JP2016213914A - Ground fault point identification device - Google Patents

Ground fault point identification device Download PDF

Info

Publication number
JP2016213914A
JP2016213914A JP2015092615A JP2015092615A JP2016213914A JP 2016213914 A JP2016213914 A JP 2016213914A JP 2015092615 A JP2015092615 A JP 2015092615A JP 2015092615 A JP2015092615 A JP 2015092615A JP 2016213914 A JP2016213914 A JP 2016213914A
Authority
JP
Japan
Prior art keywords
ground fault
mccb
power line
fault location
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015092615A
Other languages
Japanese (ja)
Inventor
祐希 林
Yuki Hayashi
祐希 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015092615A priority Critical patent/JP2016213914A/en
Publication of JP2016213914A publication Critical patent/JP2016213914A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground fault point identification device, capable of identifying a ground fault point efficiently and promptly even in the case of a transient ground fault trouble.SOLUTION: A ground fault point identification device 1 is connected to a DC circuit of a mega-solar power plant 2 or the like which includes each parallel individual power line 26 and a joint power line 27, joining the individual power lines 26, and a breaker such as an MCCB 22 provided on each individual power line 26. The ground fault point identification device 1 is connected to the joint power line 27, to connect a ground fault detection circuit 11, which detects the ground fault of the DC circuit, to the joint power line 27. Also, the ground fault point identification device 1, in response to a ground fault detection by the ground fault detection circuit 11, causes each breaker, for example, the MCCB 22 to temporarily open successively, so as to monitor the cancellation of the ground fault by the breaker operation.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、並列の各個別電力線を有する直流回路の地絡箇所を特定する地絡箇所特定装置に関する。   Embodiments of the present invention relate to a ground fault location identifying device that identifies a ground fault location of a DC circuit having parallel individual power lines.

太陽光発電システム等の直流回路には地絡検出装置が設置される。地絡検出装置は、地絡発生時に生じる正極側線と負極側線の電圧又は電流の相違を利用し、若しくは接地線の導通を利用し、地絡を検出する。地絡事故が検出されると、パワーコンディショナはインバータを停止させ、作業員の安全確保及び系統保護を図る。従って、地絡検出装置はパワーコンディショナに設置されることが多い。   A ground fault detection device is installed in a DC circuit such as a solar power generation system. The ground fault detection device detects a ground fault by using a difference in voltage or current between the positive electrode side line and the negative electrode side line that is generated when a ground fault occurs or by using conduction of a ground line. When a ground fault is detected, the power conditioner stops the inverter, ensuring worker safety and system protection. Therefore, the ground fault detection device is often installed in the power conditioner.

近年、地球温暖化、化石燃料の枯渇が問題となっている。この問題に対応すべく、メガソーラ発電所の建設が急進している。メガソーラ発電所は、多数の太陽光発電ストリングを並列接続した巨大な直流回路である。メガソーラ発電所では、太陽光発電ストリングから個別の電力線により電力を引き出し、接続箱及び集電箱で各電力を集約し、集約した電力を合流電力線により電力系統に出力する。   In recent years, global warming and depletion of fossil fuels have become problems. In response to this problem, construction of a mega solar power plant is rapidly progressing. The mega solar power plant is a huge DC circuit in which many photovoltaic strings are connected in parallel. In the mega solar power plant, power is drawn from the solar power generation string by individual power lines, and each power is collected by the connection box and the current collection box, and the collected power is output to the power system by the merged power line.

コストの観点から、地絡検出装置は電力集約後の合流電力線に設置されることが合理的である。合流電力線に地絡検出装置を設置することで、並列の電力線の何れに地絡が発生しても、その地絡は検出可能である。しかしながら、この設置態様による地絡検出装置は、地絡発生を低コストで検出できる一方、個別の電力線のうちの何れで地絡が発生したかを特定できない。   From the viewpoint of cost, it is reasonable to install the ground fault detection device on the merged power line after the power aggregation. By installing a ground fault detection device on the merging power line, it is possible to detect the ground fault regardless of the occurrence of a ground fault in any of the parallel power lines. However, the ground fault detection device according to this installation mode can detect the occurrence of the ground fault at a low cost, but cannot identify which of the individual power lines has caused the ground fault.

そこで、従来は、地絡検出装置が地絡を検出すると、メガソーラ発電所の管理者が各接続箱に出向き、各配線用遮断器(MCCB)を手動で順番に入り切りし、入り切りに応答した地絡検出の消失により、地絡が発生した電力線の絞り込みを行っていた。   Therefore, conventionally, when the ground fault detection device detects a ground fault, the manager of the mega solar power plant goes to each junction box, manually turns on each circuit breaker (MCCB) in turn, and responds to the turn on and off. Due to the disappearance of the fault detection, the power lines where the ground fault occurred were narrowed down.

特開2002−233045号公報JP 2002-233045 A 特開平09−285015号公報Japanese Patent Laid-Open No. 09-285015

原因は多種多様であるが、地絡が一過性で発生することがある。一過性の地絡事故の場合、メガソーラ発電所の管理者が現場に向かっている最中に地絡が復旧してしまうことがある。地絡が復旧した後は、MCCBを入り切りしても地絡が発生した箇所を特定することは不可能である。   There are various causes, but ground faults may occur temporarily. In the event of a transient ground fault, the ground fault may be restored while the manager of the mega solar power plant is heading to the site. After the ground fault is restored, it is impossible to specify the location where the ground fault has occurred even if the MCCB is turned on and off.

本実施形態は、上述の課題を解決すべく、一過性の地絡事故であっても効率且つ迅速に地絡箇所を特定することのできる地絡箇所特定装置を提供することを目的とする。   An object of the present embodiment is to provide a ground fault location identifying device that can identify a ground fault location efficiently and quickly even in the case of a transient ground fault, in order to solve the above-described problems. .

上記の目的を達成するために、本実施形態の地絡箇所特定装置は、並列の各個別電力線を合流電力線に集約して成ると共に各個別電力線に遮断器を有する直流回路に対する、地絡箇所特定装置であって、前記合流電力線と接続し、前記直流回路の地絡を検出する地絡検出部と、前記地絡検出部の地絡検出に応答して前記各遮断器を順番に一時開放作動させ、前記遮断器の作動による地絡解消を監視する制御部と、を備えること、を特徴とする。   In order to achieve the above-mentioned object, the ground fault location specifying device of the present embodiment is configured to identify ground fault locations for a DC circuit formed by aggregating parallel individual power lines into a merged power line and having a breaker in each individual power line. A ground fault detection unit that is connected to the combined power line and detects a ground fault of the DC circuit; and the circuit breakers are sequentially opened in response to ground fault detection of the ground fault detection unit. And a controller that monitors the elimination of the ground fault due to the operation of the circuit breaker.

