JP2016225863A - 撮影システム、撮影方法及びプログラム - Google Patents

撮影システム、撮影方法及びプログラム Download PDF

Info

Publication number
JP2016225863A
JP2016225863A JP2015111218A JP2015111218A JP2016225863A JP 2016225863 A JP2016225863 A JP 2016225863A JP 2015111218 A JP2015111218 A JP 2015111218A JP 2015111218 A JP2015111218 A JP 2015111218A JP 2016225863 A JP2016225863 A JP 2016225863A
Authority
JP
Japan
Prior art keywords
imaging
unit
wind
strength
flying object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111218A
Other languages
English (en)
Inventor
政志 馬場
Masashi Baba
政志 馬場
典和 竹内
Norikazu Takeuchi
典和 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2015111218A priority Critical patent/JP2016225863A/ja
Publication of JP2016225863A publication Critical patent/JP2016225863A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Studio Devices (AREA)

Abstract

【課題】飛行体に搭載した撮像部により対象物を撮像し、当該対象物の所望の画像を得る。【解決手段】撮像システムは、撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する。撮影システムは、飛行体が飛行する領域の風の強さを示す情報を取得する取得部(風力情報取得部)と、前記撮像部から取得する画像の数を、前記風の強さに応じて調整する制御部(画像取得部)と、を備える。制御部は、前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像についての、単位量当たりの画像数を増やすように制御する。【選択図】図2

