JP2016219607A - Magnet and magnet rotor - Google Patents

Magnet and magnet rotor Download PDF

Info

Publication number
JP2016219607A
JP2016219607A JP2015103279A JP2015103279A JP2016219607A JP 2016219607 A JP2016219607 A JP 2016219607A JP 2015103279 A JP2015103279 A JP 2015103279A JP 2015103279 A JP2015103279 A JP 2015103279A JP 2016219607 A JP2016219607 A JP 2016219607A
Authority
JP
Japan
Prior art keywords
magnet
magnetic force
magnetic
force adjusting
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015103279A
Other languages
Japanese (ja)
Other versions
JP6544992B2 (en
Inventor
肇 山中
Hajime Yamanaka
肇 山中
望 森本
Nozomi Morimoto
望 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakagawa Electric Ind Co Ltd
Original Assignee
Nakagawa Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakagawa Electric Ind Co Ltd filed Critical Nakagawa Electric Ind Co Ltd
Priority to JP2015103279A priority Critical patent/JP6544992B2/en
Publication of JP2016219607A publication Critical patent/JP2016219607A/en
Application granted granted Critical
Publication of JP6544992B2 publication Critical patent/JP6544992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To suppress low-temperature demagnetization.SOLUTION: By forming at least magnetic pole (2, 3) parts with a ferrite magnet and forming an area including a boundary part of the magnetic poles (2, 3) with a neodymium magnet 4, low-temperature demagnetization can be suppressed.SELECTED DRAWING: Figure 1

Description

側面に極性の異なる磁極が交互に配列される円筒形の磁石およびそれを備えるモータのマグネットロータに関する。   The present invention relates to a cylindrical magnet in which magnetic poles having different polarities are alternately arranged on a side surface, and a magnet rotor of a motor including the cylindrical magnet.

様々な装置や機器に電動のモータが使用される。モータは主にブラシ付モータとブラシレスモータに大別され、耐久性,静音声,制御性が要求される場合はブラシレスモータが使用される場合が多い。ブラシレスモータは、円筒形で側面に異なる磁極が交互に配列されるマグネットロータと、マグネットロータの周囲に配置されて複数のコイルから構成されるステータとを備えている。   Electric motors are used in various devices and equipment. Motors are mainly classified into brush motors and brushless motors. When durability, quiet sound, and controllability are required, brushless motors are often used. The brushless motor includes a magnet rotor in which different magnetic poles are alternately arranged on a side surface, and a stator that is arranged around the magnet rotor and includes a plurality of coils.

以下、図17を用いて従来のマグネットロータの構成を説明する。
図17は従来のマグネットロータの構成を示す概略図であり、平面図と断面図とが表されている。
Hereinafter, the configuration of a conventional magnet rotor will be described with reference to FIG.
FIG. 17 is a schematic view showing a configuration of a conventional magnet rotor, and shows a plan view and a cross-sectional view.

図17に示すように、従来のマグネットロータ17は、磁石18と出力軸19とで構成される。磁石18は円筒形であり、側面に極性の異なる磁極が交互に配列される。図17では、6極の磁極が形成されている。磁石18はフェライト磁石やネオジウム磁石で形成することができるが、通常、コスト面等を考慮してフェライト磁石が用いられる。出力軸19は、円筒形状の磁石18の2つの円形底面を貫通して設けられ、磁石18が回転すると出力軸19も同軸で回転する。ブラシレスモータは、マグネットロータ17の周囲に配置されたステータのコイルに周期的に電流方向を変化させて電流を流すことにより、出力軸19を軸としてマグネットロータ17を回転させることにより回転出力を抽出する。   As shown in FIG. 17, the conventional magnet rotor 17 includes a magnet 18 and an output shaft 19. The magnet 18 has a cylindrical shape, and magnetic poles having different polarities are alternately arranged on the side surface. In FIG. 17, six magnetic poles are formed. Although the magnet 18 can be formed of a ferrite magnet or a neodymium magnet, a ferrite magnet is usually used in consideration of cost. The output shaft 19 is provided through two circular bottom surfaces of the cylindrical magnet 18, and when the magnet 18 rotates, the output shaft 19 also rotates coaxially. The brushless motor extracts the rotational output by rotating the magnet rotor 17 about the output shaft 19 by periodically flowing the current through the stator coil disposed around the magnet rotor 17 to flow the current. To do.

特開平4−197070号公報Japanese Unexamined Patent Publication No. Hei 4-197070

しかしながら、フェライト磁石は、低温環境下で磁力が低下する低温減磁が生じるという問題点があった。特に、モータが自動車に搭載される場合、モータは−40℃〜85℃での動作が要求されるため、車載用モータに用いるフェライト磁石では、低温減磁の影響が大きくなる。   However, the ferrite magnet has a problem that low-temperature demagnetization in which the magnetic force decreases in a low-temperature environment occurs. In particular, when the motor is mounted on an automobile, the motor is required to operate at −40 ° C. to 85 ° C. Therefore, the influence of low temperature demagnetization is increased in the ferrite magnet used for the on-vehicle motor.

