWING: Figure 3

Description

本発明は、複数の***を所定の起爆間隔で順次起爆させて構造物を解体する構造物の解体方法に関する。   The present invention relates to a structure dismantling method in which a plurality of detonators are sequentially detonated at a predetermined detonation interval to dismantle the structure.

従来、構造物の解体作業やトンネルの掘削作業における発破に際して、爆薬の破壊力を制御して発破を行なう制御発破が行われている。
例えば、下記特許文献1では、トンネルを発破工法で掘削するに際して、切羽面に穿孔した複数の装薬孔(発破孔)に***を取り付けた爆薬を挿入し、***を起爆することで爆薬を***して切羽面を掘削する。この時、複数の素数に基づく起爆間隔で複数の***を順次起爆させることにより、先行する起爆によって生じる振動波と、後続の起爆によって生じる振動波が増幅をもたらす干渉を生じさせないようにしている。
Conventionally, at the time of blasting in a structure demolition work or tunnel excavation work, controlled blasting is performed in which blasting is performed by controlling the destructive force of the explosive.
For example, in Patent Document 1 below, when excavating a tunnel by the blasting method, the explosive is blown up by inserting explosives with detonators attached to a plurality of charge holes (blasting holes) drilled on the face and detonating the detonator. Then excavate the face. At this time, a plurality of detonators are sequentially detonated at a detonation interval based on a plurality of prime numbers so that the vibration wave generated by the preceding detonation and the vibration wave generated by the subsequent detonation do not cause interference causing amplification.

特開2013−238368号公報JP 2013-238368 A

制御発破に際しては、発破によって生じる振動や騒音が所定の基準値以下となるように各種の条件が制御される。
例えば、発破時に発生する発破振動(変位速度)の予想式は下記式(1)で示され、この値が基準値以下になるように段当たりの薬量(W)等の値が制御される。
V=K×W×D……(1)
V:変位速度(cm/s)
K:発破条件や地盤条件によって変化する定数
W:段当たりの薬量(kg)
D:発破場所からの距離(m)
m:定数、n:定数
なお、「段当たり」とは、1回の同時の***当たりを意味する。
At the time of controlled blasting, various conditions are controlled so that vibration and noise generated by the blasting are below a predetermined reference value.
For example, the prediction formula of the blasting vibration (displacement speed) generated at the time of blasting is shown by the following formula (1), and the value such as the dose (W) per step is controlled so that this value is below the reference value. .
V = K × W m × D n (1)
V: Displacement speed (cm / s)
K: Constant that varies depending on blasting conditions and ground conditions W: Drug dose per step (kg)
D: Distance from blast location (m)
m: constant, n: constant Note that “per step” means per one simultaneous blasting.

ここで、発破によって構造物の解体を行う場合、解体作業が進むにつれて構造物の残存質量が減少し、構造物周辺の地盤の拘束力が低減する。
この結果、解体作業が進むにつれて解体作業の開始時と比較して周辺に振動や騒音が伝わりやすくなるという課題がある。
本発明は、このような事情に鑑みなされたものであり、その目的は、発破による構造物の解体時に、解体作業の進行状況に合わせて適切に発破条件を設定することにある。
Here, when the structure is dismantled by blasting, the remaining mass of the structure decreases as the dismantling work proceeds, and the restraining force of the ground around the structure decreases.
As a result, there is a problem that vibration and noise are more easily transmitted to the periphery as compared with the start of the dismantling work as the dismantling work proceeds.
This invention is made | formed in view of such a situation, The objective is to set blasting conditions appropriately according to the progress of a dismantling operation | work at the time of the dismantling of the structure by blasting.

上述の目的を達成するため、請求項1の発明にかかる構造物の解体方法は、複数の爆薬付き***を所定の起爆間隔で順次起爆させて構造物を解体する構造物の解体方法であって、前記構造物の残存質量が小さくなるほど前記***1つ当たりの装薬量を低減させるとともに、前記起爆間隔を短くする、ことを特徴とする。
請求項2の発明にかかる構造物の解体方法は、前記構造物を複数の領域に分割する工程と、前記複数の領域に対して解体順序を設定する工程と、前記複数の領域それぞれにおける前記***1つ当たりの装薬量および前記***の起爆間隔を決定する工程と、それぞれの前記領域に***を設置するとともに、設置した前記***を前記解体順序に沿って順次起爆させる工程と、を含み、前記装薬量および前記起爆間隔を決定する工程では、前記解体順序が遅い領域ほど前記装薬量を少なく、前記起爆間隔を短い値とする、ことを特徴とする。
請求項3の発明にかかる構造物の解体方法は、前記***を起爆させる工程では、複数設置した***の起爆を1つの***ごとに行なう1孔1段発破を行う、ことを特徴とする。
請求項4の発明にかかる構造物の解体方法は、解体前の前記構造物の質量をV0、解体開始時の前記起爆間隔をT0とした場合、前記構造物の前記残存質量がV1となった際の前記起爆間隔T1が、下記式(2)で表される、ことを特徴とする。
In order to achieve the above object, a structure disassembly method according to the invention of claim 1 is a structure disassembly method in which a plurality of detonators with explosives are sequentially detonated at a predetermined detonation interval to dismantle the structure. As the remaining mass of the structure decreases, the amount of charge per detonator is reduced and the initiation interval is shortened.
According to a second aspect of the present invention, there is provided a method for disassembling a structure, the step of dividing the structure into a plurality of regions, the step of setting a disassembly order for the plurality of regions, and the detonator in each of the plurality of regions. Determining the amount of charge per one and the detonation interval of the detonator, and installing a detonator in each of the regions, and sequentially detonating the installed detonator in the order of dismantling, In the step of determining the amount of charge and the initiation interval, the region in which the disassembly order is slower decreases the amount of charge and sets the initiation interval to a shorter value.
The method for disassembling a structure according to the invention of claim 3 is characterized in that in the step of detonating the detonator, one-hole one-stage blasting is performed in which a plurality of detonators are detonated for each detonator.
In the method for disassembling a structure according to the invention of claim 4, when the mass of the structure before disassembly is V0 and the initiation interval at the start of disassembly is T0, the residual mass of the structure is V1. In this case, the initiation interval T1 is expressed by the following formula (2).

