JP2016220502A - Protective relay device - Google Patents

Protective relay device Download PDF

Info

Publication number
JP2016220502A
JP2016220502A JP2015106559A JP2015106559A JP2016220502A JP 2016220502 A JP2016220502 A JP 2016220502A JP 2015106559 A JP2015106559 A JP 2015106559A JP 2015106559 A JP2015106559 A JP 2015106559A JP 2016220502 A JP2016220502 A JP 2016220502A
Authority
JP
Japan
Prior art keywords
accident
phase
distance
standard
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015106559A
Other languages
Japanese (ja)
Inventor
政敏 近藤
Masatoshi Kondo
政敏 近藤
圭司 岡部
Keiji Okabe
圭司 岡部
勝己 正木
Katsumi Masaki
勝己 正木
明文 西山
Akifumi Nishiyama
明文 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2015106559A priority Critical patent/JP2016220502A/en
Publication of JP2016220502A publication Critical patent/JP2016220502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a protective function for a power system by surely operating a distance relay of an accident phase in the case of an accident.SOLUTION: A protective relay device comprises: an accident detection circuit for detecting a phase, among a plurality of phases, including a transmission line in which an accident occurs; and a plurality of distance relays which are provided for each of the phases and to which a standard setting value is preset for breaking a cable way of the transmission line by assuming an accident to occur in the transmission line. The distance relay of a phase that is judged as an accident phase by the accident detection circuit is switched from the standard setting value to an extension setting value for which arc resistance to occur at an accident point is taken into account and which is greater than the standard setting value.SELECTED DRAWING: Figure 1

Description

本発明は、例えば短絡事故や地絡事故等から電力系統を保護するための保護継電装置に関する。   The present invention relates to a protective relay device for protecting a power system from, for example, a short circuit accident or a ground fault.

電力系統には、保護継電装置が設置される。該保護継電装置は、複数相のうちの2相間の短絡を検知する距離継電器を備える。   A protective relay device is installed in the power system. The protective relay device includes a distance relay that detects a short circuit between two phases of a plurality of phases.

距離継電器には、図5(a)に示す如く、インピーダンス中の抵抗成分とリアクタンス成分とに基づいて標準整定値SM1が予め設定されている。具体的に、標準整定値SM1は、jX軸(リアクタンス成分を示す軸)とR軸(抵抗成分を示す軸)とが交差する座標の原点を通る円を通常時の動作域としている。つまり、距離継電器は、標準整定値SM1内(円内)を動作域とし、標準整定値SM1外(円外)を非動作域としている。なお、標準整定値SM1内(円内)の動作域において、R軸に対して所定の角度を有する直線Sは、リレー最高感度角を示す。また、距離継電器は座標の原点を自己の設置点としている。   In the distance relay, as shown in FIG. 5A, a standard settling value SM1 is preset based on the resistance component and reactance component in the impedance. Specifically, the standard settling value SM1 has a normal operating range as a circle passing through the origin of coordinates at which the jX axis (axis indicating the reactance component) and the R axis (axis indicating the resistance component) intersect. That is, the distance relay uses the standard setpoint value SM1 (inside the circle) as the operating range and the standard setpoint value SM1 outside (outside the circle) as the non-operating range. Note that, in the operating range within the standard settling value SM1 (inside the circle), a straight line S having a predetermined angle with respect to the R axis indicates the relay maximum sensitivity angle. Moreover, the distance relay uses the coordinate origin as its installation point.

また、距離継電器は、複数相のうちのいずれの相の送電線で発生した事故点(インピーダンス(F点))が標準整定値SM1内にあると認識すると、動作(例えば、遮断器を動作させるトリップ信号を遮断器に送信)する。これにより、事故相の送電線の電路が遮断される。   When the distance relay recognizes that the fault point (impedance (point F)) occurring in the transmission line of any of the plurality of phases is within the standard settling value SM1, the distance relay operates (for example, operates the circuit breaker). Send a trip signal to the circuit breaker. Thereby, the electric circuit of the power line of the accident phase is interrupted.

ところで、前記距離継電器は、水力発電所など背後電源が小さく、事故点Fにアーク抵抗が生じた場合には、予め設定された距離継電器の標準整定値SM1(保護範囲)から事故点(インピーダンス(点a1))が外れて、確実に動作できないことがある。   By the way, the distance relay has a small rear power source such as a hydroelectric power station, and when an arc resistance occurs at the fault point F, the fault point (impedance (impedance)) from the preset standard value SM1 (protection range) of the distance relay. There is a case where the point a1)) is removed and the operation cannot be surely performed.