本発明は、低温減磁を抑制することを目的とする。   An object of the present invention is to suppress low-temperature demagnetization.

上記目的を達成するために、本発明の磁石は、円筒形の磁石であって、円筒の側面に異なる極性が交互に配列される複数の磁極と、前記磁極の境界部分を含む領域に形成されてネオジウム磁石で構成される第1の磁力調整磁石とを有し、少なくとも前記磁極がフェライト磁石で構成されることを特徴とする。   In order to achieve the above object, the magnet of the present invention is a cylindrical magnet, and is formed in a region including a plurality of magnetic poles in which different polarities are alternately arranged on the side surface of the cylinder and a boundary portion of the magnetic pole. And a first magnetic force adjusting magnet composed of a neodymium magnet, wherein at least the magnetic pole is composed of a ferrite magnet.

また、本発明のマグネットロータは、前記磁石と、前記磁石の底面円の中心で前記磁石を貫通する出力軸とを有することを特徴とする。   In addition, the magnet rotor of the present invention includes the magnet and an output shaft that penetrates the magnet at the center of a bottom circle of the magnet.

以上のように、少なくとも磁極部分をフェライト磁石で形成し、磁極の境界部分を含む領域をネオジウム磁石で形成することにより、低温減磁を抑制することができる。   As described above, low temperature demagnetization can be suppressed by forming at least the magnetic pole portion with a ferrite magnet and forming the region including the boundary portion of the magnetic pole with a neodymium magnet.

本発明の磁石の構成を説明する図The figure explaining the structure of the magnet of this invention 本発明の側面に磁力調整磁石を備える磁石の構成を説明する図The figure explaining the structure of a magnet provided with the magnetic force adjustment magnet in the side surface of this invention 本発明の磁石における磁力調整磁石の構成を例示する要部拡大図The principal part enlarged view which illustrates the structure of the magnetic force adjustment magnet in the magnet of this invention 本発明の磁石における磁力調整磁石の構成を例示する要部拡大図The principal part enlarged view which illustrates the structure of the magnetic force adjustment magnet in the magnet of this invention 本発明の磁石における磁力調整磁石の構成を例示する要部拡大図The principal part enlarged view which illustrates the structure of the magnetic force adjustment magnet in the magnet of this invention 本発明の磁石における磁力調整磁石の構成を例示する要部拡大図The principal part enlarged view which illustrates the structure of the magnetic force adjustment magnet in the magnet of this invention 本発明の磁石における磁力調整磁石の構成を例示する要部拡大図The principal part enlarged view which illustrates the structure of the magnetic force adjustment magnet in the magnet of this invention 本発明のマグネットロータの構成を説明する図The figure explaining the structure of the magnet rotor of this invention ブラシレスモータの構成を示す図Diagram showing the configuration of a brushless motor 本発明の磁石における低温減磁が抑制されるシミュレーション結果を示す図The figure which shows the simulation result by which the low temperature demagnetization in the magnet of this invention is suppressed 本発明の磁石における低温減磁が抑制されるシミュレーション結果を示す図The figure which shows the simulation result by which the low temperature demagnetization in the magnet of this invention is suppressed 本発明の磁石における低温減磁が抑制されるシミュレーション結果を示す図The figure which shows the simulation result by which the low temperature demagnetization in the magnet of this invention is suppressed 本発明の磁石における低温減磁が抑制されるシミュレーション結果を示す図The figure which shows the simulation result by which the low temperature demagnetization in the magnet of this invention is suppressed 本発明の磁石における低温減磁が抑制されるシミュレーション結果を示す図The figure which shows the simulation result by which the low temperature demagnetization in the magnet of this invention is suppressed 従来のフェライト磁石における低温減磁の実験結果を示す図The figure which shows the experimental result of the low temperature demagnetization in the conventional ferrite magnet 本発明の磁石における低温減磁が抑制される実験結果を示す図The figure which shows the experimental result by which the low temperature demagnetization in the magnet of this invention is suppressed 従来のマグネットロータの構成を示す概略図Schematic showing the configuration of a conventional magnet rotor

ブラシレスモータはマグネットロータを備える。また、マグネットロータは、互いに異なる極性の磁極が隣り合って交互に配列される磁石と出力軸とから構成される。本発明の磁石はマグネットロータ等に用いることができる。以下、図1〜図7を用いて、本発明の磁石について説明する。   The brushless motor includes a magnet rotor. The magnet rotor is composed of magnets and output shafts in which magnetic poles having different polarities are alternately arranged next to each other. The magnet of the present invention can be used for a magnet rotor or the like. Hereinafter, the magnet of the present invention will be described with reference to FIGS.