Figure 2017002540
Figure 2017002540

請求項5の発明にかかる構造物の解体方法は、前記起爆間隔が30ms以上の場合は電気***を用いるとともに、前記起爆間隔が30ms未満の場合は電子***を用いる、ことを特徴とする。   The method of disassembling a structure according to the invention of claim 5 is characterized in that an electric detonator is used when the initiation interval is 30 ms or more, and an electronic detonator is used when the initiation interval is less than 30 ms.

請求項1の発明によれば、発破によって構造物を解体する際に、構造物の残存質量が小さくなるほど、すなわち解体作業が進行するほど***1つ当たりの装薬量を低減させるので、構造物周辺の地盤の拘束力が低減して振動や騒音が伝わりやすくなった場合であっても、周辺環境への影響を低減する上で有利となる。また、装薬量の低減に伴って起爆間隔を短くするので、発破の段数が多くなった際に解体作業時間を短期に完了させる上で有利となる。
請求項2の発明によれば、構造物を複数の領域に分割して、複数の領域それぞれにおける装薬量および起爆間隔を決定するので、構造物の形状や材質などに合わせて装薬量および起爆間隔を決定することができ、解体作業の効率を向上させる上で有利となる。
請求項3の発明によれば、1孔1段発破を行うので多段発破と比較して振動および騒音の発生を低減する上で有利となる。
請求項4の発明によれば、任意の解体状態における起爆間隔を定量的に決定することができ、解体作業の作業品質を安定させる上で有利となる。
請求項5の発明によれば、起爆間隔が30ms以上の場合には比較的コストの低い電気***を用い、起爆間隔が30ms未満の場合には比較的コストが高いが精密な起爆間隔の制御が可能な電子***を用いるので、コストと作業効率とのバランスを取る上で有利となる。
According to the invention of claim 1, when disassembling a structure by blasting, the amount of charge per detonator is reduced as the remaining mass of the structure decreases, that is, as the dismantling operation proceeds. Even when the binding force of the surrounding ground is reduced and vibration and noise are easily transmitted, it is advantageous in reducing the influence on the surrounding environment. Further, since the initiation interval is shortened along with the reduction of the amount of charge, it is advantageous in completing the dismantling work time in a short time when the number of blasting stages is increased.
According to the invention of claim 2, the structure is divided into a plurality of regions, and the amount of charge and the initiation interval in each of the plurality of regions are determined. It is possible to determine the initiation interval, which is advantageous in improving the efficiency of the dismantling work.
According to the third aspect of the invention, since one-hole one-stage blasting is performed, it is advantageous in reducing the generation of vibration and noise as compared with multistage blasting.
According to the invention of claim 4, the initiation interval in an arbitrary dismantling state can be determined quantitatively, which is advantageous in stabilizing the work quality of the dismantling work.
According to the invention of claim 5, when the detonation interval is 30 ms or more, an electric detonator with a relatively low cost is used, and when the detonation interval is less than 30 ms, the cost is relatively high but precise control of the detonation interval is possible. Since a possible electron detonator is used, it is advantageous in balancing cost and work efficiency.

本実施の形態において解体対象となるダムを示す説明図である。It is explanatory drawing which shows the dam used as demolition object in this Embodiment. 解体領域12の分割例を示す説明図である。It is explanatory drawing which shows the example of a division | segmentation of the disassembly area | region 12. FIG. 実施形態にかかる構造物の解体方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the dismantling method of the structure concerning embodiment. 実施の形態にかかる構造物の解体方法で使用される発破システム20の一例を示す説明図である。It is explanatory drawing which shows an example of the blasting system 20 used with the dismantling method of the structure concerning embodiment. 発破システム20の他の例を示す説明図である。It is explanatory drawing which shows the other example of the blasting system 20. FIG. DS電気***およびMS電気***の基準秒時を示す説明図である。It is explanatory drawing which shows the reference time of DS electric detonator and MS electric detonator. 式(2)の具体的な値の一例を示す表である。It is a table | surface which shows an example of the specific value of Formula (2). 解体順序と装薬量との関係の一例を示す表である。It is a table | surface which shows an example of the relationship between a disassembly order and a charge amount.

以下に添付図面を参照して、本発明にかかる構造物の解体方法の好適な実施の形態を詳細に説明する。
本実施の形態では、解体対象となる構造物として、コンクリート製のダムを例に挙げて説明する。
図1は、本実施の形態において解体対象となるダムを示す説明図であり、図1Aは下流側から見たダム10の正面図、図1Bは図1Aの紙面左側から見たダム10の側面図である。
ダム10は、重力式コンクリートダムであり、図1に示す状態では紙面左側の門柱1002の一部や門柱間に設けられたゲート等が既に解体されている。本実施の形態では、図1Aの紙面左側の堤体の一部領域(以下、「解体領域12」という)を発破により解体する。
Exemplary embodiments of a structure disassembling method according to the present invention will be described below in detail with reference to the accompanying drawings.
In the present embodiment, a concrete dam will be described as an example of a structure to be demolished.
FIG. 1 is an explanatory view showing a dam to be dismantled in the present embodiment, FIG. 1A is a front view of the dam 10 viewed from the downstream side, and FIG. 1B is a side view of the dam 10 viewed from the left side of FIG. FIG.
The dam 10 is a gravity concrete dam. In the state shown in FIG. 1, a part of the gate pillar 1002 on the left side of the page, a gate provided between the gate pillars, and the like have already been dismantled. In the present embodiment, a partial area (hereinafter referred to as “dismantling area 12”) of the bank body on the left side of FIG. 1A is dismantled by blasting.

