JP2016211164A - Joint structure - Google Patents

Joint structure Download PDF

Info

Publication number
JP2016211164A
JP2016211164A JP2015093067A JP2015093067A JP2016211164A JP 2016211164 A JP2016211164 A JP 2016211164A JP 2015093067 A JP2015093067 A JP 2015093067A JP 2015093067 A JP2015093067 A JP 2015093067A JP 2016211164 A JP2016211164 A JP 2016211164A
Authority
JP
Japan
Prior art keywords
steel
joined
oblique
joining
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015093067A
Other languages
Japanese (ja)
Other versions
JP6839910B2 (en
Inventor
宣行 小澤
Nobuyuki Ozawa
宣行 小澤
山下 真吾
Shingo Yamashita
真吾 山下
拓 川合
Hiroshi Kawai
拓 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2015093067A priority Critical patent/JP6839910B2/en
Publication of JP2016211164A publication Critical patent/JP2016211164A/en
Application granted granted Critical
Publication of JP6839910B2 publication Critical patent/JP6839910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a proper axial force to be transferred between a plurality of steel cylindrical bodies and a joint joined to a connection part configured by joining ends of the plurality of steel cylindrical bodies.SOLUTION: A joint structure includes: a plurality of steel cylindrical bodies which each have one end joined to one joint; a connection part which forms one closed cross-section by joining the other ends of the plurality of steel cylindrical bodies and which is joined to the other joint; and a steel partition plate which has a width-direction end joined to the connection part to partition the closed cross-section and which has a length-direction end joined to the other joint.SELECTED DRAWING: Figure 1

Description

本発明は、複数の鋼管を1つに集約する接合構造に関する。   The present invention relates to a joining structure that aggregates a plurality of steel pipes into one.

特許文献1には、地盤に立設された1つの垂直柱と、この垂直柱の上端部から異なる斜め上方向へ向って設けられた2つの斜柱とを有して構成され、建築物の構造部材となる支柱部材が開示されている。   Patent Document 1 is composed of one vertical column erected on the ground and two oblique columns provided in different oblique upward directions from the upper end of the vertical column. A strut member serving as a structural member is disclosed.

このような、複数の軸状部材の端部同士を接合して1つの連結部に集約する接合構造においては、連結部に局部的な曲げ変形や座屈等が生じないように、複数の軸状部材と、連結部が接合される接合部(特許文献1では、垂直柱の上端部)との間での良好な軸力の伝達が求められる。   In such a joining structure in which the ends of a plurality of shaft-like members are joined together to be integrated into one connecting part, a plurality of shafts are used so that local bending deformation or buckling does not occur in the connecting part. A good axial force is required to be transmitted between the shaped member and the joint where the connecting part is joined (in Patent Document 1, the upper end of the vertical column).

特開2009−30253号公報JP 2009-30253 A

本発明は係る事実を考慮し、複数の鋼製筒体と、複数の鋼製筒体の端部同士を接合して構成された連結部が接合される接合部との間で、良好な軸力の伝達ができることを課題とする。   In consideration of the fact, the present invention provides a good shaft between a plurality of steel cylinders and a joint where joints constituted by joining ends of the plurality of steel cylinders are joined. The task is to be able to transmit force.

第1態様の発明は、一の接合部に一端部がそれぞれ接合された複数の鋼製筒体と、前記複数の鋼製筒体の他端部同士を接合して1つの閉断面を形成するとともに、他の接合部に接合される連結部と、前記連結部に幅方向の端部が接合されて前記閉断面を仕切るとともに、長さ方向の端部が前記他の接合部に接合される鋼製仕切板と、を有する接合構造である。   In the first aspect of the invention, a plurality of steel cylinders each having one end joined to one joint and the other ends of the plurality of steel cylinders are joined to form one closed cross section. In addition, a connecting portion to be joined to another joining portion, and an end portion in the width direction are joined to the joining portion to partition the closed cross section, and an end portion in the length direction is joined to the other joining portion. And a steel partition plate.

第1態様の発明では、複数の鋼製筒体の他端部同士を接合して連結部を形成し、この連結部を他の接合部に接合することにより、1つの他の接合部から複数の鋼製筒体に分岐することができる。   In the first aspect of the invention, the other end portions of the plurality of steel cylinders are joined together to form a connecting portion, and the connecting portion is joined to another joining portion, so that a plurality of from one other joining portion. Can be branched into a steel cylinder.

また、鋼製仕切板の幅方向の端部を連結部に接合して連結部の閉断面を複数の閉断面に仕切るとともに、鋼製仕切板の長さ方向の端部を他の接合部に接合することにより、連結部の断面欠損が補われ、複数の鋼製筒体から他の接合部へ、又は他の接合部から複数の鋼製筒体へ、軸力を良好に伝達することができる。   In addition, the end portion in the width direction of the steel partition plate is joined to the connecting portion to partition the closed cross section of the connecting portion into a plurality of closed cross sections, and the end portion in the length direction of the steel partition plate is used as another joining portion. By joining, the cross-sectional defect of the connecting portion is compensated, and the axial force can be satisfactorily transmitted from a plurality of steel cylinders to other joints, or from other joints to a plurality of steel cylinders. it can.