図1は本発明の磁石の構成を説明する図であり、平面図と平面図のA−A’断面図を示す。図2は本発明の側面に磁力調整磁石を備える磁石の構成を説明する図であり、平面図と平面図のB−B’断面図を示す。   FIG. 1 is a diagram for explaining the configuration of a magnet according to the present invention, and shows a plan view and a cross-sectional view taken along the line A-A ′ of the plan view. FIG. 2 is a diagram for explaining a configuration of a magnet including a magnetic force adjusting magnet on the side surface of the present invention, and shows a plan view and a B-B ′ sectional view of the plan view.

図1に示すように、本発明の磁石1は、外形が円筒形であり、隣接する磁極が異なるように側面5に複数の磁極が形成される。図1に示す磁石1は、側面5にS極2とN極3とが3極ずつ交互に等間隔に配列される6極構成である。磁石1において、少なくとも形成される磁極部分はフェライト磁石で形成される。本発明の磁石1の特徴は、隣接するS極2とN極3との間の領域である極境界にネオジウム磁石からなる磁力調整磁石4を形成することである。磁石1において、S極2とN極3との間において、磁力調整磁石4上を含めて磁界は連続的に変化し、磁力調整磁石4の中心で磁力は0になる。磁力調整磁石4は、少なくとも磁極間の極境界の側面5を含む領域に形成され、極間方向である幅Wと底面円6の中心方向である深さDを持って形成される。例えば、磁力調整磁石4の側面5における幅Wは、S極2とN極3との間隔の長さの10%〜50%とすることが好ましい。磁力調整磁石4の深さDは、S極2とN極3との間隔の長さの30%〜70%とすることが好ましい。磁力調整磁石4の底面円6における形状は任意であり、矩形形状でも良いし、半円,半楕円形状でも良く、底面円6の中心方向に向かう程に幅が狭くなる形状でも良い。   As shown in FIG. 1, the magnet 1 of the present invention has a cylindrical outer shape, and a plurality of magnetic poles are formed on the side surface 5 so that adjacent magnetic poles are different. A magnet 1 shown in FIG. 1 has a six-pole configuration in which three S poles 2 and three N poles 3 are alternately arranged at equal intervals on a side surface 5. In the magnet 1, at least the magnetic pole portion to be formed is formed of a ferrite magnet. A feature of the magnet 1 of the present invention is that a magnetic force adjusting magnet 4 made of a neodymium magnet is formed at a pole boundary that is a region between the adjacent S pole 2 and N pole 3. In the magnet 1, the magnetic field continuously changes between the S pole 2 and the N pole 3 including on the magnetic force adjusting magnet 4, and the magnetic force becomes 0 at the center of the magnetic force adjusting magnet 4. The magnetic force adjusting magnet 4 is formed in a region including at least the side surface 5 of the pole boundary between the magnetic poles, and has a width W that is a direction between the poles and a depth D that is the center direction of the bottom surface circle 6. For example, the width W on the side surface 5 of the magnetic force adjusting magnet 4 is preferably 10% to 50% of the length of the interval between the S pole 2 and the N pole 3. The depth D of the magnetic force adjusting magnet 4 is preferably 30% to 70% of the length of the interval between the S pole 2 and the N pole 3. The shape of the bottom surface circle 6 of the magnetic force adjusting magnet 4 is arbitrary, and may be a rectangular shape, a semicircle, a semi-elliptical shape, or a shape whose width becomes narrower toward the center of the bottom surface circle 6.

なお、磁石1は任意の方法で製造することができるが、例えば、フェライト磁石で円筒形の磁石を製造し、極境界を切り欠き、切り欠いた領域にネオジウム磁石を埋め込むことにより製造できる。また、フェライト磁石およびネオジウム磁石として、それぞれ、またはいずれか一方を樹脂磁石とすることもできる。樹脂磁石の場合、極境界とその近傍に切り欠きを設けた樹脂フェライト磁石を製造した後、切り欠きに樹脂ネオジウム磁石が埋め込まれる。   In addition, although the magnet 1 can be manufactured by arbitrary methods, it can manufacture, for example by manufacturing a cylindrical magnet with a ferrite magnet, notching a pole boundary, and embedding a neodymium magnet in the notched area | region. Moreover, as a ferrite magnet and a neodymium magnet, each or any one can also be made into a resin magnet. In the case of a resin magnet, a resin ferrite magnet having a notch provided at and near the pole boundary is manufactured, and then a resin neodymium magnet is embedded in the notch.