Description

本発明は、撮影システム、撮影方法及びプログラムに関する。
撮影システムは、飛行体を利用して建物や施設などの対象物を撮影する。撮影システムは、撮像して得られた画像に基づいて、対象物の状態の検査を支援する。例えば、飛行体から施設を撮像して得られた画像を基に当該施設の面の状態を取得する技術が有る(例えば、特許文献1参照)。
ところで、近年、小型の飛行体が利用されている。小型に形成された飛行体の多くは、軽量化されており、飛行中に風圧の影響を受けて目標飛行経路から外れることがある。また、無人飛行体から農薬等の散布物を散布することを目的とするものに、風力に応じて目標飛行経路を変更する技術が有る(例えば特許文献2)。
特開平11−132962号公報 特開2014−113864号公報
しかしながら、特許文献1の技術では、予め定められた目標飛行経路に沿うように飛行体を飛行させているに過ぎず、風による影響を低減するように飛行中の制御状態を調整することは記載されていない。
また、特許文献2の技術は、飛行体から散布物を散布する目的で利用されるものであり、散布物が風に流されることを推定して、対象範囲に散布できるように風力に応じて目標飛行経路を変更しているに過ぎない。また、飛行体自体が受けた風の影響を低減することは記載されていない。
上記の文献の技術を適用したとしても、飛行体を利用して対象物を撮影する際に、飛行中に風の影響を受け、所望の画像を得ることができなくなる場合が生じることがある。
本発明は、このような事情に鑑みてなされたもので、飛行体に搭載した撮像部により対象物を撮像し、当該対象物の所望の画像を得る撮影システム、撮影方法及びプログラムを提供することを一つの目的とする。
上述した課題を解決するための本発明の一態様は、撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する撮影システムであって、飛行体が飛行する領域の風の強さを示す情報を取得する取得部と、前記撮像部から取得する画像の数を、前記風の強さに応じて調整する制御部と、を備え、前記制御部は、前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像についての単位量当たりの画像数を増やすように制御することを特徴とする撮影システムである。
また、上記発明の一態様は、前記制御部は、前記風の強さが予め定められた所定の強さを超える場合に、前記飛行体の移動方向に撮影する地点を増やして、前記飛行体の単位移動量当たりの前記撮像部から取得する画像の数を増やすように制御することを特徴とする請求項2に記載の撮影システム。
また、上記発明の一態様は、前記制御部は、前記風の強さが予め定められた所定の強さを超える場合に、前記撮像部から取得した複数の画像を合成した合成画像の連続性が保てるように、前記飛行体の単位移動量当たりの前記撮像部から取得する画像の数を増やすように制御することを特徴とする請求項1又は請求項2に記載の撮影システム。
また、上記発明の一態様は、設定される目標移動量に応じて前記飛行体の移動量を調整する飛行制御部を備え、前記飛行制御部は、前記飛行体の単位時間あたりの前記目標移動量を、前記風の強さと前記飛行体の単位移動量当たりに前記撮像部から取得する画像の数とに応じて設定することを特徴とする請求項1から請求項3の何れか1項に記載の撮影システム。
また、本発明の一態様は、撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する撮影方法であって、飛行体が飛行する領域の風の強さを示す情報を取得部が取得するステップと、前記撮像部から取得する画像の数を、前記風の強さに応じて調整するステップと、前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像についての単位量当たりの画像数を増やすように制御するステップとを含むことを特徴とする撮影方法である。
また、本発明の一態様は、撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する撮影システムのコンピュータに、飛行体が飛行する領域の風の強さを示す情報を取得部が取得するステップと、前記撮像部から取得する画像の数を、前記風の強さに応じて調整するステップと、前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像についての単位量当たりの画像数を増やすように制御するステップとを実行させるためのプログラムである。
以上説明したように、本発明によれば、飛行体に搭載した撮像部により対象物を撮像し、当該対象物の所望の画像を得る撮影システム、撮影方法及びプログラムを提供することができる。
本発明の第1の実施形態における撮影システムの概略を示す説明図である。 本実施形態における撮影システム1(1A)の構成図である。 本実施形態の複数の画像の相対位置の調整について示す説明図である。 本実施形態の複数の画像の尺度の調整について示す説明図である。 本実施形態における本実施形態の撮影システムにおける処理の手順を示すフローチャートである。 第2の実施形態における撮影システムの概略を示す説明図である。 本実施形態における複数の画像の尺度の調整について示す説明図である。
本発明の実施形態における撮影システムの概要について説明する。
<第1の実勢形態>
図1を参照して、本実施形態に係る撮影システムの概略を説明する。同図は、本発明の実施形態に係る撮影システムの概略について説明する説明図である。例えば、本実施形態における撮影システム1は、以下に示すように、例えば太陽光発電設備2を撮影対象とする。
太陽光発電設備2には、複数の太陽電池パネルが並べて配置されている。例えば、複数の太陽電池パネルは、所定の枚数の太陽電池パネルを纏めた太陽電池アレイARを単位にして並べて配置されている。同図に示される太陽光発電設備2では、列CN1と列CN2の2列に分けて、複数の太陽電池アレイが並べて配設されている。列CN1には、太陽電池アレイAR11から太陽電池アレイAR1Nが、列CN2には、太陽電池アレイAR21から太陽電池アレイAR2Nが並べて配設されている。なお、以下の説明で、各太陽電池アレイを纏めていうときには単に「太陽電池パネルAR」という。太陽光発電設備2は、各太陽電池パネルがそれぞれ発電した電力を変換して、負荷等に供給する電力を生成する。
撮影システム1は、このような太陽光発電設備2において、自律して飛行する小型の飛行体200を利用して、太陽光発電設備2の上空から太陽電池パネルを撮影して、各太陽電池パネルの画像を取得する。撮影システム1は、取得した画像に基づいて太陽電池パネルの状態を検出するように構成してもよい。例えば、撮影システム1は、撮影制御装置100と飛行体200とを備える。
