JP2016221941A - Structure for reducing thermal strain in composite material structure - Google Patents

Structure for reducing thermal strain in composite material structure Download PDF

Info

Publication number
JP2016221941A
JP2016221941A JP2015139192A JP2015139192A JP2016221941A JP 2016221941 A JP2016221941 A JP 2016221941A JP 2015139192 A JP2015139192 A JP 2015139192A JP 2015139192 A JP2015139192 A JP 2015139192A JP 2016221941 A JP2016221941 A JP 2016221941A
Authority
JP
Japan
Prior art keywords
layer
deformation
upper layer
layers
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015139192A
Other languages
Japanese (ja)
Inventor
順治 曽根
Junji Sone
順治 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015139192A priority Critical patent/JP2016221941A/en
Publication of JP2016221941A publication Critical patent/JP2016221941A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems that, since a composite material tool is constituted by different materials for layers of the tool so as to improve thermal conductivity or the like, thermal expansion of each layer is different from others, which induces deformation by a cantilever effect when the layers are connected and that the deformation brings difficulty in fixing a component having high accuracy.SOLUTION: A thermal strain between layers is eliminated by using, in an outer peripheral part (1-2) of an upper layer, a substrate of the same material as a lower layer (2) just below the upper layer so as to eliminate a thermal strain in a connecting part between the lower layer (2) and the upper layer (1-2) (however, when the temperature is uniform, no strain is induced). The layers have such a structure that an inner substrate (1-1) of the upper layer is held by the outer substrate (1-2) by using a resin film (1-3), such as PTFE, polyimide and PEEK, having heat resistance and easily slipping property, so as to absorb a difference in a deformation amount between deformations of the lower layer (2) and the upper layer (1) by the slippage therebetween. Thereby, deformation due to a cantilever effect can be prevented.SELECTED DRAWING: Figure 2

Description

本発明は,複合材料治具の加熱により生じる熱歪みを低減する構造に関する。The present invention relates to a structure for reducing thermal distortion caused by heating of a composite material jig.

従来の複合材料治具は,加熱を行うと各層の部材の線膨張係数が異なるため、層間の膨張量が異なる。治具の各層は精度を保持するために固定しており、その固定部から各層の間に歪みを生成し、それが形状の変形をもたらしていた。精度の高い部品を保持する場合には、変形により高精度に保持できない場合がある。また、温度が高くなると、部材によっては破壊する部分もあった。When the conventional composite material jig is heated, the linear expansion coefficients of the members of the respective layers are different, so that the expansion amounts between the layers are different. Each layer of the jig is fixed in order to maintain accuracy, and strain is generated between the layers from the fixed portion, which causes deformation of the shape. When holding a highly accurate part, there is a case where it cannot be held with high accuracy due to deformation. Moreover, when the temperature was high, some parts were destroyed.

被処理体の載置機構、特開2004−363372伸縮吸収部材を設けて、熱変形を防止しているが、高精度要求の場合には、変形するため、精度低下や、温度差が大きいと、伸縮を吸収できないことがある。A mounting mechanism for the object to be processed and a Japanese Patent Application Laid-Open No. 2004-363372 expansion / contraction absorbing member are provided to prevent thermal deformation. , May not be able to absorb expansion and contraction. 静電チャックを備えた基板保持体,特開2011−159678変形防止板を設ける方法のため,本提案とは根本的に異なる。This is fundamentally different from the present proposal because of the method of providing a substrate holder having an electrostatic chuck and Japanese Patent Application Laid-Open No. 2011-159678. ケース部構造,特開2008−230335変形を防止する突起を設けており、本提案とは異なる。The case structure is provided with a protrusion for preventing deformation of Japanese Patent Application Laid-Open No. 2008-230335, which is different from the present proposal. 誘電体電極アクチュエータ,特開平09−285143移動子全体が誘電体(絶縁体)で構成され,本提案の電界の加わり方が異なるため,駆動原理が異なる。Since the whole of the dielectric electrode actuator, Japanese Patent Laid-Open No. 09-285143 is composed of a dielectric (insulator) and the proposed method of applying an electric field is different, the driving principle is different. 多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置,特開2004−211941この方法は,冷却のための空気を導入して内筒5内の異常な高温高圧の発生を防ぐと共に層ごとの熱膨張に基づく伸長に起因する歪変形を防止しており、本研究はと異なる。An apparatus for preventing deformation due to thermal expansion of an inner cylinder used in a high-temperature and high-pressure combustion apparatus having a multi-cylinder structure, Japanese Patent Application Laid-Open No. 2004-211941 This study is different from this study because it prevents strain deformation caused by elongation based on thermal expansion of each layer. 超音波探触子及びその製造方法、特開平9−327096この方法は、変形防止材を挿入しており、本研究はと異なる。Ultrasonic probe and method for manufacturing the same, Japanese Patent Laid-Open No. 9-327096 This method is different from the present research in that a deformation preventing material is inserted.