第1の実施形態に係る直流回路と地絡箇所特定装置との関係を示すブロック図である。It is a block diagram which shows the relationship between the DC circuit which concerns on 1st Embodiment, and a ground fault location identification apparatus. 第1の実施形態に係る地絡箇所特定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ground fault location identification apparatus which concerns on 1st Embodiment. 第1の実施形態に係る地絡箇所特定装置の制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part of the ground fault location identification apparatus which concerns on 1st Embodiment. 直流回路と地絡箇所特定装置との関係につき、地絡箇所特定装置の設置箇所の他の例を示すブロック図である。It is a block diagram which shows the other example of the installation location of a ground fault location specific apparatus regarding the relationship between a DC circuit and a ground fault location specific apparatus. 第2の実施形態に係り、地絡箇所特定装置が記憶する優先遮断一覧を示す模式図である。It is a schematic diagram which concerns on 2nd Embodiment and shows the priority interruption | blocking list | wrist which a ground fault location identification apparatus memorize | stores. 第2の実施形態に係る地絡箇所特定装置の制御部の動作を示すフローチャート前半である。It is the first half of the flowchart which shows operation | movement of the control part of the ground fault location identification apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る地絡箇所特定装置の制御部の動作を示すフローチャート後半である。It is the latter half of the flowchart which shows operation | movement of the control part of the ground fault location identification apparatus which concerns on 2nd Embodiment. 第3の実施形態に係り、地絡箇所特定装置が記憶するシステムダイアグラムを示す模式図である。It is a schematic diagram which concerns on 3rd Embodiment and shows the system diagram which a ground fault location identification apparatus memorize | stores.

(第1の実施形態)
本実施形態に係る地絡箇所特定装置について図面を参照しつつ詳細に説明する。
(First embodiment)
The ground fault location specifying apparatus according to the present embodiment will be described in detail with reference to the drawings.

(構成)
図1に示すように、地絡箇所特定装置1は、例えばメガソーラ発電所2の地絡箇所を特定する。メガソーラ発電所2は、複数の太陽光発電ストリング21を並列に備える直流回路である。各太陽光発電ストリング21は、各々の配線用遮断器22(Molded Case Circuit Breaker、以下、MCCB22)に接続される。MCCB22は、グループに区分けされ、グループごとに接続箱23に収容される。各接続箱23は1機の集電箱24と接続する。集電箱24はパワーコンディショナ25(以下、PCS25)と接続する。PCS25から電力系統100に発電電力が送出される。
(Constitution)
As shown in FIG. 1, the ground fault location identifying device 1 identifies the ground fault location of the mega solar power plant 2, for example. The mega solar power plant 2 is a DC circuit including a plurality of photovoltaic power generation strings 21 in parallel. Each photovoltaic power generation string 21 is connected to a respective circuit breaker 22 (Molded Case Circuit Breaker, hereinafter referred to as MCCB22). The MCCB 22 is divided into groups, and each group is accommodated in the connection box 23. Each connection box 23 is connected to one current collection box 24. The current collection box 24 is connected to a power conditioner 25 (hereinafter referred to as PCS 25). The generated power is sent from the PCS 25 to the power system 100.

太陽光発電ストリング21とMCCB22を繋ぐ個別電力線26は、接続箱23で集約され、更に集電箱24にて、集電箱24とPCS25とを繋ぐ合流電力線27に集約される。集電箱24で集約された出力が合流電力線27を通してPCS25に入力される。地絡箇所特定装置1は、PCS25の構成要素として、PCS25内に設置されている。   The individual power lines 26 that connect the solar power generation strings 21 and the MCCB 22 are aggregated in the connection box 23, and are further aggregated in the current collection box 24 to the merged power line 27 that connects the current collection box 24 and the PCS 25. The output collected in the current collection box 24 is input to the PCS 25 through the combined power line 27. The ground fault location identifying device 1 is installed in the PCS 25 as a component of the PCS 25.

太陽光発電ストリング21は、n型及びp型の単結晶シリコン等を重ね合わせることで光電効果を利用して太陽光エネルギーから電力を発生するセルを直並列に配置し、そのセルにより成るモジュールを複数直列に接続した発電機である。MCCB22は、過電流等に対して回路を遮断する遮断器であり、例えばb接点を有し、電磁コイルを励磁することでb接点を開にする。接続箱23及び集電箱24はそれぞれ電力を集約する。PCS25は、発電機の出力電圧を昇圧し、直流電力を交流電力へ変換し、高調波を抑制し、力率を制御する等の機器である。PCS25は、例えば、MPPT(Maximum Power Point Tracking)制御のためのDC−DCコンバータ又は昇圧チョッパ、PWM制御による直交変換のためのインバータ、高調波抑制制御のためのLCR交流フィルタ回路等を備えている。   In the photovoltaic power generation string 21, cells that generate electric power from solar energy using the photoelectric effect by overlapping n-type and p-type single crystal silicon are arranged in series and parallel, and a module including the cells is arranged. A plurality of generators connected in series. The MCCB 22 is a circuit breaker that interrupts the circuit against an overcurrent or the like. For example, the MCCB 22 has a b contact and opens the b contact by exciting the electromagnetic coil. The connection box 23 and the current collection box 24 collect power. The PCS 25 is a device that boosts the output voltage of the generator, converts DC power to AC power, suppresses harmonics, and controls the power factor. The PCS 25 includes, for example, a DC-DC converter or step-up chopper for MPPT (Maximum Power Point Tracking) control, an inverter for orthogonal transformation by PWM control, an LCR AC filter circuit for harmonic suppression control, and the like. .

図2に示すように、地絡箇所特定装置1は地絡検出回路11を備える。地絡検出回路11は合流電力線27に接続されている。合流電力線27の正極側線27pには、地絡検出回路11の抵抗12が接続されている。合流電力線27の負極側線27nには、地絡検出回路11の抵抗13が接続されている。抵抗12と抵抗13は等しい抵抗値を有する。抵抗12と抵抗13は直列に接続され、抵抗12と抵抗13の接続点である中性点で共通に接地接続されている。   As shown in FIG. 2, the ground fault location identification device 1 includes a ground fault detection circuit 11. The ground fault detection circuit 11 is connected to the combined power line 27. The resistor 12 of the ground fault detection circuit 11 is connected to the positive electrode side line 27p of the combined power line 27. The resistor 13 of the ground fault detection circuit 11 is connected to the negative electrode side line 27 n of the combined power line 27. The resistor 12 and the resistor 13 have the same resistance value. The resistor 12 and the resistor 13 are connected in series, and are commonly grounded at a neutral point that is a connection point between the resistor 12 and the resistor 13.

抵抗12と正極側線27pとの間を、正極側線27pの対地間電圧Vpeを検出する正極側電圧検出点とする。また、抵抗13と負極側線27nとの間を、負極側線27nの対地間電圧Vneを検出する負極側電圧検出点とする。正極側電圧検出点と負極側電圧検出点から各々電圧入力線が引き出される。これら入力線に地絡検出回路11の差電圧検出部14が接続されている。   A portion between the resistor 12 and the positive electrode side line 27p is set as a positive electrode side voltage detection point for detecting a ground voltage Vpe of the positive electrode side line 27p. Further, a portion between the resistor 13 and the negative electrode side line 27n is set as a negative electrode side voltage detection point for detecting the ground voltage Vne of the negative electrode side line 27n. A voltage input line is drawn from each of the positive voltage detection point and the negative voltage detection point. The differential voltage detector 14 of the ground fault detection circuit 11 is connected to these input lines.