自律して移動する飛行体200には、撮像部220が搭載されている。飛行体200の飛行中に、撮像部220は、画像を撮像して取得する。ただし、飛行体200は、風の影響を受けて、目標飛行経路として予め設定されていた飛行コースから外れることがある。例えば、風速が比較的小さなとき飛行計画(平常時用の飛行計画)では、より効率よく飛行させるように飛行コースを設定する。このように設定された飛行計画の場合、風速が比較的大きな風の影響を受けて、飛行体200が飛行中に飛行計画に示す飛行コースを外れると、目的の点検が行えないことが生じ得る。
そこで、撮影システム1の撮影制御装置100は、撮像部220から取得する画像の数を、前記風の強さに応じて調整するように構成する。例えば、撮影制御装置100は、飛行体200が飛行する領域の風の強さを示す情報を取得し、撮像部220から取得する画像の数を調整する。撮影制御装置100は、前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像についての、単位量当たりの画像数を増やすように制御する。撮影システム1は、このように制御することにより、取得した画像に、撮影対象の所望の範囲が漏れずに含まれるようにする。
図2を参照して、本実施形態の撮影システムの構成について説明する。同図は、本実施形態の撮影システムの構成図である。同図には、飛行体200と飛行体200に関連する撮影制御装置100とが示されている。
飛行体200は、例えば自律して飛行するヘリコプタである。例えば、飛行体200は、機体に設けられた所要数のプロペラを有しており、当該プロペラをモータで駆動するように構成されている。飛行体200は、撮影制御装置100から遠隔操作で操縦され、或は撮影制御装置100からの指令により飛行体200の飛行体制御部201に設定された飛行計画に従って自律飛行する。
飛行体200は、飛行体制御部201、駆動部202、方位位置検出部212、姿勢検出部213、位置推定部214、及び撮像部220を備える。
撮像部220は、機体に支持されるように設けられており、赤外線画像又は可視光画像など所望の波長領域の画像を生成する。撮像部220は、静止画像を所定時間間隔で撮像するカメラであってもよいし、又は画像を連続的に撮像するビデオカメラであってもよい。撮像部220は、後述の撮影制御装置100からの指令に応じて、撮像するタイミングを調整する。
例えば、本実施形態の撮像部220の光軸Lは、飛行体200の姿勢を水平に保った状態で、鉛直方向に向くように構成されている。或いは、撮像部220は、機体に対してジンバルを介して支持されており、飛行体200の姿勢に影響されずに傾動して、撮像部220の光軸Lが鉛直方向に向くように構成されていてもよい。
本実施形態の撮像部220は、光軸Lを中心にして対象に割り振られた角度θの視野角を有している。飛行体200を太陽光発電設備2より上方を飛行させることで、撮像部220は、上記の視野角の範囲に含まれる太陽光発電設備2を上空から撮影することができ、撮影した画像を取得する。例えば、撮像部220が撮影(撮像)した画像は、後述する様に、太陽光発電設備2に対する飛行体200の位置測定用の画像データ、太陽光発電設備2の診断用の画像データとして使用される。
駆動部202は、飛行体制御部201からの制御に応じて、備える各モータを駆動して、各プロペラを所望の回転数で回転させて飛行体200を飛行させる。
方位位置検出部212(位置検出部)は、例えば地磁気センサーを備え、地磁気センサーを用いて機体の向き(飛行体200の向き)を検出する。地磁気センサーを用いて検出された飛行体200の方位の測定値は、磁北を基準にした機体の向きを示す。例えば、磁北を基準にした機体の向きは、機体を基準に定めた座標系の水平方向成分の特定の軸の磁北に対する角度である。
また、方位位置検出部212は、例えばGPS衛星から受信した電波を用いて飛行体200の位置を検出する。GPSにより測定した位置の測定値は、地心座標(絶対座標)系から求められる地上座標系を表す。なお、GPSにより測定した位置の測定値は、太陽光発電設備2の詳細な配置情報が生成される前に飛行する場合や、飛行体200の概略の位置を検出する場合等に用いられる。
姿勢検出部213は、飛行体200の姿勢を検出する。例えば、姿勢検出部213は、ジャイロ又は3軸方向の加速度センサーなどを含めて構成して、機体の傾きを検出する。飛行体200の姿勢の測定値を、飛行体200の機体を基準に定めた座標系の軸の方向と鉛直方向とがなす角度として示すようにしてもよい。例えば、飛行体200の姿勢の測定値は、機体の水平度を保つように飛行体200の姿勢を制御する際に用いられる。
飛行体制御部201は、方位位置検出部212から飛行体200の位置と方位の情報を取得し、姿勢検出部213から飛行体200の姿勢を示す情報を取得し、撮影制御装置100から飛行に関する指令を示す情報を取得する。飛行体制御部201は、飛行体200の位置と方位の情報、飛行体200の姿勢を示す情報、撮影制御装置100から飛行に関する指令を示す情報などの情報に基づいて、飛行体200が自律して飛行するように制御する。
撮影制御装置100は、画像取得部111、撮像制御部112、検出部113、風力情報取得部114、入出力部115(出力部)、及び記憶部120を備える。
なお、撮影制御装置100から飛行体200を制御する場合には、撮影制御装置100は、飛行制御部119を備えて構成するようにしてもよい。例えば、飛行制御部119は、飛行体200に対し、地理座標の2次元の位置を指定して、その位置を基準に鉛直方向に移動するように指令する。また、飛行制御部119は、飛行体200の飛行速度を調整するように、飛行体200を制御してもよい。
記憶部120は、撮像部220から取得した画像、所得した画像から生成した画像(合成画像)、各処理の過程で生成されるデータ、判定処理の基準にする閾値データなどを記憶する。記憶部120は、撮像部220から取得した画像に、対象とする建物を識別する識別情報、画像の撮影日時、撮影順を示す画像の識別情報等のデータを関連付けて記憶する。
入出力部115は、撮影制御装置100の各処理の実施を指示する操作を受けつけて、撮影制御装置100を構成する各部に対して、前記受け付けた操作に応じて実施させる処理を指令する。入出力部115は、撮像部220から取得した画像、所得した画像から生成した画像(合成画像)などを、備える表示部に表示する。
例えば、撮影制御装置100は、パーソナルコンピュータなどを含めて構成してもよく、その場合の入出力部115は、入力部としてキーボード、マウス、タッチパネルなどを備え、出力部として液晶表示パネルなどの表示デバイスを備えるものであってもよい。
なお、本実施形態に係る入出力部115(出力部)は、後述の位置情報生成部112により生成される位置情報を出力する。なお、入出力部115(出力部)は、取得した画像に、生成した位置情報を重畳させた合成画像を生成して出力してもよい。
