JP2016212211A - Fixing device - Google Patents

Fixing device Download PDF

Info

Publication number
JP2016212211A
JP2016212211A JP2015094741A JP2015094741A JP2016212211A JP 2016212211 A JP2016212211 A JP 2016212211A JP 2015094741 A JP2015094741 A JP 2015094741A JP 2015094741 A JP2015094741 A JP 2015094741A JP 2016212211 A JP2016212211 A JP 2016212211A
Authority
JP
Japan
Prior art keywords
heater
fixing device
endless belt
region
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015094741A
Other languages
Japanese (ja)
Inventor
小原 泰成
Yasunari Obara
泰成 小原
臼井 正武
Masatake Usui
正武 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015094741A priority Critical patent/JP2016212211A/en
Publication of JP2016212211A publication Critical patent/JP2016212211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fixing device capable of shortening a rising time and suppressing the temperature rise of a non-paper passing part.SOLUTION: The fixing device includes a rotatable endless belt, a slide member on which the inner peripheral surface of the endless belt slides when the endless belt is rotated, a holding member which includes a groove part into which the slide member is fitted and holds the slide member, so as to obtain contact with the inner peripheral surface of the endless belt in such a state that the slide member is fitted, and an opposing member which faces the slide member and the holding member through the endless belt and forms a nip part between the opposing member and the outer peripheral surface of the endless belt and heats and fixes a recording material carrying an image in the nip part. Further, the fixing device includes a heat conduction member which is provided between the holding member and the slide member and is in contact with the slide member and an energizing member which is provided between the holding member and the heat conduction member and performs energizing toward the heat conduction member. The holding member includes a first seating surface holding the energizing member and a second seating surface holding the heat conduction member or the slide member in such a state that the energizing member is energized.SELECTED DRAWING: Figure 3

Description

本発明は、電子写真複写機、電子写真プリンタなどの画像形成装置に搭載される定着装置に関する。   The present invention relates to a fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer.

定着装置を搭載する画像形成装置で小サイズ紙を連続プリントするとき、定着ニップ部の長手方向において、紙が通過しない領域の温度が徐々に上昇する現象(非通紙部昇温)が発生することが知られている。この非通紙部昇温を抑制する手法の一つとして、セラミックヒータの支持部材と、セラミックヒータの間に、高熱伝導部材を挟持させる方法が提案されている(特許文献1)。   When small-size paper is continuously printed by an image forming apparatus equipped with a fixing device, a phenomenon (temperature increase of non-sheet passing portion) in which the temperature of a region where the paper does not pass gradually increases in the longitudinal direction of the fixing nip portion occurs. It is known. As one of the methods for suppressing the temperature rise of the non-sheet passing portion, a method of sandwiching a high heat conductive member between a ceramic heater support member and a ceramic heater has been proposed (Patent Document 1).

特開2003−317898号公報JP 2003-317898 A

しかしながら、ヒータと高熱伝導部材との接触の状態によっては、定着装置が所定の定着温度に到達するまでの時間が長くなる場合や、非通紙部昇温を抑制する効果がなくなる場合がある。   However, depending on the state of contact between the heater and the high thermal conductivity member, the time until the fixing device reaches a predetermined fixing temperature may be long, or the effect of suppressing the temperature rise of the non-sheet passing portion may be lost.

そのため、定着装置が所定の温度に到達するまでの時間を短縮することと、非通紙部昇温を抑制する効果とを両立させることが望まれていた。   For this reason, it has been desired to reduce both the time required for the fixing device to reach a predetermined temperature and the effect of suppressing the temperature rise of the non-sheet passing portion.

本発明の目的は、立ち上げ時間を短縮すると共に、非通紙部昇温を抑制することができる定着装置を提供することにある。   An object of the present invention is to provide a fixing device capable of reducing the rise time and suppressing the temperature rise of the non-sheet passing portion.

上記目的を達成する本発明に係る定着装置は、回転可能な無端ベルトと、前記無端ベルトの回転に際し前記無端ベルトの内周面が摺動する摺動部材と、前記摺動部材を嵌め込むための溝部を備え、前記摺動部材を嵌め込んだ状態で前記無端ベルトの内周面と接触するように前記摺動部材を保持する保持部材と、前記無端ベルトを介して前記摺動部材および前記保持部材と対向し前記無端ベルトの外周面との間でニップ部を形成する対向部材と、を有し、前記ニップ部で画像を担持した記録材を挟持搬送しつつ加熱定着する定着装置であって、前記保持部材と前記摺動部材の間に設けられ、前記摺動部材と接する熱伝導部材と、前記保持部材と前記熱伝導部材の間に設けられ、前記熱伝導部材へ向けて付勢する付勢部材と、を有し、前記保持部材は、前記付勢部材を保持する第1の座面と、前記付勢部材が付勢された状態で前記熱伝導部材もしくは前記摺動部材を保持する第2の座面と、を有することを特徴とする。   The fixing device according to the present invention that achieves the above object includes a rotatable endless belt, a sliding member on which an inner peripheral surface of the endless belt slides when the endless belt rotates, and a sliding member fitted therein. A holding member that holds the sliding member in contact with the inner peripheral surface of the endless belt in a state where the sliding member is fitted, the sliding member and the A fixing device that opposes a holding member and forms a nip portion with an outer peripheral surface of the endless belt, and heats and fixes the recording material carrying an image at the nip portion while nipping and conveying the recording material. A heat conducting member provided between the holding member and the sliding member and in contact with the sliding member; and provided between the holding member and the heat conducting member and biased toward the heat conducting member. And a biasing member Has a first seating surface that holds the biasing member and a second seating surface that holds the heat conducting member or the sliding member in a state where the biasing member is biased. Features.

本発明によれば、立ち上げ時間を短縮すると共に、非通紙部昇温を抑制することができる。   According to the present invention, the start-up time can be shortened and the non-sheet passing portion temperature rise can be suppressed.

本発明の実施形態に係る定着装置を搭載した画像形成装置の説明図である。1 is an explanatory diagram of an image forming apparatus equipped with a fixing device according to an embodiment of the present invention. 本発明の第1の実施形態に係る定着装置の断面図である。1 is a cross-sectional view of a fixing device according to a first embodiment of the present invention. 第1の実施形態における付勢部材によって高熱伝導部材を加圧する位置の説明図である。It is explanatory drawing of the position which pressurizes a high heat conductive member by the biasing member in 1st Embodiment. 第1の実施形態におけるヒータ長手方向端部における高熱伝導部材の設置方法と付勢部材による加圧範囲の規制の説明図である。It is explanatory drawing of the restriction | limiting of the pressurization range by the installation method of the high heat conductive member in the heater longitudinal direction edge part in 1st Embodiment, and an urging | biasing member. 第1の実施形態のヒータと高熱伝導部材の接触熱抵抗の説明図である。It is explanatory drawing of the contact thermal resistance of the heater of 1st Embodiment, and a high heat conductive member. 第1の実施形態の付勢部材の加圧力による圧縮率を説明した図である。It is a figure explaining the compression rate by the applied pressure of the urging | biasing member of 1st Embodiment. 比較例のヒータと高熱伝導部材の加圧する位置の説明図である。It is explanatory drawing of the position which the heater of a comparative example and a high heat conductive member pressurize. 第1の実施形態1のヒータ支持部材と付勢部材に関する変形例の説明図である。It is explanatory drawing of the modification regarding the heater support member and biasing member of 1st Embodiment. 第2の実施形態における付勢部材によって高熱伝導部材を加圧する位置の説明図である。It is explanatory drawing of the position which pressurizes a high heat conductive member with the urging | biasing member in 2nd Embodiment. 第2の実施形態の付勢部材の加圧力による圧縮率を説明した図である。It is a figure explaining the compression rate by the applied pressure of the urging | biasing member of 2nd Embodiment.

以下、本発明の好ましい実施形態について、図面を用いて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

《第1の実施形態》
(画像形成装置)
図1は、本発明の実施形態に係る定着装置を搭載した電子写真記録技術を用いたレーザプリンタ(画像形成装置)100の断面図である。プリント信号が発生すると、画像情報に応じて変調されたレーザ光をスキャナユニット21が出射し、帯電ローラ16によって所定の極性に帯電された感光体19を走査する。これにより感光体19には静電潜像が形成される。この静電潜像に対して現像器17からトナーが供給され、感光体19上に画像情報に応じたトナー画像が形成される。
<< First Embodiment >>
(Image forming device)
FIG. 1 is a cross-sectional view of a laser printer (image forming apparatus) 100 using an electrophotographic recording technology equipped with a fixing device according to an embodiment of the present invention. When the print signal is generated, the scanner unit 21 emits a laser beam modulated according to the image information, and scans the photoconductor 19 charged to a predetermined polarity by the charging roller 16. As a result, an electrostatic latent image is formed on the photoreceptor 19. Toner is supplied from the developing unit 17 to the electrostatic latent image, and a toner image corresponding to image information is formed on the photoreceptor 19.

一方、給紙カセット11に積載された記録紙(記録材)Pはピックアップローラ12によって一枚ずつ給紙され、ローラ13によってレジストローラ14に向けて搬送される。さらに記録紙Pは、感光体19上のトナー画像が感光体19と転写ローラ20で形成される転写位置に到達するタイミングに合わせて、レジストローラ14から転写位置へ搬送される。記録紙Pが転写位置を通過する過程で感光体19上のトナー画像(トナー像)は記録紙Pに転写される。   On the other hand, the recording paper (recording material) P loaded on the paper feeding cassette 11 is fed one by one by the pickup roller 12 and conveyed toward the registration roller 14 by the roller 13. Further, the recording paper P is conveyed from the registration roller 14 to the transfer position in accordance with the timing when the toner image on the photoconductor 19 reaches the transfer position formed by the photoconductor 19 and the transfer roller 20. The toner image (toner image) on the photoreceptor 19 is transferred to the recording paper P in the process in which the recording paper P passes the transfer position.