差電圧検出部14は、対地間電圧Vneと対地間電圧Vpeの直流差電圧を検出する。差電圧検出部14は、例えばオペアンプを含み構成される差動増幅器であり、対地間電圧Vneと対地間電圧Vpeの差に応じて電圧が増幅された検出信号Voを出力する。対地間電圧Vneと対地間電圧Vpeとが等しい場合には、検出信号Voの電圧はゼロであり、換言すれば検出信号Voは出力されない。一方、対地間電圧Vneと対地間電圧Vpeに差が生じると、差に応じた電圧の検出信号Voが出力される。   The differential voltage detector 14 detects a DC differential voltage between the ground voltage Vne and the ground voltage Vpe. The differential voltage detector 14 is a differential amplifier including an operational amplifier, for example, and outputs a detection signal Vo whose voltage is amplified according to the difference between the ground voltage Vne and the ground voltage Vpe. When the ground voltage Vne and the ground voltage Vpe are equal, the voltage of the detection signal Vo is zero. In other words, the detection signal Vo is not output. On the other hand, when a difference occurs between the ground voltage Vne and the ground voltage Vpe, a detection signal Vo having a voltage corresponding to the difference is output.

地絡箇所特定装置1は更に制御部15を有する。制御部15は、AD変換器15aとプロセッサ15bとメモリ15cと送信器15dをバス15eで接続して構成される。AD変換器15aは、検出信号Voをアナログ信号からデジタル信号に変換する。送信器15dは、メガソーラ発電所2に敷設されたLAN網と接続され、各MCCB22に投入信号と開放信号を送信する。LAN網は、無線又は有線の一方、若しくは其の複合である。プロセッサ15bは、地絡検出の検出信号Voが入力されるまで待機し、メモリ15cに記憶されているプログラムに従って、差電圧検出部14の検出信号Voの状態を判断しながら、メモリ15cと送信器15dを制御する。メモリ15cの制御はデータの書き込み及び読み出しであり、送信器15dの制御はLAN網への信号送出である。   The ground fault location identifying device 1 further includes a control unit 15. The control unit 15 is configured by connecting an AD converter 15a, a processor 15b, a memory 15c, and a transmitter 15d via a bus 15e. The AD converter 15a converts the detection signal Vo from an analog signal to a digital signal. The transmitter 15 d is connected to a LAN network laid in the mega solar power plant 2 and transmits an input signal and an open signal to each MCCB 22. The LAN network is either wireless or wired, or a combination thereof. The processor 15b waits until the detection signal Vo for detecting the ground fault is input, and determines the state of the detection signal Vo of the differential voltage detection unit 14 according to the program stored in the memory 15c, and transmits the memory 15c and the transmitter. 15d is controlled. Control of the memory 15c is data writing and reading, and control of the transmitter 15d is signal transmission to the LAN network.

この制御部15は、検出信号Voに応答して、各MCCB22を一時的に開放作動させる。換言すると、各個別電力線26を順番に一時的に非導通に切り替える。具体的には、MCCB22に対して開放信号を送信し、一定時間経過後に投入信号を送信する。制御部15は、作動順番前後の開放時期が重複しないように、各MCCB22の作動タイミングを異ならせて一時開放作動させる。開放制御中、制御部15は、検出信号Voの消失を検知し、検出信号Voの消失時に開放中のMCCB22を識別するログLoをメモリ15cに記録する。   The controller 15 temporarily opens each MCCB 22 in response to the detection signal Vo. In other words, the individual power lines 26 are temporarily switched to non-conduction in order. Specifically, an open signal is transmitted to the MCCB 22, and a closing signal is transmitted after a predetermined time has elapsed. The control unit 15 performs the temporary opening operation by changing the operation timing of each MCCB 22 so that the opening times before and after the operation order do not overlap. During the opening control, the control unit 15 detects the disappearance of the detection signal Vo, and records the log Lo for identifying the MCCB 22 being opened when the detection signal Vo disappears in the memory 15c.

図3は、制御部15の動作を示すフローチャートである。差電圧検出部14から検出信号Voが入力されると(ステップS01)、制御部15は、N番目のMCCB22に開放信号を出力する(ステップS02)。Nは、MCCB22を作動させる規定の順番であり、初期値は1である。例えば、Nは、メガソーラ発電所2の付設時にMCCB22の識別のために規定された番号と対応する。制御部15は、N番目のMCCB22を示す宛先アドレスをヘッダに含めた開放信号をLAN網に送出する。   FIG. 3 is a flowchart showing the operation of the control unit 15. When the detection signal Vo is input from the differential voltage detection unit 14 (step S01), the control unit 15 outputs an open signal to the Nth MCCB 22 (step S02). N is a prescribed order for operating the MCCB 22, and the initial value is 1. For example, N corresponds to a number defined for identifying the MCCB 22 when the mega solar power plant 2 is attached. The control unit 15 sends an open signal including a destination address indicating the Nth MCCB 22 in the header to the LAN network.

開放信号の出力後、制御部15は、検出信号Voの消失を判断する(ステップS03)。検出信号Voの制御部15への入力が維持されている場合(ステップS03,No)、N番目のMCCB22に投入信号を出力し(ステップS04)、N=N+1とし(ステップS05)、次のN番目のMCCB22に対して開放信号を出力する(ステップS02)。制御部15は、検出信号Voが消失するまで、ステップS02〜S05を繰り返す。   After outputting the release signal, the control unit 15 determines the disappearance of the detection signal Vo (step S03). When the input of the detection signal Vo to the control unit 15 is maintained (No at Step S03), an input signal is output to the Nth MCCB 22 (Step S04), N = N + 1 (Step S05), and the next N An open signal is output to the second MCCB 22 (step S02). The control unit 15 repeats steps S02 to S05 until the detection signal Vo disappears.

開放信号の出力後、検出信号Voが消失すると(ステップS03,Yes)、制御部15は、N番目のMCCB22を識別するログLoを生成し(ステップS06)、メモリ15cにログLoを記録しておく(ステップS07)。そして、一過性の地絡が終息する予め定められた時間が経過した後(ステップS08)、投入信号を出力し(ステップS09)、地絡箇所特定の処理を終了する。予め定められた時間は経験則でよい。   When the detection signal Vo disappears after the output of the release signal (step S03, Yes), the control unit 15 generates a log Lo for identifying the Nth MCCB 22 (step S06), and records the log Lo in the memory 15c. (Step S07). Then, after a predetermined time elapses when the temporary ground fault ends (step S08), an input signal is output (step S09), and the ground fault location specifying process is terminated. The predetermined time may be an empirical rule.

(作用)
メガソーラ発電所2の正常運転時、正極側線27pの対地間電圧Vpeと負極側線27nの対地間電圧Vneは等しくなる。正極側線27pの抵抗12と負極側線27nの抵抗13の抵抗値が等しいためである。従って、差電圧検出部14は直流差電圧を検出せず、検出信号Voを出力しない。制御部15も作動しない。尚、正常運転時とは、正極側線27pと負極側線27nの大地に対する絶縁性能が良好な状態を指す。
(Function)
During normal operation of the mega solar power plant 2, the voltage Vpe between the positive electrode side line 27p and the voltage Vne between the negative electrode side line 27n are equal. This is because the resistance value of the resistor 12 of the positive electrode side line 27p and the resistance 13 of the negative electrode side line 27n are equal. Therefore, the differential voltage detector 14 does not detect the DC differential voltage and does not output the detection signal Vo. The control unit 15 also does not operate. The normal operation means a state where the insulation performance of the positive electrode side line 27p and the negative electrode side line 27n with respect to the ground is good.