撮影制御装置100を構成する各部の説明を続ける。
画像取得部111は、飛行体200を飛行させて、撮像部220により撮像された画像を取得する。画像取得部111が画像を取得する際に利用する媒体等に制限はなく、通信回線を利用する手段、記憶媒体に記憶させて読み込む手段などの手段を適宜選択することができる。なお、画像取得部111が画像を取得する際には、画像を識別する識別情報を撮像順に応じた順に附しておき、当該識別情報により画像を識別するようにしてもよい。画像取得部111は、取得した画像を記憶部120に記憶させる。記憶部120に記憶させた画像は、以下に説明する各部から参照される。なお、以下の説明において、各部から記憶部120を参照する処理についての説明を省略する場合がある。
検出部113は、撮像部220が撮像して得た複数の画像のそれぞれから、対象物の状態を検出する。例えば、検出部113は、特定の太陽電池パネルに生じた劣化状態を、撮像部220が撮像して得た赤外画像から検出する。
風力情報取得部114(取得部)は、飛行体200が飛行する領域の風の強さを示す情報を取得する。例えば、飛行体200が飛行する領域の風速を、太陽光発電設備2が配された場所に設けられている風速計(不図示)により測定する。風力情報取得部114は、風速計により測定された風速を、飛行体200が飛行する領域の風の強さを示す情報として取得する。
撮像制御部112(制御部)は、撮像部220から取得する画像の数を、風力情報取得部114により取得した風の強さを示す情報に基づいて、風の強さ(風速)に応じて調整する。撮像制御部112(制御部)は、前記風の強さが予め定められた所定の強さを超えている場合に、撮像部220から取得する画像についての、単位量当たりの画像数を増やすように、撮像部220を制御する。
例えば、撮影制御部112は、前記風の強さが予め定められた所定の強さを超える場合に、飛行体200の移動方向に撮影する地点を増やして、飛行体200の単位移動量当たりの撮像部220から取得する画像の数を増やすように制御してもよい。また、撮影制御部112は、前記風の強さが予め定められた所定の強さを超える場合に、撮像部220から取得した複数の画像を合成した合成画像の連続性が保てるように、飛行体200の単位移動量当たりの撮像部220から取得する画像の数を増やすように制御してもよい。
次に、図3と図4とを参照して、上記のように構成した撮影システム1の撮影方法について説明する。図3は、風が比較的強い状況で、一般的な撮影方法で撮影した場合を示す説明図である。図4は、風が比較的強い状況で、本実施形態の撮影システムを適用して撮影した場合を示す説明図である。図3と図4に示す図は、ともに太陽光発電設備2が配された領域の平面図を模式化したものである。図示された範囲に、太陽電池アレイAR11から太陽電池アレイAR14、太陽電池アレイAR21から太陽電池アレイAR24、などが並べて設けられている状態が示されている。
図3において符号PIC511から符号PIC518を附した各四角形の範囲が、順に取得された画像の範囲を示す。図中の矢印が、飛行体200の目標飛行経路を示す。
撮影制御装置100は、飛行体200に、図中の矢印の方向に定めた速度で移動するように指令し、撮像部220に、等周期で撮像するように指令する。上記の速度と周期を、符号PIC511から符号PIC518を附した各四角形が矢印に沿って連なり、互いに重なるようにする。
仮に、風が無い場合には、符号PIC511から符号PIC518を附した四角形の領域を組み合わせれば、符号PIC511から符号PIC518を附した領域を組み合わせた画像に、対応する太陽電池アレイが含まれる。
一方で、前述のとおり、飛行体200は、軽量化されているため、飛行中に風圧の影響を受けて目標飛行経路から外れたり、進行方向に対する速度が不規則になったりすることがある。飛行体200は、目標飛行経路から外れた際には、自動で目標飛行経路に戻るように位置を補正するが、風の変動の影響を受ける場合は、目標飛行経路通りに飛行することが困難になる。その結果、撮像部220により取得される各画像は、図3に示すようになる。例えば、符号PIC511から符号PIC518を附した各四角形の範囲が、矢印から外れるように位置したり、符号PIC512と符号PIC513のように隣り合う四角形同士が互いに重ならない場合が生じたりするようになる。この場合、符号PIC511から符号PIC518を附した全ての四角形の領域を組み合わせても、対応する太陽電池アレイに覆われない領域が生じてしまう。
そこで、図4に示すように、風が比較的強い状況のもとでも、全ての四角形の領域を組み合わせれば、組み合わせた領域の画像に、対応する太陽電池アレイが含まれるようにする。
撮影システム1では、撮像部220が撮像する周期を前述の図3に示した周期より短くすることにより、撮像部220が単位時間に撮像する画像の数を増やす。
例えば、符号PIC511から符号PIC518を附した各四角形の他に、符号PIC521から符号PIC527を附した各四角形を追加する。撮像部220が撮像する順は、PIC511、PIC521、PIC512、PIC522、・・・、PIC517、PIC527、PIC518の順になる。撮影システム1は、符号PIC521から符号PIC527を附した各四角形を追加して、符号PIC511から符号PIC518を附した各四角形の間を補完する。上記のように補間して、符号PIC511から符号PIC518を附した各四角形と、符号PIC521から符号PIC527を附した各四角形の全ての四角形の領域を組み合わせる。これにより、組み合わせた領域の画像に、対応する太陽電池アレイが含まれる。
図5を参照して、本実施形態の撮影システムにおける処理について説明する。同図は、本実施形態の撮影システムにおける処理の手順を示すフローチャートである。
まず、風力情報取得部114(取得部)は、飛行体200が飛行する領域の風の強さを示す情報を取得する。例えば、飛行体200が飛行する領域の風速を、太陽光発電設備2が配された場所に設けられている風速計(不図示)により測定する。風力情報取得部114は、風速計により測定された風速を、飛行体200が飛行する領域の風の強さを示す情報として取得する(ステップS10)。
撮像制御部112(制御部)は、以下に示す手順により、撮像部220から取得する画像の数を、風力情報取得部114により取得した風の強さを示す情報に基づいて、風の強さ(風速)に応じて調整する。
例えば、撮像制御部112(制御部)は、取得した風の強さを示す情報に基づいて、太陽光発電設備2が配された領域の風が予め定めた風速より強いか否かを判定する(ステップS20)。