例えば、柱梁仕口部上に連結部が設けられ、この連結部から複数の鋼製筒体が分岐柱として上方へ向けて設けられている場合には、複数の鋼製筒体に作用する軸力を、連結部を介して柱梁仕口部へ良好に伝達することができる。   For example, when a connecting part is provided on a column beam joint, and a plurality of steel cylinders are provided upward as branching columns from this connecting part, the connecting parts act on a plurality of steel cylinders. The axial force can be satisfactorily transmitted to the column beam joint through the connecting portion.

さらに、連結部の閉断面を複数の閉断面に仕切るように鋼製仕切板が設けられているので、連結部の耐力を高めることができる。   Furthermore, since the steel partition plate is provided so as to partition the closed cross section of the connecting portion into a plurality of closed cross sections, the proof stress of the connecting portion can be increased.

また、連結部の閉断面を複数の閉断面に仕切るように鋼製仕切板が設けられているので、連結部内にコンクリートを充填してCFT造(Concrete-Filled Steel Tube:コンクリート充填鋼管構造)にすれば、コンファインド効果により連結部の耐力をさらに高めることができる。   In addition, because the steel partition plate is provided so that the closed cross section of the connecting part is divided into a plurality of closed cross sections, the connecting part is filled with concrete to form a CFT structure (Concrete-Filled Steel Tube). If it does so, the yield strength of a connection part can be raised further according to the confinement effect.

第2態様の発明は、第1態様の接合構造において、前記鋼製筒体は、4つの鋼板を溶接接合して構成された角形鋼管である。   According to a second aspect of the invention, in the joining structure of the first aspect, the steel cylinder is a square steel pipe configured by welding and joining four steel plates.

第2態様の発明では、鋼製筒体は、4つの鋼板を溶接接合して構成された角形鋼管なので、既製の鋼管と比較して、連結部の形成や、連結部への鋼製仕切板の接合を容易に行うことができる。   In the second aspect of the invention, the steel cylinder is a square steel pipe formed by welding and joining four steel plates. Therefore, compared to a ready-made steel pipe, the connection portion is formed and the steel partition plate to the connection portion is formed. Can be easily joined.

本発明は上記構成としたので、複数の鋼製筒体と、複数の鋼製筒体の端部同士を接合して構成された連結部が接合される接合部との間で、良好な軸力の伝達ができる。   Since the present invention has the above-described configuration, a good shaft is provided between the plurality of steel cylinders and the joint where the ends formed by joining the ends of the plurality of steel cylinders are joined. Can transmit power.

本発明の実施形態に係る接合構造を示す斜視図である。It is a perspective view which shows the joining structure which concerns on embodiment of this invention. 本発明の実施形態に係る接合構造を示す正面図である。It is a front view which shows the joining structure which concerns on embodiment of this invention. 図3(a)は図2のA−A断面図、図3(b)は図2のB−B断面図、図3(c)は図2のC−C断面図である。3A is a cross-sectional view taken along the line AA in FIG. 2, FIG. 3B is a cross-sectional view taken along the line BB in FIG. 2, and FIG. 3C is a cross-sectional view taken along the line CC in FIG. 図4(a)は建物の3階フロアを示す平面図、図4(b)は建物の1階フロアを示す平面図である。4A is a plan view showing the third floor of the building, and FIG. 4B is a plan view showing the first floor of the building. 本発明の実施形態に係る改修建物を示す立面図である。It is an elevation view which shows the repair building which concerns on embodiment of this invention. 図6(a)、図6(b)、図6(c)は、本発明の実施形態に係る接合構造のバリエーションを示す平面断面図である。FIG. 6A, FIG. 6B, and FIG. 6C are plan sectional views showing variations of the joint structure according to the embodiment of the present invention. 本発明の実施形態に係る接合構造のバリエーションを示す平面断面図である。It is a plane sectional view showing the variation of the joining structure concerning the embodiment of the present invention. 本発明の実施形態に係る接合構造のバリエーションを示す平面断面図である。It is a plane sectional view showing the variation of the joining structure concerning the embodiment of the present invention. 本発明の実施形態に係る免震建物を示す立面図である。It is an elevation view which shows the seismic isolation building which concerns on embodiment of this invention.

図を参照しながら、本発明の実施形態を説明する。まず、本発明の実施形態に係る接合構造について説明する。   Embodiments of the present invention will be described with reference to the drawings. First, a joint structure according to an embodiment of the present invention will be described.

図1の斜視図、及び図2の正面図には、建物10の1階に立設された柱12を2つの斜柱14、16に分岐する本実施形態の接合構造18が示されている。   The perspective view of FIG. 1 and the front view of FIG. 2 show the joint structure 18 of the present embodiment that branches the pillar 12 standing on the first floor of the building 10 into two oblique pillars 14 and 16. .

