JP2016226081A - Power consumption suppression optimization method, demand response control optimization method, and air-conditioning system controller - Google Patents

Power consumption suppression optimization method, demand response control optimization method, and air-conditioning system controller Download PDF

Info

Publication number
JP2016226081A
JP2016226081A JP2015107319A JP2015107319A JP2016226081A JP 2016226081 A JP2016226081 A JP 2016226081A JP 2015107319 A JP2015107319 A JP 2015107319A JP 2015107319 A JP2015107319 A JP 2015107319A JP 2016226081 A JP2016226081 A JP 2016226081A
Authority
JP
Japan
Prior art keywords
power consumption
productivity
amount
demand
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015107319A
Other languages
Japanese (ja)
Other versions
JP6668615B2 (en
Inventor
和貴 山口
Kazuki Yamaguchi
和貴 山口
雅樹 横坂
Masaki YOKOSAKA
雅樹 横坂
亮二 宮内
Ryoji MIYAUCHI
亮二 宮内
貢司 佐藤
Koji Sato
貢司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2015107319A priority Critical patent/JP6668615B2/en
Publication of JP2016226081A publication Critical patent/JP2016226081A/en
Application granted granted Critical
Publication of JP6668615B2 publication Critical patent/JP6668615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Landscapes

  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power consumption suppression optimization method, demand response control optimization method, and air-conditioning system controller that are capable of determining electric energy and productivity in the case of having suppressed power consumption of an electric apparatus, by using a unified index; and are capable of optimizing DR control.SOLUTION: A power consumption suppression optimization method includes a configuration of: converting electric energy in the case of suppressing power consumption of electric apparatuses (air-conditioning facilities 202a to 202d) to a price to make an electric energy charge; converting reduction in productivity in the case of suppressing the power consumption of the electric apparatuses to a price to make a productivity reduction price; and suppressing the power consumption of the electric apparatuses so that the sum of the electric energy charge and the productivity reduction price becomes small.SELECTED DRAWING: Figure 5

Description

本発明は、電気機器の消費電力を抑制した場合の電力量と生産性を統一指標である金額に換算して評価することにより最適化を図ることが可能な消費電力抑制最適化方法、デマンドレスポンス制御最適化方法、空調システム制御装置に関する。   The present invention relates to a power consumption suppression optimization method and a demand response that can be optimized by converting the power amount and productivity when the power consumption of an electrical device is suppressed into an amount that is a unified index for evaluation. The present invention relates to a control optimization method and an air conditioning system control device.

近年、系統負荷(電力負荷)のピークカットを目的として、デマンドレスポンスシステム(DR:Demand Response、以下DR制御と称する。)の普及が進んでいる。DR制御では、電力需給の逼迫が予想される場合にDR信号(需要家用DR発動信号)を需要家に送信し、DR信号を受信した需要家側において電力消費を抑制することにより系統負荷の抑制を図っている(例えば特許文献1)。   In recent years, a demand response system (DR: Demand Response, hereinafter referred to as DR control) has been popularized for the purpose of peak cut of system load (electric power load). In DR control, when a tight supply and demand situation is expected, a DR signal (DR activation signal for a consumer) is transmitted to the consumer, and the consumer side that receives the DR signal suppresses power consumption, thereby suppressing system load. (For example, Patent Document 1).

電気の実量制契約においては、当月を含む過去1年間の最大デマンド(30分毎の計量値)が契約電力となり、この値に基づいて電気の基本料金が算定される。このため、需要家側では、デマンド管理目標値を可能な限り低く設定し、この値を超過しないよう監視・制御することが重要である。そこで、デマンドが管理目標値を超えないように負荷設備の監視・制御を行うシステムとして、デマンドコントロールシステムが採用されている。   In the actual electricity contract, the maximum demand (measured value every 30 minutes) in the past year including the current month is the contract power, and the basic electricity charge is calculated based on this value. For this reason, it is important on the customer side to set the demand management target value as low as possible and to monitor and control so as not to exceed this value. Therefore, a demand control system is employed as a system for monitoring and controlling the load equipment so that the demand does not exceed the management target value.

デマンドコントロールシステムとしては、特許文献2や特許文献3に開示されている技術が開発されている。特許文献2は、空調装置を制御するエリア別環境提供制御システムであり、複数の対象エリアを有する空調システムにおいて、エリアごとの知的生産性に基づく優先順位に従うデマンド制御を行うことで、全体的な知的生産性を維持するとしている。特許文献3は、デマンド制御対象のデマンド制御運用支援方法であり、季節予報に基づいて、当該期間のデマンド管理目標を決定することで、快適性とデマンド抑制効果を両立するとしている。   As the demand control system, techniques disclosed in Patent Document 2 and Patent Document 3 have been developed. Patent document 2 is an environment-based environment providing control system for controlling an air conditioner. In an air conditioning system having a plurality of target areas, the demand control according to the priority order based on the intellectual productivity for each area is performed, thereby making the overall It is said that it will maintain high intellectual productivity. Patent Document 3 is a demand control operation support method for demand control, and determines the demand management target for the period based on the seasonal forecast, thereby achieving both comfort and a demand suppression effect.

特開2014−128106号公報JP 2014-128106 A 特開2005−291588号公報JP 2005-291588 A 特開2002−176728号公報JP 2002-176728 A

ここで一般的には、空調需要の発生する夏季・冬季は最大デマンドが発生しやすいため、業務への直接的影響が少なく比較的消費電力の大きい空調設備を停止してデマンド抑制する手法が採られることが多い。したがって、デマンド制御による電気料金の削減と、室内環境の維持はトレードオフの関係にある。すると、デマンド制御によって電気料金を削減できたとしても、室内環境の低下、すなわち快適性の低下によって生産効率が低下することが起こりうる。このため、電気料金の削減効果と、快適性の低下による生産効率の低下とを比較してDR制御を行う必要がある。   In general, the maximum demand is likely to occur in the summer and winter months when air conditioning demand occurs, so a method of suppressing demand by stopping air conditioning equipment that has a direct impact on operations and relatively high power consumption is adopted. It is often done. Therefore, there is a trade-off between the reduction of electricity charges through demand control and the maintenance of the indoor environment. Then, even if electricity charges can be reduced by demand control, production efficiency may decrease due to a decrease in indoor environment, that is, a decrease in comfort. For this reason, it is necessary to perform DR control by comparing the effect of reducing the electricity bill with the decrease in production efficiency due to the decrease in comfort.