ステップS20における判定の結果により、太陽光発電設備2が配された領域の風が予め定めた風速より強いと判定した場合(ステップS20:Yes)、撮像制御部112(制御部)は、前記風の強さが予め定められた所定の強さを超えている場合に、撮像部220から取得する画像の単位量当たりの画像数を、予め定められていた平常時の画像数より増やすように撮像部220を制御して(ステップS30)、画像数の設定処理を終える。
一方、ステップS20における判定の結果により、太陽光発電設備2が配された領域の風が予め定めた風速より強くないと判定した場合(ステップS20:No)、撮像部220から取得する画像の単位量当たりの画像数を、予め定められていた平常時の画像数にするように撮像部220を制御して(ステップS40)、画像数の設定処理を終える。
飛行制御部119は、飛行体200を飛行させる。画像取得部111は、飛行体200の飛行中に撮像部220により撮像させるように制御する。撮像部220は、上記の画像数の設定を上記の指令に従って終えた後、飛行体200の飛行に応じて所定の周期で撮像する(ステップS50)。画像取得部111は、撮像部220により撮像された画像を取得する(ステップS60)。検出部113は、特定の太陽電池パネルに生じた劣化状態を、撮像部220が撮像して得た画像から検出する(ステップS70)。
以上に示した手順により、撮影システム1は、飛行体200に搭載した撮像部220により対象物である太陽光発電設備2を撮像し、当該太陽光発電設備2の所望の画像を得ることができる。
<第2の実勢形態>
図1と図2と図6と図7を参照して、本実施形態に係る撮影システムについて説明する。本実施形態における撮影システム1Aは、前述の撮影システム1に対応するものであり、前述の図1に示すように、例えば太陽光発電設備2を撮影対象とする。撮影システム1Aは、撮影制御装置100Aと飛行体200とを備える。
撮影システム1Aは、前述の図2に示すように構成される。撮影システム1Aの構成について、前述の撮影システム1と異なる点を中心に説明する。
撮影制御装置100Aは、画像取得部111、撮像制御部112、検出部113、風力情報取得部114、入出力部115(出力部)、飛行制御部119A及び記憶部120を備える。
飛行制御部119Aは、風力情報取得部114により取得した風の強さを示す情報に基づいて飛行体200の飛行速度を調整して、飛行体200の飛行を制御する。
次に、図6を参照して、上記のように構成した撮影システム1Aの撮影方法について説明する。同図は、風が比較的強い状況で、本実施形態の撮影システム1Aを適用して撮影した場合を示す説明図である。同図(a)に、対比のため前述の図4の一部を示す。同図(b)に、図3と図4のように、太陽光発電設備2が配された領域の平面図を模式化して示す。図示された範囲に、太陽電池アレイAR11から太陽電池アレイAR12、太陽電池アレイAR21から太陽電池アレイAR22、などが並べて設けられている状態が示されている。
同図(a)に示す場合と同図(b)に示す場合との違いは、飛行体200の飛行速度と撮像部220が撮像する周期が異なる。
まず、飛行体200の飛行速度について説明する。飛行体200の飛行速度が比較的遅い場合には、単位時間に進む距離が、飛行速度が比較的速い場合に比べて短くなる。一方で、風による影響は、飛行体200の飛行速度が比較的遅い場合も、飛行速度が比較的速い場合も同じである。そのため、単位時間に進む距離が短いほど、相対的に風による影響が大きくなる。そこで、設定される目標移動量に応じて前記飛行体の移動量を調整する。例えば、飛行速度を調整して、風の強さが予め定められた所定の強さを超えている場合に、単位時間に進む距離を長くするように制御する。このように、単位時間に目標方向に進む距離が長くなることで、同図中に矢印で示す飛行体200の目標飛行経路から逸れる角度が小さくなる。
撮像部220が撮像する周期について説明する。上記のように、画像を撮影する周期を保ったままで飛行体200の速度を速めた場合、画像を撮影する位置から次に撮影する位置までの距離が長くなる。その結果、単に速度を速めただけでは、撮像部220によって撮像された画像の連続性が保てなくなる。そこで、撮像部220が撮影する周期と飛行体200の速度とを関連付けて、画像の連続性が保てるように調整する。例えば、飛行制御部119は、飛行体200の単位時間あたりの目標移動量(目標速度)を、風の強さと飛行体200の単位移動量当たりに撮像部220から取得する画像の数とに応じて設定する。上記の飛行体200の単位時間あたりの目標移動量(目標速度)と、風の強さと飛行体200の単位移動量当たりに撮像部220から取得する画像の数との対応関係を示すデータは、予め定めた演算式により算出してもよく、或いは、対応関係を定めるデータが格納されているテーブルを参照して得るようにしてもよい。
同図(b)を参照して、上記のように飛行体200の飛行速度と撮像部220により撮像する周期を調整した結果から得られる画像の一例について説明する。同図(b)の場合も、前述の図4に示した場合と同様に、風が比較的強い状況のもとでも、全ての四角形の領域を組み合わせれば、対応する太陽電池アレイが含まれるようにする。
撮影システム1Aでは、撮像部220が撮像する周期を前述の図4に対応する同図(a)に示した周期よりさらに短くすることにより、撮像部220が単位時間に撮像する画像の数をさらに増やしている。
例えば、符号PIC511から符号PIC514を附した各四角形の他に、符号PIC521から符号PIC524を附した各四角形と、符号PIC531から符号PIC533を附した各四角形とを追加する。撮像部220が撮像する順は、PIC511、PIC521、PIC531、PIC512、PIC522、PIC532、・・・、PIC514、PIC524の順になる。撮影システム1は、符号PIC521から符号PIC524を附した各四角形と、符号PIC531から符号PIC533を附した各四角形とを追加して、符号PIC511から符号PIC514を附した各四角形の間を補完する。上記のように補間して、符号PIC511から符号PIC514を附した各四角形と、符号PIC521から符号PIC524を附した各四角形と、号PIC531から符号PIC533を附した各四角形との全ての四角形の領域を組み合わせることにより、対応する太陽電池アレイが含まれる。
図7を参照して、本実施形態の撮影システムにおける処理について説明する。同図は、本実施形態の撮影システムにおける処理の手順を示すフローチャートである。
まず、風力情報取得部114(取得部)は、飛行体200が飛行する領域の風の強さを示す情報を取得する。例えば、飛行体200が飛行する領域の風速を、太陽光発電設備2が配された場所に設けられている風速計(不図示)により測定する。風力情報取得部114は、風速計により測定された風速を、飛行体200が飛行する領域の風の強さを示す情報として取得する(ステップS10)。