斜柱14、16は、建物10の2階に設けられており、1つの柱12と、建物10の3階に立設された2つの柱(不図示、以下「柱20、22」とする)とを繋いで、後に説明する梁26、28、30とともに柱梁架構44を構成している。柱12、20、22は、内部にコンクリートが充填された角形鋼管からなり、柱12の上端部は、柱梁仕口部24となっている。   The oblique pillars 14 and 16 are provided on the second floor of the building 10, and one pillar 12 and two pillars erected on the third floor of the building 10 (not shown, hereinafter referred to as “pillars 20 and 22”). ) To form a column beam frame 44 together with beams 26, 28 and 30 which will be described later. The columns 12, 20, and 22 are made of square steel pipes filled with concrete inside, and the upper end portion of the column 12 is a column beam joint portion 24.

柱梁仕口部24の上下端部には、通しダイアフラム形式の上ダイアフラム106と下ダイアフラム108が設けられており、略水平に配置されたH形鋼からなる梁26、28、30の上下フランジの端部を上ダイアフラム106と下ダイアフラム108にそれぞれ溶接接合し、梁26、28、30のウェブの端部を柱梁仕口部24の側面に溶接接合することによって、柱梁仕口部24に梁26、28、30が接合されている。梁26と梁30は、平面視にて一直線上に配置され、梁26、30と梁28は、平面視にて直交して配置されている。以下の説明において、梁26、30の梁長方向を方向Xとし、梁28の梁長方向を方向Yとする。すなわち、方向Xと方向Yとは、平面視にて直交している。   At the upper and lower ends of the column beam joint portion 24, a through diaphragm type upper diaphragm 106 and a lower diaphragm 108 are provided, and upper and lower flanges of beams 26, 28, and 30 made of H-shaped steel arranged substantially horizontally. Are welded and joined to the upper diaphragm 106 and the lower diaphragm 108, respectively, and the ends of the webs of the beams 26, 28, and 30 are welded and joined to the side surfaces of the column beam joint portion 24, whereby the column beam joint portion 24 is joined. Beams 26, 28, and 30 are joined to each other. The beam 26 and the beam 30 are arranged on a straight line in a plan view, and the beams 26, 30 and the beam 28 are arranged orthogonally in a plan view. In the following description, the beam length direction of the beams 26 and 30 is a direction X, and the beam length direction of the beam 28 is a direction Y. That is, the direction X and the direction Y are orthogonal in plan view.

接合構造18は、複数の鋼製筒体としての2つの斜柱14、16と、連結部32と、鋼製仕切板としての鋼板からなる仕切板34と、を有して構成されている。斜柱14は、方向Yへ傾斜して設けられ、斜柱16は、方向Xへ傾斜して設けられている。   The joining structure 18 includes two oblique columns 14 and 16 as a plurality of steel cylinders, a connecting portion 32, and a partition plate 34 made of a steel plate as a steel partition plate. The oblique column 14 is provided to be inclined in the direction Y, and the oblique column 16 is provided to be inclined in the direction X.

図1、及び図2のA−A断面図である図3(a)に示すように、斜柱14、16は、4つの鋼板36を開先溶接により接合して構成された角形鋼管からなり、内部にコンクリートVが充填されている。斜柱14、16の一端部としての上端部(不図示)は、一の接合部としての柱20、22の下端部(不図示)にそれぞれ接合されている。   As shown in FIG. 1A and FIG. 3A, which is a cross-sectional view taken along line AA of FIG. 2, the oblique columns 14 and 16 are formed of square steel pipes formed by joining four steel plates 36 by groove welding. The concrete V is filled inside. Upper end portions (not shown) as one end portions of the oblique columns 14 and 16 are respectively joined to lower end portions (not shown) of the columns 20 and 22 as one joining portion.

図1、及び図2のB−B断面図である図3(b)に示すように、連結部32は、2つの斜柱14、16の他端部としての下端部38、40同士を開先溶接により接合し、1つの閉断面42を形成するようにして形成されている。また、図2に示すように、連結部32は、他の接合部としての柱梁仕口部24に接合されている。   As shown in FIG. 1B and FIG. 3B, which is a sectional view taken along the line B-B of FIG. 2, the connecting portion 32 opens the lower end portions 38 and 40 as the other end portions of the two oblique columns 14 and 16. It is formed by joining by pre-welding to form one closed section 42. Moreover, as shown in FIG. 2, the connection part 32 is joined to the column beam joint part 24 as another junction part.

図3(b)、及び図2のC−C断面図である図3(c)に示すように、仕切板34は、上ダイアフラム106を介して連結部32の内部から柱梁仕口部24の内部へ渡って上下へ配設されている。   As shown in FIG. 3B and FIG. 3C, which is a cross-sectional view taken along the line CC in FIG. 2, the partition plate 34 is connected to the column beam joint portion 24 from the inside of the connecting portion 32 via the upper diaphragm 106. It is arranged up and down across the interior of the.

図3(b)に示すように、連結部32の内部において、仕切板34は、仕切板34の幅方向Wの左右端部が連結部32に開先溶接によって接合されており、閉断面42を2つに仕切っている。また、連結部32の内部において、仕切板34は、連結部32の内部に充填されたコンクリートV中に埋設されている。   As shown in FIG. 3B, inside the connecting portion 32, the partition plate 34 has left and right end portions in the width direction W of the partition plate 34 joined to the connecting portion 32 by groove welding, and has a closed cross section 42. Is divided into two. Further, the partition plate 34 is embedded in the concrete V filled in the connection portion 32 inside the connection portion 32.