その後、記録紙Pは像加熱装置200で加熱されてトナー画像が記録紙Pに加熱定着される。定着済みのトナー画像を担持する記録紙Pは、ローラ26、27によってプリンタ上部のトレイに排出される。   Thereafter, the recording paper P is heated by the image heating device 200 and the toner image is heated and fixed on the recording paper P. The recording paper P carrying the fixed toner image is discharged to a tray above the printer by rollers 26 and 27.

なお、18は感光体19を清掃するクリーナ、30は像加熱装置200等を駆動するモータである。上述した、感光体19、帯電ローラ16、スキャナユニット21、現像器17、転写ローラ20が、記録紙Pに未定着画像を形成する画像形成部を構成している。   Reference numeral 18 denotes a cleaner for cleaning the photoconductor 19, and reference numeral 30 denotes a motor for driving the image heating apparatus 200 and the like. The photosensitive member 19, the charging roller 16, the scanner unit 21, the developing device 17, and the transfer roller 20 described above constitute an image forming unit that forms an unfixed image on the recording paper P.

本例のレーザプリンタ100は複数の用紙サイズに対応しており、給紙カセット11にセットされたLetter紙(約216mm×279mm)、A4紙(210mm×297mm)、A5紙(148mm×210mm)を含む複数の用紙サイズをプリントできる。   The laser printer 100 of this example corresponds to a plurality of paper sizes, and Letter paper (about 216 mm × 279 mm), A4 paper (210 mm × 297 mm), and A5 paper (148 mm × 210 mm) set in the paper feed cassette 11 are used. Multiple paper sizes can be printed.

このように基本的に紙を縦送りする(長辺が搬送方向と平行になるように搬送する)プリンタであり、対応している定型の記録材サイズ(カタログ上の対応用紙サイズ)のうち最も大きな(幅が大きな)サイズはLetter紙の約216mm幅である。このように、レーザプリンタ100が対応する最大サイズよりも小さな紙幅の用紙(A4紙、A5紙)を、本明細書では小サイズ紙と定義する。   This is a printer that basically feeds paper vertically (conveys so that the long side is parallel to the conveyance direction), and is the most common standard recording material size (corresponding paper size in the catalog). The large (large width) size is about 216 mm wide of Letter paper. As described above, paper having a paper width smaller than the maximum size supported by the laser printer 100 (A4 paper, A5 paper) is defined as small-size paper in this specification.

(定着装置)
図2は、本発明の実施形態に係る定着装置としての像加熱装置200の断面図である。像加熱装置200は、回転可能な無端ベルトである筒状のフィルム(移動体、中空回転体)202と、フィルム202の内周面が接触(摺動)するヒータ(摺動部材、発熱部材、加熱体)300を有する。更に、フィルム202を介してヒータ300と共にフィルム202の外周面と定着ニップ部(ニップ部)Nを形成する対向部材としての加圧ローラ(ニップ部形成部材)208を有する。
(Fixing device)
FIG. 2 is a cross-sectional view of an image heating apparatus 200 as a fixing apparatus according to an embodiment of the present invention. The image heating apparatus 200 includes a cylindrical film (moving body, hollow rotating body) 202 that is a rotatable endless belt, and a heater (sliding member, heating member, Heating body) 300. Further, a pressure roller (nip portion forming member) 208 is provided as a facing member that forms a fixing nip portion (nip portion) N with the outer periphery of the film 202 together with the heater 300 via the film 202.

フィルム202のベース層の材質は、ポリイミド等の耐熱樹脂、またはステンレス等の金属である。加圧ローラ208は、鉄やアルミニウム等の材質の芯金209と、シリコーンゴム等の材質の弾性層210を有する。   The material of the base layer of the film 202 is a heat resistant resin such as polyimide or a metal such as stainless steel. The pressure roller 208 includes a cored bar 209 made of iron or aluminum and an elastic layer 210 made of silicone rubber or the like.

ヒータ300は、耐熱樹脂製の保持部材としてヒータを嵌め込むための溝部を備えたヒータ支持部材201に保持されている。ヒータ支持部材201は、フィルム202の回転を案内するガイド機能も有している。加圧ローラ208はモータ30から動力を受けて矢印方向(反時計方向)に回転する。加圧ローラ208が回転することによって、フィルム202が従動して回転する。204は、金属製のステー(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)であり、フィルム202と加圧ローラ208の間でニップ部Nを形成する。   The heater 300 is held by a heater support member 201 having a groove portion for fitting the heater as a heat-resistant resin holding member. The heater support member 201 also has a guide function for guiding the rotation of the film 202. The pressure roller 208 receives power from the motor 30 and rotates in the direction of the arrow (counterclockwise). As the pressure roller 208 rotates, the film 202 is driven and rotated. Reference numeral 204 denotes a metal stay (a spring pressure (not shown) is applied to the heater support member 201 toward the heater), and forms a nip N between the film 202 and the pressure roller 208.

ヒータ300は、セラミック製のヒータ基板303と、ヒータ基板303上に基板長手方向(記録材搬送方向に直交するY方向)に沿って設けられている抵抗発熱体(発熱体)301−1を有する。更に、抵抗発熱体301−1とは基板短手方向(X方向)で異なる位置に長手方向(Y方向)に沿って設けられている抵抗発熱体301−2と、抵抗発熱体301−1及び、301−2を覆う絶縁性(本実施形態ではガラス)の表面保護層304を有する。   The heater 300 includes a ceramic heater substrate 303 and a resistance heating element (heating element) 301-1 provided on the heater substrate 303 along the substrate longitudinal direction (Y direction orthogonal to the recording material conveyance direction). . Furthermore, the resistance heating element 301-2 provided along the longitudinal direction (Y direction) at a position different from the resistance heating element 301-1 in the short side direction (X direction) of the substrate, the resistance heating element 301-1 and , 301-2, an insulating (glass in this embodiment) surface protective layer 304 is provided.

ヒータ300とヒータ支持部材201との間には、加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)によって挟持した熱伝導部材としての高熱伝導部材220と、付勢部材230を有している。付勢部材230は、高熱伝導部材220をヒータ300側へ押圧(付勢)する。   Between the heater 300 and the heater support member 201, a high heat conduction member 220 as a heat conduction member sandwiched by a stay 204 as a pressurizing mechanism (a spring pressure (not shown) is applied to the heater support member 201 on the heater side). And an urging member 230. The urging member 230 presses (urges) the high heat conductive member 220 toward the heater 300.

高熱伝導部材220は、ヒータ基板303に比べて、面方向の熱伝導率の高い材質として、例えばアルミニウム等の薄い金属材料(厚み0.05mm)を用いる。また、グラファイトを用いた可撓性のあるシート状の部材を用いても良い。一方、付勢部材230は、ヒータ300を像加熱装置(定着装置)に組み付ける際に圧縮可能な低熱伝導部材である。   The high thermal conductive member 220 uses a thin metal material (thickness 0.05 mm) such as aluminum as a material having a higher thermal conductivity in the surface direction than the heater substrate 303. Alternatively, a flexible sheet-like member using graphite may be used. On the other hand, the urging member 230 is a low heat conductive member that can be compressed when the heater 300 is assembled to an image heating apparatus (fixing apparatus).

ヒータ300の非通紙面側には、サーミスタ(第1の温度検知素子)211が高熱伝導部材220を介して当接している。また、ヒータ300の非通紙面側のヒータ長手方向(Y方向)でサーミスタ211と異なる位置には、サーモスイッチや温度ヒューズ等のサーモスタット(第2の温度検知素子)212が高熱伝導部材220を介して当接している。これは、ヒータ300が異常昇温した時に作動して発熱領域への給電ラインを遮断するものである。   A thermistor (first temperature detection element) 211 is in contact with the non-sheet passing surface side of the heater 300 via the high thermal conductive member 220. Further, a thermostat (second temperature detection element) 212 such as a thermo switch or a thermal fuse is provided via a high thermal conductive member 220 at a position different from the thermistor 211 in the heater longitudinal direction (Y direction) on the non-sheet passing surface side of the heater 300. Are in contact. This is to operate when the heater 300 is abnormally heated and shuts off the power supply line to the heat generation area.

サーミスタ211及び、サーモスタット212は、高熱伝導部材220に対して不図示の板バネ等によって加圧されている。このようにして、未定着トナー画像を担持する記録紙Pは、定着ニップ部Nで挟持搬送されつつ加熱されて定着処理される。   The thermistor 211 and the thermostat 212 are pressed against the high heat conductive member 220 by a leaf spring (not shown) or the like. In this way, the recording paper P carrying the unfixed toner image is heated and fixed while being nipped and conveyed by the fixing nip N.

(付勢部材)
本実施形態の付勢部材230は、ヒータ300を像加熱装置(定着装置)に組み付ける際にヒータ支持部材201と高熱伝導部材220の間で圧縮させる。これにより、定着装置の組み付け後に高熱伝導部材220をヒータ300に対して付勢がされる。
(Biasing member)
The urging member 230 of the present embodiment compresses between the heater support member 201 and the high thermal conductive member 220 when the heater 300 is assembled to the image heating apparatus (fixing apparatus). Thereby, the high heat conductive member 220 is urged with respect to the heater 300 after the fixing device is assembled.