撮像制御部112(制御部)は、撮像部220から取得する画像の数を、風力情報取得部114により取得した風の強さを示す情報に基づいて、風の強さ(風速)に応じて調整する。例えば、撮像制御部112(制御部)は、取得した風の強さを示す情報に基づいて、太陽光発電設備2が配された領域の風が予め定めた風速より強いか否かを判定する(ステップS20)。
ステップS20における判定の結果により、太陽光発電設備2が配された領域の風が予め定めた風速より強いと判定した場合(ステップS20:Yes)、撮像制御部112(制御部)は、前記風の強さが予め定められた所定の強さを超えている場合に、撮像部220から取得する画像の単位量当たりの画像数を、予め定められていた平常時の画像数より増やすように撮像部220を制御する(ステップS30)。飛行制御部119は、飛行体200の単位時間あたりの目標移動量を、前記風の強さと飛行体200の単位移動量当たりに撮像部220から取得する画像の数とに応じて設定して(ステップS35)、画像数の設定処理と飛行速度の設定処理を終える。
一方、ステップS20における判定の結果により、太陽光発電設備2が配された領域の風が予め定めた風速より強くないと判定した場合(ステップS20:No)、撮像部220から取得する画像の単位量当たりの画像数を、予め定められていた平常時の画像数にするように撮像部220を制御して(ステップS40)、画像数の設定処理と飛行速度の設定処理を終える。
飛行制御部119は、飛行体200を飛行させる。画像取得部111は、飛行体200の飛行中に撮像部220により撮像させるように制御する。撮像部220は、上記の画像数の設定を上記の指令に従って終えた後、飛行体200の飛行に応じて所定の周期で撮像する(ステップS50)。画像取得部111は、撮像部220により撮像された画像を取得する(ステップS60)。検出部113は、特定の太陽電池パネルに生じた劣化状態を、撮像部220が撮像して得た画像から検出する(ステップS70)。
以上に示した手順により、撮影システム1Aは、飛行体200に搭載した撮像部220により対象物である太陽光発電設備2を撮像し、当該太陽光発電設備2の所望の画像を得ることができる。
なお、上記の第1の実施形態と第2の実施形態における対象物について、太陽光発電設備2を例示して説明したが、他の対象物として建物や構造物などを設定してもよい。この場合、飛行体200は、水平方向に飛行する場合に限られず、例えば、建物の壁面にそって鉛直方向に移動するようにしてもよい。
このように、撮影システムの飛行体200は、予め定められた目標飛行経路に沿って移動(飛行)する際に、撮像部220が撮像する周期、及び、飛行体200の飛行速度の少なくとも何れかを前述の要領に従って調整するようにしてもよい。
以上、本発明の実施形態について説明したが、撮影システム1(1A)は、内部にコンピュータシステムを有している。そして、上述した処理に関する一連の処理の過程は、プログラムの形式でコンピュータ読み取り可能な記憶媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここで、コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。また、ここでいう「コンピュータシステム」とは、OS等も含むものとする。
そして、撮影システム1(1A)における撮影制御装置100(100A)、飛行体200、撮像部220における各処理の全部又は一部の処理は、CPU等の中央演算処理装置がROMやRAM等の主記憶装置に上記プログラムを読み出して、情報の加工、演算処理を実行することにより、実現されるものである。勿論、撮影システム1を構成する各処理部は専用のハードウェアにより実現されるものであってもよい。
以上、本発明の実施の形態について説明したが、本発明の撮影システムは、上述の図示例にのみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
(1)なお、本実施形態に示す撮影システム1は、撮像部220が搭載され、自律して移動する飛行体200により、対象物(太陽光発電装置2)の状態を検出する。撮影システムは、飛行体200が飛行する領域の風の強さを示す情報を取得する風力情報取得部114と、撮像部220から取得する画像の数を、前記風の強さに応じて調整する撮影制御部112(制御部)と、を備える。撮影制御部112(制御部)は、前記風の強さが予め定められた所定の強さを超えている場合に、撮像部220から取得する画像についての、単位量当たりの画像数を増やすように制御する。
これにより、撮影システム1は、飛行体200に搭載した撮像部220により対象物を撮像し、当該対象物の所望の画像を得ることができる。
(2)また、上記の撮影システム1によれば、撮影制御部112(制御部)は、前記風の強さが予め定められた所定の強さを超える場合に、飛行体200の移動方向に撮影する地点を増やして、飛行体200の単位移動量当たりの撮像部220から取得する画像の数を増やすように制御する。
このような撮影システム1は、上記の場合に、飛行体200に搭載した撮像部220により対象物を撮影する地点を増やして撮像し、飛行体200の単位移動量当たりの撮像部220から取得する画像の数を増やすように制御する。これにより撮影システム1は、当該対象物の所望の画像を得ることができる。
(3)また、上記の撮影システム1によれば、撮影制御部112(制御部)は、前記風の強さが予め定められた所定の強さを超える場合に、撮像部220から取得した複数の画像を合成した合成画像の連続性が保てるように、飛行体200の単位移動量当たりの前記撮像部220から取得する画像の数を増やすように制御する。
このような撮影システム1は、上記の場合に、撮像部220から取得した複数の画像を合成した合成画像の連続性が保てるように撮像部220が撮像し、飛行体200の単位移動量当たりの撮像部220から取得する画像の数を増やすように制御する。これにより撮影システム1は、当該対象物の所望の画像を得ることができる。
(4)また、上記の撮影システム1は、設定される目標移動量に応じて飛行体200の移動量を調整する飛行制御部119をさらに備えるようにしてもよい。このような飛行制御部119は、飛行体200の単位時間あたりの目標移動量を、前記風の強さと飛行体200の単位移動量当たりに撮像部220から取得する画像の数とに応じて設定することにより、飛行体200に搭載した撮像部220により対象物を撮像し、当該対象物の所望の画像を得ることができる。
1、1A 撮影システム、2 太陽光発電設備(対象物)、
100、100A 撮影制御装置、
111 取得部(画像取得部)、112 風力情報取得部、
113 検出部、115 入出力部、119、119A 飛行制御部、120 記憶部、
200 飛行体、220 撮像部