特許文献2の技術では、知的生産性に基づく優先順位に従ってデマンド制御を行っている。すなわち、知的生産性の低いエリアから空調システムの動作(消費電力)を抑えている。しかしながら、デマンド制御を行った結果として、節電による電気料金の節約金額よりも知的生産性の低下による損失の方が上回ってしまうおそれがある。これは、特許文献2の技術では「どの程度デマンド抑制するか」というデマンド管理目標(ピークカット値)があらかじめ定められているためであり、このような事態が生じることも当然であるということができる。   In the technique of Patent Document 2, demand control is performed according to a priority order based on intelligent productivity. That is, the operation (power consumption) of the air conditioning system is suppressed from an area with low intellectual productivity. However, as a result of performing demand control, there is a risk that losses due to a decrease in intellectual productivity may exceed the savings in electricity charges due to power saving. This is because the demand management target (peak cut value) “how much demand is to be suppressed” is determined in advance in the technique of Patent Document 2, and it is natural that such a situation occurs. it can.

特許文献3の技術では、季節予報に基づいて、年間よりも短い期間ごとにデマンド管理目標を決定することで、例えば夏期にはデマンド管理目標を高めに(ゆるめに)設定し、快適性を維持しようとしている。しかし実量制契約においては1年間の最大デマンドが契約電力になるため、短い期間ごとにデマンド管理目標を決定しても、電気の基本料金を下げることができない。また特許文献3において、デマンド管理目標を定める基準は、季節予報に基づく気温を用いているに過ぎない。   With the technology of Patent Document 3, the demand management target is determined every period shorter than the year based on the seasonal forecast. For example, in the summer, the demand management target is set higher (relaxed) to maintain comfort. Trying to. However, in the actual volume contract, the maximum demand for one year is the contract power, so even if the demand management target is determined every short period, the basic electricity charge cannot be lowered. In Patent Document 3, the standard for determining the demand management target merely uses the temperature based on the seasonal forecast.

本発明は、このような課題に鑑み、電気機器の消費電力を抑制した場合の電力量と生産性を統一指標で判断することができ、DR制御の最適化を図ることが可能な消費電力抑制最適化方法、デマンドレスポンス制御最適化方法、空調システム制御装置を提供することを目的としている。   In view of such a problem, the present invention can determine the power amount and productivity when the power consumption of the electrical device is suppressed by a unified index, and can suppress the power consumption that can optimize the DR control. An object is to provide an optimization method, a demand response control optimization method, and an air conditioning system control device.

上記課題を解決するために、本発明にかかる消費電力抑制最適化方法の代表的な構成は、電気機器の消費電力を抑制した場合の電力量を金額換算して電力量料金とし、電気機器の消費電力を抑制した場合の生産性の低下を金額換算して生産性低下額とし、電力量料金と生産性低下額の和が小さくなるように電気機器の消費電力を抑制することを特徴とする。   In order to solve the above-mentioned problem, the typical configuration of the power consumption suppression optimization method according to the present invention is to convert the amount of power when the power consumption of the electrical device is suppressed into a monetary amount to obtain a power amount fee. The reduction in productivity when power consumption is suppressed is converted into a monetary amount to reduce the productivity, and the power consumption of the electric device is suppressed so that the sum of the electricity charge and the decrease in productivity is reduced. .

上記構成によれば、電気機器の消費電力を抑制した場合の生産性の低下を金額換算して生産性低下額を算出することにより、電気機器の消費電力を抑制した場合の電力料金と生産性低下額すなわち生産性を統一指標で判断することができる。そして、それらの和が小さくなるように消費電力を抑制することにより、経済性の観点においても最も効率的なDR制御を行うことができ、DR制御の最適化を図ることが可能となる。   According to the above configuration, by calculating the amount of decrease in productivity by converting the decrease in productivity when the power consumption of the electrical device is suppressed, the power rate and productivity when suppressing the power consumption of the electrical device The amount of decline, that is, productivity can be judged by a unified index. Then, by suppressing the power consumption so that the sum of them becomes small, it is possible to perform the most efficient DR control from the viewpoint of economy, and it is possible to optimize the DR control.

上記生産性の低下の金額換算は、対象となる室内で作業する従業員の人件費と、人数と、作業効率低下率の積で求めるとよい。かかる構成によれば、生産性の低下をより正確に金額換算することができる。したがって、上述した消費電力抑制最適化方法において正確性ひいてはその効果を更に高めることが可能となる。   The amount conversion of the decrease in productivity may be obtained by multiplying the labor cost of the employees working in the target room, the number of persons, and the work efficiency decrease rate. According to this configuration, it is possible to convert the decrease in productivity more accurately. Therefore, it is possible to further improve the accuracy and the effect of the power consumption suppression optimization method described above.

上記課題を解決するために、本発明にかかるデマンドレスポンス制御最適化方法の代表的な構成は、需要家が電力の需要量を調整するデマンドレスポンス制御において、電気機器の消費電力を抑制した場合の電力量を金額換算して電力量料金とし、電気機器の消費電力を抑制した場合の生産性の低下を金額換算して生産性低下額とし、電力量料金と生産性低下額の和が小さくなるように、デマンド管理目標値を設定することを特徴とする。   In order to solve the above-mentioned problem, the typical configuration of the demand response control optimization method according to the present invention is the case where the power consumption of the electric device is suppressed in the demand response control in which the consumer adjusts the amount of power demand. Converting the amount of power into a monetary amount to obtain a power amount fee, and converting the decrease in productivity when the power consumption of the electrical device is suppressed into a monetary amount as the amount of decrease in productivity, the sum of the amount of electricity amount and the decrease in productivity is reduced Thus, a demand management target value is set.

