JP2016504585A - 対象物の2次元位置座標を求める方法及び装置 - Google Patents

対象物の2次元位置座標を求める方法及び装置 Download PDF

Info

Publication number
JP2016504585A
JP2016504585A JP2015548464A JP2015548464A JP2016504585A JP 2016504585 A JP2016504585 A JP 2016504585A JP 2015548464 A JP2015548464 A JP 2015548464A JP 2015548464 A JP2015548464 A JP 2015548464A JP 2016504585 A JP2016504585 A JP 2016504585A
Authority
JP
Japan
Prior art keywords
image
laser beam
laser
measurement plane
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015548464A
Other languages
English (en)
Inventor
トルステン ゴゴラ,
トルステン ゴゴラ,
アンドレアス ウィンター,
アンドレアス ウィンター,
Original Assignee
ヒルティ アクチエンゲゼルシャフト
ヒルティ アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒルティ アクチエンゲゼルシャフト, ヒルティ アクチエンゲゼルシャフト filed Critical ヒルティ アクチエンゲゼルシャフト
Publication of JP2016504585A publication Critical patent/JP2016504585A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

2次元の計測平面(12)における対象物(11)の位置座標(XM,YM)を求める方法であって、反射部材(31)を有した標的手段(13)を対象物(11)に配置する工程と、計測平面(12)と実質的に平行な照射方向(27)に沿って標的手段(13)に向け、レーザ手段(14)の発光素子(41)からレーザビームを照射する工程と、レーザビームの少なくとも一部を、反射部材(31)で反射させる工程と、少なくとも部分的に反射されたレーザビーム(44)の画像を反射光画像として、反射光画像を伴う標的手段(13)の画像を、撮影方向(34)が計測平面(12)に対して傾斜角(φ)で傾斜している撮影手段(15)により取得する工程と、標的手段(13)の画像において、反射光画像の中心点を求める工程と、撮影手段(15)の焦点距離と、傾斜角と、反射光画像の中心点の第1及び第2画像座標とに基づき第1及び第2距離を演算する工程と、第1及び前記第2距離に基づき対象物(11)の位置座標を演算する工程とを備える。【選択図】図1