Claims (6)

  1. 撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する撮影システムであって、
    飛行体が飛行する領域の風の強さを示す情報を取得する取得部と、
    前記撮像部から取得する画像の数を、前記風の強さに応じて調整する制御部と、
    を備え、
    前記制御部は、
    前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像についての、単位量当たりの画像数を増やすように制御する
    ことを特徴とする撮影システム。
  2. 前記制御部は、
    前記風の強さが予め定められた所定の強さを超える場合に、前記飛行体の移動方向に撮影する地点を増やして、前記飛行体の単位移動量当たりの前記撮像部から取得する画像の数を増やすように制御する
    ことを特徴とする請求項1に記載の撮影システム。
  3. 前記制御部は、
    前記風の強さが予め定められた所定の強さを超える場合に、前記撮像部から取得した複数の画像を合成した合成画像の連続性が保てるように、前記飛行体の単位移動量当たりの前記撮像部から取得する画像の数を増やすように制御する
    ことを特徴とする請求項1又は請求項2に記載の撮影システム。
  4. 設定される目標移動量に応じて前記飛行体の移動量を調整する飛行制御部
    を備え、
    前記飛行制御部は、
    前記飛行体の単位時間あたりの前記目標移動量を、前記風の強さと前記飛行体の単位移動量当たりに前記撮像部から取得する画像の数とに応じて設定する
    ことを特徴とする請求項1から請求項3の何れか1項に記載の撮影システム。
  5. 撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する撮影方法であって、
    飛行体が飛行する領域の風の強さを示す情報を取得部が取得するステップと、
    前記撮像部から取得する画像の数を、前記風の強さに応じて調整するステップと、
    前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像の数を増やすように制御するステップと
    を含むことを特徴とする撮影方法。
  6. 撮像部が搭載され、自律して移動する飛行体により、対象物の状態を検出する撮影システムのコンピュータに、
    飛行体が飛行する領域の風の強さを示す情報を取得部が取得するステップと、
    前記撮像部から取得する画像の数を、前記風の強さに応じて調整するステップと、
    前記風の強さが予め定められた所定の強さを超えている場合に、前記撮像部から取得する画像の数を増やすように制御するステップと
    を実行させるためのプログラム。
JP2015111218A 2015-06-01 2015-06-01 撮影システム、撮影方法及びプログラム Pending JP2016225863A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111218A JP2016225863A (ja) 2015-06-01 2015-06-01 撮影システム、撮影方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111218A JP2016225863A (ja) 2015-06-01 2015-06-01 撮影システム、撮影方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2016225863A true JP2016225863A (ja) 2016-12-28