このような材質として、ガラス繊維を原料としたグラスウール(例えば、商品名フェザーグラス:パラマウント硝子工業製)、鉱物繊維を原料としたロックウール(例えば、商品名MGボード:ニチアス株式会社製)がある。あるいは、同じく鉱物繊維を原料としたセラミックファイバー(例えば、商品名イビウール:イビデン株式会社製)などの無機繊維体をシート状に加工したものがある。   Examples of such materials include glass wool made from glass fiber (for example, trade name Feather Glass: manufactured by Paramount Glass Industry), and rock wool made from mineral fiber (for example, trade name: MG board: manufactured by NICHIAS Corporation). . Alternatively, there is also a material obtained by processing an inorganic fiber body such as ceramic fiber (for example, trade name Ibi wool: manufactured by Ibiden Co., Ltd.) using mineral fiber as a raw material.

また、機械特性として、定着装置への組付け性、ならびに後述する高熱伝導部材220とヒータ基板303間の良好な熱伝導を得るために必要な圧力を得るために、10%変形時の圧縮応力が0.3〜1.5[kgf/cm^2]であるものが好適である。10%変形時の圧縮応力は、無機繊維体の密度を変えることで調整可能である。本実施形態では、厚み1mm、10%変形時の圧縮応力0.7[kgf/cm^2]のセラミックファイバーシートを使用する。   Further, as mechanical characteristics, in order to obtain a pressure necessary for obtaining a good heat conduction between the high heat conduction member 220 and the heater substrate 303, which will be described later, and an assembly property to the fixing device, a compressive stress at the time of 10% deformation is obtained. Is 0.3 to 1.5 [kgf / cm ^ 2]. The compressive stress at the time of 10% deformation can be adjusted by changing the density of the inorganic fiber body. In this embodiment, a ceramic fiber sheet having a thickness of 1 mm and a compressive stress of 0.7 [kgf / cm ^ 2] at 10% deformation is used.

(ヒータ、高熱伝導部材、付勢部材の配置、及び加圧方法)
図3は、本実施形態のヒータ300と高熱伝導部材220、付勢部材230の加圧方法を説明した図である。図3(A)のヒータ300の基板長手方向(Y方向)に沿って設けられている抵抗発熱体301−1及び、抵抗発熱体301−2は導電体305を介して、電気的に直列接続されている。抵抗発熱体301−1、301−2には、電極部C1、電極部C2から導電体305を介して電力供給される。
(Heater, high heat conduction member, arrangement of biasing member, and pressurizing method)
FIG. 3 is a diagram for explaining a method of pressurizing the heater 300, the high thermal conductive member 220, and the biasing member 230 according to the present embodiment. The resistance heating element 301-1 and the resistance heating element 301-2 provided along the substrate longitudinal direction (Y direction) of the heater 300 in FIG. 3A are electrically connected in series via the conductor 305. Has been. Power is supplied to the resistance heating elements 301-1 and 301-2 from the electrode portions C <b> 1 and C <b> 2 via the conductor 305.

図3(B)は、図3(A)の長手方向の中央部の領域Bのヒータ短手方向(X方向)の任意の一断面を示した図である。本実施形態では、ヒータ支持部材201は、付勢部材230を保持する第1の座面としての座面G1(領域306)と、高熱伝導部材220およびヒータ300を保持する第2の座面としての座面G2(領域307)を備える。   FIG. 3B is a view showing an arbitrary cross section in the heater short-side direction (X direction) of the region B in the central portion in the longitudinal direction of FIG. In the present embodiment, the heater support member 201 is a seating surface G1 (region 306) as a first seating surface that holds the biasing member 230, and a second seating surface that holds the high thermal conductive member 220 and the heater 300. The seating surface G2 (region 307) is provided.

ここで、ヒータ支持部材201は座面G1と座面G2の間に段差aを有しており、段差a内部と高熱伝導部材220の間に付勢部材230が挟持されている。このヒータ支持部材201の段差aは、加圧後の付勢部材230の厚み方向の圧縮率に応じた距離に調整されている。この段差aと付勢部材230の厚さの関係は、後に図6で説明する。   Here, the heater support member 201 has a step a between the seating surface G <b> 1 and the seating surface G <b> 2, and the biasing member 230 is sandwiched between the inside of the step a and the high heat conduction member 220. The step a of the heater support member 201 is adjusted to a distance corresponding to the compressibility in the thickness direction of the urging member 230 after pressurization. The relationship between the level difference a and the thickness of the biasing member 230 will be described later with reference to FIG.

図3(C)は、図3(A)の長手方向のサーモスタット212を当接させる領域Cの短手方向(X方向)の任意の一断面を示した図である。ヒータ支持部材201は、サーモスタット212が高熱伝導部材220に当接している領域以外に、領域306、領域307を備える。領域306は、付勢部材230を介して高熱伝導部材220とヒータ300を加圧して接触させる領域である。また、領域307は、加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)により、付勢部材230を介さずに高熱伝導部材220とヒータ300を加圧して接触させる領域である。   FIG. 3C is a view showing an arbitrary cross section in the short side direction (X direction) of the region C in which the thermostat 212 in the longitudinal direction of FIG. The heater support member 201 includes a region 306 and a region 307 in addition to a region where the thermostat 212 is in contact with the high heat conductive member 220. A region 306 is a region in which the high heat conducting member 220 and the heater 300 are pressed and brought into contact with each other via the biasing member 230. In addition, the region 307 is configured to add the high heat conductive member 220 and the heater 300 without the biasing member 230 by a stay 204 (applying a spring pressure (not shown) to the heater support member 201) as a pressurizing mechanism. It is an area to be pressed and contacted.

ヒータ支持部材201は座面G1(領域306)と座面G2(領域307)の間に段差aを有しており、段差a内部と高熱伝導部材220の間に付勢部材230が挟持されている。このヒータ支持部材201の段差aは、加圧後の付勢部材230の厚み方向の圧縮率に応じた距離に調整されている。   The heater support member 201 has a step a between the seating surface G1 (region 306) and the seating surface G2 (region 307), and the urging member 230 is sandwiched between the inside of the step a and the high thermal conductive member 220. Yes. The step a of the heater support member 201 is adjusted to a distance corresponding to the compressibility in the thickness direction of the urging member 230 after pressurization.

図3(D)は、図3(A)のサーミスタ211を当接させる領域Dの短手方向(X方向)の任意の一断面を示した図である。ヒータ支持部材201は、サーミスタ211が高熱伝導部材220に当接している領域以外に、領域306、領域307を備える。領域306は、付勢部材230を介して高熱伝導部材220とヒータ300を加圧して接触させる領域である。また、領域307は、加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)により、付勢部材230を介さずに高熱伝導部材220とヒータ300を加圧して接触させる領域である。   FIG. 3D is a view showing an arbitrary cross section in the short side direction (X direction) of the region D with which the thermistor 211 of FIG. The heater support member 201 includes a region 306 and a region 307 in addition to a region where the thermistor 211 is in contact with the high thermal conductive member 220. A region 306 is a region in which the high heat conducting member 220 and the heater 300 are pressed and brought into contact with each other via the biasing member 230. In addition, the region 307 is configured to add the high heat conductive member 220 and the heater 300 without the biasing member 230 by a stay 204 (applying a spring pressure (not shown) to the heater support member 201) as a pressurizing mechanism. It is an area to be pressed and contacted.

ヒータ支持部材201は座面G1(領域306)と座面G2(領域307)の間に段差aを有しており、段差a内部と高熱伝導部材220の間に付勢部材230が挟持されている。このヒータ支持部材201の段差aは、加圧後の付勢部材230の厚み方向の圧縮率に応じた距離に調整されている。   The heater support member 201 has a step a between the seating surface G1 (region 306) and the seating surface G2 (region 307), and the urging member 230 is sandwiched between the inside of the step a and the high thermal conductive member 220. Yes. The step a of the heater support member 201 is adjusted to a distance corresponding to the compressibility in the thickness direction of the urging member 230 after pressurization.

図3(E)は、図3(A)の長手方向端部の領域Eのヒータ短手方向(X方向)の任意の一断面を示した図である。ヒータ支持部材201は、ヒータ300を加圧して接触させる領域308を短手方向(X方向)の一断面で有している。この領域Eにおいて、高熱伝導部材220のヒータ支持部材に対する短手方向(X方向)の位置決めと、高熱伝導部材220のヒータ300長手方向(Y方向)における加圧範囲が規制される。その詳細については、図9を用いて後に説明する。   FIG. 3E is a view showing an arbitrary cross section in the heater short-side direction (X direction) of the region E at the end portion in the longitudinal direction of FIG. The heater support member 201 has an area 308 in which the heater 300 is pressed and brought into contact with one section in the short direction (X direction). In this region E, the positioning of the high heat conductive member 220 in the short direction (X direction) with respect to the heater support member and the pressurizing range of the high heat conductive member 220 in the longitudinal direction (Y direction) of the heater 300 are restricted. Details thereof will be described later with reference to FIG.

図3(B)乃至(E)で説明したように、本実施形態のヒータ支持部材201は、付勢部材230により高熱伝導部材220とヒータ300を加圧して接触させる領域を有している。このため、熱伝導率の低いヒータ基板303の熱抵抗の影響を小さくすることができ、抵抗発熱体301−1及び、301−2の発熱を、高熱伝導部材220に対して効率的に伝導できる。   As described with reference to FIGS. 3B to 3E, the heater support member 201 of the present embodiment has a region where the high thermal conductivity member 220 and the heater 300 are pressed and contacted by the biasing member 230. For this reason, the influence of the thermal resistance of the heater substrate 303 having a low thermal conductivity can be reduced, and the heat generated by the resistance heating elements 301-1 and 301-2 can be efficiently conducted to the high thermal conductive member 220. .