このように、極境界をネオジウム磁石からなる磁力調整磁石4で形成することにより、磁極部分にフェライト磁石を用いても、磁石1は低温減磁が抑制される。また、ネオジウム磁石はフェライト磁石に比べて低温減磁が生じにくい。そのため、磁石全体をネオジウム磁石のみで形成することにより低温減磁を抑制することができる。しかし、ネオジウム磁石はフェライト磁石に比べて高価である。そのため、磁石を安価に製造できない。本発明の磁石1は、少なくとも磁極部分がフェライト磁石で形成され、極境界領域にネオジウム磁石からなる磁力調整磁石4が形成されることにより、安価な構成で低温減磁が抑制される。   Thus, by forming the pole boundary with the magnetic force adjusting magnet 4 made of a neodymium magnet, the magnet 1 is suppressed from being demagnetized at low temperature even if a ferrite magnet is used for the magnetic pole portion. Also, neodymium magnets are less susceptible to low temperature demagnetization than ferrite magnets. Therefore, low temperature demagnetization can be suppressed by forming the entire magnet with only a neodymium magnet. However, neodymium magnets are more expensive than ferrite magnets. Therefore, a magnet cannot be manufactured at low cost. In the magnet 1 of the present invention, at least the magnetic pole portion is formed of a ferrite magnet, and the magnetic force adjusting magnet 4 made of a neodymium magnet is formed in the pole boundary region, so that low-temperature demagnetization is suppressed with an inexpensive configuration.

さらに、図2に示すように、磁石10は、磁石1の側面5上全面にネオジウム磁石からなる磁力調整磁石7が形成されても良い。磁石10の磁極は磁石1と同様に、磁石10の側面である磁力調整磁石7の表面上に、S極2とN極3とが交互に等間隔に配列される。磁力調整磁石7の厚みは、例えばS極2とN極3との間隔の長さの5%〜30%とすることが好ましい。また、磁力調整磁石7は磁力調整磁石4と全く同一の材質でも良く、一体形成されていても良く、異なる組成,磁力を有していても良い。   Further, as shown in FIG. 2, the magnet 10 may be formed with a magnetic force adjusting magnet 7 made of a neodymium magnet on the entire side surface 5 of the magnet 1. As in the case of the magnet 1, the magnetic poles of the magnet 10 have S poles 2 and N poles 3 alternately arranged at equal intervals on the surface of the magnetic force adjusting magnet 7 that is the side surface of the magnet 10. The thickness of the magnetic force adjusting magnet 7 is preferably 5% to 30% of the length of the interval between the S pole 2 and the N pole 3, for example. The magnetic force adjusting magnet 7 may be made of the same material as that of the magnetic force adjusting magnet 4, may be integrally formed, or may have a different composition and magnetic force.

このように、側面5に磁力調整磁石7をさらに備えることにより、磁石10はより低温減磁を抑制することができる。
上述のように、磁石1,磁石10において、磁力調整磁石4は様々な形状にすることができる。以下、図3〜図7を用いて磁力調整磁石4の構成例を示す。
As described above, the magnet 10 can further suppress the low-temperature demagnetization by further including the magnetic force adjusting magnet 7 on the side surface 5.
As described above, in the magnets 1 and 10, the magnetic force adjusting magnet 4 can be formed in various shapes. Hereinafter, the structural example of the magnetic force adjustment magnet 4 is shown using FIGS.

図3〜図7は本発明の磁石における磁力調整磁石の構成を例示する要部拡大図である。
磁力調整磁石4は、底面円6(図1参照)上の形状として、図3に示すように、底面円6(図1参照)の中心に向かう程幅が細くなる曲線状の外形を持つ形状や、図4に示すように、底面円6(図1参照)の中心に向かう程幅が細くなる直線状の外形を持つ形状や、図5に示すように、一定の幅で深さ方向に形成される形状とすることができ、さらに、これらを部分的に組み合わせた形状とすることもできる。また、磁力調整磁石4は断面形状として、図6に示すように、底面円6(図1参照)側よりその中間部の深さが深い形状や、図7に示すように、底面円6(図1参照)側よりその中間部の深さが浅い形状とすることができる。また、一方の底面円6(図1参照)側から他方の底面円6(図1参照)側に向かって徐々に深さが浅くなるように形成しても良い。そして、図1,図3〜図5に示す平面形状と図1,図6,図7に示す断面形状等を任意に組み合わせることもできる。
3 to 7 are enlarged views of essential parts illustrating the configuration of the magnetic force adjusting magnet in the magnet of the present invention.
As shown in FIG. 3, the magnetic force adjusting magnet 4 has a curved outer shape that becomes narrower toward the center of the bottom circle 6 (see FIG. 1) as a shape on the bottom circle 6 (see FIG. 1). As shown in FIG. 4, a shape having a linear outer shape that becomes narrower toward the center of the bottom circle 6 (see FIG. 1), or a constant width in the depth direction as shown in FIG. 5. It can be made into the shape formed, and can also be made into the shape which combined these partially. In addition, as shown in FIG. 6, the magnetic force adjusting magnet 4 has a cross-sectional shape in which the intermediate portion is deeper than the bottom circle 6 (see FIG. 1), or the bottom circle 6 (see FIG. 7). The depth of the intermediate part can be made shallower than the side (see FIG. 1). Moreover, you may form so that a depth may become shallow gradually toward the bottom face circle 6 (refer FIG. 1) side of the other bottom face circle 6 (refer FIG. 1). The planar shape shown in FIGS. 1, 3 to 5 and the cross-sectional shapes shown in FIGS. 1, 6, and 7 can be arbitrarily combined.