複合材料治具は、熱伝導性の向上などの目的で各層を別の材料で構成させており、図1に示すように、各層の熱膨張が異なるため、連結をすると、カンチレバー効果により、変形が生じており、精度の高い部品を固定するなどに支障をきたしていた。In the composite material jig, each layer is made of a different material for the purpose of improving the thermal conductivity, and as shown in FIG. 1, the thermal expansion of each layer is different. This has caused problems such as fixing highly accurate parts.

本発明は,温度を上昇させて使用する高精度部品を把持する軸対称形状の治具などが有していた問題を解決しようとするものであり,熱膨張の差を変形に影響させない構造を提案すること目的とするものである。The present invention is intended to solve the problem of an axially symmetric jig that grips high-precision parts to be used at an elevated temperature, and has a structure that does not affect the deformation by the difference in thermal expansion. The purpose is to propose.

本発明は上記目的を達成するために,1層上の外周部分(1−2)に、下の層(2)と同じ材質の基板を用いることにより、下の層(2)と上の層(1−2)の連結部の熱歪みをなくする(温度が均一ならば歪みはない)ことにより、層間の熱歪みを解消する。そして、上層の内側基板(1−1)を、耐熱性を有しかつすべり易いPTFE、ポリイミド、PEEKなどの樹脂膜(1−3)などを用いて、外側基板(1−2)で保持することにより、下層(2)と上層(1)の変形をすべりにより変形量の差を吸収する構造を持つ。そのことにより、カンチレバー効果による変形を防ぐ。In order to achieve the above object, the present invention uses a substrate made of the same material as that of the lower layer (2) for the outer peripheral portion (1-2) on one layer, thereby lower layer (2) and upper layer. The thermal strain between the layers is eliminated by eliminating the thermal strain of the connecting portion of (1-2) (no strain if the temperature is uniform). Then, the upper inner substrate (1-1) is held by the outer substrate (1-2) using a resin film (1-3) such as PTFE, polyimide or PEEK which has heat resistance and is easy to slide. As a result, the lower layer (2) and the upper layer (1) have a structure that absorbs the difference in deformation amount by slipping. This prevents deformation due to the cantilever effect.

上下の熱膨張関係が逆でも対応できる。It is possible to cope with the reverse thermal expansion relationship.

上記の構造は、2層以上の多層構造にも適用可能である。The above structure can also be applied to a multilayer structure having two or more layers.

内側の構造にも、適用可能である。It can also be applied to the inner structure.

上記の構造は,軸対称形状だけでなく,平板,棒などの構造にも,適用可能である。The above structure can be applied not only to an axially symmetric shape but also to a structure such as a flat plate or a bar.

治具の各層の材質には、アルミ、SUS、セラミック、銅、鉄、鉄系の合金、ヒーター、断熱版などを使用できる。また、外周で変形を滑らす膜(1−3)は、PTFE,ポリイミド,PEEK,フッ素塗料、温度によっては、シリコン樹脂などが使用可能である。As the material of each layer of the jig, aluminum, SUS, ceramic, copper, iron, an iron-based alloy, a heater, a heat insulating plate, or the like can be used. The membrane (1-3) that slides around the outer periphery can be made of PTFE, polyimide, PEEK, fluorine paint, or silicon resin depending on the temperature.

各層を連結する部分が同一材質のため、カンチレバー効果による変形は防げ、耐熱滑り膜により、各層の熱膨張の差を吸収することが可能となり、従来の変形を1/2から1/3以下に減らすことが可能となった。Because the parts connecting the layers are made of the same material, deformation due to the cantilever effect can be prevented, and the heat-resistant sliding film can absorb the difference in thermal expansion of each layer, reducing the conventional deformation from 1/2 to 1/3 or less. It became possible to reduce.