特開2008−136264号公報JP 2008-136264 A

このため、図5(b)に示す如く、アーク抵抗を考慮し、3相すべての距離継電器の通常の標準整定値SM1を拡大した拡大標準整定値SM2に設定することが考えられるが、このようにすると、非事故相の距離継電器がオーバーリーチにより不要動作することになる、という問題がある。具体的に説明すると、非事故相の距離継電器から見た事故点のインピーダンス(点a2)は、事故相の距離継電器から見たインピーダンスよりも小さいため、3相すべての距離継電器の通常の標準整定値SM1を拡大標準整定値SM2に大きく設定することで、通常の標準整定値SM1では認識しなかった非事故相の距離継電器が、事故相の距離継電器よりも早く事故を認識してしまい、結果的に非事故相の送電線の電路を遮断する。   For this reason, as shown in FIG. 5 (b), it is conceivable to set the expanded standard settling value SM2 to the enlarged standard settling value SM1 for all three-phase distance relays in consideration of the arc resistance. In this case, there is a problem that the non-accident phase distance relay is operated unnecessarily due to overreach. Specifically, since the impedance at the accident point (point a2) seen from the distance relay of the non-accident phase is smaller than the impedance seen from the distance relay of the accident phase, normal standard settling of all three phase distance relays By setting the value SM1 to the enlarged standard settling value SM2, the non-accident phase distance relay that was not recognized by the normal standard settling value SM1 recognizes the accident earlier than the accident phase distance relay. In the meantime, the power line of the non-accident phase transmission line is cut off.

そこで、本発明は、上記問題に鑑み、事故時において、事故相の距離継電器を確実に動作させて、電力系統に対する保護機能を向上することができる保護継電装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a protective relay device capable of improving the protective function for the power system by reliably operating the distance relay of the accident phase in the event of an accident. .

本発明に係る保護継電装置は、複数相のうちのいずれの相の送電線に事故が発生したのか検出する事故検出回路と、相毎に設けられ、且つ前記送電線で発生する事故を想定して該送電線の電路を遮断するために標準整定値が予め設定された複数の距離継電器とを備え、前記事故検出回路によって事故相であると判断された相の距離継電器は、前記標準整定値から、事故点で発生するアーク抵抗を考慮された標準整定値よりも大きい拡大整定値に切り換えるように構成されたことを特徴とする。   The protective relay device according to the present invention assumes an accident detection circuit that detects whether an accident has occurred in one of the plurality of phases, and an accident that occurs in each phase and that occurs in the transmission line. And a distance relay of a phase determined to be an accident phase by the accident detection circuit is provided with a plurality of distance relays in which standard settling values are preset in order to cut off the power line of the transmission line. It is characterized in that it is configured to switch from a value to an enlarged set value that is larger than a standard set value in consideration of the arc resistance generated at the accident point.

かかる構成によれば、事故相の距離継電器は、事故検出回路の事故相の情報に基づいて標準整定値からアーク抵抗を考慮した拡大整定値に切り換えられるため、事故点にアーク抵抗が発生していないときは勿論、事故点にアーク抵抗が発生しても事故を認識して確実に動作する。特に、至近端事故において、事故点にアーク抵抗が発生すると、事故のあった相(以下、事故相という)の距離継電器から見た、事故点のインピーダンスが通常の標準整定値を大きく超える傾向にあるが、拡大整定値にすることで確実に認識して動作する。また、非事故相の距離継電器は、通常の標準整定値に設定されているため、オーバーリーチにより不要動作することがない。   According to this configuration, the distance relay of the accident phase is switched from the standard set value to the enlarged set value considering the arc resistance based on the information of the accident phase of the accident detection circuit, so that an arc resistance is generated at the accident point. Of course, when there is no arc, an arc is generated at the point of the accident, and the operation is performed with the accident recognized. In particular, when arc resistance occurs at the point of failure in a near-end accident, the impedance at the point of failure, as viewed from the distance relay of the phase where the accident occurred (hereinafter referred to as the accident phase), tends to greatly exceed the normal standard settling value. However, it can be recognized and operated reliably by using an enlarged settling value. In addition, the non-accident phase distance relay is set to a normal standard settling value, and therefore does not needlessly operate due to overreach.

本発明に係る保護継電装置の一態様として、前記事故検出回路は、複数相のうちの相間の電流を比較して事故を検出することが好ましい。   As one aspect of the protective relay device according to the present invention, it is preferable that the accident detection circuit detects an accident by comparing currents between phases of a plurality of phases.