図8は本発明のマグネットロータの構成を説明する図である。
ブラシレスモータに用いるマグネットロータ8の磁石として、上述の磁石1,磁石10を用いることができる。例えば、図8に示すように、マグネットロータ8は、磁石1と出力軸9とから構成される。出力軸9は、底面円6の中心を通る磁石1の中心軸と、中心軸が一致するように磁石1にはめ込まれる。これにより、磁石1の回転に応じて出力軸9が回転する。ここでは、磁石1を用いた場合を例に説明したが、磁石10を用いることもできる。
FIG. 8 is a diagram illustrating the configuration of the magnet rotor of the present invention.
As the magnet of the magnet rotor 8 used for the brushless motor, the above-described magnets 1 and 10 can be used. For example, as shown in FIG. 8, the magnet rotor 8 includes a magnet 1 and an output shaft 9. The output shaft 9 is fitted into the magnet 1 such that the central axis of the magnet 1 passing through the center of the bottom circle 6 coincides with the central axis. Thereby, the output shaft 9 rotates according to the rotation of the magnet 1. Here, the case where the magnet 1 is used has been described as an example, but the magnet 10 can also be used.

図9はブラシレスモータの構成を示す図であり、本発明のマグネットロータが組み込まれた構成を例示している。
図9に示すように、本発明のマグネットロータ8が組み込まれたブラシレスモータ11は、電流を流す向きを変更可能な複数のコイル12を備えるステータ13と、複数のコイル12に囲まれるようにステータ13に設置されるマグネットロータ8とから構成される。ブラシレスモータ11は、コイル12に流れる電流を周期的に反転させることにより、コイルに発生する磁界と磁石1の磁界との吸引/反発によりマグネットロータ8を回転させ、出力軸9を回転させる。
FIG. 9 is a diagram illustrating a configuration of a brushless motor, and illustrates a configuration in which the magnet rotor of the present invention is incorporated.
As shown in FIG. 9, the brushless motor 11 incorporating the magnet rotor 8 of the present invention includes a stator 13 including a plurality of coils 12 capable of changing the direction of current flow, and a stator so as to be surrounded by the plurality of coils 12. 13 and a magnet rotor 8 installed at 13. The brushless motor 11 periodically reverses the current flowing through the coil 12, thereby rotating the magnet rotor 8 and rotating the output shaft 9 by attraction / repulsion between the magnetic field generated in the coil and the magnetic field of the magnet 1.

このように、ブラシレスモータ11に本発明の磁石1,磁石10を用いることにより、ブラシレスモータ11を自動車等の低温で動作する機器,装置で用いる場合であっても、低温減磁が抑制され、動作精度を向上させることができる。   Thus, by using the magnets 1 and 10 of the present invention for the brushless motor 11, even when the brushless motor 11 is used in a device or apparatus that operates at a low temperature such as an automobile, low-temperature demagnetization is suppressed, The operation accuracy can be improved.

以下、図10〜図16を用いて、本発明の磁石における低温減磁が抑制されるシミュレーション結果および実験結果を示す。
図10〜図14は本発明の磁石における低温減磁が抑制されるシミュレーション結果を示す図であり左側に示す構成の磁石におけるシミュレーション結果を右側に示している。図15は従来のフェライト磁石における低温減磁の実験結果を示す図、図16は本発明の磁石における低温減磁が抑制される実験結果を示す図である。
Hereinafter, simulation results and experimental results in which low-temperature demagnetization in the magnet of the present invention is suppressed will be described with reference to FIGS.
10 to 14 are diagrams showing simulation results in which low-temperature demagnetization is suppressed in the magnet of the present invention, and the simulation results in the magnet having the configuration shown on the left side are shown on the right side. FIG. 15 is a diagram showing experimental results of low-temperature demagnetization in a conventional ferrite magnet, and FIG. 16 is a diagram showing experimental results in which low-temperature demagnetization is suppressed in the magnet of the present invention.

図10〜図14は、底面円の直径が29mm、厚みが11mmの円筒形であり、磁極での磁力が0.3Tである磁石にコイルに10Aの電流を流した場合における−40℃での磁場解析を行ったシミュレーション結果の例である。   10 to 14 show a cylindrical shape with a bottom circle diameter of 29 mm and a thickness of 11 mm. When a current of 10 A is passed through a coil through a magnet having a magnetic force of 0.3 T at a magnetic pole, the temperature is −40 ° C. It is an example of the simulation result which performed the magnetic field analysis.