図3(c)に示すように、仕切板34の下端部(上ダイアフラム106よりも下の部分)は、仕切板34の幅方向Wの左右端部が柱梁仕口部24に開先溶接によって接合されて、柱梁仕口部24の閉断面を2つに仕切っている。また、仕切板34の下端部は、柱梁仕口部24の内部に充填されたコンクリートV中に埋設されている。さらに、仕切板34の下端面は、下ダイアフラム108の上面に溶接接合されている。   As shown in FIG. 3C, the lower end portion of the partition plate 34 (the portion below the upper diaphragm 106) is groove-welded to the column beam joint portion 24 at the left and right end portions in the width direction W of the partition plate 34. The closed cross section of the column beam joint 24 is divided into two. The lower end of the partition plate 34 is embedded in the concrete V filled in the column beam joint 24. Further, the lower end surface of the partition plate 34 is welded to the upper surface of the lower diaphragm 108.

すなわち、仕切板34は、仕切板34の幅方向Wの左右端部が連結部32に接合されて閉断面42を仕切るとともに、上ダイアフラム106及び下ダイアフラム108と一体に設けられ、仕切板34の長さ方向の端部(本例では、下端部)が他の接合部としての柱梁仕口部24に接合されている。   That is, the partition plate 34 is joined to the connection portion 32 at the left and right ends in the width direction W of the partition plate 34 to partition the closed section 42 and is provided integrally with the upper diaphragm 106 and the lower diaphragm 108. An end portion in the length direction (in this example, a lower end portion) is joined to a column beam joint portion 24 as another joining portion.

次に、本発明の実施形態に係る接合構造の作用と効果について説明する。   Next, the operation and effect of the joint structure according to the embodiment of the present invention will be described.

本実施形態の接合構造18では、図1に示すように、2つの斜柱14、16の下端部38、40同士を接合して連結部32を形成し、この連結部32を柱梁仕口部24に接合することにより、1つの柱梁仕口部24から2つの斜柱14、16に分岐することができる。   In the joining structure 18 of the present embodiment, as shown in FIG. 1, the lower end portions 38 and 40 of the two oblique columns 14 and 16 are joined together to form a connecting portion 32, and the connecting portion 32 is connected to a column beam joint. By joining to the portion 24, it is possible to branch from the one column beam joint portion 24 to the two oblique columns 14 and 16.

また、本実施形態の接合構造18では、図3(b)に示すように、仕切板34の幅方向Wの左右端部を連結部32に接合して連結部32の閉断面42を複数の閉断面に仕切るとともに、仕切板34の下端部を柱梁仕口部24に接合することにより、連結部32の断面欠損が補われ、2つの斜柱14、16から柱梁仕口部24へ斜柱14、16に作用する軸力を良好に伝達することができる。また、図1に示すように、2つの斜柱14、16から柱梁仕口部24へ斜柱14、16に作用する軸力を良好に伝達することにより、連結部32に局部的な曲げ変形や座屈等が生じることを抑制することができるので、斜柱14、16を有して構成する柱梁架構44に高い変形性能を発揮させて、崩壊メカニズムが靭性的となる柱梁架構44を構築することができる。   Moreover, in the joining structure 18 of this embodiment, as shown in FIG.3 (b), the left-right edge part of the width direction W of the partition plate 34 is joined to the connection part 32, and the closed cross section 42 of the connection part 32 is made into several. By partitioning into a closed cross section and joining the lower end portion of the partition plate 34 to the column beam joint portion 24, the cross-sectional defect of the connecting portion 32 is compensated, and the two oblique columns 14, 16 to the column beam joint portion 24. The axial force acting on the oblique columns 14 and 16 can be transmitted well. Further, as shown in FIG. 1, the axial force acting on the oblique columns 14 and 16 is well transmitted from the two oblique columns 14 and 16 to the column beam joint portion 24, thereby locally bending the connecting portion 32. Since it is possible to suppress the occurrence of deformation, buckling, and the like, the column beam structure 44 having the oblique columns 14 and 16 is made to exhibit high deformation performance and the collapse mechanism becomes tough. 44 can be constructed.

さらに、本実施形態の接合構造18では、図3(b)及び図3(c)に示すように、連結部32の閉断面42、及び柱梁仕口部24の閉断面を複数の閉断面に仕切るように仕切板34が設けられているので、連結部32及び柱梁仕口部24の耐力を高めることができる。   Furthermore, in the joint structure 18 of the present embodiment, as shown in FIGS. 3B and 3C, the closed cross section 42 of the connecting portion 32 and the closed cross section of the column beam joint portion 24 are divided into a plurality of closed cross sections. Since the partition plate 34 is provided so as to be partitioned into two, the strength of the connecting portion 32 and the column beam joint portion 24 can be increased.