図3は、実施形態にかかる構造物の解体方法の手順を示すフローチャートである。
解体作業者は、まず解体対象の構造物(解体領域12)を複数の領域に分割する(ステップS300)。領域の分割数および分割線は、解体領域12の強度や大きさ、形状等により適宜決定する。
本実施の形態では、図2に示すように解体領域12を6つの領域(分割領域1〜分割領域6)に分割した。
つぎに、解体作業者は、分割した複数の領域に対して解体順序を設定する(ステップS302)。解体順序についても、各分割領域1〜6の位置や強度、形状等により適宜決定する。
本実施の形態では、図2に示す分割領域1〜分割領域6の順に解体することとした。
FIG. 3 is a flowchart illustrating a procedure of a structure dismantling method according to the embodiment.
The dismantling operator first divides the structure to be dismantled (dismantling area 12) into a plurality of areas (step S300). The number of divisions and the dividing line are appropriately determined depending on the strength, size, shape, etc. of the dismantling region 12.
In the present embodiment, the dismantling area 12 is divided into six areas (divided areas 1 to 6) as shown in FIG.
Next, the dismantling operator sets the dismantling order for the plurality of divided areas (step S302). The disassembly order is also determined as appropriate according to the position, strength, shape, etc. of each divided region 1-6.
In the present embodiment, the dismantling is performed in the order of divided areas 1 to 6 shown in FIG.

つづいて、分割した複数の領域それぞれにおける、***の起爆間隔および1段当たりの装薬量を決定する(ステップS304)。
このとき、解体順序が遅い領域ほど***1つ当たりの装薬量が少なく、また起爆間隔が短くなるようにする。
解体順序が遅い領域ほど***の装薬量を少なくするのは、解体作業が進むにつれて構造物の残存質量が減少し、構造物が立っている地盤の拘束力が低減することにより、解体作業が進むにつれて解体作業の開始時と比較して周辺に振動や騒音が伝わりやすくなるためである。
上述のように、発破による振動や騒音は、段当たりの装薬量Wに依存するので、解体作業の進行につれ1段当たりの装薬量Wを低減することにより、振動や騒音を低減することができる。
一方で、ある大きさの構造物を解体するために必要な総薬量は一定であるため、段当たりの装薬量Wを低減すると発破の段数が増加する。このため、解体作業の開始から完了まで一定の起爆時間での発破を行うと、発破完了までの所要時間が増大して振動や騒音の発生時間が長くなる。
また、発明者らは、段ごとの起爆間隔が長いと、発破により発生するガスが次の発破までに施工継ぎ目等から逃げてしまい、構造物の破壊力が低減するという課題を見出した。
このため、本実施の形態では、図4に示すような発破システム20を用いて発破を行う。
Subsequently, the detonation interval of the detonator and the amount of charge per stage are determined in each of the divided areas (step S304).
At this time, the amount of charge per detonator is smaller in the region where the disassembly order is slower, and the initiation interval is shortened.
The lower the demolition order, the smaller the detonator charge amount is because the remaining mass of the structure decreases as the demolition work proceeds, and the restraint force of the ground on which the structure stands is reduced. This is because vibration and noise are more easily transmitted to the periphery as compared with the start of the dismantling work.
As described above, since vibration and noise due to blasting depend on the amount of charge W per step, the vibration and noise can be reduced by reducing the amount of charge W per step as the dismantling work proceeds. Can do.
On the other hand, since the total drug amount necessary for dismantling a structure of a certain size is constant, reducing the charge amount W per step increases the number of blasting steps. For this reason, if blasting is performed with a certain start-up time from the start to completion of the dismantling operation, the time required to complete the blasting increases and the generation time of vibration and noise becomes longer.
In addition, the inventors have found a problem that if the explosion interval for each step is long, gas generated by blasting escapes from the construction seam or the like before the next blasting, and the destructive force of the structure is reduced.
For this reason, in this Embodiment, it blasts using the blasting system 20 as shown in FIG.

図4は、実施の形態にかかる構造物の解体方法で使用される発破システム20の一例を示す説明図である。
発破システム20は、発破器22、分岐器23、分割領域1に設置される第1の***群24、分割領域2に設置される第2の***群26、分割領域3に設置される第3の***群28、分割領域4に設置される第4の***群30、分割領域5に設置される第5の***群32、分割領域6に設置される第6の***群34を含んで構成されている。
FIG. 4 is an explanatory diagram illustrating an example of the blasting system 20 used in the structure dismantling method according to the embodiment.
The blasting system 20 includes a blasting device 22, a branching device 23, a first detonator group 24 installed in the divided region 1, a second detonator group 26 installed in the divided region 2, and a third installed in the divided region 3. And a fourth detonator group 30 installed in the divided area 4, a fifth detonator group 32 installed in the divided area 5, and a sixth detonator group 34 installed in the divided area 6. Has been.