かかる構成によれば、複数相のうちの相間の電流を比較して事故を検出するため、事故相のアーク抵抗を正確に把握することができ、事故相の距離継電器に対してアーク抵抗を考慮した拡大整定値に確実に変更することができる。   According to such a configuration, since an accident is detected by comparing the currents between the phases of the plurality of phases, the arc resistance of the accident phase can be accurately grasped, and the arc resistance is considered for the distance relay of the accident phase. The enlarged settling value can be reliably changed.

以上のように、本発明によれば、事故時において、事故相の距離継電器を確実に動作させて、電力系統に対する保護機能を向上することができる。   As described above, according to the present invention, in the event of an accident, the accident phase distance relay can be reliably operated to improve the protection function for the power system.

図1は、本発明の一実施形態に係る保護継電装置を示す回路図である。FIG. 1 is a circuit diagram showing a protective relay device according to an embodiment of the present invention. 図2は、電力系統に対する距離継電器の保護を説明する図である。FIG. 2 is a diagram illustrating protection of the distance relay for the power system. 図3は、本発明の一実施形態に係る保護継電装置のフローを示す図である。FIG. 3 is a diagram showing a flow of the protective relay device according to the embodiment of the present invention. 図4は、本発明の一実施形態に係る保護継電装置の動作特性を示す図である。FIG. 4 is a diagram illustrating operating characteristics of the protective relay device according to the embodiment of the present invention. 図5(a)は、従来の距離継電器の標準整定値を示す図、図5(b)は、距離継電器の標準整定値を広げた状態の図である。FIG. 5A is a diagram illustrating a standard settling value of a conventional distance relay, and FIG. 5B is a diagram illustrating a state in which the standard settling value of the distance relay is expanded.

本発明の一実施形態に係る保護継電装置について図面を参照しながら説明する。
図1に示す如く、本実施形態に係る保護継電装置1は、複数相のうちのいずれの相の送電線Lに事故が発生したのか検出する事故検出回路2と、相毎に設けられ、且つ送電線Lで発生する事故を想定して該送電線Lの電路を遮断するために標準整定値SM1(図4参照)が予め設定された複数の第一距離継電器44SM−1〜44SM−3とを備える。また、本実施形態においては、事故相の第一距離継電器44SMを判断することを前提に、遮断器に対してトリップ信号出力するか否かを判断するための第二距離継電器44SX1、44SX2をさらに備える。
A protective relay device according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the protective relay device 1 according to the present embodiment is provided with an accident detection circuit 2 that detects whether an accident has occurred in any phase of the transmission line L of the plurality of phases, and for each phase. In addition, a plurality of first distance relays 44SM-1 to 44SM-3 in which a standard settling value SM1 (see FIG. 4) is set in advance in order to interrupt an electric circuit of the transmission line L in the event of an accident occurring in the transmission line L. With. In the present embodiment, on the assumption that the first distance relay 44SM of the accident phase is determined, the second distance relays 44SX1 and 44SX2 for determining whether or not to output a trip signal to the circuit breaker are further provided. Prepare.

事故検出回路2は、相毎に設けられた過電流継電器51−R,51−S,51−Tと、2相間の事故の有無を判断する事故判断回路20とを備える。   The accident detection circuit 2 includes overcurrent relays 51-R, 51-S, and 51-T provided for each phase, and an accident determination circuit 20 that determines whether there is an accident between the two phases.

事故判断回路20は、過電流継電器51−R,51−Tの出力と、過電流継電器51−S,51−Tの出力とをそれぞれアンド条件として出力する第一の論理積素子20RT,20SR,20TSを備える。すなわち、事故検出回路2は、3相のうちの2相間における電流を比較して事故を検出する。この検出信号は、第一距離継電器44SM−1〜44SM−3の標準整定値SM1から拡大整定値SM2(図4参照)に変更する条件となる。   The accident determination circuit 20 includes first AND elements 20RT, 20SR, which output the outputs of the overcurrent relays 51-R and 51-T and the outputs of the overcurrent relays 51-S and 51-T as AND conditions, respectively. It has 20TS. That is, the accident detection circuit 2 detects an accident by comparing currents between two phases of the three phases. This detection signal is a condition for changing from the standard set value SM1 of the first distance relays 44SM-1 to 44SM-3 to the enlarged set value SM2 (see FIG. 4).

また、本実施形態においては、第一距離継電器44SM−1〜44SM−3の出力と事故検出回路2の出力とに基づいて、事故相の第一距離継電器44SM(標準整定値SM1から拡大整定値SM2に切り換えられた第一距離継電器44SM)を判断する事故相の距離継電器判断回路30を備える。   Further, in the present embodiment, based on the outputs of the first distance relays 44SM-1 to 44SM-3 and the output of the accident detection circuit 2, the fault phase first distance relay 44SM (from the standard setpoint value SM1 to the enlarged setpoint value). A fault phase distance relay determination circuit 30 is provided for determining the first distance relay 44SM) switched to SM2.