図10は従来のフェライト磁石のみを用いた磁石における磁場解析結果であり、磁極15間の中点近傍である境界領域に磁力が低下する低温減磁14が認められた。
図11に示すように、フェライト磁石の側面上に厚さ1.0mmのネオジウム磁石からなる磁力調整磁石7を形成すると、図10に比べて抑制されているが、側面の内側領域の低温減磁14が残留した。
FIG. 10 shows a magnetic field analysis result in a magnet using only a conventional ferrite magnet, and a low-temperature demagnetization 14 in which the magnetic force decreases is recognized in the boundary region near the midpoint between the magnetic poles 15.
As shown in FIG. 11, when the magnetic force adjusting magnet 7 made of a neodymium magnet having a thickness of 1.0 mm is formed on the side surface of the ferrite magnet, it is suppressed as compared with FIG. 14 remained.

図12に示すように、磁極をフェライト磁石で形成した磁石の極境界を中心に幅2.0mm、側面から深さ方向に5.0mmにわたって磁力調整磁石4を形成すると、図10に比べて抑制されているが、磁力調整磁石4が形成された領域に隣接する側面付近に低温減磁14が残留した。   As shown in FIG. 12, when the magnetic force adjusting magnet 4 is formed over a pole boundary of a magnet having a magnetic pole formed of a ferrite magnet over a width of 2.0 mm and from a side surface to a depth of 5.0 mm, it is suppressed as compared with FIG. However, the low temperature demagnetization 14 remained near the side surface adjacent to the region where the magnetic force adjusting magnet 4 was formed.

図13に示すように、磁極をフェライト磁石で形成した磁石の極境界を中心に幅2.0mm、側面から深さ方向に5.0mmにわたって磁力調整磁石4を形成し、側面上に厚さ0.5mmのネオジウム磁石からなる磁力調整磁石7を形成すると、図10に比べて抑制されているが、磁力調整磁石4を形成した領域の近傍に低温減磁14が残留した。   As shown in FIG. 13, the magnetic force adjusting magnet 4 is formed with a width of 2.0 mm centering on the pole boundary of the magnet in which the magnetic pole is formed of a ferrite magnet and extending from the side surface to 5.0 mm in the depth direction. When the magnetic force adjusting magnet 7 made of a .5 mm neodymium magnet is formed, the low temperature demagnetization 14 remains in the vicinity of the region where the magnetic force adjusting magnet 4 is formed.

図14に示すように、磁極をフェライト磁石で形成した磁石の極境界を中心に幅3.0mm、側面から深さ方向に6.0mmにわたって磁力調整磁石4を形成し、側面上に厚さ1.0mmのネオジウム磁石からなる磁力調整磁石7を形成すると、低温減磁14が発現せず、良好な結果が得られた。   As shown in FIG. 14, the magnetic force adjusting magnet 4 is formed with a width of 3.0 mm centering on the pole boundary of the magnet formed with a ferrite magnet and a thickness of 6.0 mm from the side surface to the depth direction. When the magnetic force adjusting magnet 7 composed of a 0.0 mm neodymium magnet was formed, the low temperature demagnetization 14 did not appear and good results were obtained.

シミュレーションの結果、上記の条件では、磁極をフェライト磁石で形成した磁石の極境界を中心に幅2.5mm〜3.5mm、側面から深さ方向に5.5mm〜6.5mmにわたって磁力調整磁石4を形成し、側面上に厚さ0.7〜1.2mmのネオジウム磁石からなる磁力調整磁石7を形成することにより、低温減磁14が抑制されることが分かった。   As a result of the simulation, under the above conditions, the magnetic force adjusting magnet 4 has a width of 2.5 mm to 3.5 mm around the pole boundary of the magnet formed of a ferrite magnet, and a depth of 5.5 mm to 6.5 mm from the side surface. It was found that the low temperature demagnetization 14 is suppressed by forming a magnetic force adjusting magnet 7 made of a neodymium magnet having a thickness of 0.7 to 1.2 mm on the side surface.

図15,図16は、底面円の直径がφ30mm、厚みが11mmの円筒形であり、磁極での磁力が0.3Tである磁石にコイルに10Aの電流を流した場合における、室温と−40℃との磁石の側面における磁束密度波形を比較した実験結果の例である。図15は従来の磁石をフェライト磁石のみで形成した実験結果であり、図16は本発明の磁極をフェライト磁石で形成した磁石の極境界を中心に幅3.0mm、側面から深さ方向に6.0mmにわたって磁力調整磁石4を形成し、側面上に厚さ1.0mmのネオジウム磁石からなる磁力調整磁石7を形成した場合の実験結果である。   15 and 16 show a cylindrical shape with a bottom circle diameter of φ30 mm and a thickness of 11 mm, and a room temperature and −40 when a current of 10 A is passed through the coil through a magnet having a magnetic force of 0.3 T at the magnetic pole. It is an example of the experimental result which compared the magnetic flux density waveform in the side surface of the magnet with ° C. FIG. 15 is a result of an experiment in which a conventional magnet is formed only of a ferrite magnet. FIG. 16 is a width of 3.0 mm centering on a pole boundary of a magnet formed of a ferrite magnet and having a width of 6 mm from a side surface to a depth direction. It is an experimental result when the magnetic force adjusting magnet 4 is formed over 0.0 mm and the magnetic force adjusting magnet 7 made of a neodymium magnet having a thickness of 1.0 mm is formed on the side surface.