また、本実施形態の付勢部材230の熱伝導率(0.05W/m・k)はヒータ支持部材の熱伝導率(0.5W/m・k)に比べて十分小さいため、高熱伝導部材220に伝わった熱のヒータ支持部材201への放熱を抑えることができる。そのため、抵抗発熱体301−1及び、301−2の発熱を、高熱伝導部材220に対して効率的に伝導しつつ、ヒータ支持部材201への放熱を抑制できる。その結果、定着装置が所定の温度に到達するまでの時間を短縮することと、非通紙部昇温を抑制する効果とを両立できるようになる。   In addition, since the thermal conductivity (0.05 W / m · k) of the biasing member 230 of the present embodiment is sufficiently smaller than the thermal conductivity (0.5 W / m · k) of the heater support member, the high thermal conductivity member The heat dissipated to the heater support member 201 can be suppressed. Therefore, it is possible to suppress the heat radiation to the heater support member 201 while efficiently conducting the heat generated by the resistance heating elements 301-1 and 301-2 to the high heat conductive member 220. As a result, it is possible to reduce both the time required for the fixing device to reach a predetermined temperature and the effect of suppressing the temperature rise of the non-sheet passing portion.

(高熱伝導部材の設置方法と付勢部材による加圧範囲の規制)
図4は、図3(A)の領域Eにおけるヒータ支持部材201、付勢部材230、高熱伝導部材220、ヒータ300の配置とヒータの組付け方法を説明した図である。図3(A)の片側端部について説明するが、他端側も概略構成は同じである。
(Installation method of high heat conduction member and restriction of pressure range by biasing member)
FIG. 4 is a diagram for explaining the arrangement of the heater support member 201, the urging member 230, the high heat conduction member 220, and the heater 300 in the region E of FIG. Although one side edge part of FIG. 3 (A) is demonstrated, the other end side also has the same schematic structure.

図4(A)の上部は、ヒータ支持部材201の段差部aに付勢部材230のみを組み込んだ状態を示した略断面図(天地方向(基板厚み方向)であるZ方向が図3(B)乃至(E)とは逆)であろ。図4(A)の下部は、同一箇所をヒータ取り付け面側即ち下側から見た図である。また、図4(B)の上部は、図4(A)の状態から、高熱伝導部材220を取り付けた状態を示した略断面図であり、図4(B)の下部は、同一箇所をヒータ取り付け面側から見た図である。また、図4(C)の上部は、図4(B)の状態からさらに、ヒータ300を取り付けた状態を示した略断面図であり、図4(C)の下部は、同一箇所をヒータ取り付け面側から見た図である。   4A is a schematic sectional view showing a state in which only the urging member 230 is incorporated in the stepped portion a of the heater support member 201 (the vertical direction (substrate thickness direction) is the Z direction shown in FIG. ) To (E) is the opposite. The lower part of FIG. 4 (A) is the figure which looked at the same location from the heater attachment surface side, ie, the lower side. 4B is a schematic cross-sectional view showing a state in which the high heat conductive member 220 is attached from the state of FIG. 4A, and the lower part of FIG. It is the figure seen from the attachment surface side. 4C is a schematic cross-sectional view showing a state where the heater 300 is further attached from the state of FIG. 4B, and the lower part of FIG. It is the figure seen from the surface side.

まず、高熱伝導部材220のヒータ支持部材201に対する短手方向(X方向)の位置決めと長手方向(Y方向)の自由度について説明する。ヒータ支持部材201には、取付け面201aおよび取付け面201bがある。取付け面201aは前述した第1の座面G1(図3(B))に相当し、取付け面201aには付勢部材230が保持されてヒータ300が高熱伝導部材220と付勢部材230を挟んで設置される。一方、取付け面201bにはヒータ300が直接設置される。   First, the positioning in the short direction (X direction) of the high heat conductive member 220 with respect to the heater support member 201 and the degree of freedom in the longitudinal direction (Y direction) will be described. The heater support member 201 has an attachment surface 201a and an attachment surface 201b. The mounting surface 201a corresponds to the first seating surface G1 (FIG. 3B) described above, and the biasing member 230 is held on the mounting surface 201a, and the heater 300 sandwiches the high heat conductive member 220 and the biasing member 230. Installed at. On the other hand, the heater 300 is directly installed on the mounting surface 201b.

また、ヒータ支持部材201の端部にはヒータ端部突当部201cがあり、ヒータ300の長手方向(Y方向)位置を規制する。取付け面201aと取付け面201bから一段下がった領域201dには凹形状が設けられており、凹形状内には高熱伝導部材220の端部220aを通すための穴201eが設けられている。   In addition, a heater end abutting portion 201c is provided at the end of the heater support member 201, and regulates the longitudinal direction (Y direction) position of the heater 300. A concave shape is provided in a region 201d that is one step lower than the attachment surface 201a and the attachment surface 201b, and a hole 201e through which the end portion 220a of the high heat conductive member 220 is passed is provided in the concave shape.

高熱伝導部材220は、端部220aを図4(B)に示すように穴201eへ通して設置することで、短手方向(X方向)が規制される。高熱伝導部材220の長手方向(Y方向)位置は、図4(B)下部で示す高熱伝導部材220の端部220bがヒータ支持部材201の規制部201yに規制される位置となるが、一段下がった領域201dに空間があるため、長手方向(Y方向)には自由度がある。   As shown in FIG. 4B, the high heat conduction member 220 is installed through the hole 201e as shown in FIG. 4B, so that the short direction (X direction) is regulated. The longitudinal direction (Y direction) position of the high heat conduction member 220 is a position where the end portion 220b of the high heat conduction member 220 shown in the lower part of FIG. 4B is restricted by the restriction portion 201y of the heater support member 201, but is lowered by one step. Since there is a space in the area 201d, there is a degree of freedom in the longitudinal direction (Y direction).

このため、図4(C)のようにヒータ300を取り付けた状態でも、高熱伝導部材220の逃げ場がなくなって大きく変形するようなことがない。また、高熱伝導部材220と付勢部材230やヒータ支持部材201に熱膨張率に違いがあった場合でも、ヒータ加熱時に高熱伝導部材220が変形することを防止する作用がある。   For this reason, even when the heater 300 is attached as shown in FIG. 4C, the escape place of the high heat conductive member 220 disappears, and it does not deform greatly. Further, even when there is a difference in coefficient of thermal expansion between the high heat conduction member 220 and the biasing member 230 or the heater support member 201, there is an effect of preventing the high heat conduction member 220 from being deformed when the heater is heated.

ヒータ300については、ヒータ支持部材201上にある付勢部材230を圧縮しながら設置し、端部をヒータ端部突当部201cへ当接させて設置を行う。このようにシート状の高熱伝導部材220をヒータ支持部材201両端部で位置決めした後にヒータを設置することで、付勢部材230上に高熱伝導部材220を精度良く設置できる。   The heater 300 is installed while compressing the urging member 230 on the heater support member 201, and the end is brought into contact with the heater end abutting portion 201c. Thus, by positioning the sheet-like high heat conductive member 220 at both ends of the heater support member 201 and installing the heater, the high heat conductive member 220 can be accurately installed on the biasing member 230.

次に、付勢部材230による高熱伝導部材220とヒータ300との加圧範囲について、図4を用いて説明する。本実施形態では、ヒータ支持部材201のヒータ突当部201cから付勢部材端部230aまでの距離(図4中のF)は、ヒータ300端部から発熱領域端部までの距離(図3中のE)と略同一としている。   Next, the pressurizing range of the high heat conductive member 220 and the heater 300 by the urging member 230 will be described with reference to FIG. In this embodiment, the distance (F in FIG. 4) from the heater abutting portion 201c of the heater support member 201 to the biasing member end 230a is the distance from the end of the heater 300 to the end of the heat generating region (in FIG. 3). E).

よって、ヒータ300の発熱領域(図3(A)の抵抗発熱体301−1及び、抵抗発熱体301−2の領域)と、付勢部材230による高熱伝導部材220とヒータ300の加圧接触範囲は略同一としている。このように、本実施形態では、付勢部材230による高熱伝導部材220とヒータ300発熱領域の加圧接触範囲を規制するため、高熱伝導部材220の長手方向(Y方向)位置によらず精度の良い加圧接触範囲とすることができる。   Therefore, the heat generating region of the heater 300 (the region of the resistance heating element 301-1 and the resistance heating element 301-2 in FIG. 3A), and the pressure contact range of the high heat conducting member 220 and the heater 300 by the biasing member 230. Are substantially identical. Thus, in this embodiment, since the pressurization contact range of the heat generating region of the high heat conductive member 220 and the heater 300 by the urging member 230 is regulated, the high heat conductive member 220 is accurate regardless of the position in the longitudinal direction (Y direction). A good pressure contact range can be obtained.

(接触熱抵抗と加圧力の関係)
図5は、定常法により加圧力を変えて測定を行ったときの、高熱伝導部材220とヒータ基板303間の接触熱抵抗と圧力の関係を示している。図5では、高熱伝導部材220とヒータ基板303が接触していない、もしくは圧力が弱い領域では、熱伝導が低下することを示している。つまり、高熱伝導部材220とヒータ基板303間の良好な熱伝導を得るには所定の加圧力(300[gf/cm^2]以上)が必要である。そのため、本実施形態では、付勢部材230によって高熱伝導部材220とヒータ基板303を加圧して接触させる領域を設けている。
(Relationship between contact thermal resistance and applied pressure)
FIG. 5 shows the relationship between the contact thermal resistance between the high thermal conductive member 220 and the heater substrate 303 and the pressure when measurement is performed by changing the applied pressure by the steady method. FIG. 5 shows that the heat conduction is lowered in a region where the high heat conducting member 220 and the heater substrate 303 are not in contact with each other or the pressure is weak. That is, a predetermined pressure (300 [gf / cm ^ 2] or more) is required to obtain good heat conduction between the high heat conductive member 220 and the heater substrate 303. For this reason, in the present embodiment, a region is provided in which the high heat conducting member 220 and the heater substrate 303 are pressed and contacted by the biasing member 230.