Description

本発明は、請求項1の前提部分に従い、対象物の2次元位置座標を求める方法、及び請求項6の前提部分に従い、対象物の2次元位置座標を求める装置に関する。
対象物の2次元位置座標を求める方法及び装置は、特許文献1によって知られている。この装置は、レーザ測距手段と、撮影手段と、基準手段と、制御手段とを備える。レーザ測距手段は、レーザビームを発する発光部と、対象物において少なくとも部分的に反射されたレーザビームを受光ビームとして受光する受光部とを有している。基準手段は、互いに直交して内部座標系を形成する第1軸及び第2軸と、第1軸及び第2軸に直交し、第1軸と第2軸との交点を通って延びる、内部座標系の第3軸とを有している。また、この装置は、方位角を検出する角度計測手段を備える。撮影手段によって対象物を正確に捉えることにより、レーザ測距手段の照射方向軸と撮影手段の撮影方向軸とが対象物に向けて一致する。レーザ測距手段によってレーザによる距離の計測を行い、角度計測手段によって方位角を求める。そして、計測された距離及び方位角から2次元位置座標が演算される。
欧州特許出願公開第0481278号明細書
対象物の2次元位置座標を求めるための公知の方法は、少なくとも1つの角度計測手段が必須であり、位置座標を求めるための装置が複雑且つ高価になるという欠点を有する。更に、レーザ測距や方位角計測を行うためのレーザビームを、正確に対象物に向ける必要がある。
本発明は、屋内での使用に適し、作業者のわずかな労力で位置座標を求めることが可能な、対象物の2次元位置座標を求める方法を提供することを目的とする。また、対象物の2次元位置座標を求めるための、本発明の方法に適合した装置を提供することを目的とする。
このような目的は、独立の請求項1の特徴により特定される発明に係る、対象物の2次元位置座標を求める方法、及び請求項6の特徴により特定される発明に係る、対象物の2次元位置座標を求める装置によって達成される。更なる有効な態様への展開については、従属請求項に示されている。
本発明によれば、2次元の計測平面における対象物の位置座標を求める方法は、
反射部材を有した標的手段を前記対象物に配置する工程と、
前記計測平面と実質的に平行な照射方向に沿って前記標的手段に向け、レーザ手段の発光素子からレーザビームを照射する工程と、
前記レーザビームの少なくとも一部を、前記反射部材で反射させる工程と、
少なくとも部分的に反射された前記レーザビームの画像を反射光画像として、当該反射光画像を伴う前記標的手段の画像を、撮影方向が前記計測平面に対して傾斜角で傾斜している撮影手段により取得する工程と、
前記標的手段の撮影画像において、前記反射光画像の中心点を求める工程と、
前記撮影手段の焦点距離と、前記傾斜角と、前記撮影手段の座標系における前記反射光画像の前記中心点の第1画像座標及び第2画像座標とに基づき、第1距離及び第2距離を演算する工程と、
前記第1距離及び第2距離に基づき、前記計測平面における前記対象物の位置座標を演算する工程と
を備える。
撮影手段の撮影画像に含まれる反射光画像を利用して、対象物の位置座標を求めることにより、撮影手段に加えて、レーザ手段しか必要としないという効果がある。角度計測手段が不要となるため、安価な装置を実現することが可能となる。また、作業者は、少ない労力で、対象物の位置座標を求めることが可能となる。
撮影手段により、標的手段の一連の複数画像を取得するのが好ましい。標的手段に向けられるレーザビームは、80°以上の開き角で拡大するレーザビーム、または10°以下の開き角を有して移動するレーザビームとすることができる。移動せずに拡大するレーザビームとした場合には、レーザビームの少なくとも一部を標的手段の反射手段で反射させ、撮影手段の撮影画像に反射光画像を形成する。撮影手段により標的手段の一連の複数画像を得る場合には、レーザビームが発せられている間、常に反射光画像が識別可能となる。移動するレーザビームとした場合には、撮影手段が、反射光画像を伴う標的手段の画像と、反射光画像を伴わない標的手段の画像との両方を取得する。
上記方法の第1の態様では、撮影手段を用いて得た一連の複数画像の中から、最も強力な反射光画像を含む画像を、反射光画像を伴う標的手段の画像として定める。この第1の態様は、撮影手段を用いて得た一連の複数画像に、反射光画像を伴う画像と、反射光画像を伴わない画像との両方が含まれるような、移動するレーザビームの場合に特に適したものである。最も強力な反射光画像を伴う標的手段の画像は、公知の画像処理技術を利用して選定することが可能である。
上記方法の第2の態様では、撮影手段を用いて得た一連の複数画像の一部を平均化することにより、反射光画像を伴う標的手段の画像を定める。この第2の態様は、レーザビームが発せられている間は常に反射光画像を識別可能となるような、移動しないレーザビームに特に適したものである。反射光画像を伴ういくつかの画像の平均化は、公知の画像処理技術を利用して行うことが可能である。