発破器22は専用ケーブルで分岐器23に接続されている。
分岐器23は複数の端子23A〜23Fを有し、各端子23A〜23Fが発破母線および補助母線を介していずれかの***群24〜34の脚線に接続されている。
発破器22は、各***群24〜34が互いに異なる時刻に起爆されるように、所定の時間刻みで起爆用電気エネルギーを各***群24〜34に送出するようになっている。分岐器23の端子23A〜23Fは、発破器22からの起爆用電気エネルギーの送出タイミングに対応しており、例えば1回目の送出タイミングには端子23Aを介して第1の***群24に、2回目の送出タイミングには端子23Bを介して第2の***群26に、3回目の送出タイミングには端子23Cを介して第3の***群28に、4回目の送出タイミングには端子23Dを介して第4の***群30に、5回目の送出タイミングには端子23Eを介して第5の***群32に、6回目の送出タイミングには端子23Fを介して第6の***群34に、それぞれ起爆用電気エネルギーが送出される。
The blasting device 22 is connected to the branching device 23 by a dedicated cable.
The branching device 23 has a plurality of terminals 23A to 23F, and each of the terminals 23A to 23F is connected to a leg line of any one of the detonator groups 24 to 34 through a blasting bus and an auxiliary bus.
The blasting device 22 is configured to send detonation electrical energy to each detonator group 24 to 34 at predetermined time intervals so that each detonator group 24 to 34 is detonated at different times. Terminals 23A to 23F of the branching device 23 correspond to the timing of sending the electrical energy for detonation from the blasting device 22, and for example, the first detonator group 24 is connected to the first detonator group 24 via the terminal 23A at the first sending timing. The second delivery timing is sent to the second detonator group 26 via the terminal 23B, the third delivery timing is sent to the third detonator group 28 via the terminal 23C, and the fourth delivery timing is sent via the terminal 23D. The fourth detonator group 30 is connected to the fifth detonator group 32 via the terminal 23E at the fifth delivery timing, and to the sixth detonator group 34 via the terminal 23F at the sixth delivery timing. Electrical energy for detonation is sent out.

なお、図4では各***群24〜34を1つの発破器22で発破させるようにしたが、例えば分割領域1の解体後、分割領域1の瓦礫を撤去した後に分割領域2を解体するような場合には、例えば図5に示すように各***群24〜34に対してそれぞれ1つの発破器を設置してもよい。
図5では、***群24に対して発破器22Aが、***群26に対して発破器22Bが、***群28に対して発破器22Cが、***群30に対して発破器22Dが、***群32に対して発破器22Eが、***群34に対して発破器22Fが、それぞれ設置されている。
構造物の解体を行う際は、発破器22A〜22Fから順次起爆用電気エネルギーを送出して***群24〜34を起爆させる。
In FIG. 4, each detonator group 24 to 34 is blasted by one blaster 22. For example, after demolition of the divided region 1, the debris of the divided region 1 is removed and then the divided region 2 is disassembled. In this case, for example, as shown in FIG. 5, one blaster may be installed for each detonator group 24-34.
In FIG. 5, a blaster 22 </ b> A for the detonator group 24, a blaster 22 </ b> B for the detonator group 26, a blaster 22 </ b> C for the detonator group 28, a blaster 22 </ b> D for the detonator group 30, and a detonator group. A blaster 22E is installed for 32, and a blaster 22F is installed for the detonator group 34.
When the structure is dismantled, the detonator groups 24 to 34 are detonated by sequentially sending out detonation electrical energy from the blasters 22A to 22F.

つぎに、各***について説明する。
第1の***群24および第2の***群26はDS電気***24A〜24N,26A〜26Nであり、第3の***群28はMS電気***28A〜28N、第4〜第6の***群30,32,34は電子***30A〜30N,32A〜32N,34A〜34Nである。
各***群24〜34における***の本数、すなわち段数は同一でなくてもよい。例えば、各***群24〜34の段数は、各***群24〜34がそれぞれ解体する領域を破壊するのに必要な総薬量を、振動や騒音を考慮した1段当たりの薬量で除した値となる。
Next, each detonator will be described.
The first detonator group 24 and the second detonator group 26 are DS electric detonators 24A to 24N and 26A to 26N, the third detonator group 28 is an MS electric detonator 28A to 28N, and the fourth to sixth detonator groups 30. , 32 and 34 are electron detonators 30A to 30N, 32A to 32N, and 34A to 34N.
The number of detonators, that is, the number of stages in each detonator group 24 to 34 may not be the same. For example, the number of stages of each detonator group 24 to 34 is obtained by dividing the total amount of medicine required for destroying the area where each detonator group 24 to 34 is disassembled by the dosage per stage considering vibration and noise. Value.