(付勢部材でヒータを押圧する方法)
図6は、付勢部材230の加圧前後(付勢される前と付勢された後)の厚み(長さ)と、ヒータ支持部材201の第1の座面である座面306と第2の座面である座面307の間の段差aの関係を示している。
(Method of pressing the heater with the biasing member)
6 shows the thickness (length) of the biasing member 230 before and after pressing (before and after biasing), the seating surface 306 that is the first seating surface of the heater support member 201, and The relationship of the level | step difference a between the seating surfaces 307 which are 2 seating surfaces is shown.

図6(A)は、付勢部材230が非加圧(付勢される前)の時の、付勢部材230とヒータ支持部材201、ならびに高熱伝導部材220とヒータ300を示している。ヒータ支持部材201の座面G1(領域306)と座面G2(領域307)の間の段差をa、非加圧の時の座面G1(領域306)に保持された付勢部材230の厚さをt0とする。このとき、段差aと、非加圧状態の付勢部材230の厚さt0の関係はa<t0である。   FIG. 6A shows the urging member 230 and the heater support member 201, and the high heat conduction member 220 and the heater 300 when the urging member 230 is not pressurized (before being urged). The step between the seating surface G1 (region 306) and the seating surface G2 (region 307) of the heater support member 201 is a, and the thickness of the biasing member 230 held on the seating surface G1 (region 306) when no pressure is applied. Let t0 be. At this time, the relationship between the level difference a and the thickness t0 of the urging member 230 in the non-pressurized state is a <t0.

図6(B)は、付勢部材230が加圧された時の、付勢部材230とヒータ支持部材201、ならびに高熱伝導部材220とヒータ300を示している。加圧時の座面G1(領域306)に保持された付勢部材230の厚さをtとする。図6(B)では、高熱伝導部材220が座面G2(領域307)で保持されることから、高熱伝導部材220に接するヒータ300は高熱伝導部材220と共に座面G2(領域307)で保持されることとなる。このとき、段差aと、加圧状態の付勢部材230の厚さtの関係はa≦tである。   FIG. 6B shows the urging member 230 and the heater support member 201, and the high thermal conductive member 220 and the heater 300 when the urging member 230 is pressurized. The thickness of the urging member 230 held on the seating surface G1 (region 306) at the time of pressurization is assumed to be t. In FIG. 6B, since the high heat conductive member 220 is held by the seating surface G2 (region 307), the heater 300 in contact with the high heat conductive member 220 is held by the seating surface G2 (region 307) together with the high heat conductive member 220. The Rukoto. At this time, the relationship between the level difference a and the thickness t of the urging member 230 in a pressurized state is a ≦ t.

ここで、付勢部材230の圧縮時の応力は、以下のように設定されることが好ましい。即ち、図6(C)に示すように高熱伝導部材220とヒータ300を加圧して接触させる座面G2(領域307)での圧力(加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)による圧力)よりも小さくする。これにより、ヒータ300および高熱伝導部材220が常にヒータ支持部材201の座面G2(領域307)に保持されることとなる。   Here, the stress at the time of compression of the urging member 230 is preferably set as follows. That is, as shown in FIG. 6C, pressure on the seating surface G2 (region 307) that pressurizes and contacts the high heat conductive member 220 and the heater 300 (stay 204 as a pressurizing mechanism (on the heater support member 201 on the heater side). Less than the pressure (by applying the pressure of the spring (not shown)). As a result, the heater 300 and the high thermal conductive member 220 are always held on the seating surface G2 (region 307) of the heater support member 201.

付勢部材230に関し、例えば、加圧時の付勢部材230の厚み方向の圧縮率を10%とすると、加圧後の付勢部材230の厚み(長さ)は、0.9×t0となる。本実施形態の付勢部材では10%圧縮時応力が0.7[kgf/cm]であるので、図5で示したように高熱伝導部材220とヒータ基板303間の接触熱抵抗は良好な熱伝導が得られるまで十分低下している。 Regarding the urging member 230, for example, when the compression rate in the thickness direction of the urging member 230 during pressurization is 10%, the thickness (length) of the urging member 230 after pressurization is 0.9 × t0. Become. In the urging member of this embodiment, the stress at 10% compression is 0.7 [kgf / cm 2 ], so that the contact thermal resistance between the high thermal conductive member 220 and the heater substrate 303 is good as shown in FIG. It is sufficiently lowered until heat conduction is obtained.

したがって、座面306と座面307の間の段差aをa≦0.9×t0となるように設定することで所望の加圧力が得られるようになる。このように、座面306と座面307の間の段差aは、付勢部材の機械特性と非加圧時の厚みに応じて適宜設定できる。更に、付勢部材230に関しては、付勢部材の現実的な圧縮率の範囲を考えると、10%変形時の圧縮応力が0.3〜1.5[kgf/cm^2]であるものが好ましい。   Therefore, a desired pressure can be obtained by setting the step a between the seating surface 306 and the seating surface 307 so that a ≦ 0.9 × t0. Thus, the level difference a between the seating surface 306 and the seating surface 307 can be appropriately set according to the mechanical characteristics of the urging member and the thickness when not pressed. Furthermore, regarding the urging member 230, in consideration of the realistic compression rate range of the urging member, the one having a compressive stress at the time of 10% deformation of 0.3 to 1.5 [kgf / cm ^ 2]. preferable.

以上のように、付勢部材230を圧縮させて圧縮応力(付勢力)を発生させ、高熱伝導部材220をヒータ基板303に接触させることで、ヒータの発熱を高熱伝導部材220に対して効率的に伝導させることができる。   As described above, the biasing member 230 is compressed to generate a compressive stress (biasing force), and the high heat conduction member 220 is brought into contact with the heater substrate 303, so that the heat generation of the heater is efficiently performed with respect to the high heat conduction member 220. Can be conducted.

(比較例)
図7は、比較例として付勢部材の無いヒータ300と高熱伝導部材220の加圧方法を説明した図である。図7(A)は、第1の比較例としてのヒータ支持部材701を用いた場合の、長手方向の中央部の領域(図3(A)のBの領域に相当する)の短手方向(X方向)の任意の一断面を示した図を示している。
(Comparative example)
FIG. 7 is a diagram illustrating a method for pressurizing the heater 300 and the high thermal conductive member 220 without the biasing member as a comparative example. FIG. 7A illustrates a short direction (corresponding to a region B in FIG. 3A) in the central portion in the longitudinal direction when the heater support member 701 as the first comparative example is used. The figure which showed the arbitrary 1 cross section of (X direction) is shown.

ヒータ支持部材701は、加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)により、高熱伝導部材220とヒータ300を加圧して接触させる領域(座面307)を有する。また、ヒータ支持部材701は、高熱伝導部材220とヒータ支持部材701が非接触である領域309を有する。高熱伝導部材220とヒータ支持部材701が非接触である領域309では、高熱伝導部材220とヒータ基板303間の接触熱抵抗が大きく、抵抗発熱体301−1及び、301−2の発熱を、高熱伝導部材220に対して効率的に伝導できない。   The heater support member 701 is a region (seat surface) that pressurizes and contacts the high thermal conductive member 220 and the heater 300 by a stay 204 (applying a spring pressure (not shown) to the heater support member 201) as a pressurizing mechanism. 307). Further, the heater support member 701 has a region 309 where the high heat conduction member 220 and the heater support member 701 are not in contact with each other. In the region 309 where the high heat conductive member 220 and the heater support member 701 are not in contact with each other, the contact heat resistance between the high heat conductive member 220 and the heater substrate 303 is large, and the heat generated by the resistance heating elements 301-1 and 301-2 is increased. The conductive member 220 cannot be efficiently conducted.

図7(B)は、第2の比較例としてのヒータ支持部材702を用いた場合の、長手方向の中央部の領域(図3(A)のBの領域に相当する)の短手方向(X方向)の任意の一断面を示した図を示している。図7(B)において、ヒータ支持部材702は、高熱伝導部材220とヒータ300を加圧して接触させる領域307のみを有する。即ち、高熱伝導部材220とヒータ300は、本実施形態における付勢部材を介したヒータ支持部材702からの離間領域を備えない。このため、抵抗発熱体301−1及び、301−2から高熱伝導部材220に伝導した熱がヒータ支持部材702へ放熱する。   FIG. 7B shows the short direction (corresponding to the region B in FIG. 3A) in the central portion in the longitudinal direction when the heater support member 702 as the second comparative example is used. The figure which showed the arbitrary 1 cross section of (X direction) is shown. In FIG. 7B, the heater support member 702 has only a region 307 that pressurizes and contacts the high heat conductive member 220 and the heater 300. That is, the high heat conductive member 220 and the heater 300 do not include a separation region from the heater support member 702 via the biasing member in the present embodiment. For this reason, the heat conducted from the resistance heating elements 301-1 and 301-2 to the high heat conductive member 220 is dissipated to the heater support member 702.

図7(C)は、第3の比較例としてのヒータ支持部材703を用いた場合の、長手方向の中央部の領域(図3(A)のBの領域に相当する)の短手方向(X方向)の任意の一断面を示した図を示している。ヒータ支持部材703は、高熱伝導部材220とヒータ支持部材703が非接触である領域309を有する。また、加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)により、ヒータ支持部材703とヒータ基板303を加圧して接触させる領域308を有する。   FIG. 7C shows a short direction (corresponding to a region B in FIG. 3A) in the central portion in the longitudinal direction when the heater support member 703 as the third comparative example is used. The figure which showed the arbitrary 1 cross section of (X direction) is shown. The heater support member 703 has a region 309 where the high thermal conductivity member 220 and the heater support member 703 are not in contact with each other. In addition, there is a region 308 that pressurizes and contacts the heater support member 703 and the heater substrate 303 by a stay 204 (a pressure of a spring (not shown) is applied to the heater support member 201 to the heater side) as a pressurizing mechanism.