事故相の距離継電器判断回路30は、44SM−1〜44SM−3の拡大整定値SM2の出力と事故検出回路2の出力とをアンド条件として出力する第二の論理積素子3RT,3SR,3TSと、第一距離継電器44SM−1〜44SM−3の標準整定値SM1の出力と第二の論理積素子3RT,3SR,3TSの出力とをオア条件として出力する第一の論理和素子4RT,4SR,4TSとを備える。   The accident phase distance relay determination circuit 30 includes second AND elements 3RT, 3SR, 3TS that output the output of the enlarged set value SM2 of 44SM-1 to 44SM-3 and the output of the accident detection circuit 2 as AND conditions. The first OR elements 4RT, 4SR, which output the outputs of the standard settling values SM1 of the first distance relays 44SM-1 to 44SM-3 and the outputs of the second AND elements 3RT, 3SR, 3TS as OR conditions. 4TS.

また、本実施形態においては、複数の相のうちいずれの相の第一距離継電器が事故を検出して動作したのかを判断する第二の論理和素子5と、2つの第二距離継電器44SX1,44SX2のうちいずれの第二距離継電器44SXが動作したのかを判断する第三の論理和素子6と、第一距離継電器44SM及び第二距離継電器44SXの動作に基づいて、遮断器に対するトリップ信号の出力の是非を判断する第二の論理積素子7とをさらに備える。   Moreover, in this embodiment, the 2nd OR element 5 which judges whether the 1st distance relay of which phase of several phases detected the accident, and two 2nd distance relays 44SX1, A trip signal is output to the circuit breaker based on the operation of the third OR element 6 that determines which of the second distance relays 44SX of 44SX2 is operated, and the first distance relay 44SM and the second distance relay 44SX. And a second AND element 7 for determining whether or not.

第一距離継電器44SMは、インピーダンス中の抵抗成分とリアクタンス成分とに基づいて標準整定値SM1が予め標準的に設定される。具体的に、標準整定値SM1は、図1に示す如く、jX軸(リアクタンス成分を示す軸)とR軸(抵抗を成分を示す軸)とが交差する座標の原点を通る円を通常時の動作域としている。つまり、第一距離継電器44SMは、標準整定値SM1内(円内)を動作域とし、標準整定値SM1外(円外)を非動作域としている。ここでいう動作域とは、遮断器にトリップ信号を出力する動作範囲をいう。なお、標準整定値SM1内(円内)の動作域において、R軸に対して所定の角度を有する直線Sは、リレー最高感度角を示す。また、第一距離継電器44SMは座標の原点を自己の設置点としている。そして、前記事故検出回路2によって事故相であると判断された相の第一距離継電器44SM−1〜44SM−3は、前記標準整定値SM1から、事故点Fで発生するアーク抵抗を考慮された標準整定値SM1よりも大きい拡大整定値SM2に切り換えるように構成される。   In the first distance relay 44SM, a standard settling value SM1 is set as a standard in advance based on a resistance component and a reactance component in the impedance. Specifically, as shown in FIG. 1, the standard settling value SM1 is a circle that passes through the origin of the coordinates at which the jX axis (axis that represents the reactance component) and the R axis (axis that represents the resistance component) intersect. The operating range. In other words, the first distance relay 44SM has an operating range within the standard settling value SM1 (inside the circle) and a non-operating range outside the standard settling value SM1 (outside the circle). Here, the operating range refers to an operating range in which a trip signal is output to the circuit breaker. Note that, in the operating range within the standard settling value SM1 (inside the circle), a straight line S having a predetermined angle with respect to the R axis indicates the relay maximum sensitivity angle. The first distance relay 44SM uses the coordinate origin as its installation point. Then, the first distance relays 44SM-1 to 44SM-3 of the phases determined to be the accident phase by the accident detection circuit 2 have been considered the arc resistance generated at the accident point F from the standard set value SM1. It is configured to switch to an enlarged set value SM2 that is larger than the standard set value SM1.