メガソーラ発電所2の個別電力線26の何れかに地絡が発生したものとする。地絡箇所において正極側線又は負極側線の一方が地絡抵抗を介して大地と接続される。そのため、地絡発生側の対地間電圧が小さく、他方の対地間電圧が大きくなる。例えば、何れかの個別電力線26の正極側線に地絡事故が発生すると、正極側線27pが地絡抵抗を介して大地と接続され、正極側線27pの対地間電圧Vpeが零電圧に近づくように小さくなり、負極側線27nの対地間電圧Vneが大きくなる。差電圧検出部14は、Vne>Vpeより、直流差電圧(Vne−Vpe≠0)を検出し、検出信号Voを制御部15に入力する。   It is assumed that a ground fault has occurred in any of the individual power lines 26 of the mega solar power plant 2. At the ground fault location, one of the positive electrode side line or the negative electrode side line is connected to the ground via a ground fault resistance. Therefore, the ground-to-ground voltage on the ground fault generation side is small, and the other ground-to-ground voltage is large. For example, when a ground fault occurs in the positive side line of any individual power line 26, the positive side line 27p is connected to the ground via the ground fault resistance, and the voltage Vpe between the positive side line 27p and the ground voltage Vpe becomes small so as to approach zero voltage. Thus, the voltage Vne between the negative electrode side line 27n and the ground increases. The differential voltage detector 14 detects a DC differential voltage (Vne−Vpe ≠ 0) from Vne> Vpe, and inputs a detection signal Vo to the controller 15.

また、何れかの個別電力線26の負極側線に地絡事故が発生すると、負極側線27n側が地絡抵抗を介して大地と接続され、負極側線27nの対地間電圧Vneが零電圧に近づくように小さくなり、正極側線27pの対地間電圧Vpeが大きくなる。そうすると、差電圧検出部14は、Vpe>Vneより、直流差電圧(Vpe−Vne≠0)を検出し、検出信号Voを制御部15に入力する。   Further, when a ground fault occurs on the negative electrode side line of any individual power line 26, the negative electrode side line 27n side is connected to the ground via a ground fault resistance, and the ground-to-ground voltage Vne of the negative electrode side line 27n becomes small so as to approach zero voltage. Thus, the voltage Vpe between the positive electrode side line 27p and the ground increases. Then, the differential voltage detector 14 detects a DC differential voltage (Vpe−Vne ≠ 0) from Vpe> Vne, and inputs the detection signal Vo to the controller 15.

N=3番目のMCCB22と繋がる個別電力線26に一過性の地絡が発生したとする。制御部15は、検出信号Voの入力により、N=1番目のMCCB22を入り切りする。すなわち、制御部15は開放信号をN=1番目のMCCB22に送信する。MCCB22のマイコンは、開放信号を受けてスイッチ回路を制御し、MCCB22内の電磁コイルを励磁させて、個別電力線26に設けられたb接点を開にする。また、制御部15は、開放信号から一定時間経過後に、投入信号をN=1番目のMCCB22に送信する。MCCB22のマイコンは、投入信号を受けてスイッチ回路を制御し、電磁コイルへの励磁を停止させ、個別電力線26に設けられたb接点を閉にする。   It is assumed that a temporary ground fault occurs in the individual power line 26 connected to the N = 3rd MCCB 22. The control unit 15 turns the N = 1st MCCB 22 on and off in response to the input of the detection signal Vo. That is, the control unit 15 transmits an open signal to the N = 1st MCCB 22. The microcomputer of the MCCB 22 receives the opening signal, controls the switch circuit, excites the electromagnetic coil in the MCCB 22, and opens the b contact provided in the individual power line 26. Further, the control unit 15 transmits a closing signal to the N = 1st MCCB 22 after a predetermined time has elapsed from the release signal. The microcomputer of the MCCB 22 receives the input signal, controls the switch circuit, stops the excitation to the electromagnetic coil, and closes the b contact provided on the individual power line 26.

N=1番目のMCCB22に繋がる個別電力線26は地絡不発生である。従って、この個別電力線26の遮断によっても負極側線27nの対地間電圧Vneと正極側線27pの対地間電圧Vpeの直流差電圧は不変である。そのため、相変わらず検出信号Voが制御部15へ入力され続ける。   The individual power line 26 connected to the N = 1st MCCB 22 has no ground fault. Therefore, even when the individual power line 26 is cut off, the DC voltage difference between the ground voltage Vne of the negative side line 27n and the ground voltage Vpe of the positive side line 27p remains unchanged. Therefore, the detection signal Vo continues to be input to the control unit 15 as usual.

N=1番目のMCCB22の作動によっても検出信号Voの入力は維持のため、制御部15は、次にN=2番目のMCCB22を入り切りする。N=2番目のMCCB22に繋がる個別電力線26も地絡不発生であるため、検出信号Voの制御部15への入力は維持である。   Since the input of the detection signal Vo is maintained even by the operation of the N = 1st MCCB 22, the control unit 15 next turns the N = 2nd MCCB 22 on and off. Since the individual power line 26 connected to the N = 2nd MCCB 22 also has no ground fault, the input of the detection signal Vo to the control unit 15 is maintained.

更に、制御部15は、N=3番目のMCCB22を入り切りする。N=3番目のMCCB22に繋がる個別電力線26は地絡発生箇所を有する。この個別電力線26が遮断されると、合流電力線27の正極側線27pと負極側線27nは地絡箇所と非接続となる。従って、正極側線27pの対地間電圧Vpeと負極側線27nの対地間電圧Vneが等しい状態に戻る。差電圧検出部14は、直流差電圧を検出しなくなり、検出信号Voの出力を停止する。つまり、制御部15へ入力されていた検出信号Voが消失する。   Further, the control unit 15 turns on and off the N = 3rd MCCB 22. The individual power line 26 connected to the N = 3rd MCCB 22 has a ground fault occurrence location. When the individual power line 26 is cut off, the positive electrode side line 27p and the negative electrode side line 27n of the combined power line 27 are disconnected from the ground fault location. Therefore, the ground-to-ground voltage Vpe of the positive electrode side line 27p and the ground-to-ground voltage Vne of the negative electrode side line 27n return to the same state. The differential voltage detector 14 stops detecting the DC differential voltage and stops outputting the detection signal Vo. That is, the detection signal Vo input to the control unit 15 disappears.

制御部15は、検出信号Voの消失を受けて、N=3番目のMCCB22を識別するログLoをメモリ15cに記憶する。メガソーラ発電所2の管理者は、LAN網に接続された端末を操作し、地絡箇所特定装置1のメモリ15cに記録されたログLoにアクセスすることで、N=3番目のMCCB22と接続する個別電力線26上で地絡が発生したことを認識できる。   Upon receiving the disappearance of the detection signal Vo, the control unit 15 stores a log Lo for identifying the N = 3rd MCCB 22 in the memory 15c. The manager of the mega solar power plant 2 operates the terminal connected to the LAN network, and accesses the log Lo recorded in the memory 15c of the ground fault location specifying device 1, thereby connecting to the N = 3rd MCCB 22. It can be recognized that a ground fault has occurred on the individual power line 26.