各層を別の材料で構成させた場合の熱膨張差による変形Deformation due to differential thermal expansion when each layer is made of different materials 各層を別の材料で構成させた場合にも、熱膨張差を吸収する構造で変形を押さえる構造Structure that suppresses deformation with a structure that absorbs the difference in thermal expansion even when each layer is made of different materials

各層を熱膨張率が異なる材料を用いても、連結部に同じ材料を用いることにより熱膨張差がなくなり、さらに、異なる材料間は、滑りやすい樹脂などで、押さえることにより、熱膨張差を逃がす構造を特徴とする。Even if materials with different coefficients of thermal expansion are used for each layer, there is no difference in thermal expansion by using the same material for the connecting part, and furthermore, the difference in thermal expansion is released by pressing between different materials with a slippery resin. Characterized by structure.

上層にセラミック、下層にアルミ、下層の下にヒーター、ヒータの下に断熱層の4層で、φ300の円形形状の治具を作成し、300℃に加熱したが、変形は全面で1mm以内に抑えることができた。The upper layer was ceramic, the lower layer was aluminum, the lower layer was a heater, and the lower layer was a heat insulation layer. Four φ300 jigs were made and heated to 300 ° C. I was able to suppress it.

このような構造は,高精度の加温治具,MEMS,温度変化の激しい自動車部品,燃料電池などの構造体に利用が可能である。Such a structure can be used for structures such as high-precision heating jigs, MEMS, automobile parts that undergo rapid temperature changes, and fuel cells.

1:上層基板
1−1:上層基板内側
1−2:上層基板外側
1−3:滑り易い樹脂
2:下層基板
1: Upper layer substrate 1-1: Upper layer substrate inner side 1-2: Upper layer substrate outer side 1-3: Slippery resin 2: Lower layer substrate

Claims (8)

1層上の外周部分に、下の層を同じ部品を用いることにより、変形を下の層と上の層の連結部の熱歪みをなくする(温度が均一ならば歪みはない)ことにより、層間の熱歪みを解消する構造。By using the same component for the lower layer in the outer peripheral part on one layer, the deformation is eliminated by the thermal distortion of the joint between the lower layer and the upper layer (if the temperature is uniform, there is no distortion) Structure that eliminates thermal strain between layers. 上層の内側と外側は、耐熱性を有しかつすべり易いPTFE、ポリイミド、PEEKなどの樹脂膜などで保持することにより、下層と上層の変形をすべりにより変形量の差を吸収する構造を持つ。そのことにより、カンチレバー効果による変形を防ぐ。The inside and outside of the upper layer have a structure that absorbs the difference in deformation amount by slipping the deformation of the lower layer and the upper layer by holding the resin layer with PTFE, polyimide, PEEK or the like that has heat resistance and is easy to slide. This prevents deformation due to the cantilever effect. 上下の熱膨張関係が逆でも対応できる。It is possible to cope with the reverse thermal expansion relationship. 上記の構造は、2層以上の多層構造にも適用可能である。The above structure can also be applied to a multilayer structure having two or more layers. 内側の構造にも、適用可能である。It can also be applied to the inner structure. 上記の構造は,軸対称形状だけでなく,平板,棒などの構造にも,適用可能である。The above structure can be applied not only to an axially symmetric shape but also to a structure such as a flat plate or a bar. 治具の各層の材質には、アルミ、SUS、セラミック、銅、鉄、鉄系の合金、ヒーター、断熱版などを使用できる。また、外周で変形を滑らす膜は、PTFE,ポリイミド,PEEK,フッ素塗料、温度によっては、シリコン樹脂などが使用可能である。As the material of each layer of the jig, aluminum, SUS, ceramic, copper, iron, an iron-based alloy, a heater, a heat insulating plate, or the like can be used. Moreover, the film | membrane which slides a deformation | transformation on outer periphery can use PTFE, a polyimide, PEEK, a fluorine paint, a silicon resin etc. depending on temperature. このような構造は,高精度の加温治具,MEMS,温度変化の激しい自動車部品,燃料電池などの構造体に利用が可能である。Such a structure can be used for structures such as high-precision heating jigs, MEMS, automobile parts that undergo rapid temperature changes, and fuel cells.
JP2015139192A 2015-06-03 2015-06-03 Structure for reducing thermal strain in composite material structure Pending JP2016221941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139192A JP2016221941A (en) 2015-06-03 2015-06-03 Structure for reducing thermal strain in composite material structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139192A JP2016221941A (en) 2015-06-03 2015-06-03 Structure for reducing thermal strain in composite material structure