上記課題を解決するために、本発明にかかる空調システム制御装置の代表的な構成は、1または複数の空調システムを制御する空調システム制御装置であって、室温および外気温と空調システムの消費電力を関連付けた電力量テーブルと、室温と作業効率低下率を関連付けた生産性テーブルと、消費電力および生産性の低下を金額換算する換算部と、電力量料金と生産性低下額の和が小さくなるように空調システムの消費電力を抑制する制御部とを備えたことを特徴とする。   In order to solve the above problems, a typical configuration of an air conditioning system control device according to the present invention is an air conditioning system control device that controls one or a plurality of air conditioning systems, and includes room temperature, outside air temperature, and power consumption of the air conditioning system. Energy table that associates room temperature and work efficiency decrease rate, conversion unit that converts power consumption and productivity decrease into monetary amount, and sum of energy charge and productivity decrease amount becomes smaller Thus, a control unit that suppresses power consumption of the air conditioning system is provided.

上述した消費電力抑制最適化方法における技術的思想に対応する構成要素やその説明は、当該デマンドレスポンス制御最適化方法および空調システム制御装置にも適用可能である。   The components corresponding to the technical idea in the above-described power consumption suppression optimization method and the description thereof can also be applied to the demand response control optimization method and the air conditioning system control device.

本発明によれば、電気機器の消費電力を抑制した場合の電力量と生産性を統一指標で判断することができ、DR制御の最適化を図ることが可能な消費電力抑制最適化方法、デマンドレスポンス制御最適化方法、空調システム制御装置を提供することができる。   According to the present invention, a power consumption suppression optimization method capable of determining the power amount and productivity when the power consumption of an electrical device is suppressed by a unified index and capable of optimizing DR control, a demand A response control optimization method and an air conditioning system control device can be provided.

本実施形態にかかる空調システム制御装置を説明する図である。It is a figure explaining the air-conditioning system control apparatus concerning this embodiment. 図1(a)の対象施設の各エリアにおける設定条件を例示する図である。It is a figure which illustrates the setting conditions in each area of the object facility of Drawing 1 (a). 作業効率低下率を説明する図である。It is a figure explaining a work efficiency fall rate. 室温と空調設備の消費電力の関係について説明する図である。It is a figure explaining the relationship between room temperature and the power consumption of an air conditioner. 本実施形態の制御装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the control apparatus of this embodiment. 室温設定を25℃としてデマンド制御を行った場合のシミュレーション結果を例示している。The simulation results when the demand control is performed with the room temperature set at 25 ° C. are illustrated. 室温設定を25℃としてデマンド制御を行った場合の他のシミュレーション結果を例示している。The other simulation result at the time of performing demand control by setting room temperature to 25 degreeC is illustrated.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、本実施形態にかかる空調システム制御装置を説明する図である。以下の説明では、図1に示す空調システム制御装置を説明しながら、消費電力抑制最適化方法およびデマンドレスポンス制御最適化方法についても併せて説明する。なお、本実施形態では、消費電力を抑制する電気機器として空調設備を例示するが、これに限定するものではなく、他の電気機器においても本発明を適用することが可能である。また、以下の説明では、空調システム制御装置を制御装置100と称する。   FIG. 1 is a diagram illustrating an air conditioning system control device according to the present embodiment. In the following description, the power consumption suppression optimization method and the demand response control optimization method will be described together with the description of the air conditioning system control device shown in FIG. In the present embodiment, air conditioning equipment is exemplified as an electric device that suppresses power consumption. However, the present invention is not limited to this, and the present invention can also be applied to other electric devices. In the following description, the air conditioning system control device is referred to as a control device 100.

図1(a)は、空調システム制御装置およびその対象施設200を例示する図である。図1(a)に示すように、対象施設200は、空調エリアA、空調エリアB、空調エリアCおよび空調エリアDの4つのエリアが区分けされていて、各空調エリアA〜Dには、それぞれ空調設備202a・202b・202c・202dが設置されている。   FIG. 1A is a diagram illustrating an air conditioning system control device and a target facility 200 thereof. As shown in FIG. 1 (a), the target facility 200 is divided into four areas, an air-conditioning area A, an air-conditioning area B, an air-conditioning area C, and an air-conditioning area D. Air-conditioning equipment 202a, 202b, 202c, 202d is installed.

図2は、図1(a)の対象施設の各エリアにおける設定条件を例示する図である。図2に示すように、空調エリアAおよびBでは、作業する作業員の人件費は3000円/時であり、作業員一人当たりの占有床面積は20m2である。空調エリアCおよびDでは、作業する作業員の人件費は2000円/時であり、作業員一人当たりの占有床免責は5m2である。   FIG. 2 is a diagram illustrating setting conditions in each area of the target facility in FIG. As shown in FIG. 2, in the air-conditioning areas A and B, the labor cost of the worker who works is 3000 yen / hour, and the occupied floor area per worker is 20 m2. In the air-conditioning areas C and D, the labor cost of the worker who works is 2000 yen / hour, and the occupied floor exemption per worker is 5 m2.

また空調エリアAおよびCの空調設備202a・202cは旧型であり、その定格COPは2.37であるとする。空調エリアBおよびDの空調設備202b・202dは新型であり、その定格COPは4.00であるとする。なお、総床面積に対する空調エリアA〜Dの床面積割合はそれぞれ、48%、12%、32%、8%である。   In addition, it is assumed that the air conditioning facilities 202a and 202c in the air conditioning areas A and C are old and have a rated COP of 2.37. It is assumed that the air conditioning facilities 202b and 202d in the air conditioning areas B and D are new, and their rated COP is 4.00. In addition, the floor area ratios of the air-conditioning areas A to D with respect to the total floor area are 48%, 12%, 32%, and 8%, respectively.

本実施形態の制御装置100は、1または複数の空調システム(本実施形態では、上述した空調エリアA〜Dの空調設備202a〜202d)の動作を制御する。図2(b)に示すように、本実施形態の制御装置100は、制御部110および記憶部120を含んで構成される。   The control device 100 of the present embodiment controls the operation of one or a plurality of air conditioning systems (in the present embodiment, the air conditioning facilities 202a to 202d in the air conditioning areas A to D described above). As illustrated in FIG. 2B, the control device 100 according to the present embodiment includes a control unit 110 and a storage unit 120.