Family

ID=57748040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111218A Pending JP2016225863A (ja) 2015-06-01 2015-06-01 撮影システム、撮影方法及びプログラム

Country Status (1)

Country Link
JP (1) JP2016225863A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138882A1 (ja) * 2017-01-27 2018-08-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 飛行体、動作制御方法、動作制御システム、プログラム及び記録媒体
JP6755432B1 (ja) * 2019-04-26 2020-09-16 楽天株式会社 無人飛行体、飛行体制御システム及び運搬方法
JPWO2020189506A1 (ja) * 2019-03-18 2020-09-24
JP2021525426A (ja) * 2018-05-28 2021-09-24 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. ターゲット領域作業の計画方法、装置、記憶媒体及びプロセッサ
US11913789B2 (en) 2018-03-23 2024-02-27 Nec Corporation Inspection management device, inspection management method, and recording medium to store program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138882A1 (ja) * 2017-01-27 2018-08-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 飛行体、動作制御方法、動作制御システム、プログラム及び記録媒体
JPWO2018138882A1 (ja) * 2017-01-27 2019-11-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 飛行体、動作制御方法、動作制御システム、プログラム及び記録媒体
US11913789B2 (en) 2018-03-23 2024-02-27 Nec Corporation Inspection management device, inspection management method, and recording medium to store program
JP2021525426A (ja) * 2018-05-28 2021-09-24 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. ターゲット領域作業の計画方法、装置、記憶媒体及びプロセッサ
JPWO2020189506A1 (ja) * 2019-03-18 2020-09-24
JP7045122B2 (ja) 2019-03-18 2022-03-31 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローンの制御プログラム
JP6755432B1 (ja) * 2019-04-26 2020-09-16 楽天株式会社 無人飛行体、飛行体制御システム及び運搬方法
CN112154101A (zh) * 2019-04-26 2020-12-29 乐天株式会社 无人飞行器、飞行器控制***及搬运方法
US11993379B2 (en) 2019-04-26 2024-05-28 Rakuten Group, Inc. Unmanned aerial vehicle, aerial vehicle control system and transportation method

Similar Documents

Publication Publication Date Title
JP7260269B2 (ja) 航空非破壊検査用の測位システム
US11029211B2 (en) Unmanned aerial system based thermal imaging systems and methods
JP6930616B2 (ja) 制御装置、制御方法および飛行体デバイス
US9409656B2 (en) Aerial photographing system
US11048276B2 (en) Measuring device, control device for unmanned aerial vehicle and computer program product for controlling unmanned aerial vehicle
US7071970B2 (en) Video augmented orientation sensor
JP2016225863A (ja) 撮影システム、撮影方法及びプログラム
JP2019035736A (ja) 航空機用レーザスペックルのシステム及び方法
CN106124517A (zh) 检测结构件表面裂缝的多旋翼无人机检测平台***及其用于检测结构件表面裂缝的方法
KR101550780B1 (ko) 무인 항공기를 이용한 영상 데이터 수집 시스템 및 방법
Johnson et al. Real-time terrain relative navigation test results from a relevant environment for Mars landing
US11490005B2 (en) Overhead line image capturing system and overhead line image capturing method
JP2014044067A (ja) 写真測量用カメラ及び航空写真装置
US11057566B2 (en) Image synthesis system
CN111498127B (zh) 安装在飞行器上的定向照明***和相关的照明方法
CN106527457B (zh) 航空扫描仪扫描控制指令规划方法
JP2016197979A (ja) 診断システム、診断方法、及びプログラム
EP3234683B1 (en) Imaging system
RU2597024C1 (ru) Способ оперативного определения угловых элементов внешнего ориентирования космического сканерного снимка
US20220221857A1 (en) Information processing apparatus, information processing method, program, and information processing system
US20210185230A1 (en) Image capturing method and image capturing apparatus
US20210341922A1 (en) Optical object tracking on focal plane with dynamic focal length
JP7456908B2 (ja) 屋根点検用の無人航空機の制御装置
JP2013096934A (ja) 目標位置検出装置、該検出装置に用いられる目標位置検出方法及び目標位置検出プログラム
JP2022143470A (ja) 測量システム、測量装置、測量方法、および測量プログラム