第二距離継電器44SXは、インピーダンス中のリアクタンス成分に基づいて整定値SXが予め標準的に設定される。具体的に、整定値SXは、図1に示す如く、R軸と平行な直線SXを動作特性としている。つまり、第二距離継電器44SXは、直線より低い原点側のインピーダンスを動作域とし、これとは反対側の直線より高いインピーダンスを非動作域としている。ここでいう動作域とは、遮断器にトリップ信号を出力する動作範囲をいう。なお、本実施形態においては、2段階の第二距離継電器44SX1,44SX2が適用され、1段目の第二距離継電器44SX1の整定値SX1、2段目の第二継電器44SX2の整定値SX2がそれぞれ設定される。   In the second distance relay 44SX, a set value SX is set as a standard in advance based on the reactance component in the impedance. Specifically, as shown in FIG. 1, the settling value SX has a straight line SX parallel to the R axis as an operating characteristic. That is, in the second distance relay 44SX, the impedance on the origin side lower than the straight line is set as the operating range, and the impedance higher than the straight line on the opposite side is set as the non-operating range. Here, the operating range refers to an operating range in which a trip signal is output to the circuit breaker. In the present embodiment, two-stage second distance relays 44SX1 and 44SX2 are applied, and the first stage second distance relay 44SX1 settling value SX1 and the second stage second relay 44SX2 settling value SX2 respectively. Is set.

第一距離継電器44SM−1〜44SM−3及び第二距離継電器44SX1,SX2(図2では、距離継電器44Sと表示)は、図2に示す如く、送電線Lの一方端は電源Pに接続され、他方端は変電所A(距離継電器44Sの設置点)を経由して受電設備に接続される。また、第一距離継電器44SM−1〜44SM−3及び第二距離継電器44SX1,SX2は、送電線Lに設けられた変成器10および変流器11に接続される。   As shown in FIG. 2, the first distance relays 44SM-1 to 44SM-3 and the second distance relays 44SX1 and SX2 (shown as distance relay 44S in FIG. 2) are connected to the power source P at one end of the transmission line L. The other end is connected to the power receiving facility via the substation A (the installation point of the distance relay 44S). The first distance relays 44SM-1 to 44SM-3 and the second distance relays 44SX1 and SX2 are connected to the transformer 10 and the current transformer 11 provided in the transmission line L.

そして、第一距離継電器44SM−1〜44SM−3及び第二距離継電器44SX1,SX2は、変成器10の二次電圧に基づいて送電線Lの電圧Vを検知する。また、第一距離継電器44SM−1〜44SM−3及び第二距離継電器44SX1,SX2は、変流器11の二次電流に基づいて送電線Lの電流Iを検知する。第一距離継電器44SM−1〜44SM−3及び第二距離継電器44SX1,SX2は、送電線L上の事故点Fで事故が発生したとき、設置点Aの電圧Vを電流Iで除することにより事故点Fまでの電気的距離であるインピーダンスZfを算出する。   The first distance relays 44SM-1 to 44SM-3 and the second distance relays 44SX1 and SX2 detect the voltage V of the transmission line L based on the secondary voltage of the transformer 10. The first distance relays 44SM-1 to 44SM-3 and the second distance relays 44SX1 and SX2 detect the current I of the transmission line L based on the secondary current of the current transformer 11. The first distance relays 44SM-1 to 44SM-3 and the second distance relays 44SX1 and SX2 are obtained by dividing the voltage V at the installation point A by the current I when an accident occurs at the accident point F on the transmission line L. An impedance Zf, which is an electrical distance to the accident point F, is calculated.

つぎに本実施形態に係る距離継電器の使用態様について図1〜図4を参照して説明する。なお、本実施形態においては、RT相間に短絡事故が発生したと想定する。   Next, a usage mode of the distance relay according to the present embodiment will be described with reference to FIGS. In the present embodiment, it is assumed that a short circuit accident has occurred between the RT phases.

まず、事故検出回路2によって、3相のうちの2相間(RT相間)の電流を比較することで事故が検出される(S1)。   First, the accident detection circuit 2 detects an accident by comparing currents between two phases (between the RT phases) of the three phases (S1).

つぎに事故点Fの電圧の大きさが判定される(S2)。具体的には、変成器10の二次電圧に基づいて事故点Fの電圧Vを検知する。このとき、事故点Fの電圧が規定値以下であれば、至近端事故であると判定される(S3)。具体的には、図4に示す如く、残り電圧が非常に小さく、インピーダンス中の抵抗成分のみとなるため、方向の判別が困難で、事故点のインピーダンス(点a2)が第一距離継電器44SM−1の標準整定値SM1の動作域を超えて非動作域に入った場合、至近端事故と判定される。   Next, the magnitude of the voltage at the accident point F is determined (S2). Specifically, the voltage V at the fault point F is detected based on the secondary voltage of the transformer 10. At this time, if the voltage at the accident point F is equal to or less than the specified value, it is determined that the near-end accident has occurred (S3). Specifically, as shown in FIG. 4, since the remaining voltage is very small and only the resistance component in the impedance is present, it is difficult to determine the direction, and the impedance (point a2) at the fault point is the first distance relay 44SM- When the operating range of 1 standard set value SM1 is exceeded and the non-operating range is entered, it is determined that the near-end accident has occurred.