DS電気***24A〜24N,26A〜26NおよびMS電気***28A〜28Nは、段発電気***であり、点火部と起爆薬の間に延時薬を挟んであり、通電から一定時間遅延して起爆する。電気***は、絶縁性樹脂で密封した管内に電気的刺激に敏感な起爆薬を装填した構造を持つ。
図6は、DS電気***およびMS電気***の基準秒時を示す説明図である。
基準秒時とは、発破器22(図4参照)から電気エネルギーが供給され***が通電されてから起爆するまでの遅延時間(起爆間隔)であり、各遅延時間に対応して段数が対応付けられている。
図6に示すように、DS電気***では基準秒時が0.25秒(250ミリ秒)〜0.6秒(600ミリ秒)であり、MS電気***では基準秒時が25ミリ秒〜90ミリ秒であり、MS電気***の方が起爆間隔が短くなっている。本実施の形態では、先に解体される分割領域1および分割領域2にDS電気***を使用し、分割領域3にMS電気***を使用しているので、解体が進んで構造物の残存質量が小さくなるほど起爆間隔が短くなる。
また各***の段数は、DS電気***、MS電気***でともに最大20段となっている。ステップS300(図3参照)における領域分割は、例えばDS電気***、MS電気***を使用して20段以内で解体できる範囲となるように決定してもよい。
The DS electric detonators 24A to 24N, 26A to 26N, and the MS electric detonators 28A to 28N are stepped electric detonators, with a delayed charge sandwiched between the ignition part and the explosive, and detonate with a certain delay from energization. . The electric detonator has a structure in which an explosive sensitive to electrical stimulation is loaded in a tube sealed with an insulating resin.
FIG. 6 is an explanatory diagram showing the reference time of the DS electric detonator and the MS electric detonator.
The reference second time is a delay time (detonation interval) from when the electrical energy is supplied from the blasting device 22 (see FIG. 4) until the detonator is energized to start detonation, and the number of stages is associated with each delay time. It has been.
As shown in FIG. 6, the DS electric detonator has a reference time of 0.25 seconds (250 milliseconds) to 0.6 seconds (600 milliseconds), and the MS electric detonator has a reference time of 25 milliseconds to 90 seconds. The detonation interval is shorter in the MS electric detonator. In this embodiment, since the DS electric detonator is used for the divided region 1 and the divided region 2 to be disassembled first, and the MS electric detonator is used for the divided region 3, the dismantling proceeds and the remaining mass of the structure is increased. The smaller the smaller, the shorter the initiation interval.
Each detonator has a maximum of 20 stages for both the DS electric detonator and the MS electric detonator. The region division in step S300 (see FIG. 3) may be determined so that it can be disassembled within 20 steps using, for example, a DS electric detonator or an MS electric detonator.

また、電子***30A〜30N,32A〜32N,34A〜34Nは、電気***よりも更に精密な起爆間隔の制御が可能であり、電気***に併せてコンデンサと電子タイマを密封している。
電子***には、工場出荷時に予め起爆間隔(基準秒時)の秒時設定がなされているものと、発破を行なう現場で各電子***30A〜30N,32A〜32N,34A〜34Nごとに個別に起爆間隔(基準秒時)の秒時設定を行なうものが知られているが、本実施の形態では、起爆間隔の秒時設定を発破の現場で設定可能なものを用いる。
この電子***30A〜30N,32A〜32N,34A〜34Nは、発破器22により遅延時間が任意に設定可能に構成されている。
より詳細には、各電子***30A〜30N,32A〜32N,34A〜34Nの導電線には、出荷時に個々の電子***30A〜30N,32A〜32N,34A〜34Nを識別するための識別データを示すバーコードが記載されたタグが付けられている。
発破現場では、電子***30A〜30N,32A〜32N,34A〜34Nを設けた爆薬を装薬孔に装薬(装填)したのち、***順に発破器22のスキャナーでこのバーコードを読み込む。
さらに、発破器22と各電子***30A〜30N,32A〜32N,34A〜34Nとを導電線を介して電気的に接続する。
そして、発破器22は、スキャナーで読み込まれたバーコードに基づいて導電線を介して各電子***30A〜30N,32A〜32N,34A〜34Nに対して、起爆間隔の秒時設定を行なう。
電子***30A〜30N,32A〜32N,34A〜34Nには起爆間隔を任意に設定することができるので、発破による振動が収束する最小の起爆間隔を選択することにより、1孔1段でも全体の発破時間の短縮を図ることができ、周辺の環境負荷を軽減することができる。
The electronic detonators 30A to 30N, 32A to 32N, and 34A to 34N can control the initiation interval more precisely than the electric detonator, and the capacitor and the electronic timer are sealed together with the electric detonator.
The electron detonator has a preset explosion interval (reference time) at the time of shipment from the factory, and individually for each electron detonator 30A-30N, 32A-32N, 34A-34N at the blasting site. Although it is known that the second setting of the detonation interval (reference second time) is known, in this embodiment, the one that can set the second setting of the detonation interval at the site of blasting is used.
The electron detonators 30A to 30N, 32A to 32N, and 34A to 34N are configured such that the delay time can be arbitrarily set by the blasting device 22.
More specifically, identification data for identifying the individual electron detonators 30A to 30N, 32A to 32N, and 34A to 34N is provided on the conductive wires of the electron detonators 30A to 30N, 32A to 32N, and 34A to 34N at the time of shipment. A tag with a bar code is attached.
At the blasting site, after the explosives provided with the electron detonators 30A to 30N, 32A to 32N, and 34A to 34N are loaded (loaded) into the charge holes, the barcode is read by the scanner of the blasting device 22 in the order of blasting.
Furthermore, the blasting device 22 and each electron detonator 30A-30N, 32A-32N, 34A-34N are electrically connected through a conductive wire.
Then, the blasting device 22 sets the initiation interval in seconds for each of the electron detonators 30A to 30N, 32A to 32N, and 34A to 34N via the conductive wires based on the barcode read by the scanner.
Since the electron detonator 30A-30N, 32A-32N, and 34A-34N can be set arbitrarily, the minimum detonation interval at which the vibration due to blasting converges can be selected to achieve the entire The blasting time can be shortened and the environmental load in the vicinity can be reduced.

なお、各領域に設定した起爆間隔が例えば30ms以上の場合は電気***(DS電気***またはMS電気***)を用いるとともに、起爆間隔が30ms未満の場合は電子***を用いるようにする。電子***は電気***よりも更に精密な起爆間隔の制御が可能であるが、電気***の数倍の価格であり、多用するとコストが上昇する。
電気***と電子***とを使い分けることによって、コストの上昇を抑えつつ解体作業の効率を向上させることができる。
For example, when the detonation interval set in each region is 30 ms or more, an electric detonator (DS electric detonator or MS electric detonator) is used, and when the detonation interval is less than 30 ms, an electronic detonator is used. The electron detonator can control the detonation interval more precisely than the electric detonator, but it is several times the price of the electric detonator, and the cost increases when it is used frequently.
By properly using the electric detonator and the electronic detonator, it is possible to improve the efficiency of the dismantling work while suppressing an increase in cost.