制御部110は、当該制御装置100および複数の空調設備202a〜202dの動作を制御する。また本実施形態では、制御部110は、消費電力および生産性の低下を金額換算する換算部112としても機能し、電力量料金と後述する生産性低下額の和が小さくなるように空調設備202a〜202dの消費電力を抑制する。   The control unit 110 controls operations of the control device 100 and the plurality of air conditioning facilities 202a to 202d. In the present embodiment, the control unit 110 also functions as a conversion unit 112 that converts power consumption and productivity reduction into a monetary amount, and the air conditioning equipment 202a reduces the sum of the electricity charge and the productivity reduction amount described later. The power consumption of ~ 202d is suppressed.

記憶部120は、当該制御装置100を動作させるプログラム、および各種データテーブルを記憶する。本実施形態では、記憶部120は、各エリアの室温と空調設備202a〜202dの消費電力を関連付けた電力量テーブル122、および各エリアの室温と作業効率低下率を関連付けた生産性テーブル124を記憶している。   The storage unit 120 stores a program for operating the control device 100 and various data tables. In the present embodiment, the storage unit 120 stores a power amount table 122 that associates the room temperature of each area with the power consumption of the air conditioning facilities 202a to 202d, and a productivity table 124 that associates the room temperature of each area with the work efficiency reduction rate. doing.

図3は、作業効率低下率を説明する図である。なお、図3は、「Seppanen et al(2003) Cost benefit analysis night-time ventilation cooling in office building.」からの引用である。図3から明らかなように、室温が25℃を超える場合の作業効率低下率(Performance decrement)は、1℃あたり約2%である。このため、室温が25℃の場合の作業効率低下率を0%とした場合(室温25℃を基準とした場合)、室温が1℃上昇するにしたがって作業効率低下率は2%ずつ上昇する。   FIG. 3 is a diagram for explaining the work efficiency reduction rate. FIG. 3 is a quote from “Seppanen et al (2003) Cost benefit analysis night-time ventilation cooling in office building.” As is apparent from FIG. 3, the work efficiency decrease rate (Performance decrement) when the room temperature exceeds 25 ° C. is about 2% per 1 ° C. For this reason, when the work efficiency decrease rate when the room temperature is 25 ° C. is 0% (when the room temperature is 25 ° C. as a reference), the work efficiency decrease rate increases by 2% as the room temperature increases by 1 ° C.

すなわち、図3に示すグラフは、室温と作業効率低下率を関連付けた生産性テーブル124として用いることができる。そして、この生産作業効率に、対象となる室内で作業する従業員の人数および従業員の人件費を乗算することにより、生産性低下額を算出することができる。   That is, the graph shown in FIG. 3 can be used as the productivity table 124 in which the room temperature and the work efficiency decrease rate are associated with each other. Then, the productivity reduction amount can be calculated by multiplying the production work efficiency by the number of employees working in the target room and the labor cost of the employees.

図4は、室温と空調設備202a〜202dの消費電力の関係について説明する図である。図4(a)では、デマンド制御を行わず、空調設備202a〜202dの室温設定を一定に保つ場合を例示している。図4(a)において、室温設定とは、空調設備202a〜202dの設定温度であり、平均室温とは、空調設備202a〜202dを設定温度で稼動させている間の空調エリアA〜D内の実測平均温度であり、最大室温とは、空調設備202a〜202dを設定温度で稼動させている間の空調エリアA〜D内の実測最大温度である。   FIG. 4 is a diagram illustrating the relationship between the room temperature and the power consumption of the air conditioning facilities 202a to 202d. FIG. 4A illustrates a case where the room temperature setting of the air conditioners 202a to 202d is kept constant without performing demand control. In FIG. 4A, the room temperature setting is a setting temperature of the air conditioning equipment 202a to 202d, and the average room temperature is the air conditioning areas A to D during the operation of the air conditioning equipment 202a to 202d at the setting temperature. It is a measured average temperature, and the maximum room temperature is a measured maximum temperature in the air conditioning areas A to D while the air conditioning equipment 202a to 202d is operated at a set temperature.

また基本料金とは、空調設備202a〜202dが設置されている対象施設の年間の契約基本料金であり、電力量料金とは、所定期間(図4(a)では7月〜9月の3ヶ月間を例示)の電気料金であり、生産性低下額とは、上述したように「対象となる室内で作業する従業員の人件費と、人数と、作業効率低下率の積」である。   The basic charge is the annual contract basic charge of the target facility where the air conditioning facilities 202a to 202d are installed, and the electric energy charge is the predetermined period (in FIG. 4A, three months from July to September). As described above, the productivity reduction amount is “the product of the labor cost, the number of employees, and the work efficiency reduction rate of the employee working in the target room” as described above.

図4(a)では、デマンド制御を行わず、空調設備202a〜202dの室温設定を一定に維持する場合を想定している。図4(a)に示すように、平均作業効率は、室温設定が25℃から1℃ずつ上昇するにしたがって、平均作業効率は約2%ずつ低下していく。一方、室温設定が1℃上昇するにしたがって、最大デマンドは約20kWずつ低下していくため、空調設備の消費電力も低下する。電力量テーブル122および生産性テーブル124には、このような室温と空調システム202a〜202dの消費電力を関連付けたデータ、および室温と作業効率低下率を関連付けたデータが記憶される。   In FIG. 4A, it is assumed that the room temperature setting of the air conditioners 202a to 202d is maintained constant without performing demand control. As shown in FIG. 4A, the average working efficiency decreases by about 2% as the room temperature setting increases from 25 ° C. by 1 ° C. On the other hand, as the room temperature setting increases by 1 ° C., the maximum demand decreases by about 20 kW at a time, so the power consumption of the air conditioning equipment also decreases. The power amount table 122 and the productivity table 124 store data that associates such room temperature with the power consumption of the air conditioning systems 202a to 202d, and data that associates the room temperature with the work efficiency reduction rate.

なお、本実施形態では電気機器として空調設備202a〜202dを例示したため、電力量テーブル122および生産性テーブル124に、室温と空調システム202a〜202dの消費電力および作業効率低下率とを関連付けたデータを記憶する構成を例示したが、これに限定するものではない。例えば、電気機器が照明器具である場合には、室内の明るさと照明器具の消費電力および作業効率低下率とを関連付けたデータを記憶してもよい。   In addition, since air conditioning equipment 202a-202d was illustrated as an electric equipment in this embodiment, the data which linked | related room temperature, the power consumption of the air conditioning system 202a-202d, and the work efficiency fall rate were stored in the electric energy table 122 and the productivity table 124. Although the structure to memorize | store was illustrated, it is not limited to this. For example, in the case where the electrical device is a lighting fixture, data that associates the brightness of the room with the power consumption of the lighting fixture and the work efficiency reduction rate may be stored.