また、事故点Fの電圧が規定値よりも大きいと判定されると、事故相の第一距離継電器44SM−1に対して変流器11の二次電流に基づいて事故点Fの電流値が算出され、該電流値から拡大整定値SM2が演算される(S4)。具体的には、拡大整定値SM2は、アーク抵抗が発生しない時の線路インピーダンスと、アーク抵抗が発生した時の線路インピーダンスとを比較演算して求められる。   When it is determined that the voltage at the fault point F is larger than the specified value, the current value at the fault point F is determined based on the secondary current of the current transformer 11 with respect to the first distance relay 44SM-1 in the fault phase. The calculated settling value SM2 is calculated from the current value (S4). Specifically, the enlarged settling value SM2 is obtained by comparing and calculating the line impedance when the arc resistance is not generated and the line impedance when the arc resistance is generated.

そして、事故相の第一距離継電器44SM−1が標準整定値SM1から拡大整定値SM2に切り換えられる(S5)。一方、非事故相(SR相)の第一距離継電器44SM−2及び非事故相(TS相)の第一距離継電器44SM−3の整定値は、予め設定された標準整定値SM1に維持される。   Then, the accident phase first distance relay 44SM-1 is switched from the standard settling value SM1 to the enlarged settling value SM2 (S5). On the other hand, the setting values of the first distance relay 44SM-2 for the non-accident phase (SR phase) and the first distance relay 44SM-3 for the non-accident phase (TS phase) are maintained at the preset standard setting value SM1. .

そして、拡大整定値SM2に基づいて、事故点にアーク抵抗がある場合の事故、至近端事故に対して第一距離継電器44SMが動作する(S6)。   Then, based on the enlarged settling value SM2, the first distance relay 44SM is operated for an accident when the fault point has an arc resistance and a near-end accident (S6).

具体的に説明すると、図4に示す如く、事故点Fにアーク抵抗が発生していれば、事故点が標準整定値SM1から外れることになるが、事故相の第一距離継電器44SM−1は、標準整定値SM1から拡大整定値SM2に切り換えられるため、事故点(点a1)を認識し確実に動作する。一方、非事故相の第一距離継電器44SM−2,44SM−3は、標準整定値SM1に設定されているため、不要動作することがない。   More specifically, as shown in FIG. 4, if an arc resistance occurs at the fault point F, the fault point will deviate from the standard settling value SM1, but the first distance relay 44SM-1 in the fault phase is Since the standard set value SM1 is switched to the enlarged set value SM2, the accident point (point a1) is recognized and the operation is performed reliably. On the other hand, since the first distance relays 44SM-2 and 44SM-3 of the non-accident phase are set to the standard settling value SM1, there is no unnecessary operation.

至近端事故時が発生した場合、図4に示す如く、事故相の第一距離継電器44SM−1は、事故点(点a2)が拡大整定値SM2の範囲内で検知されるため、確実に動作する。一方、非事故相の第一距離継電器44SM−2,44SM−3は、標準整定値SM1から外れるため、事故と認識することがなく、不要動作することがない。   When the near-end accident occurs, as shown in FIG. 4, the first distance relay 44SM-1 of the accident phase reliably detects the accident point (point a2) within the range of the enlarged settling value SM2. Operate. On the other hand, since the first distance relays 44SM-2 and 44SM-3 of the non-accident phase are out of the standard settling value SM1, they are not recognized as accidents and do not operate unnecessarily.

また、図4に示す如く、非事故相の第一距離継電器44SM−2,44SM−3のうちいずれか一方において、オーバーリーチが発生した場合、非事故相の第一距離継電器44SM−2,44SM−3のいずれにおいても通常の標準整定値SM1に設定されているため、非事故相の第一距離継電器44SM−2,44SM−3のうちいずれか一方から見た事故点のインピーダンス(点a3)は標準整定値SM1から外れることになる。これにより、非事故相の第一距離継電器44SM−2,44SM−3のうちいずれか一方は、オーバーリーチにより不要動作することがない。   Further, as shown in FIG. 4, when overreach occurs in any one of the first distance relays 44SM-2 and 44SM-3 in the non-accident phase, the first distance relays 44SM-2 and 44SM in the non-accident phase. −3, the normal standard settling value SM1 is set. Therefore, the impedance at the fault point (point a3) viewed from either one of the first distance relays 44SM-2 and 44SM-3 of the non-accident phase. Deviates from the standard settling value SM1. As a result, any one of the first distance relays 44SM-2 and 44SM-3 in the non-accident phase does not needlessly operate due to overreach.