また、本実施形態の接合構造18では、図1に示すように、1つの柱梁仕口部24から2つの斜柱14、16に分岐することができるので、建物10の1階に立設された1つの柱12と、建物10の3階に立設された2つの柱20、22とを2つの斜柱14、16で繋いで、3階の荷重を1階へ良好に伝えることができる。すなわち、下階と上階とで柱割り及び柱本数が異なる建物において、上階に設けられた柱と、下階に設けられた柱とを繋いで、上階の荷重を下階へ良好に伝えることができる。   Further, in the joint structure 18 of the present embodiment, as shown in FIG. 1, since it can be branched into two oblique columns 14, 16 from one column beam joint portion 24, it is erected on the first floor of the building 10. By connecting one pillar 12 and two pillars 20 and 22 erected on the third floor of the building 10 with two oblique pillars 14 and 16, the load on the third floor can be transmitted well to the first floor. it can. In other words, in a building with different pillars and number of pillars on the lower and upper floors, the upper floor load is connected to the lower floor pillars to improve the load on the upper floor. I can tell you.

例えば、図4(a)及び図4(b)の平面図に示す建物46では、建物46の3階を構成するフロア48を、眺望のためにフロア48の隅部以外に柱50A、50B、50C、50Dを配置した(隅柱を無くした)住宅用途のフロアとし、建物46の1階を構成するフロア52を、車を出入りさせるために柱54A、54B、54Cの設置間隔を大きくした駐車場用途のフロアとしているので、フロア48とフロア52との柱割り及び柱本数が異なっており、フロア48に配置された柱50B、50Cの直下には柱が配置されず、フロア52に設けられた柱54Bの直上には柱が配置されない。   For example, in the building 46 shown in the plan views of FIGS. 4A and 4B, the floor 48 constituting the third floor of the building 46 is provided with columns 50 </ b> A and 50 </ b> B in addition to the corners of the floor 48 for viewing. Parking floors with 50C and 50D installed (no corner pillars), and the floor 52 that constitutes the first floor of the building 46 has a larger installation interval between the pillars 54A, 54B, and 54C in order to get in and out of the car. Since the floor is used for a parking lot, the floor division and the number of pillars of the floor 48 and the floor 52 are different. The pillars are not arranged immediately below the pillars 50B and 50C arranged on the floor 48, and are provided on the floor 52. A column is not disposed immediately above the column 54B.

このような、建物46において、本実施形態の接合構造18で分岐された斜柱14、16の上端部を柱50B、50Cの下端部に接合し、連結部32を柱54Bの上端部に接合して、柱50B、50Cと柱54Bとを繋げれば、建物46の3階の荷重を建物46の1階へ良好に伝えることができる。   In such a building 46, the upper ends of the oblique columns 14 and 16 branched by the joining structure 18 of the present embodiment are joined to the lower ends of the columns 50B and 50C, and the connecting portion 32 is joined to the upper end of the column 54B. And if the pillars 50B and 50C and the pillar 54B are connected, the load of the 3rd floor of the building 46 can be favorably transmitted to the 1st floor of the building 46.

また、例えば、図5の立面図に示す既存建物56(1〜4階)の上に増築構造物58(5〜6階)を増築して構成された改修建物60では、既存建物56の柱62A、62B、62C、62D、62Eと、増築構造物58の柱64A、64B、64Cとの柱割り及び柱本数が異なっている。   Further, for example, in the renovated building 60 constructed by adding the extension structure 58 (5th to 6th floors) on the existing building 56 (1st to 4th floors) shown in the elevation view of FIG. The column division and the number of columns of the columns 62A, 62B, 62C, 62D, 62E and the columns 64A, 64B, 64C of the extension structure 58 are different.

このような、改修建物60において、本実施形態の接合構造18で分岐された斜柱14、16(本例では、斜柱14、16は、ともに方向Xへ傾斜している)の上端部を柱64A、64B、64Cの下端部に接合し、連結部32を柱62B、62Dの上端部に接合して、柱64A、64B、64Cと、柱62B、62Dとを繋げれば、改修建物60の6階の荷重を既存建物56へ良好に伝えることができる。   In such a renovated building 60, the upper ends of the oblique columns 14 and 16 branched in the joint structure 18 of the present embodiment (in this example, the oblique columns 14 and 16 are both inclined in the direction X). If it joins to the lower end part of pillar 64A, 64B, 64C, joining part 32 is joined to the upper end part of pillar 62B, 62D, and pillar 64A, 64B, 64C and pillar 62B, 62D are connected, it will be repaired building 60 The load on the sixth floor can be transmitted well to the existing building 56.

さらに、本実施形態の接合構造18では、図3(b)及び図3(c)に示すように、連結部32及び柱梁仕口部24の内部にコンクリートVが充填され、連結部32の閉断面42、及び柱梁仕口部24の閉断面を複数の閉断面に仕切るように仕切板34が設けられているので、コンファインド効果により連結部32及び柱梁仕口部24の耐力をさらに高めることができる。   Furthermore, in the joining structure 18 of the present embodiment, as shown in FIGS. 3B and 3C, the inside of the connecting portion 32 and the column beam joint portion 24 is filled with concrete V, and the connecting portion 32 Since the partition plate 34 is provided so as to partition the closed cross section 42 and the closed cross section of the column beam joint portion 24 into a plurality of closed cross sections, the strength of the connecting portion 32 and the column beam joint portion 24 is reduced by the confining effect. It can be further increased.