上記方法の好ましい態様として、撮影手段による標的手段の画像の取得と、レーザ手段によるレーザビームの照射とは、制御手段によって同時に制御する。
本発明の方法を実行して、特に計測平面における対象物の2次元位置座標を求めるための、本発明の装置は、
前記対象物の前記位置座標を特定する反射部材を有した標的手段と、
前記計測平面と実質的に平行な照射方向に沿ってレーザビームを照射する発光素子、および制御部を有したレーザ手段と、
撮像部と制御部とを有し、撮影方向が前記計測平面に対して傾斜角で傾斜した撮影手段と、
交点で互いに直交する第1軸及び第2軸を有した基準手段と、
前記レーザ手段と前記撮影手段とを制御する制御部、及び前記対象物の前記位置座標を演算する演算処理部を有する制御手段と
を備える。
対象物の2次元位置座標を求めるための本発明の装置により、角度計測手段を用いることなく、対象物の位置座標を求めることが可能となる。角度計測手段が不要となることにより、安価な装置を実現することが可能となる。また、作業者は、少ない労力で、対象物の位置座標を求めることが可能となる。
好ましい態様において、反射部材は、回転対称体として、または回転対称体の一部として構成される。2次元の計測の場合は、円柱体または円柱体の一部が反射部材として適している。回転対称体は、側面から中心点までの距離が、全方向で同一であるという利点がある。対象物の位置座標は、円柱体の中心軸線上に位置する。円柱体の半径の値は、制御手段に保管されるか、または作業者によって制御手段に入力される。標的手段の半径は、位置座標を演算する際に考慮される。
装置の第1の態様において、レーザ手段は、80°以上の開き角で、計測平面に平行な方向にレーザビームを拡大するビーム成形用光学システムを有する。このビーム成形用光学システムは、計測平面に直角な方向において、レーザビームを、平行にするか、または集中させるのが好ましい。このようなビーム成形用光学システムにより、レーザビームの利用可能エネルギを最大限に使用できるという利点がある。計測平面において2次元座標を求める際、当該計測平面に直角な方向では、レーザビームの拡大は不要である。レーザビームの限られたエネルギは、ビーム成形用光学システムによって計測平面に分散される。ビーム成形用光学システムによってレーザビームを拡大することにより、固定されたレーザ手段を使用することが可能となる。
用語「ビーム成形用光学システム」には、レーザビームの拡大、平行化、または集中を行う、あらゆるビーム成形用光学装置が含まれる。ビーム成形用光学システムは、1以上の光学的機能が統合された1つの光学的素子、または連続的に配置された複数の光学的素子で構成することが可能である。レーザビームを拡大するビーム成形用光学システムとしては、柱状レンズ、円錐状ミラー、及びこれらに類似する光学的素子が適している。
装置の第2の態様において、レーザ手段は、計測平面に直角な回転軸の周囲で、レーザビームを移動させるモータユニットを有する。演算処理を行うための認識可能な反射光画像を撮影手段の画像において得る上で、レーザビームを拡大すると当該レーザビームのエネルギ密度が低くなりすぎる場合には、レーザビームの移動が有用である。計測平面に直角な回転軸の周囲におけるレーザビームの移動は、回転、走査、または追尾により行うことができる。回転による移動の場合、レーザビームは、回転軸周りに連続的に回転し、走査による移動の場合、レーザビームは、回転軸に対して周期的に遠ざかったり近付いたりし、追尾による移動の場合、レーザビームは、標的手段を追尾する。この第2の態様におけるモータユニットは、レーザビームを平行にするか、または集中させるビーム成形用光学システムと一体的に設けることが可能である。
装置の第3の態様において、レーザ手段は、10°までの開き角で、計測平面に平行な方向にレーザビームを拡大するビーム成形用光学システムと、計測平面に直角な回転軸の周囲で、レーザビームを移動させるモータユニットとを有する。レーザビームの拡大及び回転軸の周囲での移動は、組み合わせて行うことが可能である。レーザビームは、ビーム成形用光学システムにより、10°までの開き角で拡大され、拡大されたレーザビームが、モータユニットによって回転軸の周囲で移動する。レーザビームの拡大と移動とを組み合わせることにより、反射光画像を演算処理する上で十分な強度のエネルギ密度を有した受光用ビームを検知することが可能となる。レーザビームの移動は、回転、走査、または追尾により行うことができる。
好ましい態様において、本発明の装置の標的手段は、手持ち式動力付き工具に取り付けられる。このような手持ち式動力付き工具を用いて作業を行っている際には、この電動工具の最新の位置座標が、本発明の検出装置を用いることによって得られる。