電子***に設定する起爆間隔は、解体順序が遅い領域に配置する***ほど短くすればよい。
具体的には、例えば解体前の構造物の質量をV0、解体開始時の起爆間隔をT0とした場合、構造物の残存質量がV1となった際の起爆間隔T1が、下記式(2)で表されるようにしてもよい。
The detonation interval set for the electronic detonator may be made shorter for detonators arranged in a region where the order of dismantling is slower.
Specifically, for example, when the mass of the structure before disassembly is V0 and the initiation interval at the start of disassembly is T0, the initiation interval T1 when the remaining mass of the structure is V1 is expressed by the following formula (2). It may be expressed as

Figure 2017002540
Figure 2017002540

図7は、上記式(2)の具体的な値の一例を示す表である。
図7では、解体前の構造物の質量V0を100%とし、残存質量V1が10%変化するごとの起爆間隔T1を示した。なお、解体開始時の起爆間隔T0(起爆間隔の初期値)は、DS電気***の最初の起爆間隔である0.25秒(250ミリ秒)とした。
上記式(2)に従えば、例えば構造物の4分の1の解体が済んだ場合(残存質量75)には起爆間隔を125ミリ秒程度とし、構造物の半分の解体が済んだ場合(残存質量50)には起爆間隔を25ミリ秒程度とすればよい。
FIG. 7 is a table showing an example of specific values of the formula (2).
In FIG. 7, the detonation interval T1 is shown every time the remaining mass V1 changes by 10% with the mass V0 of the structure before dismantling as 100%. The initiation interval T0 (initial value of the initiation interval) at the start of dismantling was set to 0.25 seconds (250 milliseconds), which is the first initiation interval of the DS electric detonator.
According to the above formula (2), for example, when a quarter of the structure is disassembled (residual mass 75), the initiation interval is set to about 125 milliseconds, and half of the structure is disassembled ( For the remaining mass 50), the initiation interval may be about 25 milliseconds.

また、上述したように、***1つ当たりの装薬量は解体順序が遅い領域ほど少なくする。
図8は、解体順序と装薬量との関係の一例を示す表である。
図8には、解体領域12の各分割領域を示す領域番号と、当該領域における1段当たりの装薬量と、当該領域における起爆間隔と、当該領域に用いる***の種類が示されている。
最も解体順序が早い分割領域1における1段当たりの装薬量を100とすると、分割領域2における装薬量を90、分割領域3における装薬量を80、分割領域4における装薬量を70、分割領域5における装薬量を60、分割領域6における装薬量を50と、徐々に低減させていく。
これにより、解体の進行による地盤環境変化に合わせて1段当たりの振動および騒音を低減し、周辺環境への影響を低減することができる。
Further, as described above, the amount of charge per detonator is reduced in a region where the order of dismantling is slower.
FIG. 8 is a table showing an example of the relationship between the disassembly order and the charge amount.
FIG. 8 shows a region number indicating each divided region of the dismantling region 12, a charge amount per stage in the region, an initiation interval in the region, and a type of detonator used in the region.
Assuming that the charge amount per stage in the divided region 1 with the earliest disassembly order is 100, the charged amount in the divided region 2 is 90, the charged amount in the divided region 3 is 80, and the charged amount in the divided region 4 is 70. The amount of charge in the divided region 5 is gradually reduced to 60, and the amount of charge in the divided region 6 is gradually reduced to 50.
As a result, vibration and noise per stage can be reduced in accordance with changes in the ground environment due to the progress of dismantling, and the influence on the surrounding environment can be reduced.

また、各分割領域における起爆間隔は、分割領域1および2における起爆間隔を250ミリ秒〜600ミリ秒、分割領域2における起爆間隔を25ミリ秒〜90ミリ秒、分割領域4における起爆間隔を25ミリ秒、分割領域5および6における起爆間隔を15ミリ秒とした。   In addition, the initiation interval in each divided area is 250 to 600 milliseconds in the divided areas 1 and 2, the initiation interval in the divided area 2 is 25 to 90 milliseconds, and the initiation interval in the divided area 4 is 25. The initiation interval in the divided areas 5 and 6 was 15 milliseconds.

図3の説明に戻り、ステップS304で決定した装薬量および起爆間隔に沿ってそれぞれの分割領域に***を設置し(ステップS306)、設置した***を解体順序に沿って順次起爆させて(ステップS308)、本フローチャートによる処理を終了する。
このような解体作業の結果、例えば分割領域5および6(起爆間隔15ミリ秒)における振動レベルは59dBであり、MS電気***(起爆間隔25ミリ秒〜90ミリ秒)を用いて同様の構造物を解体した場合の振動レベルである75dBと比較して振動レベルを低減することができた。
Returning to the description of FIG. 3, detonators are installed in the respective divided regions along the charge amount and initiation interval determined in step S304 (step S306), and the installed detonators are sequentially detonated in the order of disassembly (step S306). S308), the process according to this flowchart is terminated.
As a result of such dismantling work, for example, the vibration level in the divided areas 5 and 6 (detonation interval 15 milliseconds) is 59 dB, and a similar structure is used using an MS electric detonator (detonation interval 25 milliseconds to 90 milliseconds). The vibration level could be reduced compared to 75 dB, which is the vibration level when dismantling.