この構成では、ヒータ組み付け時、および加熱時に高熱伝導部材220が変形し易く、高熱伝導部材220とヒータ基板303間の接触熱抵抗が大きくなり、抵抗発熱体301−1及び301−2の発熱を、高熱伝導部材220に対して効率的に伝導できない。   In this configuration, the high heat conductive member 220 is easily deformed when the heater is assembled and heated, the contact thermal resistance between the high heat conductive member 220 and the heater substrate 303 is increased, and the heat generated by the resistance heating elements 301-1 and 301-2 is increased. The heat conduction member 220 cannot conduct efficiently.

(第1の実施形態の変形例)
図8は、第1の実施形態のヒータ支持部材201および付勢部材230の変形例を示している。図8のヒータ支持部材801は、付勢部材230を保持する第1の座面としての座面G1’(領域306)と、高熱伝導部材220およびヒータ300を保持する第2の座面としての座面G2’(領域307)を備える。ヒータ300は、セラミック製のヒータ基板303と、ヒータ基板303上に基板長手方向(Y方向)に沿って設けられている抵抗発熱体(発熱体)301−1、301−2を有する。
(Modification of the first embodiment)
FIG. 8 shows a modification of the heater support member 201 and the biasing member 230 of the first embodiment. The heater support member 801 shown in FIG. 8 has a seating surface G1 ′ (region 306) as a first seating surface that holds the biasing member 230, and a second seating surface that holds the high heat conductive member 220 and the heater 300. A seating surface G2 ′ (region 307) is provided. The heater 300 includes a ceramic heater substrate 303 and resistance heating elements (heating elements) 301-1 and 301-2 provided on the heater substrate 303 along the substrate longitudinal direction (Y direction).

領域306は、付勢部材230を介して高熱伝導部材220とヒータ300を加圧して接触させる領域である。また、領域307は、加圧機構としてのステー204(ヒータ支持部材201にヒータ側へ不図示のバネの圧力を加える)により、付勢部材230を介さずに高熱伝導部材220とヒータ300を加圧して接触させる領域である。   A region 306 is a region in which the high heat conducting member 220 and the heater 300 are pressed and brought into contact with each other via the biasing member 230. In addition, the region 307 is configured to add the high heat conductive member 220 and the heater 300 without the biasing member 230 by a stay 204 (applying a spring pressure (not shown) to the heater support member 201) as a pressurizing mechanism. It is an area to be pressed and contacted.

図8の変形例では、高熱伝導部材220とヒータ300の厚み方向の位置精度を座面G2’(領域308)で確保しながら、付勢部材230により高熱伝導部材220とヒータ300を所定の圧力で押圧する。これにより、抵抗発熱体301−1及び、301−2の発熱を、高熱伝導部材220に対して効率的に伝導できる。また、抵抗発熱体301−1及び301−2から座面G2’(領域308)までの距離が第1の実施形態よりも離れているため、ヒータ支持部材201への放熱をさらに抑制できる。   In the modification of FIG. 8, the high thermal conductivity member 220 and the heater 300 are placed at a predetermined pressure by the biasing member 230 while ensuring the positional accuracy of the high thermal conductivity member 220 and the heater 300 in the thickness direction on the seating surface G2 ′ (region 308). Press. Accordingly, the heat generated by the resistance heating elements 301-1 and 301-2 can be efficiently conducted to the high thermal conductive member 220. Moreover, since the distance from the resistance heating elements 301-1 and 301-2 to the seating surface G2 '(region 308) is longer than that in the first embodiment, heat dissipation to the heater support member 201 can be further suppressed.

なお、第1の実施形態では、付勢部材230の記録材搬送方向(Y方向)における最大幅は、摺動部材としてのヒータ300の記録材搬送方向(Y方向)における最大幅より狭いものであったが、本変形例では逆の関係となっている。即ち、付勢部材230の記録材搬送方向(Y方向)における最大幅は、摺動部材としてのヒータ300の記録材搬送方向(Y方向)における最大幅より広い。このように、付勢部材230とヒータ300の記録材搬送方向(Y方向)における最大幅の大小関係は、本発明において特に問わないものである。   In the first embodiment, the maximum width of the urging member 230 in the recording material conveyance direction (Y direction) is narrower than the maximum width of the heater 300 as the sliding member in the recording material conveyance direction (Y direction). However, in this modification, the relationship is reversed. That is, the maximum width of the urging member 230 in the recording material conveyance direction (Y direction) is wider than the maximum width of the heater 300 as the sliding member in the recording material conveyance direction (Y direction). As described above, the relationship between the maximum widths of the biasing member 230 and the heater 300 in the recording material conveyance direction (Y direction) is not particularly limited in the present invention.

《第2の実施形態》
本発明の第2の実施形態について、図9に基づいて説明する。なお、本実施形態において、前述した第1の実施形態で説明したものと同じ構成には同一の符号を付す。また、第1の実施形態と同様の構成および機能についての説明は省略し、本実施形態の特徴部分についてのみ説明する。
<< Second Embodiment >>
A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals. Also, the description of the same configuration and function as in the first embodiment will be omitted, and only the characteristic part of this embodiment will be described.

図9は、本実施形態のヒータ300と高熱伝導部材220、付勢部材230の加圧方法を説明した図である。図9(A)のヒータ300は、第1の実施形態のヒータと同じである。図9(B)は、図9(A)の長手方向(Y方向)の中央部の領域Bのヒータ短手方向(X方向)の任意の一断面を示した図である。   FIG. 9 is a diagram illustrating a method for pressurizing the heater 300, the high thermal conductive member 220, and the biasing member 230 according to the present embodiment. The heater 300 in FIG. 9A is the same as the heater in the first embodiment. FIG. 9B is a view showing an arbitrary cross section in the heater short-side direction (X direction) of the region B in the center in the longitudinal direction (Y direction) of FIG. 9A.

ヒータ支持部材1001は、付勢部材230(更には付勢部材230を介した高熱伝導部材220)を保持する第1の座面としての座面G1(領域306)と、ヒータ300を保持する第2の座面としての座面G2(領域308)を備える。座面G1(領域306)で、付勢部材230により高熱伝導部材220とヒータ300が加圧して接触される。また、座面G2(領域308)で、加圧機構としてのステー204(ヒータ支持部材1001にヒータ側へ不図示のバネの圧力を加える)により、ヒータ300のみが加圧して接触される。このように、座面G1と座面G2を短手方向(X方向)の一断面で備えている。   The heater support member 1001 has a seating surface G1 (region 306) as a first seating surface that holds the biasing member 230 (and the high heat conduction member 220 via the biasing member 230), and a first that holds the heater 300. 2 is provided as a seating surface G2 (region 308). On the seating surface G1 (region 306), the high thermal conductivity member 220 and the heater 300 are pressed and contacted by the biasing member 230. Further, only the heater 300 is pressed and brought into contact with the seat surface G2 (region 308) by a stay 204 (a spring pressure (not shown) is applied to the heater support member 1001 to the heater side) as a pressurizing mechanism. Thus, the seating surface G1 and the seating surface G2 are provided in one section in the short side direction (X direction).

また、ヒータ支持部材1001は、座面G1(領域306)と座面G2(領域308)の間に段差bを有しており、段差b内部に付勢部材230と高熱伝導部材220がヒータ300との間で挟持されている。このヒータ支持部材1001の段差bは、加圧後の付勢部材230の厚み方向の圧縮率に応じた距離に調整されている。   Further, the heater support member 1001 has a step b between the seating surface G1 (region 306) and the seating surface G2 (region 308), and the urging member 230 and the high heat conduction member 220 are provided inside the step b. Is sandwiched between. The step b of the heater support member 1001 is adjusted to a distance corresponding to the compressibility in the thickness direction of the urging member 230 after pressurization.

図10は、付勢部材230の加圧前後の厚みと、ヒータ支持部材1001の段差bの関係を示している。図10(A)は、付勢部材230が非加圧の時の、付勢部材230とヒータ支持部材1001、ならびに高熱伝導部材220とヒータ300を示している。ヒータ支持部材1001の座面G1’(領域306)と座面G2’(領域308)との間の段差をb、高熱伝導部材220の厚みをc、非加圧の時の付勢部材230の厚さ(長さ)をu0とする。このとき、段差bと、厚さu0の関係は、b<u0+cである。   FIG. 10 shows the relationship between the thickness of the biasing member 230 before and after pressing and the step b of the heater support member 1001. FIG. 10A shows the urging member 230 and the heater support member 1001 as well as the high thermal conductive member 220 and the heater 300 when the urging member 230 is not pressurized. The step between the seating surface G1 ′ (region 306) and the seating surface G2 ′ (region 308) of the heater support member 1001 is b, the thickness of the high heat conductive member 220 is c, and the biasing member 230 is unpressurized. The thickness (length) is u0. At this time, the relationship between the step b and the thickness u0 is b <u0 + c.