図4(b)に示すように、電力量料金および基本料金は、室温設定が上がるにしたがって低下していくため、電力に要するコストは削減される。しかしながら、室温設定が上がるにしたがって生産性低下額が上昇するため、生産性の面では損失が生じる。このため、室温設定を上げることによって電力量料金および基本料金を削減したとしても、生産性低下による損失がその削減量を上回ってしまう。このことから、経済影響を鑑みると、図4(b)の条件では室温設定を25℃とすることが好ましいことが理解できる。   As shown in FIG. 4B, the power charge and the basic charge decrease as the room temperature setting increases, so that the cost required for power is reduced. However, as the room temperature setting increases, the amount of decrease in productivity increases, resulting in a loss in productivity. For this reason, even if the electric energy charge and the basic charge are reduced by raising the room temperature setting, the loss due to the productivity drop exceeds the reduction amount. From this, it can be understood that it is preferable to set the room temperature to 25 ° C. under the conditions of FIG.

図5は、本実施形態の制御装置100の動作を説明するフローチャートである。以下、図5を参照し、上述した制御装置100の動作について詳述しながら、併せて消費電力抑制方法およびデマンドレスポンス制御最適化方法についても説明する。図5に示すように、本実施形態の消費電力抑制方法では、まず制御装置100の制御部110は換算部112として機能し、空調設備202a〜202dの消費電力を抑制した場合の電力量を金額換算することにより、電力量料金を算出する(ステップS202)。続いて換算部112は、空調設備202a〜202dの消費電力を抑制した場合の生産性の低下を金額換算することにより、生産性低下額を算出する(ステップS204)。   FIG. 5 is a flowchart for explaining the operation of the control device 100 of the present embodiment. Hereinafter, with reference to FIG. 5, the operation of the control device 100 described above will be described in detail, and the power consumption suppression method and the demand response control optimization method will also be described. As shown in FIG. 5, in the power consumption suppression method of the present embodiment, first, the control unit 110 of the control device 100 functions as the conversion unit 112, and the amount of power when the power consumption of the air conditioning facilities 202 a to 202 d is suppressed is expressed as a monetary amount. By converting, the electric energy charge is calculated (step S202). Subsequently, the conversion unit 112 calculates the amount of decrease in productivity by converting the amount of decrease in productivity when the power consumption of the air conditioning facilities 202a to 202d is suppressed (step S204).

図6では、室温設定を25℃としてデマンド制御を行った場合のシミュレーション結果を例示している。なお、図6に示す例では、通常時の室温設定を25℃とし、デマンド逼迫時は、すべての空調エリアA〜D(空調設備202a〜202d)に対して均等に室温設定を上げることでデマンド制御を行う場合を想定している。   FIG. 6 illustrates a simulation result when demand control is performed at a room temperature setting of 25 ° C. In the example shown in FIG. 6, the normal room temperature setting is 25 ° C., and when demand is tight, the room temperature setting is increased uniformly for all air conditioning areas A to D (air conditioning equipment 202a to 202d). The case where control is performed is assumed.

図6(a)では、室温設定は25℃とし、最大デマンド500kWを基準として、最大デマンドを20kWずつ減らした場合のシミュレーション結果を示している。図6(a)に示すように、室温設定を25℃とした場合、最大デマンドが下がるにしたがってデマンド逼迫時のデマンド制御が実行される頻度が上がるため、電力に要するコスト(基本料金および電力量料金)は低下する。しかしながら、デマンド制御が実行されると一時的に空調エリア内の温度が上昇するため作業効率が低下し、生産性低下額が増大する。   FIG. 6A shows a simulation result when the room temperature is set to 25 ° C. and the maximum demand is reduced by 20 kW on the basis of the maximum demand of 500 kW. As shown in FIG. 6 (a), when the room temperature setting is 25 ° C., the frequency of demand control when demand is tight increases as the maximum demand decreases, so the cost required for power (basic charge and power consumption) Charges) will decline. However, when the demand control is executed, the temperature in the air-conditioning area temporarily rises, so that the work efficiency is lowered and the productivity reduction amount is increased.

そこで本実施形態では、制御部110は、電力量料金および生産性低下額を算出したら、それらの和を算出する(ステップS206)。図6(a)では、基本料金、電力量料金および生産性低下額の和を「(A)+(B)+(C)の合計」として示している。そして、制御部110は、その値を記憶部120に記憶し(ステップS208)、すべてのパターン(図6(a)では最大デマンド480(D480)〜最大デマンド400(D400)まで)についての演算が完了するまで(ステップS210のNO)、ステップS202〜ステップS208を繰り返す。   Therefore, in the present embodiment, after calculating the electric energy charge and the productivity reduction amount, the control unit 110 calculates the sum of them (step S206). In FIG. 6A, the sum of the basic charge, the electricity charge, and the reduction in productivity is shown as “total of (A) + (B) + (C)”. Then, the control unit 110 stores the value in the storage unit 120 (step S208), and all the patterns (from the maximum demand 480 (D480) to the maximum demand 400 (D400) in FIG. 6A) are calculated. Until it is completed (NO in step S210), steps S202 to S208 are repeated.

すべてのパターンについての演算が完了したら、制御部110は、電力量料金と生産性低下額の和が小さくなるように、デマンド管理目標値を設定する(ステップS212)。図6(b)では、室温設定25℃で最大デマンド500kWとした場合の和を基準とし、最大デマンドを低下させていった場合の和との差分をプロットしている。   When the calculation for all the patterns is completed, the control unit 110 sets the demand management target value so that the sum of the electric energy charge and the productivity reduction amount becomes small (step S212). In FIG. 6 (b), the difference from the sum when the maximum demand is reduced is plotted based on the sum when the maximum demand is 500 kW at the room temperature setting of 25 ° C.