また、本実施形態の接合構造18では、斜柱14、16が、4つの鋼板36を溶接接合して構成された角形鋼管からなるので、既製の鋼管と比較して、連結部32の形成や、連結部32への仕切板34の接合を容易に行うことができる。   Further, in the joint structure 18 of the present embodiment, the oblique columns 14 and 16 are formed of square steel pipes formed by welding and joining the four steel plates 36. Therefore, compared to a ready-made steel pipe, The partition plate 34 can be easily joined to the connecting portion 32.

以上、本発明の実施形態について説明した。   The embodiment of the present invention has been described above.

なお、本実施形態では、図1に示すように、鋼製筒体としての斜柱14、16を、内部にコンクリートが充填された角形鋼管とした例を示したが、斜柱14、16は、鋼製の筒体であればよい。例えば、斜柱14、16は、角形鋼管、丸形鋼管等の鋼管であってもよいし、内部にコンクリートが充填された角形鋼管、丸形鋼管等の鋼管であってもよい。   In the present embodiment, as shown in FIG. 1, as an example, the oblique columns 14 and 16 as the steel cylinders are rectangular steel pipes filled with concrete, but the oblique columns 14 and 16 are Any steel tube may be used. For example, the oblique columns 14 and 16 may be steel pipes such as square steel pipes and round steel pipes, or may be steel pipes such as square steel pipes and round steel pipes filled with concrete inside.

また、斜柱14、16の断面形状や断面サイズは、どのようなものであってもよいし、図6(a)、図6(b)、及び図6(c)の平面断面図に示すように、断面形状が異なる斜柱14、16同士を接合するようにしてもよい。すなわち、本実施形態の接合構造18は、さまざまな断面形状や断面サイズの鋼製筒体を任意の方向へ分岐させることができる。   The cross-sectional shape and cross-sectional size of the oblique columns 14 and 16 may be any shape, and are shown in the plan cross-sectional views of FIGS. 6 (a), 6 (b), and 6 (c). Thus, the oblique columns 14 and 16 having different cross-sectional shapes may be joined together. That is, the joining structure 18 of the present embodiment can branch steel cylinders having various cross-sectional shapes and cross-sectional sizes in an arbitrary direction.

また、本実施形態では、図1に示すように、鋼製筒体を柱(斜柱14、16)とした例を示したが、鋼製筒体は、ブレース部材であってもよい。例えば、分岐される複数の鋼製筒体の全てをブレース部材としてもよいし、一部をブレース部材として残りを柱部材としてもよい。   Moreover, in this embodiment, as shown in FIG. 1, although the example which used the steel cylinder as the pillar (slanting pillars 14 and 16) was shown, the brace member may be sufficient as a steel cylinder. For example, all of the plurality of branched steel cylinders may be brace members, or some may be brace members and the remaining may be column members.

さらに、本実施形態では、図1、図3(a)、図3(b)、及び図3(c)に示すように、1つの柱梁仕口部24から2つの斜柱14、16に分岐する例を示したが、1つの柱梁仕口部24から3つ以上の斜柱に分岐させてもよい。3つ以上の斜柱の下端部同士を接合して形成された1つの閉断面を仕切板で仕切ることができれば、3つ以上の斜柱から柱梁仕口部24へ軸力を良好に伝達することができる。   Further, in the present embodiment, as shown in FIGS. 1, 3A, 3B, and 3C, from one column beam joint portion 24 to two oblique columns 14,16. Although the example which branches is shown, you may make it branch to three or more oblique pillars from one pillar beam joint part 24. FIG. If one closed cross section formed by joining the lower ends of three or more oblique pillars can be partitioned by a partition plate, the axial force can be transmitted from three or more oblique pillars to the column beam joint 24. can do.

例えば、図7及び図8の平面断面図に示すように、1つの柱梁仕口部24から3つの斜柱14、16、66に分岐してもよい。図7では、3つの斜柱14、16、66の下端部同士を接合して形成され、閉断面68を有する連結部70において、斜柱14と斜柱16の交点72と、斜柱16と斜柱66の交点74と、斜柱66と斜柱14の交点76とを結ぶように鋼鈑からなる仕切板78、80、82が配置されるとともに、仕切板78、80、82の幅方向Wの左右端部が連結部70に溶接接合されて、1つの閉断面68を4つに仕切っている。   For example, as shown in the plan sectional views of FIGS. 7 and 8, one column beam joint portion 24 may be branched into three oblique columns 14, 16, 66. In FIG. 7, at the connecting portion 70 formed by joining the lower ends of the three oblique columns 14, 16, 66 and having a closed cross-section 68, the intersection 72 between the oblique column 14 and the oblique column 16, Partition plates 78, 80, 82 made of steel plates are arranged so as to connect the intersection 74 of the oblique column 66 and the intersection 76 of the oblique column 66 and the oblique column 14, and the width direction of the partition plates 78, 80, 82 The left and right end portions of W are welded to the connecting portion 70 to partition one closed section 68 into four.