標的手段、レーザ手段、撮影手段、基準手段、及び制御手段を有し、計測平面における対象物の2次元位置座標を求めるための、本発明に係る装置を示す図である。 レーザ手段、撮影手段、及び制御手段を有した、図1の装置のブロック図である。 反射されたレーザビームを、対象物の位置座標を求めるための演算処理の対象である反射光画像として、当該反射光画像と共に撮影手段が取得した標的手段の画像を示す図である。
本発明の実施形態について、図面に基づき以下に説明する。これら図面に示す実施形態は、必ずしも一定の縮尺で示されるものではなく、説明の都合上、概略的に、または幾分変形して示されている。図面から直接的に認識可能な教示に対する付加要素については、関連する先行技術が参照される。本発明の大要から逸脱することなく、実施の形態を詳細に変更することが可能である。明細書、特許請求の範囲、及び図面に示した本発明の特徴は、本発明を個別に展開し、または組み合わせて展開する上で、本質となり得るものである。また、本発明の範囲は、明細書、図面、または特許請求の範囲に示された特徴の少なくとも2つの組み合わせを全て包含するものである。本発明の全体的な概念は、以下に示して説明する好ましい実施形態のそのものや詳細な構成に限定されるものではなく、特許請求の範囲におけるいずれか1つの請求項よりも減縮された主題に限定されるものでもない。開示している数値範囲に関し、特定された範囲内にある値を限定的な値として示しうるものであり、任意に適用して特許請求の範囲に含めることが可能である。以下では、簡略化のため、同一または類似の機能を有した、同一または類似の部材に対し、同一の参照符号を用いている。
図1は、計測領域12における対象物11の位置座標XM,YMを求めるための、本発明に係る第1の装置10を示す図である。計測領域12は、計測平面として形成されており、対象物11の位置座標XM,YMは2次元である。
装置10は、標的手段13、レーザ手段14、撮影手段15、基準手段16、制御手段17、及び手持ち端末機18を有する。レーザ手段14、撮影手段15、基準手段16、及び制御手段17は、計測装置19にまとめられており、当該計測装置19は、図1に示す実施形態において、装置用スタンド20に取り付けられている。手持ち端末機18は、制御部21、ディスプレイ23を有した表示手段22、及び操作手段24を備えている。これに代わる計測装置19の構成として、制御手段17は、手持ち端末機18内に設けることも可能である。計測装置19及び手持ち端末機18は、無線通信リンク25によって互いに接続されている。標的手段13と手持ち端末機16とを分離して設ける代わりに、標的手段を手持ち端末機と一体化することも可能である。
基準手段16は、互いに直角をなして交点28で交わる第1軸26及び第2軸27を備える。第1軸26及び第2軸27は、計測装置19の内部座標系を形成する。第1軸26及び第2軸27に直交して、これら第1軸26及び第2軸27の交点28を通過するように第3軸29が延びている。第1軸26及び第2軸27によって形成される平面は、計測領域12に平行となっており、レーザ手段14の照射方向は、第2軸27に平行となっている。第1軸26及び第2軸27による計測装置19の内部座標系とは異なる外部座標系において、目標手段11の位置座標を求めようとする場合、これら内部座標系と外部座標系とを重ね合わせるか、または外部座標系と計測装置19の内部座標系との間の移動距離及び回転角度の少なくとも一方を求めて、手動操作により計測装置19に入力するか、または制御手段17に自動的に伝送する。
計測領域12における対象物11の位置は、標的手段13を用いて示される。標的手段13は、レーザ手段14のレーザビームを反射する反射部材31を有している。図1に示す実施形態において、反射部材31は円柱状に構成され、対象物11の位置座標は、反射部材31の中心軸線32上に位置する。本発明の装置10においては、対象物11の位置座標が、中心軸線32上にあって、反射部材31の側面の各点から同じ距離にあることが重要である。円柱状の反射部材31の半径Rの値は、制御手段17に保管されているか、或いは作業者が制御手段17に入力する。反射部材31は、計測用軸体33の上端に固定することが可能であり、作業者が対象物11に位置を合わせる。反射部材31の中心軸線32を計測平面12に直角にするため、例えば水準器や傾斜センサなどの水準手段を計測用軸体33に組み込むことが可能である。計測用軸体33に代えて、標的手段13を、壁または天井に固定したり、床に置いたり、或いは、例えば、車両または動力付き工具に固定したりすることも可能である。
レーザ手段14は、標的手段13に向けてレーザビームを照射する。レーザ手段14によるレーザビームの照射方向は、第2軸27及び計測領域12に平行となっている。標的手段13で反射されたレーザビームを用い、対象物11の位置座標XM,YMを求めることができるようにするため、撮影手段15の撮影方向34は、計測領域12に対して傾斜角度φで傾斜している必要がある。撮影手段15の座標系は、第1軸26及び第2軸27による計測装置19の内部座標系に対し、傾斜角度φだけ回転し、ある距離だけ移動したものとなる。撮影手段15は、回転軸または回転中心の周囲に回転可能となっている。撮影手段15の撮影方向34は、撮影手段15の回転可能範囲における計測可能範囲の中間位置となるようにすることができる。