図6(b)に示すように、最大デマンドを低下させていくと、経済影響は徐々に下降(改善)していった後に上昇(悪化)する放物線状となる。これは、図6(a)を参照してわかるように、最大デマンドを徐々に低下させると、始めは、電力にかかるコスト(電気料金および電力量料金の削減量)が生産性低下額を上回っているが、最大デマンドの更に低下させると、生産性低下額が大きくなり、電力にかかるコストを上回るからである。   As shown in FIG. 6B, when the maximum demand is lowered, the economic influence gradually becomes a parabola that gradually rises (deteriorates) after gradually decreasing (improving). As can be seen from FIG. 6A, when the maximum demand is gradually reduced, initially, the cost of electricity (reduction in electricity charges and electricity charges) exceeds the reduction in productivity. However, if the maximum demand is further reduced, the productivity drop increases and exceeds the cost of power.

そして図6(b)を参照すると、室温設定25℃の場合には、最大デマンド440kWと460kWの間に放物線の頂点があると想定された。したがって、その間の値について更にシミュレーションを行った結果、室温設定25℃の場合には最大デマンド446kWのときに基本料金、電力量料金および生産性低下額の和が最も小さくなった。このことから、室温設定25℃の場合には最大デマンドを446kWとしてデマンド制御を行うことが経済性の観点において最も効率的であることがわかった。   Then, referring to FIG. 6 (b), it was assumed that there was a parabola apex between the maximum demands of 440 kW and 460 kW when the room temperature setting was 25 ° C. Therefore, as a result of further simulation for the value in the meantime, when the room temperature is set to 25 ° C., the sum of the basic charge, the electric energy charge and the reduction in productivity is the smallest when the maximum demand is 446 kW. From this, it was found that when the room temperature setting is 25 ° C., it is most efficient in terms of economy to perform demand control with the maximum demand set to 446 kW.

上述したように、基本料金、電力量料金および生産性低下額の和が最も小さくなる最大デマンドを決定したら、制御部110は、その値をデマンド管理目標値とする。そして、制御部110は、それに基づいて空調設備202a〜202dの消費電力を制御する(ステップS214)。これにより、基本料金、電力量料金および生産性低下額の和が最も小さくなるように、すなわち経済性が最も高くなるように空調設備(電気機器)の消費電力が抑制される。   As described above, when the maximum demand that minimizes the sum of the basic charge, the electric energy charge, and the productivity reduction amount is determined, the control unit 110 sets the value as the demand management target value. And the control part 110 controls the power consumption of the air conditioner 202a-202d based on it (step S214). Thereby, the power consumption of the air-conditioning equipment (electrical equipment) is suppressed so that the sum of the basic charge, the electric energy charge, and the productivity reduction amount becomes the smallest, that is, the economy becomes the highest.

上記説明したように、本実施形態の制御装置100、消費電力抑制最適化方法およびデマンドレスポンス制御最適化方法によれば、電気機器の消費電力を抑制した際の生産効率低下による損失が生産性低下額として算出される。これにより、電気機器の消費電力を抑制した場合の電力のコストと生産性の低下を統一指標で判断することができる。したがって、経済性の観点において最も効率的なDR制御を行うことができ、DR制御の最適化を図ることが可能となる。   As described above, according to the control device 100, the power consumption suppression optimization method, and the demand response control optimization method of the present embodiment, the loss due to the decrease in production efficiency when the power consumption of the electrical device is suppressed is reduced in productivity. Calculated as an amount. Thereby, it is possible to determine the cost of power and the decrease in productivity when the power consumption of the electric device is suppressed by the unified index. Therefore, it is possible to perform the most efficient DR control from the viewpoint of economy, and it is possible to optimize the DR control.

図7は、室温設定を25℃としてデマンド制御を行った場合の他のシミュレーション結果を例示している。上述した図6に示す例では、通常時の室温設定を25℃とし、デマンド逼迫時は、すべての空調エリアA〜Dに対して均等にデマンド制御を行う場合を想定していた。これに対し、図7に示す例では、通常時の室温設定を25℃とし、デマンド逼迫時は、優先基準を設定して空調エリアA〜Dごとに異なるデマンド制御を行う場合を想定している。   FIG. 7 illustrates another simulation result when the demand control is performed with the room temperature setting set to 25 ° C. In the example shown in FIG. 6 described above, the normal room temperature setting is set to 25 ° C., and when demand is tight, it is assumed that demand control is performed equally for all air-conditioning areas A to D. On the other hand, in the example shown in FIG. 7, it is assumed that the normal room temperature setting is 25 ° C., and when demand is tight, priority control is set and different demand control is performed for each of the air-conditioning areas A to D. .

図7(a)に示すパターンのうち、T25は、図4(a)に例示した「室温設定25℃でデマンド制御を行わない」パターンである。D446は、図6(b)に例示した「室温設定25℃、最大デマンド446kWですべての空調エリアに対して均等にデマンド制御を行う」パターンである。なお、図7(a)のD446に示す「均等なデマンド制御」は比較例(従来技術)であって本発明の実施例ではない。   Among the patterns shown in FIG. 7A, T25 is the pattern “no demand control is performed at a room temperature setting of 25 ° C.” illustrated in FIG. D446 is a pattern “exemplarily demand control is performed for all air-conditioning areas at a room temperature setting of 25 ° C. and a maximum demand of 446 kW” illustrated in FIG. 6B. “Equal demand control” indicated by D446 in FIG. 7A is a comparative example (prior art) and not an embodiment of the present invention.

また図7(a)のD446−E、D446−P、D446−EPおよびD446−EP+は、室温設定および最大デマンドはD446と同じ条件であるがデマンド制御を行う空調設備の優先度を異ならせている。   In addition, D446-E, D446-P, D446-EP and D446-EP + in FIG. 7A have the same room temperature setting and maximum demand as D446, but the priority of the air conditioning equipment that performs demand control is different. Yes.

D446−E、D446−Pは比較例であって本発明の実施例ではない。D446−Eは、空調効率を優先した制御とし、定格COPが低い空調エリアAおよびCを優先的にデマンド制御するパターンである。D446−Pは、生産効率を優先した制御とし、床面積あたりの生産性が低い空調エリアAおよびBを優先的にデマンド制御するパターンである。   D446-E and D446-P are comparative examples and are not examples of the present invention. D446-E is a pattern in which air-conditioning efficiency is prioritized and the air-conditioning areas A and C having a low rated COP are preferentially demand-controlled. D446-P is a pattern in which the production efficiency is prioritized, and the air-conditioning areas A and B with low productivity per floor area are preferentially demand-controlled.