図10(B)は、付勢部材230が加圧された時の、付勢部材230とヒータ支持部材1001、ならびに高熱伝導部材220とヒータ300を示している。加圧時の付勢部材230の厚さをuとするとき、段差bは、b≦uである。座面G1(領域306)と座面G2(領域308)との間の段差bは、第1の実施形態と同じように、付勢部材230の機械特性と非加圧時の厚みに応じて設定すれば所望の付勢力が得られる。   FIG. 10B shows the urging member 230 and the heater support member 1001 as well as the high thermal conductive member 220 and the heater 300 when the urging member 230 is pressurized. When the thickness of the urging member 230 at the time of pressurization is u, the step b is b ≦ u. The step b between the seating surface G1 (region 306) and the seating surface G2 (region 308) depends on the mechanical characteristics of the urging member 230 and the thickness when no pressure is applied, as in the first embodiment. If set, a desired biasing force can be obtained.

図9に戻って、図9(C)は、図9(A)の長手方向のサーモスタット212を当接させる領域Cの短手方向(X方向)の任意の一断面を示した図である。ヒータ支持部材1001は、サーモスタット212が高熱伝導部材220に当接している領域以外に、領域306、領域308を備える。   Returning to FIG. 9, FIG. 9C is a view showing an arbitrary cross section in the short direction (X direction) of the region C in which the thermostat 212 in the longitudinal direction of FIG. The heater support member 1001 includes a region 306 and a region 308 in addition to a region where the thermostat 212 is in contact with the high thermal conductivity member 220.

領域306は、付勢部材230を介して高熱伝導部材220とヒータ300を加圧して接触させる領域である。また、領域308は、加圧機構としてのステー204(ヒータ支持部材1001にヒータ側へ不図示のバネの圧力を加える)により、付勢部材230を介さずに高熱伝導部材220とヒータ300を加圧して接触させる領域である。そして、ヒータ支持部材1001の座面G1(領域306)と座面G2(領域308)の間の段差bは、加圧後の付勢部材230の厚み方向の圧縮率に応じた距離に調整されている。   A region 306 is a region in which the high heat conducting member 220 and the heater 300 are pressed and brought into contact with each other via the biasing member 230. Further, the region 308 applies the high heat conduction member 220 and the heater 300 without the biasing member 230 by a stay 204 (applying a spring pressure (not shown) to the heater support member 1001 to the heater side) as a pressurizing mechanism. It is an area to be pressed and contacted. The step b between the seating surface G1 (region 306) and the seating surface G2 (region 308) of the heater support member 1001 is adjusted to a distance corresponding to the compressibility in the thickness direction of the urging member 230 after pressurization. ing.

図9(D)は、図9(A)のサーミスタ211を当接させる領域Dの短手方向(X方向)の任意の一断面を示した図である。ヒータ支持部材1001は、サーミスタ211が高熱伝導部材220に当接している領域以外に、領域306、領域308を備える。領域306は、付勢部材230を介して高熱伝導部材220とヒータ300を加圧して接触させる領域である。また、領域308は、加圧機構としてのステー204(ヒータ支持部材1001にヒータ側へ不図示のバネの圧力を加える)により、付勢部材230を介さずに高熱伝導部材220とヒータ300を加圧して接触させる領域である。   FIG. 9D is a view showing an arbitrary cross section in the short side direction (X direction) of the region D with which the thermistor 211 of FIG. 9A abuts. The heater support member 1001 includes a region 306 and a region 308 in addition to a region where the thermistor 211 is in contact with the high thermal conductive member 220. A region 306 is a region in which the high heat conducting member 220 and the heater 300 are pressed and brought into contact with each other via the biasing member 230. Further, the region 308 applies the high heat conduction member 220 and the heater 300 without the biasing member 230 by a stay 204 (applying a spring pressure (not shown) to the heater support member 1001 to the heater side) as a pressurizing mechanism. It is an area to be pressed and contacted.

図9(E)は、図9(A)の長手方向(Y方向)の端部の領域Eのヒータ短手方向(X方向)の任意の一断面を示した図である。ヒータ支持部材1001は、ヒータ300を加圧して接触させる領域308を短手方向(X方向)の一断面で有している。   FIG. 9E is a view showing an arbitrary cross section in the heater short direction (X direction) of the region E at the end in the longitudinal direction (Y direction) of FIG. 9A. The heater support member 1001 has a region 308 that pressurizes and contacts the heater 300 in one section in the short direction (X direction).

本実施形態では、ヒータ支持部材1001は、座面G2(領域308)でヒータ300を保持(支持)しており、ヒータ支持部材1001に対するヒータ300厚み方向の位置精度を第1の実施形態よりも高めることができる。また、付勢部材230により高熱伝導部材220とヒータ300を所定の圧力で押圧することで、抵抗発熱体301−1及び、301−2の発熱を、高熱伝導部材220に対して効率的に伝導できる。   In the present embodiment, the heater support member 1001 holds (supports) the heater 300 with the seating surface G2 (region 308), and the positional accuracy in the heater 300 thickness direction relative to the heater support member 1001 is higher than that in the first embodiment. Can be increased. Further, by pressing the high heat conductive member 220 and the heater 300 with a predetermined pressure by the urging member 230, the heat generated by the resistance heating elements 301-1 and 301-2 is efficiently conducted to the high heat conductive member 220. it can.

さらに、付勢部材230と高熱伝導部材220の定着装置への組付け性を改善するために、付勢部材230と高熱伝導部材220を予め接着し、一体化したものを用いても良い。一体化することで、付勢部材230をヒータ支持部材1001の段差部bに設置するのみで付勢部材230と高熱伝導部材220の短手方向(X方向)と長手方向(Y方向)の位置精度が確保できる。このため、第1の実施形態に対し、ヒータ支持部材1001の両端部に高熱伝導部材220の位置決めのための凹部形状等を形成する必要がなくなり、ヒータ支持部材1001を簡素化できる。   Further, in order to improve the assembly of the urging member 230 and the high heat conductive member 220 to the fixing device, the urging member 230 and the high heat conductive member 220 may be bonded in advance and integrated. By integrating, the position of the biasing member 230 and the high heat conduction member 220 in the short side direction (X direction) and the long side direction (Y direction) only by installing the biasing member 230 on the step b of the heater support member 1001. Accuracy can be secured. For this reason, it is not necessary to form a concave shape for positioning the high thermal conductive member 220 at both ends of the heater support member 1001 as compared to the first embodiment, and the heater support member 1001 can be simplified.

(変形例)
上述した実施形態では、本発明の好ましい実施形態を説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形が可能である。
(Modification)
Although the preferred embodiments of the present invention have been described in the above-described embodiments, the present invention is not limited to these embodiments, and various modifications are possible within the scope of the gist.

(変形例1)
上述した実施形態では、ヒータを嵌め込む構成のフィルム加熱方式の定着装置について述べたが、本発明はこれに限られない。例えば、ヒータを用いず、定着フィルム自体が発熱する、発熱層を備える発熱ベルトを用いたフィルム発熱方式の定着装置にも応用できる。この場合、ヒータが設けられた場所に熱伝導性が高く細長い直方体形状の均熱化部材としての摺動部材を設け、この均熱化部材としての摺動部材で、非記録材搬送領域における昇温を抑制するために発熱フィルムの温度ムラを均熱化する。
(Modification 1)
In the above-described embodiment, the film heating type fixing device in which the heater is fitted is described, but the present invention is not limited to this. For example, the present invention can also be applied to a film heating type fixing device using a heat generating belt having a heat generating layer in which a fixing film itself generates heat without using a heater. In this case, a sliding member as a soaking member having an elongated rectangular parallelepiped shape with high thermal conductivity is provided at a place where the heater is provided, and the sliding member as the soaking member is used to raise the temperature in the non-recording material conveyance region. In order to suppress the temperature, the temperature unevenness of the heat generating film is equalized.

(変形例2)
上述した実施形態では、無端ベルトが第1の回転体に設けられたが、無端ベルトが第1の回転体に対向する第2の回転体に設けられても良い。また、無端ベルトが第1の回転体、第2の回転体の双方に設けられても良い。
(Modification 2)
In the above-described embodiment, the endless belt is provided on the first rotating body. However, the endless belt may be provided on the second rotating body facing the first rotating body. An endless belt may be provided on both the first rotating body and the second rotating body.

また、上述した実施形態では、回転体および加圧体としての加圧用回転体(加圧ローラ)が定着回転体(定着ベルト)を加圧する場合を示した。しかしながら、本発明はこれに限定されず、加圧体としてではなく対向体としての回転体が定着回転体としての定着ベルト(フィルム)から加圧される場合にも同様に適用できる。ここで、対向体とは、定着回転体に対向し、定着回転体と圧接して定着ニップ部を形成し、移動する記録材を定着ニップ部で挟持する部材である。   In the above-described embodiment, the case where the rotating body (pressure roller) as the rotating body and the pressing body presses the fixing rotating body (fixing belt) is shown. However, the present invention is not limited to this, and the present invention can be similarly applied to a case where a rotating body as an opposing body is pressed from a fixing belt (film) as a fixing rotating body, not as a pressing body. Here, the opposing body is a member that faces the fixing rotator, presses against the fixing rotator, forms a fixing nip portion, and clamps the moving recording material at the fixing nip portion.

また、上述した実施形態では、記録材として記録紙を説明したが、本発明における記録材は紙に限定されるものではない。一般に、記録材とは、画像形成装置によってトナー像が形成されるシート状の部材であり、例えば、定型或いは不定型の普通紙、厚紙、薄紙、封筒、葉書、シール、樹脂シート、OHPシート、光沢紙等が含まれる。なお、上述した実施形態では、便宜上、記録材(シート)Pの扱いを通紙、通紙部、非通紙部などの用語を用いて説明したが、これによって本発明における記録材が紙に限定されるものではない。   In the above-described embodiment, the recording paper is described as the recording material. However, the recording material in the present invention is not limited to paper. Generally, a recording material is a sheet-like member on which a toner image is formed by an image forming apparatus. For example, regular or irregular plain paper, cardboard, thin paper, envelope, postcard, seal, resin sheet, OHP sheet, Includes glossy paper. In the above-described embodiment, for the sake of convenience, the recording material (sheet) P has been described using terms such as passing paper, paper passing portion, and non-paper passing portion. It is not limited.