また、撮影手段15の座標系の原点も、第1軸26及び第2軸27による計測装置19の内部座標系の原点に対して、位置をずらすことが可能である。内部座標系に対し、傾斜角度φを形成する方向に撮影手段15の座標系を回転させることは、位置座標を求める上で必要であるのに対し、方位角の方向については、移動及び回転が不要である。方位角の方向で移動及び回転を行う場合には、計測装置19の内部座標系における位置座標を求める際に、これら移動及び回転の量を把握すると共に、併せて考慮する必要がある。
装置10は、実在する対象物の位置座標を求めるだけでなく、位置座標に該当する位置の発見にも使用することができる。このような目的のため、作業者は、計測用先端具などを有して手持ち端末機に統合することも可能な反射部材を、計測領域に沿って移動させ、予め指定された位置座標を探索する。この位置座標は、手作業によって手持ち端末機に入力するか、或いは別の機器から通信リンクを介して装置10に伝送して指定することができる。
図2は、計測装置19の主要な構成要素と、対象物11の位置座標を求める際の、各構成要素間の相互のやりとりとを示すブロック図である。計測装置19には、レーザ手段14、撮影手段15、及び制御手段17が設けられている。
レーザ手段14は、レーザダイオードで構成される発光素子41、ビーム成形用光学システム42、及び制御部43を備えている。発光素子41は、対象物13に向けてレーザビーム44を照射する。ビーム成形用光学システム42は、単一の光学素子として構成するか、或いは複数の光学素子からなる光学装置として構成することが可能である。移動する対象物の位置座標を求めることができるようにするため、本発明の装置10では、レーザビーム44によって、より広い角度範囲で計測を行う必要がある。このことは、計測領域12においてレーザビーム44を拡大すること、または計測領域12に直角な回転軸の周囲でレーザビーム44を移動させることによって実現可能である。図2には、適切なビーム成形用光学システム42を用いてレーザビーム44を拡大するようにした、レーザ手段14が示されている。拡大に用いるビーム成形用光学システム42としては、特に円柱状レンズや円錐状光学素子が適している。
撮影手段15は、例えばCCDカメラで構成され、撮像部45と、撮影手段15を制御して撮影画像の演算処理を行う制御部46とを備えている。制御手段17は、レーザ手段14及び撮影手段15を用い、対象物11の位置座標を求めるための本発明の方法を実行する。制御手段17は、レーザ手段14及び撮影手段15を制御する制御部47と、対象物11の位置座標XM,YMを演算する演算処理部48とを備える。
作業者は、手持ち端末機18に対する開始コマンドの入力により、位置座標の計測を開始する。この開始コマンドは、制御手段17の演算処理部48により、レーザ手段14に対する第1制御コマンドと、撮影手段15に対する第2制御コマンドとに変換される。第1制御コマンドに基づき、レーザ手段14の発光素子41はレーザビーム44を発し、このレーザビーム44は、反射部材31に当たり、その一部が反射部材31で反射される。また、第2制御コマンドに基づき、撮影手段15は、標的手段13を撮影して一連の複数画像を取得する。反射部材31で部分的に反射されたレーザビームは、標的手段13の画像の少なくとも1つにおいて、反射光画像として識別可能となる。公知の画像処理技術を利用し、撮影手段15の制御部46は、例えば最も強力な反射光画像を有する標的手段13の画像を選定する。最も強力な反射光画像を有する画像に代えて、識別可能な反射光画像を有した複数の画像を平均化することも可能である。
図3は、対象物11の位置座標XM,YMを求めるために演算処理される、反射光画像62を伴う標的手段13の画像61を示す図である。この画像61は、撮影手段15の解像度によって定まる画素数を有した、列方向及び行方向の複数の画素の配列からなる。
撮影手段15の制御部46は、標的手段13の画像61に対して公知の画像処理技術を適用し、反射光画像62の中心点63を求める。撮影手段15の座標系において、この中心点63は、第1画像座標XS及び第2画像座標YSを有する。撮影手段15の焦点距離と、第1軸26及び第2軸27による計測装置19の内部座標系に対する、撮影手段15の座標系の回転角度偏差及び変位している場合の変位量とを用いて、撮影手段15の座標系における反射光画像62の中心点63の第1画像座標XS及び第2画像座標YSから、第1距離d1及び第2距離d2が演算される。次に、これら第1距離d1及び第2距離d2から、対象物11の位置座標XM,YMが演算される。