(効果)
このように、本実施形態の地絡箇所特定装置1は、メガソーラ発電所2を一例とする直流回路の地絡を検出する地絡検出回路11を合流電力線27に接続し、地絡検出回路11の地絡検出に応答して、MCCB22を一例とする各遮断器を順番に一時開放作動させ、遮断器の作動による地絡検出の解消を監視するようにした。
(effect)
As described above, the ground fault location specifying device 1 according to the present embodiment connects the ground fault detection circuit 11 that detects the ground fault of the DC circuit taking the mega solar power plant 2 as an example to the combined power line 27, and the ground fault detection circuit 11. In response to the detection of the ground fault, the circuit breakers taking MCCB 22 as an example are temporarily opened in order, and the cancellation of the ground fault detection due to the operation of the circuit breaker is monitored.

これにより、管理者が各接続箱23に直に出向いて順番にMCCB22を手動で入り切りしなくとも、地絡箇所を特定できる。地絡が一過性であっても、地絡検出に応答して速やかに各MCCB22が入り切りされるため、一過性の地絡が発生中に地絡箇所を特定できる可能性が高まる。   Thereby, even if an administrator goes directly to each connection box 23 and does not turn on and off MCCB22 manually in order, a ground fault location can be specified. Even if the ground fault is temporary, each MCCB 22 is quickly turned on and off in response to the detection of the ground fault, so that the possibility that the ground fault location can be specified while the temporary ground fault is occurring increases.

本実施形態において、地絡箇所特定装置1はPCS25内に設けられるようにした。但し、合流電力線27と地絡検出回路11とを接続すればよく、これに限らず、集電箱24に設置してもよい。また、本実施形態はメガソーラ発電所2全体を一つの直流回路に見立てたが、これに限らず、並列の各個別電力線26を合流電力線27に集約して成ると共に各個別電力線26に遮断器を有する直流回路であれば、この地絡箇所特定装置1を適用可能である。   In the present embodiment, the ground fault location identifying device 1 is provided in the PCS 25. However, the merging power line 27 and the ground fault detection circuit 11 may be connected, and the present invention is not limited thereto, and may be installed in the current collection box 24. In the present embodiment, the entire mega solar power plant 2 is regarded as a single DC circuit. However, the present invention is not limited to this, and each individual power line 26 in parallel is integrated into a combined power line 27 and a breaker is provided for each individual power line 26. The ground fault location identifying device 1 can be applied to any DC circuit having the same.

例えば、図4に示すように、接続箱23に地絡特定装置1を設置し、接続箱23と集電箱24とを接続する電力線に地絡検出回路11を接続することもできる。この場合、太陽光発電ストリング21とMCCB22とを繋ぐ電力線が個別電力線26となり、接続箱23と集電箱24とを接続する電力線が合流電力線27となる。そして、地絡箇所特定装置1は自身が設置された接続箱23よりも上流の個別電力線26について地絡箇所を特定できる。   For example, as shown in FIG. 4, the ground fault identification device 1 can be installed in the connection box 23, and the ground fault detection circuit 11 can be connected to a power line that connects the connection box 23 and the current collection box 24. In this case, the power line connecting the solar power generation string 21 and the MCCB 22 becomes the individual power line 26, and the power line connecting the connection box 23 and the current collection box 24 becomes the merged power line 27. And the ground fault location identification apparatus 1 can pinpoint a ground fault location about the separate electric power line 26 upstream from the connection box 23 in which self was installed.

また、地絡検出回路11として、正極側線27pの対地間電圧Vpeと負極側線27nの対地間電圧Vneとの直流差電圧を受動式により検出する例を説明した。これに限ることなく、例えば変流器CTによる差電流の検出、又は接地線に流れる電流の検出によってもよい。また、正極側電圧検出点と負極側電圧検出点を挟むように抵抗12と抵抗13に各々分圧抵抗を接続して差電圧を増幅し、差電圧の検出感度を高めてもよい。更に、制御部15による遮断器の一時作動タイミングは、開放と投入が完全に重ならなければ、作動時期が一部重複していてもよく、地絡箇所の特定が可能であるとともに、早期に地絡箇所を特定することもできる。   Further, as the ground fault detection circuit 11, the example in which the DC difference voltage between the ground voltage Vpe of the positive electrode side line 27p and the ground voltage Vne of the negative electrode side line 27n is detected by a passive method has been described. However, the present invention is not limited to this, and for example, the detection of a difference current by the current transformer CT or the detection of a current flowing through the ground line may be used. Alternatively, a voltage dividing resistor may be connected to each of the resistor 12 and the resistor 13 so as to sandwich the positive voltage detection point and the negative voltage detection point, thereby amplifying the differential voltage and increasing the detection sensitivity of the differential voltage. Furthermore, as for the temporary operation timing of the circuit breaker by the control unit 15, if the opening and closing do not completely overlap, the operation timing may be partially overlapped, and it is possible to identify the ground fault location and early A ground fault location can also be specified.

(第2の実施形態)
次に、第2の実施形態に係る地絡箇所特定装置1につき図面を参照して詳細に説明する。第1の実施形態と同一構成及び同一機能については同一符号を付して詳細な説明を省略する。
(Second Embodiment)
Next, the ground fault location specifying device 1 according to the second embodiment will be described in detail with reference to the drawings. The same configurations and functions as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

(構成)
図5に示すように、メモリ15cには、優先遮断一覧Liが記憶されている。優先遮断一覧Liは、MCCB22の作動順位を示している。制御部15は、優先遮断一覧Liに記録されているMCCB22を先に一時作動させていく。また、制御部15は、優先遮断一覧Liの記録順にMCCB22を先に一時作動させていく。優先遮断一覧Liに記録されているMCCB22を全て一時作動させると、制御部15は、残りのMCCB22を規定順に一時作動させる。
(Constitution)
As illustrated in FIG. 5, the priority cut-off list Li is stored in the memory 15c. The priority cut-off list Li indicates the operation order of the MCCB 22. The control unit 15 temporarily activates the MCCB 22 recorded in the priority cutoff list Li first. Further, the control unit 15 first activates the MCCB 22 in the order of recording in the priority cutoff list Li. When all the MCCBs 22 recorded in the priority cut-off list Li are temporarily activated, the control unit 15 temporarily activates the remaining MCCBs 22 in the prescribed order.

この優先遮断一覧Liは、メモリ15cに記録されたログLoを基に生成される。制御部15は、ログLoに記録されている同一MCCB22の数をカウントし、カウント数が多い順に優先遮断一覧Liに並べて、優先遮断一覧Liを更新しておく。すなわち、過去において、地絡事故が生じた個別信号線26のMCCB22を其の事故回数が多い順番に並べてリスト化している。   This priority cut-off list Li is generated based on the log Lo recorded in the memory 15c. The control unit 15 counts the number of identical MCCBs 22 recorded in the log Lo, arranges them in the priority cutoff list Li in descending order of the count number, and updates the priority cutoff list Li. That is, in the past, the MCCB 22 of the individual signal line 26 in which the ground fault has occurred is listed in the order of the number of the accidents.