また、上述した実施形態では、未定着トナー像をシートに定着する定着装置を例に説明したが、本発明は、これに限らず、画像の光沢を向上させるべく、シートに仮定着されたトナー像を加熱加圧する装置(この場合も定着装置)にも同様に適用可能である。   In the above-described embodiment, the fixing device that fixes an unfixed toner image on the sheet has been described as an example. However, the present invention is not limited to this, and the toner that is assumed on the sheet in order to improve the gloss of the image. The present invention can be similarly applied to a device that heats and presses an image (also a fixing device in this case).

201・・ヒータ支持部材、202・・フィルム、208・・加圧ローラ、220・・高熱伝導部材、230・・付勢部材、300・・ヒータ、G1、G1’・・第1の座面、G2、G2’・・第2の座面、X・・基板短手方向、Y・・基板長手方向、Z・・天地方向(基板厚み方向) 201 .. Heater support member, 202 .. Film, 208 ..Pressure roller, 220 .. High heat conduction member, 230 .. Energizing member, 300 .. Heater, G1, G1 ′,. G2, G2 '... second seat surface, X ... substrate short direction, Y ... substrate longitudinal direction, Z ... top / bottom direction (substrate thickness direction)

Claims (11)

回転可能な無端ベルトと、
前記無端ベルトの回転に際し前記無端ベルトの内周面が摺動する摺動部材と、
前記摺動部材を嵌め込むための溝部を備え、前記摺動部材を嵌め込んだ状態で前記無端ベルトの内周面と接触するように前記摺動部材を保持する保持部材と、
前記無端ベルトを介して前記摺動部材および前記保持部材と対向し前記無端ベルトの外周面との間でニップ部を形成する対向部材と、
を有し、前記ニップ部で画像を担持した記録材を挟持搬送しつつ加熱定着する定着装置であって、
前記保持部材と前記摺動部材の間に設けられ、前記摺動部材と接する熱伝導部材と、
前記保持部材と前記熱伝導部材の間に設けられ、前記熱伝導部材へ向けて付勢する付勢部材と、
を有し、
前記保持部材は、
前記付勢部材を保持する第1の座面と、
前記付勢部材が付勢された状態で前記熱伝導部材もしくは前記摺動部材を保持する第2の座面と、
を有することを特徴とする定着装置。
A rotatable endless belt,
A sliding member on which an inner peripheral surface of the endless belt slides during rotation of the endless belt;
A holding member for holding the sliding member so as to come into contact with an inner peripheral surface of the endless belt in a state in which the sliding member is fitted, the groove portion for fitting the sliding member;
An opposing member that faces the sliding member and the holding member via the endless belt and forms a nip portion with an outer peripheral surface of the endless belt;
A fixing device that heats and fixes a recording material carrying an image at the nip portion while being nipped and conveyed,
A heat conducting member provided between the holding member and the sliding member and in contact with the sliding member;
An urging member provided between the holding member and the heat conducting member, and urged toward the heat conducting member;
Have
The holding member is
A first bearing surface holding the biasing member;
A second seating surface for holding the heat conducting member or the sliding member in a state where the biasing member is biased;
A fixing device.
前記摺動部材は発熱部材であり、前記無端ベルトは前記発熱部材により加熱されることを特徴とする請求項1に記載の定着装置。   The fixing device according to claim 1, wherein the sliding member is a heat generating member, and the endless belt is heated by the heat generating member. 前記無端ベルトは発熱層を備える発熱ベルトであり、前記摺動部材は記録材搬送方向と直交する長手方向における前記発熱ベルトの温度むらを均熱化する均熱化部材であることを特徴とする請求項1に記載の定着装置。   The endless belt is a heat generating belt provided with a heat generating layer, and the sliding member is a temperature equalizing member that equalizes temperature unevenness of the heat generating belt in a longitudinal direction perpendicular to the recording material conveyance direction. The fixing device according to claim 1. 前記第2の座面は前記熱伝導部材および前記摺動部材を保持することを特徴とする請求項1乃至3のいずれか1項に記載の定着装置。   The fixing device according to claim 1, wherein the second seating surface holds the heat conducting member and the sliding member. 前記第1の座面と前記第2の座面の段差は、前記付勢部材が付勢されていない状態の前記付勢部材の長さよりも小さいことを特徴とする請求項4に記載の定着装置。   The fixing according to claim 4, wherein a step between the first seating surface and the second seating surface is smaller than a length of the biasing member in a state where the biasing member is not biased. apparatus. 前記第2の座面は前記摺動部材を保持し、前記第1の座面は前記付勢部材を介して前記熱伝導部材を保持することを特徴とする請求項1乃至3のいずれか1項に記載の定着装置。   The said 2nd seat surface hold | maintains the said sliding member, The said 1st seat surface hold | maintains the said heat conductive member via the said urging | biasing member, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The fixing device according to Item. 前記第1の座面と前記第2の座面の段差は、前記付勢部材が付勢されていない状態の前記付勢部材の長さと前記熱伝導部材の厚さの和よりも小さいことを特徴とする請求項6に記載の定着装置。   The step between the first seat surface and the second seat surface is smaller than the sum of the length of the biasing member and the thickness of the heat conducting member when the biasing member is not biased. The fixing device according to claim 6. 前記付勢部材の記録材搬送方向における最大幅は、前記摺動部材の記録材搬送方向における最大幅より広いことを特徴とする請求項1乃至7のいずれか1項に記載の定着装置。   The fixing device according to claim 1, wherein a maximum width of the urging member in the recording material conveyance direction is wider than a maximum width of the sliding member in the recording material conveyance direction. 前記付勢部材は、鉱物繊維またはガラス繊維を原料とした無機繊維体をシート状に加工したものであることを特徴とする請求項1乃至8のいずれか1項に記載の定着装置。   9. The fixing device according to claim 1, wherein the urging member is obtained by processing an inorganic fiber body made of mineral fiber or glass fiber into a sheet shape. 前記付勢部材は、10%変形時の圧縮応力が0.3〜1.5[kgf/cm^2]であることを特徴とする請求項1乃至9のいずれか1項に記載の定着装置。   The fixing device according to claim 1, wherein the urging member has a compressive stress of 0.3 to 1.5 [kgf / cm 2] when deformed by 10%. . 前記保持部材は、前記熱伝導部材および前記摺動部材の記録材搬送方向におけるそれぞれの位置決め部を有することを特徴とする請求項1乃至10のいずれか1項に記載の定着装置。   The fixing device according to claim 1, wherein the holding member includes positioning portions of the heat conducting member and the sliding member in a recording material conveyance direction.
JP2015094741A 2015-05-07 2015-05-07 Fixing device Pending JP2016212211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094741A JP2016212211A (en) 2015-05-07 2015-05-07 Fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094741A JP2016212211A (en) 2015-05-07 2015-05-07 Fixing device

Publications (1)

Publication Number Publication Date
JP2016212211A true JP2016212211A (en) 2016-12-15

Family

ID=57549685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094741A Pending JP2016212211A (en) 2015-05-07 2015-05-07 Fixing device

Country Status (1)

Country Link
JP (1) JP2016212211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281850B2 (en) 2017-05-22 2019-05-07 Ricoh Company, Ltd. Fixing device with nip formation pad having an abutment region and opening portions
JP2020024371A (en) * 2018-07-25 2020-02-13 株式会社リコー Heating device, fixing device, and image forming apparatus
US11815833B2 (en) 2020-03-12 2023-11-14 Hewlett-Packard Development Company, L.P. Heat conduction member for preventing fuser heater from overheating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281850B2 (en) 2017-05-22 2019-05-07 Ricoh Company, Ltd. Fixing device with nip formation pad having an abutment region and opening portions
JP2020024371A (en) * 2018-07-25 2020-02-13 株式会社リコー Heating device, fixing device, and image forming apparatus
JP7280554B2 (en) 2018-07-25 2023-05-24 株式会社リコー Heating device, fixing device and image forming device
US11815833B2 (en) 2020-03-12 2023-11-14 Hewlett-Packard Development Company, L.P. Heat conduction member for preventing fuser heater from overheating

Similar Documents

Publication Publication Date Title
US10564579B2 (en) Fixing apparatus
JP6639180B2 (en) Image heating device
JP6415226B2 (en) Image heating device
US10317823B2 (en) Fixing device and image forming apparatus having a thermal conduction aid contacting a nip formation pad
JP6261308B2 (en) Image heating device
JP6198580B2 (en) Image heating apparatus and image forming apparatus equipped with the image heating apparatus
US10747154B2 (en) Fixing device and image forming apparatus
US10990045B2 (en) Belt heating device, fixing device, and image forming apparatus
JP6661340B2 (en) Fixing device
JP2020091271A (en) Temperature detection member, heating device, fixing device, and image forming apparatus
JP2017142428A (en) Fixing device
JP6862172B2 (en) Fixing device
JP6866089B2 (en) Fixing device
JP6727783B2 (en) Image heating device and image forming device
JP2016212211A (en) Fixing device
JP6573414B2 (en) Image heating device
JP6766237B2 (en) Image heating device
CN110895388B (en) Fixing device and image forming apparatus
JP6436447B2 (en) Image heating device
JP6921614B2 (en) Fixing device
JP2021149050A (en) Heating device and image processing apparatus
JP6786286B2 (en) Fixing device
JP5991756B2 (en) Image heating device
JP2017142425A (en) Image heating device
JP2020038400A (en) Image heating device