以上説明したように、実施の形態にかかる構造物の解体方法は、発破によって構造物を解体する際に、構造物の残存質量が小さくなるほど、すなわち解体作業が進行するほど***1つ当たりの装薬量を低減させるので、構造物周辺の地盤の拘束力が低減して振動や騒音が伝わりやすくなった場合であっても、周辺環境への影響を低減する上で有利となる。
また、装薬量の低減に伴って起爆間隔を短くするので、発破の段数が多くなった際に解体作業時間を短期に完了させる上で有利となる。
また、解体対象の構造物を複数の領域に分割して、複数の領域それぞれにおける装薬量および起爆間隔を決定するので、構造物の形状や材質などに合わせて装薬量および起爆間隔を決定することができ、解体作業の効率を向上させる上で有利となる。
また、1孔1段発破を行うことにより、多段発破と比較して振動および騒音の発生を低減する上で有利となる。
また、上記式(2)を用いることにより、任意の解体状態における起爆間隔を定量的に決定することができ、解体作業の作業品質を安定させる上で有利となる。
また、起爆間隔が30ms以上の場合には比較的コストの低い電気***を用い、起爆間隔が30ms未満の場合には比較的コストが高いが精密な起爆間隔の制御が可能な電子***を用いることにより、コストと作業効率とのバランスを取る上で有利となる。
As described above, the method for disassembling a structure according to the embodiment, when disassembling the structure by blasting, the smaller the remaining mass of the structure, that is, the more the dismantling work proceeds, Since the dose is reduced, even if the restraining force of the ground around the structure is reduced and vibration and noise are easily transmitted, it is advantageous in reducing the influence on the surrounding environment.
Further, since the initiation interval is shortened along with the reduction of the amount of charge, it is advantageous in completing the dismantling work time in a short time when the number of blasting stages is increased.
Also, the structure to be dismantled is divided into multiple areas, and the charge amount and initiation interval in each of the multiple areas are determined, so the charge amount and initiation interval are determined according to the shape and material of the structure. This is advantageous in improving the efficiency of the dismantling work.
Also, performing one-stage, one-stage blasting is advantageous in reducing the generation of vibration and noise compared to multistage blasting.
Further, by using the above formula (2), the initiation interval in an arbitrary dismantling state can be determined quantitatively, which is advantageous in stabilizing the work quality of the dismantling work.
In addition, when the detonation interval is 30 ms or more, use an electric detonator with a relatively low cost. When the detonation interval is less than 30 ms, use an electronic detonator that is relatively expensive but capable of precise control of the detonation interval. This is advantageous in balancing the cost and work efficiency.

なお、本実施の形態では、解体対象の構造物を複数の領域に分割し、各分割領域内における***の装薬量および起爆間隔は同一としたが、これに限らず、例えば解体対象の構造物の全領域に渡って、連続的に装薬量および起爆間隔を変化させるようにしてもよい。この場合にも、構造物の残存質量が小さくなるほど***1つ当たりの装薬量を低減させるとともに、起爆間隔を短くする。   In this embodiment, the structure to be dismantled is divided into a plurality of regions, and the charge amount and detonation interval of the detonator in each divided region are the same. You may make it change a charge amount and an initiation interval continuously over the whole area | region of a thing. Also in this case, as the remaining mass of the structure becomes smaller, the amount of charge per detonator is reduced and the initiation interval is shortened.

10……ダム、12……解体領域、20……発破システム、22(22A-22F)……発破器、23……分岐器、30A-30N,32A-32N,34A-34N……電子***、24A-24N,26A-26N……DS電気***、28A-28N……MS電気***。   10 ... Dam, 12 ... Demolition area, 20 ... Blasting system, 22 (22A-22F) ... Blaster, 23 ... Branch, 30A-30N, 32A-32N, 34A-34N ... Electronic detonator, 24A-24N, 26A-26N ... DS electric detonator, 28A-28N ... MS electric detonator.

Claims (5)

複数の爆薬付き***を所定の起爆間隔で順次起爆させて構造物を解体する構造物の解体方法であって、
前記構造物の残存質量が小さくなるほど前記***1つ当たりの装薬量を低減させるとともに、前記起爆間隔を短くする、
ことを特徴とする構造物の解体方法。
A structure dismantling method in which a plurality of detonators with explosives are sequentially detonated at a predetermined detonation interval to dismantle the structure,
As the remaining mass of the structure is reduced, the amount of charge per detonator is reduced and the initiation interval is shortened.
A structure dismantling method characterized by the above.
前記構造物を複数の領域に分割する工程と、
前記複数の領域に対して解体順序を設定する工程と、
前記複数の領域それぞれにおける前記***1つ当たりの装薬量および前記***の起爆間隔を決定する工程と、
それぞれの前記領域に***を設置するとともに、設置した前記***を前記解体順序に沿って順次起爆させる工程と、を含み、
前記装薬量および前記起爆間隔を決定する工程では、前記解体順序が遅い領域ほど前記装薬量を少なく、前記起爆間隔を短い値とする、
ことを特徴とする請求項1記載の構造物の解体方法。
Dividing the structure into a plurality of regions;
Setting a disassembly order for the plurality of regions;
Determining the amount of charge per detonator in each of the plurality of regions and the detonation interval of the detonator;
And installing a detonator in each of the regions, and sequentially detonating the installed detonator along the disassembly sequence,
In the step of determining the amount of charge and the initiation interval, the region in which the disassembly order is slower decreases the amount of charge, and the initiation interval is a short value.
The method for disassembling a structure according to claim 1.
前記***を起爆させる工程では、複数設置した***の起爆を1つの***ごとに行なう1孔1段発破を行う、
ことを特徴とする請求項2記載の構造物の解体方法。
In the step of detonating the detonator, one-hole one-stage blasting is performed in which a plurality of detonators are detonated for each detonator.
The method for disassembling a structure according to claim 2.
解体前の前記構造物の質量をV0、解体開始時の前記起爆間隔をT0とした場合、前記構造物の前記残存質量がV1となった際の前記起爆間隔T1が、下記式(1)で表される、
ことを特徴とする請求項1から3のいずれか1項記載の構造物の解体方法。
Figure 2017002540
When the mass of the structure before disassembly is V0 and the initiation interval at the start of disassembly is T0, the initiation interval T1 when the remaining mass of the structure is V1 is expressed by the following formula (1). expressed,
The method for disassembling a structure according to any one of claims 1 to 3, wherein:
Figure 2017002540
前記起爆間隔が30ms以上の場合は電気***を用いるとともに、前記起爆間隔が30ms未満の場合は電子***を用いる、
ことを特徴とする請求項1から4の何れか1項記載の構造物の解体方法。
When the detonation interval is 30 ms or more, an electric detonator is used, and when the detonation interval is less than 30 ms, an electronic detonator is used.
The method for disassembling a structure according to any one of claims 1 to 4, wherein:
JP2015116463A 2015-06-09 2015-06-09 Structure dismantling method Active JP6482958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116463A JP6482958B2 (en) 2015-06-09 2015-06-09 Structure dismantling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116463A JP6482958B2 (en) 2015-06-09 2015-06-09 Structure dismantling method