図6及び図7は、この優先遮断一覧Liに基づく制御部15の動作を示すフローチャートである。差電圧検出部14から検出信号Voが入力されると(ステップS11)、制御部15は、優先遮断一覧Liを参照し(ステップS12)、優先遮断一覧Liに記録されたM番目のMCCB22に開放信号を出力する(ステップS13)。Mの初期値は1である。   6 and 7 are flowcharts showing the operation of the control unit 15 based on the priority cutoff list Li. When the detection signal Vo is input from the differential voltage detection unit 14 (step S11), the control unit 15 refers to the priority cutoff list Li (step S12), and opens to the Mth MCCB 22 recorded in the priority cutoff list Li. A signal is output (step S13). The initial value of M is 1.

開放信号の出力後、制御部15は、検出信号Voの消失を判断する(ステップS14)。検出信号Voの制御部15への入力が維持される場合には(ステップS14,No)、M番目のMCCB22に投入信号を出力し(ステップS15)、M=M+1とする(ステップS16)。そして、次のM番目のMCCB22が優先遮断一覧Liに記録されているか判断する(ステップS17)。優先遮断一覧LiにM番目のMCCB22が記録されている場合には(ステップS17,Yes)、ステップS13に戻り、M番目のMCCB22について入り切りを行う。   After outputting the release signal, the control unit 15 determines the disappearance of the detection signal Vo (step S14). When the input of the detection signal Vo to the control unit 15 is maintained (No at Step S14), a closing signal is output to the Mth MCCB 22 (Step S15), and M = M + 1 is set (Step S16). Then, it is determined whether the next Mth MCCB 22 is recorded in the priority cutoff list Li (step S17). When the M-th MCCB 22 is recorded in the priority cutoff list Li (step S17, Yes), the process returns to step S13, and the M-th MCCB 22 is turned on and off.

一方、M番目のMCCB22が優先遮断一覧Liに記録されていない場合には(ステップS17,No)、N番目のMCCB22に対して一時作動実行済みか判断する(ステップS18)。N番目とは規定の順番であり、Nの初期値は1である。N番目のMCCB22が一時作動実行済みの場合(ステップS18,Yes)、N=N+1とし(ステップS19)、ステップS18の一時作動実行済みの判断を繰り返す。この判断では、優先遮断一覧Liに記録されているか判断する。   On the other hand, when the M-th MCCB 22 is not recorded in the priority cutoff list Li (No in step S17), it is determined whether the temporary operation has been executed for the N-th MCCB 22 (step S18). The Nth is a prescribed order, and the initial value of N is 1. When the N-th MCCB 22 has already been temporarily operated (step S18, Yes), N = N + 1 is set (step S19), and the determination that the temporary operation has been performed in step S18 is repeated. In this determination, it is determined whether it is recorded in the priority cutoff list Li.

一時作動未実行の場合には(ステップS18,No)、N番目のMCCB22に開放信号を出力する(ステップS20)。開放信号の出力後、制御部15は、検出信号Voの消失を判断する(ステップS21)。検出信号Voの制御部15への入力が維持される場合には(ステップS21,No)、N番目のMCCB22に投入信号を出力し(ステップS22)、N=N+1とする(ステップS23)。そして、ステップ制御部15は、検出信号Voが消失するまで、順番にステップS18〜S21を繰り返していく。   When the temporary operation is not executed (step S18, No), an open signal is output to the Nth MCCB 22 (step S20). After outputting the release signal, the control unit 15 determines the disappearance of the detection signal Vo (step S21). When the input of the detection signal Vo to the control unit 15 is maintained (No at Step S21), a closing signal is output to the Nth MCCB 22 (Step S22), and N = N + 1 is set (Step S23). And the step control part 15 repeats step S18-S21 in order until the detection signal Vo lose | disappears.

そして、開放信号を出力し、検出信号Voが消失すると(ステップS14又はS21,Yes)、制御部15は、M番目又はN番目のMCCB22を識別するログLoを生成し(ステップS24)、メモリ15cにログLoを記録しておく(ステップS25)。そして、一過性の地絡が終息する予め定められた時間が経過した後(ステップS26)、投入信号を出力し(ステップS27)、地絡箇所特定の処理を終了する。   When the open signal is output and the detection signal Vo disappears (step S14 or S21, Yes), the control unit 15 generates a log Lo for identifying the Mth or Nth MCCB 22 (step S24), and the memory 15c. The log Lo is recorded (step S25). Then, after a predetermined time elapses when the temporary ground fault ends (step S26), an input signal is output (step S27), and the ground fault location specifying process is terminated.

(作用効果)
この地絡箇所特定装置1によれば、過去に地絡が発生した個別電力線26と繋がるMCCB22に対して優先的に一時作動を実行する。地絡は、動物や飛来物の接触等の偶発的によるもの以外に、例えば電力線の被覆が劣化している等によって、同一箇所で多発することもある。従って、この地絡箇所特定装置1は、地絡発生の可能性が高い個別電力線26を先行検査していることになる。
(Function and effect)
According to this ground fault location specifying device 1, the temporary operation is preferentially performed on the MCCB 22 connected to the individual power line 26 in which a ground fault has occurred in the past. In addition to accidental contact such as contact of animals or flying objects, ground faults may occur frequently at the same location due to, for example, deterioration of the power line coating. Therefore, this ground fault location identifying device 1 is inspecting the individual power line 26 that is highly likely to cause a ground fault.

これにより、地絡箇所特定の検査時間が短縮され、一部回路を遮断することによるメガソーラ発電所1の電力変化も短時間に抑制できるため、系統への影響を最小限に抑えることができるとともに、無用なMCCB22の入り切りが減るため、設備寿命の低下も抑制できる。更に、極めて短い地絡事故であっても地絡箇所の特定可能性が高まり、地絡箇所特定装置1の信頼性も向上する。   As a result, the inspection time for identifying the ground fault location is shortened, and the power change of the mega solar power plant 1 caused by cutting off some circuits can be suppressed in a short time, so that the influence on the system can be minimized. Since the unnecessary MCCB 22 is turned on and off, it is possible to suppress a reduction in equipment life. Furthermore, even if it is an extremely short ground fault, the possibility of specifying a ground fault location is increased, and the reliability of the ground fault location specifying device 1 is also improved.

(第3の実施形態)
次に、第3の実施形態に係る地絡箇所特定装置1を図面を参照しつつ詳細に説明する。第1又は第2の実施形態と同一構成及び同一機能については同一符号を付して詳細な説明を省略する。
(Third embodiment)
Next, the ground fault location specifying device 1 according to the third embodiment will be described in detail with reference to the drawings. The same configurations and functions as those in the first or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に示すように、メモリ15cには、MCCB22のシステムダイアグラムSDが記憶されている。システムダイアグラムSDの最上位階層は、複数のMCCB22を集約させた接続箱23ごとにグループ分けされている。その1つ下位層は、1つの接続箱23に集約された複数のMCCB22を更にグループ分けしている。最下層は、MCCB22が更に個別に分かれている。   As shown in FIG. 8, a system diagram SD of the MCCB 22 is stored in the memory 15c. The highest hierarchy of the system diagram SD is grouped for each connection box 23 in which a plurality of MCCBs 22 are aggregated. One lower layer further groups a plurality of MCCBs 22 collected in one connection box 23. In the lowermost layer, MCCB 22 is further divided individually.