Claims (12)

  1. 2次元(X,Y)の計測平面(12)における対象物(11)の位置座標(XM,YM)を求める方法であって、
    反射部材(31)を有した標的手段(13)を前記対象物(11)に配置する工程と、
    前記計測平面(12)と実質的に平行な照射方向(27)に沿って前記標的手段(13)に向け、レーザ手段(14)の発光素子(41)からレーザビーム(44)を照射する工程と、
    前記レーザビーム(44)の少なくとも一部を、前記反射部材(31)で反射させる工程と、
    少なくとも部分的に反射された前記レーザビーム(44)の画像を反射光画像(62)として、当該反射光画像(62)を伴う前記標的手段(13)の画像(61)を、撮影方向(34)が前記計測平面(12)に対して傾斜角(φ)で傾斜している撮影手段(15)により取得する工程と、
    前記標的手段(13)の画像(61)において、前記反射光画像(62)の中心点(63)を求める工程と、
    前記撮影手段(15)の焦点距離(f)と、前記傾斜角(φ)と、前記反射光画像(62)の第1画像座標(XS)及び第2画像座標(YS)とに基づき、第1距離(d1)及び第2距離(d2)を演算する工程と、
    前記第1距離(d1)及び前記第2距離(d2)に基づき、前記計測平面(12)における前記対象物(11)の位置座標(XM,YM)を演算する工程と
    を備えることを特徴とする方法。
  2. 前記撮影手段(15)により、前記標的手段(13)の一連の複数画像を取得することを特徴とする請求項1に記載の方法。
  3. 前記撮影手段(15)により取得した前記一連の複数画像から、最も強力な反射光画像を含む画像を、前記反射光画像(62)を伴う前記標的手段(13)の画像(61)として選定することを特徴とする請求項2に記載の方法。
  4. 前記撮影手段(15)により取得した前記一連の複数画像の一部を平均化することにより、前記反射光画像(62)を伴う前記標的手段(13)の画像(61)を定めることを特徴とする請求項2に記載の方法。
  5. 前記撮影手段(15)による前記標的手段(13)の画像の取得と、前記レーザ手段(14)による前記レーザビーム(44)の照射とは、制御手段(17)によって同時に制御することを特徴とする請求項2〜4のいずれかに記載の方法。
  6. 請求項1〜5のいずれかに記載の方法を実行して、2次元(X,Y)の計測平面(12)における対象物(11)の位置座標(XM,YM)を求める装置であって、
    前記計測平面(12)における前記対象物(11)の位置座標(XM,YM)を特定する反射部材(31)を有した標的手段(13)と、
    前記計測平面(12)と実質的に平行な照射方向(27)に沿ってレーザビーム(44)を照射する発光素子(41)を有したレーザ手段(14)と、
    撮像部(45)と制御部(46)とを有し、撮影方向(34)が前記計測平面(12)に対して傾斜角(φ)で傾斜した撮影手段(15)と、
    交点(28)で互いに直交する第1軸(26)及び第2軸(27)を有した基準手段(16)と、
    前記レーザ手段(14)と前記撮影手段(15)とを制御する制御部(47)、及び前記計測平面(12)における前記対象物(11)の位置座標(XM,YM)を演算する演算処理部(48)を有する制御手段(17)と
    を備えることを特徴とする装置。
  7. 前記反射部材(31)は、回転対称体として、または回転対称体の一部として構成されることを特徴とする請求項6に記載の装置。
  8. 前記レーザ手段(14)は、80°以上の開き角で、前記計測平面(12)に実質的に平行な方向に前記レーザビーム(44)を拡大するビーム成形用光学システム(42)を有することを特徴とする請求項6または7に記載の装置。
  9. 前記ビーム成形用光学システム(42)は、前記計測平面(12)に実質的に直角な方向において、前記レーザビーム(44)を、平行にするか、または集中させることを特徴とする請求項8に記載の装置。
  10. 前記レーザ手段(14)は、前記計測平面(12)に実質的に直角な回転軸の周囲で、前記レーザビーム(44)を移動させるモータユニットを有することを特徴とする請求項6または7に記載の装置。
  11. 前記レーザ手段(14)は、
    10°以下の開き角で、前記計測平面(12)に実質的に平行な方向に前記レーザビーム(44)を拡大するビーム成形用光学システムと、
    前記計測平面(12)に実質的に直角な回転軸の周囲で、前記レーザビーム(44)を移動させるモータユニットと
    を有することを特徴とする請求項6または7に記載の装置。
  12. 前記標的手段は、手持ち式動力付き工具に取り付けられることを特徴とする請求項6〜11のいずれかに記載の装置。
JP2015548464A 2012-12-20 2013-12-18 対象物の2次元位置座標を求める方法及び装置 Pending JP2016504585A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012223929.4A DE102012223929A1 (de) 2012-12-20 2012-12-20 Verfahren und Vorrichtung zum Bestimmen der zweidimensionalen Ortskoordinaten eines Zielobjektes
DE102012223929.4 2012-12-20
PCT/EP2013/077013 WO2014095949A1 (de) 2012-12-20 2013-12-18 Verfahren und vorrichtung zum bestimmen der zweidimensionalen ortskoordinaten eines zielobjektes