D446−EPおよびD446−EP+は、本発明の実施例である。D446−EPは、経済性を優先した制御とし、空調効率と生産効率の総合的な評価が低いエリアを優先的にデマンド制御するパターンである。すなわち消費電力を抑制した場合の電力量を金額換算して電力量料金を算出し、対象となる室内で作業する従業員の生産性低下額を算出して、統一指標による総合的な評価を行う。図1、図2の例では、消費電力を抑制する優先順位は空調エリアA・B・C・Dの順となる。D446−EP+は、更に経済性を優先した制御とし、D446−EPと同様の優先順位としつつ、各空調エリアの経済効果(基本料金および電力量料金の削減額から生産性低下額を除算した値)が常に負にならないようにデマンド制御を行う。   D446-EP and D446-EP + are examples of the present invention. D446-EP is a pattern in which control is given priority to economy, and demand control is preferentially performed in an area where the overall evaluation of air conditioning efficiency and production efficiency is low. In other words, the amount of electricity when the power consumption is suppressed is converted into a monetary amount to calculate the amount of electricity charge, the amount of decrease in productivity of employees working in the target room is calculated, and a comprehensive evaluation is performed using a unified index . In the example of FIGS. 1 and 2, the priority order for suppressing power consumption is the order of the air-conditioning areas A, B, C, and D. D446-EP + is a control that gives priority to economic efficiency, and has the same priority as D446-EP, and the economic effect of each air conditioning area (the value obtained by dividing the reduction in productivity from the reduction in basic charges and electricity charges) ) Demand control so that) is not always negative.

図7(b)に示すように、すべての空調エリアA〜Dを均等にデマンド制御するD446よりも、定格COPが低い空調エリアAおよびCを優先的にデマンド制御するD446−Eのほうが、生産性低下額が若干少なくなり、より経済的であることがわかる。またD446−Eのように空調効率よりもD446−Pのように生産効率を優先させることにより、生産性低下額が更に低くなるため、経済性の観点において更に優れたデマンド制御を実行できる。   As shown in FIG. 7B, D446-E that preferentially demand-controls air-conditioning areas A and C having a lower rated COP than D446 that uniformly demand-controls all air-conditioning areas A to D. It can be seen that the amount of decline in sex is slightly smaller, which is more economical. Further, by giving priority to production efficiency as in D446-P over air-conditioning efficiency as in D446-E, the amount of decrease in productivity is further reduced, so that it is possible to execute demand control that is more excellent in terms of economy.

しかしながら、更にD446−EPのように、空調効率および生産効率を統一指標によって総合的に踏まえたデマンド制御を行えば、生産性低下額を更に抑制することができる。またD466−EP+のように、空調効率および生産効率を統一指標によって総合的に踏まえつつ、経済効果が負にならないようにデマンド制御を行うことにより、生産性低下額は若干上がるものの、電力に要するコスト(基本料金および電力量料金)の削減量も上がる。これにより、より経済的なデマンド制御を行うことが可能となる。   However, as with D446-EP, if the demand control is performed based on the air conditioning efficiency and the production efficiency based on the unified index, the decrease in productivity can be further suppressed. In addition, as with D466-EP +, the air conditioning efficiency and production efficiency are comprehensively based on a unified index, and demand control is performed so that the economic effect is not negative. Cost reduction (basic charge and electricity charge) will also increase. Thereby, more economical demand control can be performed.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、電気機器の消費電力を抑制した場合の電力量と生産性を統一指標である金額に換算して評価することにより最適化を図ることが可能な消費電力抑制最適化方法、デマンドレスポンス制御最適化方法、空調システム制御装置として利用することができる。   The present invention relates to a power consumption suppression optimization method and a demand response that can be optimized by converting the power amount and productivity when the power consumption of an electrical device is suppressed into an amount that is a unified index for evaluation. It can be used as a control optimization method and an air conditioning system control device.

100…制御装置、110…制御部、112…換算部、120…記憶部、122…電力量テーブル、124…生産性テーブル、200…対象施設、202a…空調設備、202b…空調設備、202c…空調設備、202d…空調設備 DESCRIPTION OF SYMBOLS 100 ... Control apparatus, 110 ... Control part, 112 ... Conversion part, 120 ... Memory | storage part, 122 ... Electricity amount table, 124 ... Productivity table, 200 ... Target facility, 202a ... Air conditioning equipment, 202b ... Air conditioning equipment, 202c ... Air conditioning Equipment, 202d ... Air conditioning equipment

Claims (4)