なお、図4に示す如く、事故相の第一距離継電器44SM−1は、拡大整定値SM2に設定されることから負荷インピーダンス領域Zrに近づくことになるが、事故点のインピーダンスを拡大整定値SM2内で認識することにより確実に動作する。一方、非事故相の第一距離継電器44SM−2,44SM−3は標準整定値SM1であることから負荷インピーダンス領域Zrに近づくことはなく、不要動作することがない。   As shown in FIG. 4, the first distance relay 44SM-1 of the accident phase is set to the enlarged set value SM2, and thus approaches the load impedance region Zr, but the impedance at the accident point is set to the enlarged set value SM2. It works reliably by recognizing within. On the other hand, since the first distance relays 44SM-2 and 44SM-3 of the non-accident phase are standard settling values SM1, they do not approach the load impedance region Zr and do not operate unnecessarily.

そして、事故相の第一距離継電器44SM−1が動作し、2つのうちのいずれか1つの第二距離継電器44SXの出力があった場合は、遮断器にトリップ信号が出力される(S14)。   Then, when the first distance relay 44SM-1 of the accident phase is operated and there is an output of one of the two second distance relays 44SX, a trip signal is output to the circuit breaker (S14).

このように、本実施形態に係る距離継電器によれば、事故検出回路2の事故相の情報に基づいて標準整定値SM1からアーク抵抗を考慮した拡大整定値SM2に切り換えられるため、事故点Fにアーク抵抗が発生していないときは勿論、事故点Fにアーク抵抗が発生しても事故を認識して確実に動作する。特に、至近端事故において、事故点Fにアーク抵抗が発生すると、事故相の第一距離継電器44SMから見た、事故点Fのインピーダンスが通常の標準整定値SM1を大きく超える傾向にあるが、拡大整定値SM2にすることで確実に認識して動作する。また、非事故相の第一距離継電器44SMは、通常の標準整定値SM1に設定されているため、オーバーリーチにより不要動作することがない。   As described above, according to the distance relay according to the present embodiment, the standard setting value SM1 is switched from the standard setting value SM1 to the enlarged setting value SM2 considering the arc resistance based on the information on the accident phase of the accident detection circuit 2. Of course, when the arc resistance has not occurred, even if the arc resistance occurs at the accident point F, the accident is recognized and the operation is surely performed. In particular, when an arc resistance occurs at the accident point F in the near-end accident, the impedance at the accident point F as viewed from the first distance relay 44SM of the accident phase tends to greatly exceed the normal standard settling value SM1. Recognizing and operating reliably by setting the enlarged settling value SM2. Further, since the first distance relay 44SM of the non-accident phase is set to the normal standard settling value SM1, it does not needlessly operate due to overreach.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論のことである。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

例えば、前記実施形態の場合、第一距離継電器44SMの標準整定値SM1の円に対して、標準整定値SM1の円と同様に、座標軸の原点を通る拡大された円としたが、第一距離継電器44SMの標準整定値SM1の円に対して、同心状に拡大した拡大整定値の円であってもよい。   For example, in the case of the above-described embodiment, the circle of the standard setting value SM1 of the first distance relay 44SM is an enlarged circle passing through the origin of the coordinate axis, like the circle of the standard setting value SM1, but the first distance It may be an enlarged set value circle concentrically expanded with respect to the standard set value SM1 circle of the relay 44SM.

また、前記実施形態の場合、第一距離継電器44SMと第二距離継電器44SXとを組み合わせるようにしたが、第一距離継電器44SMのみであってもよい。   In the above embodiment, the first distance relay 44SM and the second distance relay 44SX are combined, but only the first distance relay 44SM may be used.