図8では、3つの斜柱14、16、66の下端部同士を接合して形成され、閉断面68を有する連結部70において、斜柱14と斜柱16の交点72、斜柱16と斜柱66の交点74、及び斜柱66と斜柱14の交点76と、閉断面68の中心点84とを結ぶように鋼鈑86、88、90が配置されるとともに、鋼鈑86、88、90の端部同士が中心点84で接合されている。   In FIG. 8, the lower end portions of the three oblique columns 14, 16, 66 are joined to each other, and in a connecting portion 70 having a closed section 68, the intersection 72 of the oblique column 14 and the oblique column 16, and the oblique column 16 and the oblique column 16 are inclined. Steel plates 86, 88, 90 are arranged so as to connect the intersection point 74 of the column 66, the intersection point 76 of the oblique column 66 and the oblique column 14, and the center point 84 of the closed section 68, and the steel plates 86, 88, The end portions of 90 are joined at a center point 84.

また、鋼鈑86と鋼鈑88とによって仕切板92が構成され、鋼鈑88と鋼鈑90とによって仕切板94が構成され、鋼鈑90と鋼鈑86とによって仕切板96が構成されている。そして、仕切板92、94、96の幅方向Wの左右端部が連結部70に溶接接合されて、1つの閉断面68を3つに仕切っている。   The steel plate 86 and the steel plate 88 constitute the partition plate 92, the steel plate 88 and the steel plate 90 form the partition plate 94, and the steel plate 90 and the steel plate 86 form the partition plate 96. Yes. And the right-and-left end part of the width direction W of the partition plates 92, 94, 96 is weld-joined to the connection part 70, and the one closed cross section 68 is divided into three.

また、本実施形態では、図1、図2、及び図3(b)に示すように、斜柱14を方向Yへ傾斜して設け、斜柱16を方向Xへ傾斜して設けた例を示したが、複数の斜柱が異なる方向へ分岐されれば、斜柱をどのように傾斜させて設けてもよいし、斜柱を鉛直柱にしてもよい。例えば、斜柱を、方向Xへ傾斜させて設けてもよいし、方向Yへ傾斜させて設けてもよいし、方向Xと方向Yの両方向へ傾斜させて設けてもよい。   In this embodiment, as shown in FIGS. 1, 2, and 3B, an example in which the oblique column 14 is provided to be inclined in the direction Y and the oblique column 16 is provided to be inclined in the direction X. Although shown, if a plurality of oblique pillars are branched in different directions, the oblique pillars may be provided in any manner, and the oblique pillars may be vertical pillars. For example, the oblique column may be provided to be inclined in the direction X, may be provided to be inclined to the direction Y, or may be provided to be inclined in both the direction X and the direction Y.

さらに、本実施形態では、図1に示すように、斜柱14、16の上端部を柱20、22の下端部にそれぞれ接合し、連結部32を柱梁仕口部24に接合して、複数の鋼製筒体としての2つの斜柱14、16を上方へ向かって分岐させた例を示したが、複数の鋼製筒体を下方へ向かって分岐させてもよい。すなわち、複数の斜柱の下端部を、下階に設けられた柱の上端部にそれぞれ接合し、複数の斜柱の上端部同士を接合して形成した連結部を、上階に設けられた柱の下端部に接合するようにしてもよい。この場合においても、上階に設けられた柱の下端部から複数の斜柱へ、軸力を良好に伝達することができる。   Furthermore, in this embodiment, as shown in FIG. 1, the upper ends of the oblique columns 14 and 16 are joined to the lower ends of the columns 20 and 22, respectively, and the connecting portion 32 is joined to the column beam joint 24. Although the example in which the two oblique columns 14 and 16 as the plurality of steel cylinders are branched upward has been shown, the plurality of steel cylinders may be branched downward. That is, the lower ends of the plurality of oblique columns are respectively joined to the upper ends of the columns provided on the lower floor, and the connecting portions formed by joining the upper ends of the plurality of oblique columns are provided on the upper floor. You may make it join to the lower end part of a pillar. Even in this case, the axial force can be satisfactorily transmitted from the lower end portion of the column provided on the upper floor to the plurality of oblique columns.

また、本実施形態では、図1示すように、建物10の1階に立設された柱12と、建物10の3階に立設された2つの柱とを、建物10の2階に設けた斜柱14、16によって繋げた例を示したが、斜柱14、16は、建物のどの階に設けてもよい。   In the present embodiment, as shown in FIG. 1, a pillar 12 standing on the first floor of the building 10 and two pillars standing on the third floor of the building 10 are provided on the second floor of the building 10. Although the example in which the diagonal columns 14 and 16 are connected is shown, the diagonal columns 14 and 16 may be provided on any floor of the building.

さらに、本実施形態では、図1に示すように、一の接合部を柱20、22の下端部とし、他の接合部を柱梁仕口部24とした例を示したが、一の接合部及び他の接合部は、建物の他の部分であってもよい。   Furthermore, in this embodiment, as shown in FIG. 1, an example in which one joint portion is the lower end portion of the columns 20 and 22 and the other joint portion is the column beam joint portion 24 is shown. Parts and other joints may be other parts of the building.