Publications (1)

Publication Number Publication Date
JP2016504585A true JP2016504585A (ja) 2016-02-12

Family

ID=49917645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015548464A Pending JP2016504585A (ja) 2012-12-20 2013-12-18 対象物の2次元位置座標を求める方法及び装置

Country Status (6)

Country Link
US (2) US20150346342A1 (ja)
EP (1) EP2936054A1 (ja)
JP (1) JP2016504585A (ja)
CN (1) CN104870937A (ja)
DE (1) DE102012223929A1 (ja)
WO (1) WO2014095949A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043353B (zh) * 2015-07-31 2017-08-29 上海卫星工程研究所 反射镜摆动宽幅成像***及成像方法
CN105300310A (zh) * 2015-11-09 2016-02-03 杭州讯点商务服务有限公司 不贴靶点的手持式激光3d扫描仪及其使用方法
US11868569B2 (en) * 2016-06-08 2024-01-09 Architectronics Inc. Virtual mouse
CN105910575B (zh) * 2016-06-22 2019-01-29 北京林业大学 一种新型测高方法及测高仪
CN106017404B (zh) * 2016-06-22 2018-05-29 中国科学院西安光学精密机械研究所 摄像测量相机视轴与辅助激光光轴夹角的检测装置及方法
EP3396314A1 (de) * 2017-04-25 2018-10-31 HILTI Aktiengesellschaft Peilstab und vermessungsstation
CN214308596U (zh) * 2019-08-24 2021-09-28 上海翊威半导体有限公司 一种基于图像识别的测量和定位装置
CN113405490A (zh) * 2021-06-17 2021-09-17 西安应用光学研究所 高分辨率二维快速控制反射镜动态角度测量装置
CN113756815B (zh) * 2021-08-16 2024-05-28 山西科达自控股份有限公司 设备位置图像识别***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178616A (ja) * 1994-12-26 1996-07-12 Kubota Corp 移動体の位置検出装置
JPH10300510A (ja) * 1997-04-30 1998-11-13 Taisei Corp 移動量検出装置
US5973788A (en) * 1995-10-12 1999-10-26 Metronor Asa System for point-by-point measuring of spatial coordinates
JP2004170355A (ja) * 2002-11-22 2004-06-17 Topcon Corp 反射体自動追尾装置
JP2006220476A (ja) * 2005-02-09 2006-08-24 Tomei Kaihatsu Kk 測量用ターゲット及び測量方法
JP2009014388A (ja) * 2007-07-02 2009-01-22 Kobe Steel Ltd 形状検出方法及び形状検出装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4032657A1 (de) 1990-10-15 1992-04-16 Pietzsch Ibp Gmbh Verfahren und messeinrichtung zur positionsbestimmung von raumpunkten
JP4088906B2 (ja) * 1998-12-16 2008-05-21 株式会社トプコン 測量機の受光装置
JP4356050B2 (ja) * 2000-12-28 2009-11-04 株式会社トプコン 測量装置と電子的記憶媒体
JP4255682B2 (ja) * 2002-11-22 2009-04-15 株式会社トプコン 反射体自動追尾装置
EP2743728B1 (de) * 2006-01-13 2017-05-03 Leica Geosystems AG Tracking-Verfahren und Messsystem mit Lasertracker
WO2007090288A1 (en) * 2006-02-09 2007-08-16 Northern Digital Inc. Retroreflective marker-tracking systems
DE102007003024A1 (de) * 2007-01-20 2008-07-31 Sick Ag Triangulationssensor mit Entfernungsbestimmung aus Lichtfleckposition und -form
JP5150234B2 (ja) * 2007-12-14 2013-02-20 株式会社トプコン 測量装置
US8345928B2 (en) * 2008-02-12 2013-01-01 Trimble Ab Localizing a surveying instrument in relation to a ground mark
CA2766428C (en) * 2009-06-23 2017-05-23 Leica Geosystems Ag Tracking method and measuring system having a laser tracker
US8860809B2 (en) * 2010-02-11 2014-10-14 Trimble Ab Dual transmitter tracker
JP5623227B2 (ja) * 2010-09-30 2014-11-12 株式会社トプコン 測定方法及び測定装置
GB2518543A (en) * 2011-03-03 2015-03-25 Faro Tech Inc Target apparatus and method
JP2014516409A (ja) * 2011-04-15 2014-07-10 ファロ テクノロジーズ インコーポレーテッド レーザトラッカの改良位置検出器
JP6120521B2 (ja) * 2012-10-19 2017-04-26 株式会社トプコン 3次元測量装置及び3次元測量システム
EP2821750A1 (de) * 2013-07-04 2015-01-07 Hexagon Technology Center GmbH Positionsbestimmungsverfahren für ein Vermessungsgerät und ebensolches Vermessungsgerät
EP2833159A1 (de) * 2013-07-30 2015-02-04 HILTI Aktiengesellschaft Verfahren zum Kalibrieren eines Messgerätes
JP6253973B2 (ja) * 2013-12-27 2017-12-27 株式会社トプコン 測量装置
EP2980526B1 (de) * 2014-07-30 2019-01-16 Leica Geosystems AG Koordinatenmessgerät und Verfahren zum Messen von Koordinaten
JP6418889B2 (ja) * 2014-10-20 2018-11-07 株式会社トプコン 測量システムおよびこの測量システムに用いる携帯型無線送受信装置ならびに測量用ポール。
EP3021078B1 (en) * 2014-11-14 2018-09-26 Leica Geosystems AG Geodetic surveying system with virtual camera
JP6438311B2 (ja) * 2015-01-27 2018-12-12 株式会社トプコン 測量システム、測量方法、測量機及び測量用反射ターゲット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178616A (ja) * 1994-12-26 1996-07-12 Kubota Corp 移動体の位置検出装置
US5973788A (en) * 1995-10-12 1999-10-26 Metronor Asa System for point-by-point measuring of spatial coordinates
JPH10300510A (ja) * 1997-04-30 1998-11-13 Taisei Corp 移動量検出装置
JP2004170355A (ja) * 2002-11-22 2004-06-17 Topcon Corp 反射体自動追尾装置
JP2006220476A (ja) * 2005-02-09 2006-08-24 Tomei Kaihatsu Kk 測量用ターゲット及び測量方法
JP2009014388A (ja) * 2007-07-02 2009-01-22 Kobe Steel Ltd 形状検出方法及び形状検出装置