1…保護継電装置、2…事故検出回路、20RT,20SR,20TS、3RT,3SR,3TS、7…論理積素子、4RT,4SR,4TS、5,6…論理和素子、44SM−1,44SM−2,44SM−3…第一距離継電器、44SX1,44SX2…第二距離継電器、44S…距離継電器、51−R,51−S,51−T…過電流継電器、F…事故点、L…送電線、SM1…標準整定値、SM2…拡大整定値   DESCRIPTION OF SYMBOLS 1 ... Protective relay device, 2 ... Accident detection circuit, 20RT, 20SR, 20TS, 3RT, 3SR, 3TS, 7 ... AND element, 4RT, 4SR, 4TS, 5, 6 ... OR element, 44SM-1, 44SM -2, 44SM-3 ... 1st distance relay, 44SX1, 44SX2 ... 2nd distance relay, 44S ... Distance relay, 51-R, 51-S, 51-T ... Overcurrent relay, F ... Accident point, L ... Transmission Electric wire, SM1 ... Standard setting value, SM2 ... Expanded setting value

Claims (2)

複数相のうちのいずれの相の送電線に事故が発生したのか検出する事故検出回路と、相毎に設けられ、且つ前記送電線で発生する事故を想定して該送電線の電路を遮断するために標準整定値が予め設定された複数の距離継電器とを備え、前記事故検出回路によって事故相であると判断された相の距離継電器は、前記標準整定値から、事故点で発生するアーク抵抗が考慮された標準整定値よりも大きい拡大整定値に切り換えるように構成されたことを特徴とする保護継電装置。   An accident detection circuit that detects which phase of the transmission line of the plurality of phases has occurred, and an accident detection circuit that is provided for each phase, and that interrupts the transmission line by assuming an accident that occurs in the transmission line Therefore, a distance relay of a phase determined to be an accident phase by the accident detection circuit is an arc resistance generated at an accident point from the standard set value. A protective relay device configured to switch to an enlarged settling value larger than a standard settling value taking into account 前記事故検出回路は、複数相における相間の電流を比較して事故を検出することを特徴とする請求項1に記載の保護継電装置。   The protective relay device according to claim 1, wherein the accident detection circuit detects an accident by comparing currents between phases in a plurality of phases.
JP2015106559A 2015-05-26 2015-05-26 Protective relay device Pending JP2016220502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106559A JP2016220502A (en) 2015-05-26 2015-05-26 Protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106559A JP2016220502A (en) 2015-05-26 2015-05-26 Protective relay device

Publications (1)

Publication Number Publication Date
JP2016220502A true JP2016220502A (en) 2016-12-22

Family

ID=57581864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106559A Pending JP2016220502A (en) 2015-05-26 2015-05-26 Protective relay device

Country Status (1)

Country Link
JP (1) JP2016220502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888017A (en) * 2019-10-29 2020-03-17 国电南瑞科技股份有限公司 Low-current ground fault line selection method based on power grid dispatching control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867743A (en) * 1971-12-21 1973-09-17
JPS5080451A (en) * 1973-11-20 1975-06-30
JPH11178199A (en) * 1997-12-11 1999-07-02 Toshiba Corp Distance relay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867743A (en) * 1971-12-21 1973-09-17
JPS5080451A (en) * 1973-11-20 1975-06-30
JPH11178199A (en) * 1997-12-11 1999-07-02 Toshiba Corp Distance relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888017A (en) * 2019-10-29 2020-03-17 国电南瑞科技股份有限公司 Low-current ground fault line selection method based on power grid dispatching control system

Similar Documents

Publication Publication Date Title
AU2013401941B2 (en) Distributed arc fault protection between outlet and circuit breaker
CN106066450B (en) Insulation monitoring device with voltage monitoring and method based on same
EP3041101B1 (en) System for improving lightning immunity for a solid state power controller
EP2975719B1 (en) Fault current detecting circuit
EP2728691B1 (en) Fault current detecting circuit
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
US10923902B2 (en) Fuse system for at least one load of a vehicle
AU2018204368B2 (en) Upstream Parallel Arc Fault Outlet Protection Method
US7965478B2 (en) System and method for detecting a fault condition
KR101316544B1 (en) Method for judging electric power system failure
EP2549609A2 (en) Protection coordination system with current limiter
CN103683181A (en) Power distribution system and method for operating same
CN105098717A (en) Contactor protection method and device
JP2016220502A (en) Protective relay device
CN103760472A (en) Identically named fault phrase sequence diagnosis method of double-circuit lines on the same tower
JP5258633B2 (en) AA circuit breaker with neutral wire phase loss protection
JP2008160910A (en) Protective relay device
KR101648512B1 (en) Motor protection relay for detecting resistive ground fault current
JP2007221930A (en) Protection relay having directionality and protective relay system having directionality
JP2002010481A (en) Protection system for power-receiving and distribution facilities
JP6745707B2 (en) Transmission line protection relay system and transmission line protection method
JP2015216783A (en) Bus bar protective relay device
WO2024105742A1 (en) Breaking device, power supply system, control device, setting value determination method, and program
JP2019040710A (en) Overcurrent suppression device and direct current power distribution system
JP4120540B2 (en) DC feeding network protection method and DC feeding network protection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190328