制御部15は、グループごとにMCCB22を同時作動させる。地絡検出回路11からの検出信号Voが消失すると、検出信号Voの消失時に作動させたグループに属する下位階層のグループを次に順次作動させ、徐々に地絡箇所の可能性を絞っていき、最後に特定のMCCB22に絞る。   The control unit 15 operates the MCCB 22 simultaneously for each group. When the detection signal Vo from the ground fault detection circuit 11 disappears, the lower layer group belonging to the group that was activated when the detection signal Vo disappeared is then sequentially activated, gradually narrowing down the possibility of the ground fault location, Finally, narrow down to a specific MCCB22.

例えば、図8において、「MCCB1」〜「MCCB4」のMCCB22を同時に一時作動させる。その結果、検出信号Voが消失しなければ、「MCCB1」〜「MCCB4」のMCCB22に投入信号を送って回路を閉じ、次に「MCCB4」〜「MCCB8」のMCCB22を同時に一時作動させる。このとき、検出信号Voは消失するはずである。   For example, in FIG. 8, MCCBs 22 of “MCCB1” to “MCCB4” are temporarily operated simultaneously. As a result, if the detection signal Vo does not disappear, a closing signal is sent to the MCCB 22 of “MCCB1” to “MCCB4” to close the circuit, and then the MCCB 22 of “MCCB4” to “MCCB8” are temporarily operated simultaneously. At this time, the detection signal Vo should disappear.

「MCCB4」〜「MCCB8」のMCCB22を同時に一時作動させることにより、検出信号Voが消失すると、「MCCB7」と「MCCB8」のMCCB22に投入信号を送って、「MCCB7」と「MCCB8」のMCCB22が接続された個別電力線26を合流電力線27に繋ぐ。   When the detection signal Vo disappears by temporarily operating the MCCB 22 of “MCCB4” to “MCCB8” simultaneously, the MCCB 22 of “MCCB7” and “MCCB8” is sent to the MCCB 22 of “MCCB7” and “MCCB8”. The connected individual power line 26 is connected to the combined power line 27.

「MCCB7」と「MCCB8」のMCCB22に投入信号を送ることにより、検出信号Voが再度検出されると、「MCCB7」のMCCB22に開放信号を送る。これにより、検出信号Voが消失すると、「MCCB7」のMCCB22が繋がる個別電力線26に地絡が発生していることがわかる。「MCCB7」のMCCB22に開放信号を送った結果、検出信号Voが維持されれば、「MCCB8」のMCCB22が繋がる個別電力線26に地絡が発生していることがわかる。   When the input signal is sent to the MCCB 22 of “MCCB7” and “MCCB8” and the detection signal Vo is detected again, the release signal is sent to the MCCB 22 of “MCCB7”. Thereby, when the detection signal Vo disappears, it is understood that a ground fault has occurred in the individual power line 26 to which the MCCB 22 of “MCCB7” is connected. If the detection signal Vo is maintained as a result of sending the release signal to the MCCB 22 of “MCCB7”, it is understood that a ground fault has occurred in the individual power line 26 connected to the MCCB 22 of “MCCB8”.

また、「MCCB7」と「MCCB8」のMCCB22に投入信号を送って、「MCCB7」と「MCCB8」のMCCB22が接続された個別電力線26を合流電力線27に繋いだ結果、検出信号Voの消失が維持されていれば、「MCCB5」と「MCCB6」のMCCB22の一方が繋がる個別電力線26に地絡の可能性があるので、「MCCB5」と「MCCB6」のMCCB22に時期をずらして投入信号を送って検出信号Voを再度検出させ、いずれのMCCB22を一時作動させたときに検出信号Voが消失するか確認すればよい。   Further, by sending an input signal to the MCCB 22 of “MCCB7” and “MCCB8” and connecting the individual power line 26 to which the MCCB 22 of “MCCB7” and “MCCB8” are connected to the merged power line 27, the disappearance of the detection signal Vo is maintained. If this is the case, there is a possibility of a ground fault in the individual power line 26 to which one of the MCCB 22 of “MCCB5” and “MCCB6” is connected. Therefore, the MCCB 22 of “MCCB5” and “MCCB6” are shifted in time to send input signals. The detection signal Vo is detected again, and it is only necessary to confirm which of the MCCBs 22 disappears when the MCCB 22 is temporarily activated.

本実施形態の地絡箇所特定装置1では、システムダイアグラムSDとして、MCCB22を同一階層で1グループにのみ属させた多段のグループ階層を記憶しておき、グループごとにMCCB22を同時作動させ、地絡解消が検出された際に作動したグループに属する下位階層のグループを次に順次作動させるようにした。これにより、一機ずつMCCB22を入り切りするよりも早く地絡箇所が特定でき、極めて短い地絡事故であっても地絡箇所を特定できる可能性が高まる。   In the ground fault location specifying device 1 of the present embodiment, a multi-level group hierarchy in which the MCCB 22 belongs to only one group in the same hierarchy is stored as the system diagram SD, and the MCCB 22 is operated simultaneously for each group. The lower-level group belonging to the group that was activated when the resolution was detected was activated next. Thereby, a ground fault location can be specified earlier than turning on and off the MCCB 22 one by one, and the possibility that the ground fault location can be specified even in an extremely short ground fault is increased.

(その他の実施形態)
本明細書においては、本発明に係る複数の実施形態を説明したが、これら実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples, and are not intended to limit the scope of the invention. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The embodiments and the modifications thereof are included in the scope of the invention and the scope of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1 地絡箇所特定装置
11 地絡検出回路
12 抵抗
13 抵抗
14 差電圧検出部
15 制御部
15a AD変換器
15b プロセッサ
15c メモリ
15d 送信器
15e バス
2 メガソーラ発電所
21 太陽光発電ストリング
22 MCCB
23 接続箱
24 集電箱
25 PCS
26 個別電力線
27 合流電力線
27p 正極側線
27n 負極側線
Vpe 対地間電圧
Vne 対地間電圧
Vo 検出信号
Lo ログ
Li 優先遮断一覧
SD システムダイアグラム
100 電力系統
DESCRIPTION OF SYMBOLS 1 Ground fault location identification apparatus 11 Ground fault detection circuit 12 Resistance 13 Resistance 14 Difference voltage detection part 15 Control part 15a AD converter 15b Processor 15c Memory 15d Transmitter 15e Bus 2 Mega solar power plant 21 Solar power generation string 22 MCCB
23 Junction box 24 Current collection box 25 PCS
26 Individual Power Line 27 Combined Power Line 27p Positive Side Line 27n Negative Side Line Vpe Ground Voltage Vne Ground Voltage Vo Detection Signal Lo Log Li Priority Cutoff List SD System Diagram 100 Electric Power System

Claims (10)