図15に示すように、室温では低温減磁が発生しない従来のフェライト磁石であっても、−40℃の環境下では、磁極の切り替わる領域において磁束密度が0mT近傍の領域が広がる低温減磁領域16が確認された。この磁石をモータに用いた場合、このような低温減磁によりコギングが発生し、モータの回転ムラが生じる。   As shown in FIG. 15, even in a conventional ferrite magnet that does not cause low-temperature demagnetization at room temperature, a low-temperature demagnetization region where the magnetic flux density is in the vicinity of 0 mT in the region where the magnetic pole is switched in an environment of −40 ° C. 16 was confirmed. When this magnet is used in a motor, cogging occurs due to such low-temperature demagnetization, resulting in uneven rotation of the motor.

これに対して、図16に示すように、本発明の磁石では、室温および−40℃の環境下での磁束密度波形にほとんど変化が見られず、低温減磁は確認されなかった。そのため、この磁石をモータに用いても回転ムラが発生しない。   On the other hand, as shown in FIG. 16, in the magnet of the present invention, almost no change was observed in the magnetic flux density waveform under the environment of room temperature and −40 ° C., and no low temperature demagnetization was confirmed. Therefore, even if this magnet is used for a motor, uneven rotation does not occur.

これらの実験により、上記の条件では、磁極をフェライト磁石で形成した磁石の極境界を中心に幅2.5mm〜3.5mm、側面から深さ方向に5.5mm〜6.5mmにわたって磁力調整磁石4を形成し、側面上に厚さ0.7〜1.2mmのネオジウム磁石からなる磁力調整磁石7を形成することにより、低温減磁14が抑制されることが確認された。   From these experiments, under the above conditions, the magnetic force adjusting magnet has a width of 2.5 mm to 3.5 mm centered on the pole boundary of the magnet formed of a ferrite magnet, and 5.5 mm to 6.5 mm in the depth direction from the side surface. It was confirmed that the low-temperature demagnetization 14 was suppressed by forming the magnetic force adjusting magnet 7 made of a neodymium magnet having a thickness of 0.7 to 1.2 mm on the side surface.

1 磁石
2 S極
3 N極
4 磁力調整磁石
5 側面
6 底面円
7 磁力調整磁石
8 マグネットロータ
9 出力軸
10 磁石
11 ブラシレスモータ
12 コイル
13 ステータ
14 低温減磁
15 磁極
16 低温減磁領域
17 マグネットロータ
18 磁石
19 出力軸
DESCRIPTION OF SYMBOLS 1 Magnet 2 S pole 3 N pole 4 Magnetic force adjustment magnet 5 Side surface 6 Bottom circle 7 Magnetic force adjustment magnet 8 Magnet rotor 9 Output shaft 10 Magnet 11 Brushless motor 12 Coil 13 Stator 14 Low temperature demagnetization 15 Magnetic pole 16 Low temperature demagnetization area 17 Magnet rotor 18 Magnet 19 Output shaft

Claims (6)

円筒形の磁石であって、
円筒の側面に異なる極性が交互に配列される複数の磁極と、
前記磁極の境界部分を含む領域に形成されてネオジウム磁石で構成される第1の磁力調整磁石と
を有し、少なくとも前記磁極がフェライト磁石で構成されることを特徴とする磁石。
A cylindrical magnet,
A plurality of magnetic poles in which different polarities are alternately arranged on the side surface of the cylinder;
A magnet having a first magnetic force adjusting magnet formed of a neodymium magnet formed in a region including a boundary portion of the magnetic pole, wherein at least the magnetic pole is formed of a ferrite magnet.
前記側面上の全周にさらにネオジウム磁石からなる第2の磁力調整磁石が設けられることを特徴とする請求項1記載の磁石。   The magnet according to claim 1, wherein a second magnetic force adjusting magnet made of a neodymium magnet is further provided on the entire circumference on the side surface. 前記ネオジウム磁石および前記フェライト磁石は樹脂磁石であることを特徴とする請求項1または請求項2に記載の磁石。   The magnet according to claim 1 or 2, wherein the neodymium magnet and the ferrite magnet are resin magnets. 前記磁極の配列が6極であることを特徴とする請求項1〜請求項3のいずれか1項に記載の磁石。   The magnet according to any one of claims 1 to 3, wherein the magnetic pole array has six poles. 第1の磁力調整磁石は、幅が前記磁極間の距離の10%以上50%以下であり、深さが前記磁極間の距離の30%以上70%以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載の磁石。   2. The first magnetic force adjusting magnet has a width of 10% to 50% of a distance between the magnetic poles, and a depth of 30% to 70% of a distance between the magnetic poles. The magnet according to any one of claims 4 to 5. 請求項1〜請求項5のいずれか1項に記載の磁石と、
前記磁石の底面円の中心で前記磁石を貫通する出力軸と
を有することを特徴とするマグネットロータ。
The magnet according to any one of claims 1 to 5,
An output shaft that penetrates the magnet at the center of the bottom circle of the magnet.
JP2015103279A 2015-05-21 2015-05-21 Magnet and magnet rotor Active JP6544992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015103279A JP6544992B2 (en) 2015-05-21 2015-05-21 Magnet and magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015103279A JP6544992B2 (en) 2015-05-21 2015-05-21 Magnet and magnet rotor