Publications (1)

Publication Number Publication Date
JP2016221941A true JP2016221941A (en) 2016-12-28

Family

ID=57747073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139192A Pending JP2016221941A (en) 2015-06-03 2015-06-03 Structure for reducing thermal strain in composite material structure

Country Status (1)

Country Link
JP (1) JP2016221941A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130459A (en) * 1993-10-29 1995-05-19 Kyocera Corp Ceramic heater mounting structure and fluid heating device
JP2006339344A (en) * 2005-06-01 2006-12-14 Disco Abrasive Syst Ltd Chuck table
JP3147015U (en) * 2008-09-29 2008-12-11 株式会社島津製作所 Differential scanning calorimeter
JP2010064406A (en) * 2008-09-12 2010-03-25 Meiki Co Ltd Injection molding mold and outer peripheral stamper holder of injection molding mold
JP2013168394A (en) * 2012-02-14 2013-08-29 Techno Horon:Kk Wafer holding tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130459A (en) * 1993-10-29 1995-05-19 Kyocera Corp Ceramic heater mounting structure and fluid heating device
JP2006339344A (en) * 2005-06-01 2006-12-14 Disco Abrasive Syst Ltd Chuck table
JP2010064406A (en) * 2008-09-12 2010-03-25 Meiki Co Ltd Injection molding mold and outer peripheral stamper holder of injection molding mold
JP3147015U (en) * 2008-09-29 2008-12-11 株式会社島津製作所 Differential scanning calorimeter
JP2013168394A (en) * 2012-02-14 2013-08-29 Techno Horon:Kk Wafer holding tool

Similar Documents

Publication Publication Date Title
TWI657528B (en) Electrostatic chuck
Boroujerdy et al. Axisymmetric snap-through behavior of Piezo-FGM shallow clamped spherical shells under thermo-electro-mechanical loading
JP6300327B2 (en) Apparatus and method for heating a mold or tool
JP2013055089A (en) Electrostatic chuck device
Babu Thermal contact resistance: experiments and simulation
Chen et al. Determination of thermal contact conductance between thin metal sheets of battery tabs
JP2011102768A (en) Measuring method of heat characteristic
Feng et al. An improved steady-state method for measuring the thermal contact resistance and bulk thermal conductivity of thin-walled materials having a sub-millimeter thickness
JP2015534062A5 (en)
Duan et al. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems
Hossein Seyedkashi et al. Laser bendability of SUS430/C11000/SUS430 laminated composite and its constituent layers
JP2008277382A (en) Stage for substrate temperature controller
JP2016221941A (en) Structure for reducing thermal strain in composite material structure
Chen et al. Research on low-temperature anodic bonding using induction heating
JP2015118965A (en) Heater unit for heating wafer
Zhang et al. Effects of pressure and temperature on the effective thermal conductivity of oriented silicon steel iron core under atmospheric condition
JP2012045757A5 (en)
CN114781182B (en) Interaction integration method for solving thermal fracture problem of piezoelectric piezomagnetic composite material
McNamara et al. Double-sided transferred carbon nanotube arrays for improved thermal interface materials
JP2017175110A (en) Flexible thermoelectric element and method for manufacturing the same
Ootao et al. Exact solution of transient thermal stress problem of a multilayered magneto-electro-thermoelastic hollow cylinder
Paul et al. Cooling rate limitations in the diffusion bonding of microchannel arrays
Camilleri Thermo‐mechanical behaviour of DBC substrate assemblies subject to soldering fabrication processes
JP2020134237A (en) Device and method for measuring seebeck coefficient
Arriola et al. Evaluation of the effects of introducing channels to composite materials to reduce warpage on semiconductor packages due to coefficient of thermal expansion mismatch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310