並列の各個別電力線を合流電力線に集約して成ると共に各個別電力線に遮断器を有する直流回路に対する、地絡箇所特定装置であって、
前記合流電力線と接続し、前記直流回路の地絡を検出する地絡検出部と、
前記地絡検出部の地絡検出に応答して前記各遮断器を順番に一時開放作動させ、前記遮断器の作動による地絡解消を監視する制御部と、
を備えること、
を特徴とする地絡箇所特定装置。
A ground fault location specifying device for a DC circuit that is formed by consolidating parallel individual power lines into a merged power line and having a breaker in each individual power line,
A ground fault detector connected to the combined power line and detecting a ground fault of the DC circuit;
In response to the ground fault detection of the ground fault detection unit, the circuit breakers are temporarily opened in turn in order, and a control unit that monitors the ground fault elimination due to the operation of the circuit breaker,
Providing
A ground fault location identifying device characterized by
地絡解消時に作動させた前記遮断器を記録する記録部を更に備え、
前記制御部は、前記記録部に記録された前記遮断器を優先的に作動させること、
を特徴とする請求項1記載の地絡箇所特定装置。
It further comprises a recording unit for recording the circuit breaker operated when the ground fault is resolved,
The control unit preferentially operates the circuit breaker recorded in the recording unit;
The ground fault location specifying device according to claim 1.
前記制御部は、前記記録部に記録された数が多い順番に更に優先的に前記遮断器を作動させること、
を特徴とする請求項2記載の地絡箇所特定装置。
The controller is configured to operate the circuit breaker more preferentially in the order of the number recorded in the recording unit;
The ground fault location specifying device according to claim 2.
前記制御部は、1機ずつ前記遮断器を作動させること、
を特徴とする請求項1記載の地絡箇所特定装置。
The control unit operates the circuit breaker one by one,
The ground fault location specifying device according to claim 1.
前記制御部は、
前記各遮断器を同一階層で1グループにのみ属させたシステムダイアグラムを記憶し、
グループごとに前記遮断器を同時作動させ、前記地絡解消が検出された際に作動したグループに属する下位階層のグループを次に順次作動させること、
を特徴とする請求項1記載の地絡箇所特定装置。
The controller is
Storing a system diagram in which each breaker belongs to only one group in the same hierarchy;
Simultaneously actuating the circuit breakers for each group, and then sequentially actuating the lower hierarchical groups belonging to the group that was activated when the ground fault resolution was detected,
The ground fault location specifying device according to claim 1.
パワーコンディショナに備えられること、
を特徴とする請求項1乃至5の何れに記載の地絡箇所特定装置。
To be provided in the inverter,
The ground fault location specifying device according to any one of claims 1 to 5.
集電箱に備えられること、
を特徴とする請求項1乃至5の何れに記載の地絡箇所特定装置。
Being provided in a current collector box,
The ground fault location specifying device according to any one of claims 1 to 5.
接続箱に備えられること、
を特徴とする請求項1乃至5の何れに記載の地絡箇所特定装置。
Provided in the junction box,
The ground fault location specifying device according to any one of claims 1 to 5.
前記遮断器は、配線用遮断器(MCCB)であること、
を特徴とする請求項1乃至8の何れに記載の地絡箇所特定装置。
The circuit breaker is a circuit breaker (MCCB);
The ground fault location specifying device according to any one of claims 1 to 8.
前記地絡検出回路は、正極側電力線の対地間電圧と負極側電力線の対地間電圧との直流差電圧を検出することで、地絡を検出すること、
を特徴とする請求1乃至9の何れに記載の地絡箇所特定装置。
The ground fault detection circuit detects a ground fault by detecting a DC difference voltage between a voltage between the positive power line and the ground voltage of the negative power line,
The ground fault location specifying device according to any one of claims 1 to 9.
JP2015092615A 2015-04-30 2015-04-30 Ground fault point identification device Pending JP2016213914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092615A JP2016213914A (en) 2015-04-30 2015-04-30 Ground fault point identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092615A JP2016213914A (en) 2015-04-30 2015-04-30 Ground fault point identification device

Publications (1)

Publication Number Publication Date
JP2016213914A true JP2016213914A (en) 2016-12-15

Family

ID=57551905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092615A Pending JP2016213914A (en) 2015-04-30 2015-04-30 Ground fault point identification device

Country Status (1)

Country Link
JP (1) JP2016213914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922945A (en) * 2018-07-10 2018-11-30 中国计量大学 Assess the system and method for double-sided solar battery and its emitter quantum efficiency
JP2021025843A (en) * 2019-08-02 2021-02-22 東芝三菱電機産業システム株式会社 Ground fault detection system and ground fault detection device
JP2021083293A (en) * 2019-11-22 2021-05-27 パナソニックIpマネジメント株式会社 Abnormality detection system, distribution board system, abnormality detection method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922945A (en) * 2018-07-10 2018-11-30 中国计量大学 Assess the system and method for double-sided solar battery and its emitter quantum efficiency
JP2021025843A (en) * 2019-08-02 2021-02-22 東芝三菱電機産業システム株式会社 Ground fault detection system and ground fault detection device
JP2021083293A (en) * 2019-11-22 2021-05-27 パナソニックIpマネジメント株式会社 Abnormality detection system, distribution board system, abnormality detection method and program

Similar Documents

Publication Publication Date Title
US20230324935A1 (en) System and method for arc detection and intervention in solar energy systems
US10158220B2 (en) Triple redundant digital protective relay and operating method therefor
US11205892B2 (en) Method for locating phase faults in a microgrid
US10381838B2 (en) Power control system with fault detection and data retention for energy generation systems
JP2008271693A (en) Solar photovoltaic power-generation system
US20130120017A1 (en) Device and method for monitoring a photovoltaic system
CN110783946B (en) Method for locating phase faults in a microgrid
JP2015018838A (en) Fault detector of backflow prevention diode for solar cell, fault detection system of backflow prevention diode for solar cell, and fault detection method of backflow prevention diode for solar cell
KR101859068B1 (en) Appratus for detecting electric power line state
JP2016537631A (en) Method for detecting electrical faults in a circuit
US9714974B2 (en) Device for detecting open phase of connection line of standby transformer in nuclear power plant by using Rogowski coil
JP2016213914A (en) Ground fault point identification device
US20150120221A1 (en) Method and system for detecting islanding effect in power electrical network topology
US11916375B2 (en) Fault current limiter for energy storage systems
CN110460026A (en) Use the method for the orientation overcurrent grounding relay (DOCGR) and operation DOCGR of sampled value
US9164148B2 (en) Systems and methods for detecting over/under excitation faults
JP5897941B2 (en) Secondary battery charge / discharge tester
JP7325010B2 (en) Arc detection device, breaker, power conditioner, solar panel, junction box, arc detection system and arc detection method
WO2019208027A1 (en) Arc detecting circuit, breaker, power conditioner, solar panel, module with solar panel, and connection box
WO2022168255A1 (en) Arc detector, breaker, power conditioner, solar panel, solar panel-attached module, connection box, arc detection system, and arc detection method
KR20190105393A (en) Methods and apparatuses for protecting microgrid based on fuzzy
JP2020057536A (en) Circuit breaker, and test method of circuit breaker
JP2014229818A (en) String monitor system for photovoltaic power generation
JP2018100877A (en) Arc fault detection system
KR100675741B1 (en) Protective-relaying control system and methode using mobile software

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170913

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171225