Publications (2)

Publication Number Publication Date
JP2016219607A true JP2016219607A (en) 2016-12-22
JP6544992B2 JP6544992B2 (en) 2019-07-17

Family

ID=57582034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015103279A Active JP6544992B2 (en) 2015-05-21 2015-05-21 Magnet and magnet rotor

Country Status (1)

Country Link
JP (1) JP6544992B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129123A1 (en) * 2018-12-17 2021-06-10 三菱電機株式会社 Rotor, motor, blower, and air conditioner, and how to manufacture the rotor
WO2021192236A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Rotor, motor, blower, air-conditioning device, and method for manufacturing rotor
WO2023144919A1 (en) * 2022-01-26 2023-08-03 三菱電機株式会社 Rotor, electric motor, blower, and air-conditioning device
WO2023195076A1 (en) * 2022-04-05 2023-10-12 三菱電機株式会社 Electric motor, blower, and air conditioning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205745A (en) * 1996-01-25 1997-08-05 Shibaura Eng Works Co Ltd Motor
JP2005151757A (en) * 2003-11-19 2005-06-09 Mate Co Ltd Rotor and rotor manufacturing method
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine
JP2013062889A (en) * 2011-09-10 2013-04-04 Nidec Servo Corp Brushless dc motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205745A (en) * 1996-01-25 1997-08-05 Shibaura Eng Works Co Ltd Motor
JP2005151757A (en) * 2003-11-19 2005-06-09 Mate Co Ltd Rotor and rotor manufacturing method
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine
JP2013062889A (en) * 2011-09-10 2013-04-04 Nidec Servo Corp Brushless dc motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129123A1 (en) * 2018-12-17 2021-06-10 三菱電機株式会社 Rotor, motor, blower, and air conditioner, and how to manufacture the rotor
JP7191121B2 (en) 2018-12-17 2022-12-16 三菱電機株式会社 ROTOR, ELECTRIC MOTOR, BLOWER, AIR CONDITIONER, AND ROTOR MANUFACTURING METHOD
US11888368B2 (en) 2018-12-17 2024-01-30 Mitsubishi Electric Corporation Rotor, electric motor, air blower, air conditioner, and method for fabricating rotor
WO2021192236A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Rotor, motor, blower, air-conditioning device, and method for manufacturing rotor
JP7309039B2 (en) 2020-03-27 2023-07-14 三菱電機株式会社 ROTOR, ELECTRIC MOTOR, BLOWER, AIR CONDITIONER, AND ROTOR MANUFACTURING METHOD
WO2023144919A1 (en) * 2022-01-26 2023-08-03 三菱電機株式会社 Rotor, electric motor, blower, and air-conditioning device
WO2023195076A1 (en) * 2022-04-05 2023-10-12 三菱電機株式会社 Electric motor, blower, and air conditioning device

Also Published As

Publication number Publication date
JP6544992B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
US10141800B2 (en) Magnet-embedded rotor, method for manufacturing magnet-embedded rotor, and orientation and magnetization device
US20140091663A1 (en) Permanent-magnet type rotating electrical machine
US9024498B2 (en) Rotating electrical machine
JP2007104819A (en) Rotating electric machine
US9490669B2 (en) Rotor and motor
JP2017022914A (en) Rotor and brushless motor
JP2015133839A (en) Magnet-embedded rotor
US20180316234A1 (en) Motor
JP2016219607A (en) Magnet and magnet rotor
US8981612B2 (en) Rotor and motor
JP2015019546A (en) Axial gap type permanent magnet electrical rotating machine, and manufacturing method for the same
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP4029679B2 (en) Bond magnet for motor and motor
JP2012239327A (en) Permanent magnet motor
JP2017503464A (en) Actuator with enhanced magnetic spring function for personal care equipment
JP2009524402A (en) Magnetic motor rotor
JP2016220290A (en) Rotary electric machine
JP2015065808A (en) Rotor of permanent magnet-embedded motor and compressor and refrigeration and air conditioning apparatus
JP2017046386A (en) Permanent magnet electric motor
US20180006541A1 (en) Single phase motor and rotor thereof
JP2015231253A (en) Magnet and dynamo-electric machine including the same
JP6390172B2 (en) Rotor and motor
JP6455218B2 (en) Rotor and motor
US11888360B2 (en) Brush motor
JP6046515B2 (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6544992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250