Also Published As

Publication number Publication date
EP2936054A1 (de) 2015-10-28
US20150346342A1 (en) 2015-12-03
US20180210085A1 (en) 2018-07-26
DE102012223929A1 (de) 2014-06-26
CN104870937A (zh) 2015-08-26
WO2014095949A1 (de) 2014-06-26

Similar Documents

Publication Publication Date Title
JP2016504585A (ja) 対象物の2次元位置座標を求める方法及び装置
US20230228564A1 (en) Dual-resolution 3d scanner and method of using
JP6877946B2 (ja) レーザスキャナ
JP7039388B2 (ja) 測量装置
JP6009753B2 (ja) 画像測定装置
CN104981712A (zh) 用于确定目标物体的地点坐标的方法和设备
JP5150329B2 (ja) 測量装置及び測量システム
JP6291562B2 (ja) 有向性のプローブ処理による、三次元スキャナにおける多経路干渉の診断および排除
JP5469894B2 (ja) 測量装置及び自動追尾方法
US9719781B2 (en) Measuring method and measuring instrument
JP7009198B2 (ja) 測量装置
US20120246899A1 (en) Profile measuring apparatus, method for measuring profile, and method for manufacturing structure
CN108723583A (zh) 具有测量功能的激光加工***
JP2015059825A (ja) 三次元測定装置
US10852128B2 (en) Shape measuring apparatus
JP2017223489A (ja) 測量システム
JP6680628B2 (ja) レーザスキャナ
JPWO2018038152A1 (ja) ガス計測システム及びガス計測プログラム
JP2015141372A (ja) 照射装置、照射方法、測定装置、及び測定方法
JP2013152224A (ja) 光学システム
JP4375710B2 (ja) 3次元形状測定装置および3次元形状測定方法
JP6252178B2 (ja) 形状測定装置、姿勢制御装置、構造物製造システム、及び、形状測定方法
JP2022084096A (ja) 測量装置及び測量方法及び測量プログラム
JP6913422B2 (ja) 測量システム
JP2020041934A (ja) 測量装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170208