Publications (2)

Publication Number Publication Date
JP2017002540A true JP2017002540A (en) 2017-01-05
JP6482958B2 JP6482958B2 (en) 2019-03-13

Family

ID=57751524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116463A Active JP6482958B2 (en) 2015-06-09 2015-06-09 Structure dismantling method

Country Status (1)

Country Link
JP (1) JP6482958B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339995A (en) * 1979-02-06 1982-07-20 Messerschmitt-Bolkow-Blohm Gmbh Method for destroying structures such as concrete walls
US4406226A (en) * 1980-12-09 1983-09-27 Cxa Ltd./Cxa Ltee Non-electric delay blasting method
JPS6318120B2 (en) * 1983-03-14 1988-04-16 Nippon Kayaku Kk
JP2010133675A (en) * 2008-12-08 2010-06-17 Kacoh Co Ltd Method of controlling blasting
JP2013148302A (en) * 2012-01-20 2013-08-01 Ohbayashi Corp Method and system of controlled blasting
WO2014026603A1 (en) * 2012-08-17 2014-02-20 北京北方邦杰科技发展有限公司 Application method of digital electronic detonator
JP2014169832A (en) * 2013-03-04 2014-09-18 Kajima Corp Blast time detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339995A (en) * 1979-02-06 1982-07-20 Messerschmitt-Bolkow-Blohm Gmbh Method for destroying structures such as concrete walls
US4406226A (en) * 1980-12-09 1983-09-27 Cxa Ltd./Cxa Ltee Non-electric delay blasting method
JPS6318120B2 (en) * 1983-03-14 1988-04-16 Nippon Kayaku Kk
JP2010133675A (en) * 2008-12-08 2010-06-17 Kacoh Co Ltd Method of controlling blasting
JP2013148302A (en) * 2012-01-20 2013-08-01 Ohbayashi Corp Method and system of controlled blasting
WO2014026603A1 (en) * 2012-08-17 2014-02-20 北京北方邦杰科技发展有限公司 Application method of digital electronic detonator
JP2014169832A (en) * 2013-03-04 2014-09-18 Kajima Corp Blast time detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"民家付近でもトンネル発破が可能に", 日経コンストラクション, vol. 第607号, JPN6019003339, 12 January 2015 (2015-01-12), JP, pages p.30 *

Also Published As

Publication number Publication date
JP6482958B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6721749B2 (en) Blasting method
US8385042B2 (en) Selective control of wireless initiation devices at a blast site
GB2457208A (en) Process for assembling a loading tube
CA2962230A1 (en) Method of the shortest inter-hole delay blast and the blasting and delaying means
WO2012081938A3 (en) Detonation system of a non-electric detonator using a spark detonation apparatus and blasting construction method using same
JP6342749B2 (en) Blasting method
AU2003223795B2 (en) System and method for monitoring features of a blast
WO2013175243A3 (en) Apparatus for and a method of detonating explosive devices
JP6482958B2 (en) Structure dismantling method
Wu et al. Parameter calculation of the initiating circuit with mixed use of nonel detonators and electronic detonators in tunnel controlled-blasting
AU2016260872B2 (en) Detonator information system
JP5184322B2 (en) Blast control method
JP5981218B2 (en) Blasting method and blasting system
JP6328433B2 (en) Blasting method
US10502539B2 (en) System and method for underground blasting
AU2018271218A1 (en) Underground shaft development method
KR100507303B1 (en) Vibration-controlled safe blasting method using detonating fuses
Manoj et al. Electronic Delay Detonators-Benefits & growth prospects in India
JP5841701B2 (en) Control blasting system
Roy et al. Influence of initiation mode of explosives in opencast blasting on ground vibration
JP2005300105A (en) Blasting excavation method and blasting device of low environmental load
RU2557274C1 (en) Method of shooting of ore cavities
Pytlik et al. Determining the timing accuracy of electronic detonators using different methods
JPS62261900A (en) Method of blasting construction
JP5908249B2 (en) Non-explosive detection tool and non-explosive detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6482958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250