電気機器の消費電力を抑制した場合の電力量を金額換算して電力量料金とし、
電気機器の消費電力を抑制した場合の生産性の低下を金額換算して生産性低下額とし、
前記電力量料金と生産性低下額の和が小さくなるように電気機器の消費電力を抑制することを特徴とする消費電力抑制最適化方法。
The amount of power when the power consumption of electrical equipment is suppressed is converted into a monetary amount, and the amount of electricity is charged.
Converting the decline in productivity when power consumption of electrical equipment is reduced into a monetary amount,
A method for optimizing power consumption, which suppresses power consumption of an electric device so that a sum of the electric power charge and the amount of decrease in productivity is reduced.
前記生産性の低下の金額換算は、対象となる室内で作業する従業員の人件費と、人数と、作業効率低下率の積で求めることを特徴とする請求項1に記載の消費電力抑制最適化方法。   The optimal conversion of power consumption suppression according to claim 1, wherein the reduction in productivity is calculated by multiplying a labor cost of an employee working in a target room, the number of persons, and a work efficiency reduction rate. Method. 需要家が電力の需要量を調整するデマンドレスポンス制御において、
電気機器の消費電力を抑制した場合の電力量を金額換算して電力量料金とし、
電気機器の消費電力を抑制した場合の生産性の低下を金額換算して生産性低下額とし、
前記電力量料金と生産性低下額の和が小さくなるように、デマンド管理目標値を設定することを特徴とするデマンドレスポンス制御最適化方法。
In demand response control where consumers adjust power demand,
The amount of power when the power consumption of electrical equipment is suppressed is converted into a monetary amount, and the amount of electricity is charged.
Converting the decline in productivity when power consumption of electrical equipment is reduced into a monetary amount,
A demand response control optimization method, characterized in that a demand management target value is set so that a sum of the electric energy charge and the productivity reduction amount is reduced.
1または複数の空調システムを制御する空調システム制御装置であって、
室温および外気温と前記空調システムの消費電力を関連付けた電力量テーブルと、
室温と作業効率低下率を関連付けた生産性テーブルと、
前記消費電力および生産性の低下を金額換算する換算部と、
前記電力量料金と生産性低下額の和が小さくなるように前記空調システムの消費電力を抑制する制御部とを備えたことを特徴とする空調システム制御装置。
An air conditioning system control device that controls one or more air conditioning systems,
A power amount table in which room temperature and outside air temperature are associated with power consumption of the air conditioning system;
A productivity table that correlates room temperature and work efficiency decline rate,
A conversion unit for converting the power consumption and productivity reduction into a monetary amount;
An air-conditioning system control apparatus comprising: a control unit that suppresses power consumption of the air-conditioning system so that a sum of the electric energy charge and the productivity reduction amount is reduced.
JP2015107319A 2015-05-27 2015-05-27 Power consumption suppression optimization method, demand response control optimization method, air conditioning system controller Active JP6668615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107319A JP6668615B2 (en) 2015-05-27 2015-05-27 Power consumption suppression optimization method, demand response control optimization method, air conditioning system controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107319A JP6668615B2 (en) 2015-05-27 2015-05-27 Power consumption suppression optimization method, demand response control optimization method, air conditioning system controller

Publications (2)

Publication Number Publication Date
JP2016226081A true JP2016226081A (en) 2016-12-28
JP6668615B2 JP6668615B2 (en) 2020-03-18

Family

ID=57748239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107319A Active JP6668615B2 (en) 2015-05-27 2015-05-27 Power consumption suppression optimization method, demand response control optimization method, air conditioning system controller

Country Status (1)

Country Link
JP (1) JP6668615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207745A (en) * 2017-06-09 2018-12-27 三菱電機ビルテクノサービス株式会社 User power management system and aggregator system
JP2020042547A (en) * 2018-09-11 2020-03-19 株式会社FiNC Technologies Health evaluation system and health evaluation program
JP2020042548A (en) * 2018-09-11 2020-03-19 株式会社FiNC Technologies Health evaluation system and health evaluation program
KR20220154874A (en) * 2021-05-14 2022-11-22 호남대학교 산학협력단 Tunnel Smart Hybrid Lighting System For Driver Safety And Its Control Method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321859A (en) * 2004-05-06 2005-11-17 Daikin Ind Ltd Area managing system and area managing method
JP2010166636A (en) * 2009-01-13 2010-07-29 Hitachi Ltd Power demand-supply management server and power demand-supply management system
JP2011053803A (en) * 2009-08-31 2011-03-17 Mitsubishi Electric Corp Facility operation support system and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321859A (en) * 2004-05-06 2005-11-17 Daikin Ind Ltd Area managing system and area managing method
JP2010166636A (en) * 2009-01-13 2010-07-29 Hitachi Ltd Power demand-supply management server and power demand-supply management system
JP2011053803A (en) * 2009-08-31 2011-03-17 Mitsubishi Electric Corp Facility operation support system and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207745A (en) * 2017-06-09 2018-12-27 三菱電機ビルテクノサービス株式会社 User power management system and aggregator system
JP2020042547A (en) * 2018-09-11 2020-03-19 株式会社FiNC Technologies Health evaluation system and health evaluation program
JP2020042548A (en) * 2018-09-11 2020-03-19 株式会社FiNC Technologies Health evaluation system and health evaluation program
WO2020054368A1 (en) * 2018-09-11 2020-03-19 株式会社FiNC Technologies Health evaluation system and health evaluation program
WO2020054369A1 (en) * 2018-09-11 2020-03-19 株式会社FiNC Technologies Health evaluation system and health evaluation program
KR20220154874A (en) * 2021-05-14 2022-11-22 호남대학교 산학협력단 Tunnel Smart Hybrid Lighting System For Driver Safety And Its Control Method
KR102594474B1 (en) * 2021-05-14 2023-10-25 호남대학교 산학협력단 Tunnel Smart Hybrid Lighting System For Driver Safety And Its Control Method

Also Published As

Publication number Publication date
JP6668615B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
Tang et al. Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective
JP5908302B2 (en) Storage energy storage optimization device, optimization method and optimization program
JP6668615B2 (en) Power consumption suppression optimization method, demand response control optimization method, air conditioning system controller
US20220077707A1 (en) Battery charge and discharge power control in a power grid
US20160293314A1 (en) Method to optimize operation of a transformer cooling system, the corresponding system and a method to determine the vfd capacity
JP2010204833A (en) Energy management system and method
JP5768097B2 (en) Information processing apparatus and service providing method
JP5429533B2 (en) Air-conditioning heat source machine navigation system
WO2015022746A1 (en) Voltage monitoring control device and voltage control device
JP2015106937A (en) Photovoltaic power generation system
Ramdaspalli et al. Transactive control for efficient operation of commercial buildings
Mega et al. Experimental evaluation of a fast demand response system for small/medium-scale office buildings
EP2918932B1 (en) Demand control device
JP4607533B2 (en) Operation method of power storage system
JP6296251B2 (en) Power control apparatus, method, and program
CN105243445A (en) Peak clipping method based on power consumption utility grading on electric apparatus and identification on power consumption behavior of user
JP2014200153A (en) Energy management system, energy management apparatus and energy management method
JP7263002B2 (en) Individual distributed air conditioning high efficiency control method, control device and control program
JP6331073B2 (en) Information processing apparatus and information processing system
JP7066948B2 (en) Storage battery control device, storage battery control program
JP6226367B2 (en) Energy use support system, support method and support program
JP2017112780A (en) Power management device, power management program and power management method
Di Liddo et al. Application of optimization procedure to the management of renewable based household heating & cooling systems
JP4849373B1 (en) Energy saving control program simulation feedback system
JP6150058B2 (en) Power control apparatus, power control system, controllable device, method, and program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6668615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150