例えば、図9の立面図に示すように、本実施形態の接合構造18を免震建物98に適用してもよい。図9の免震建物98では、他の接合部としての免震装置100の上端部102に連結部32を接合し、上階の柱104の下端部に斜柱14、16の上端部を接合している(本例では、斜柱14、16は、ともに方向Xへ傾斜している)。   For example, as shown in the elevation view of FIG. 9, the joint structure 18 of the present embodiment may be applied to a seismic isolation building 98. In the seismic isolation building 98 of FIG. 9, the connecting portion 32 is joined to the upper end portion 102 of the seismic isolation device 100 as another joining portion, and the upper end portions of the oblique columns 14 and 16 are joined to the lower end portion of the upper-level column 104. (In this example, the oblique columns 14 and 16 are both inclined in the direction X).

また、本実施形態では、図3(b)及び図3(c)に示すように、連結部32の内部から柱梁仕口部24の内部へ渡って上下へ仕切板34を配設した例を示したが、仕切板34は連結部32の内部に配設されていればよい(仕切板34は柱梁仕口部24の内部に配設されていなくてもよい)。柱梁仕口部24の内部に仕切板34を配設すれば、連結部32に作用した軸力を柱梁仕口部24へ良好に伝達できるので好ましい。   In the present embodiment, as shown in FIGS. 3B and 3C, an example in which the partition plate 34 is arranged vertically from the inside of the connecting portion 32 to the inside of the column beam joint portion 24. However, the partition plate 34 is only required to be disposed inside the connecting portion 32 (the partition plate 34 may not be disposed inside the column beam joint portion 24). It is preferable to dispose the partition plate 34 inside the column beam joint 24 because the axial force acting on the connecting portion 32 can be transmitted to the column beam joint 24 satisfactorily.

さらに、本実施形態では、柱梁架構44を構成する柱12、20、22を、角形鋼管の内部にコンクリートが充填されたCFT造とし、梁26、28、30を、H形鋼とした例を示したが、これらの柱や梁は、鉄骨造、鉄骨鉄筋コンクリート造、CFT造、それらの混合構造など、さまざまな構造のものであってもよい。   Furthermore, in this embodiment, the columns 12, 20, and 22 constituting the column beam frame 44 are CFT structures in which concrete is filled in a square steel pipe, and the beams 26, 28, and 30 are H-shaped steel. However, these columns and beams may have various structures such as a steel structure, a steel reinforced concrete structure, a CFT structure, and a mixed structure thereof.

以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in a various aspect.

14、16、66 斜柱(鋼製筒体)
18 接合構造
24 柱梁仕口部(他の接合部)
32、70 連結部
34、78、80、82、92、94、96 仕切板(鋼製仕切板)
38、40 下端部(他端部)
42、68 閉断面
102 上端部(他の接合部)
14, 16, 66 Oblique column (steel cylinder)
18 Joint structure 24 Column beam joint (other joints)
32, 70 Connecting part 34, 78, 80, 82, 92, 94, 96 Partition plate (steel partition plate)
38, 40 Lower end (other end)
42, 68 Closed section 102 Upper end (other joints)

Claims (2)

一の接合部に一端部がそれぞれ接合された複数の鋼製筒体と、
前記複数の鋼製筒体の他端部同士を接合して1つの閉断面を形成するとともに、他の接合部に接合される連結部と、
前記連結部に幅方向の端部が接合されて前記閉断面を仕切るとともに、長さ方向の端部が前記他の接合部に接合される鋼製仕切板と、
を有する接合構造。
A plurality of steel cylinders each having one end joined to one joint,
Joining the other ends of the plurality of steel cylinders to form one closed cross section, and a connecting portion to be joined to the other joining portion;
A steel partition plate in which an end portion in the width direction is joined to the connecting portion to partition the closed cross section, and an end portion in the length direction is joined to the other joining portion,
Having a junction structure.
前記鋼製筒体は、4つの鋼板を溶接接合して構成された角形鋼管である請求項1に記載の接合構造。   The joint structure according to claim 1, wherein the steel cylinder is a square steel pipe configured by welding and joining four steel plates.
JP2015093067A 2015-04-30 2015-04-30 Joint structure Active JP6839910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015093067A JP6839910B2 (en) 2015-04-30 2015-04-30 Joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093067A JP6839910B2 (en) 2015-04-30 2015-04-30 Joint structure

Publications (2)

Publication Number Publication Date
JP2016211164A true JP2016211164A (en) 2016-12-15
JP6839910B2 JP6839910B2 (en) 2021-03-10

Family

ID=57551304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093067A Active JP6839910B2 (en) 2015-04-30 2015-04-30 Joint structure

Country Status (1)

Country Link
JP (1) JP6839910B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082092A (en) * 2017-11-01 2019-05-30 大成建設株式会社 Base-isolated building
JP2019173403A (en) * 2018-03-28 2019-10-10 三井住友建設株式会社 Structure of building
JP2020060042A (en) * 2018-10-10 2020-04-16 株式会社竹中工務店 Joint member and shaft member joint structure
CN115559555A (en) * 2022-12-01 2023-01-03 北京市第三建筑工程有限公司 Reconstruction construction method of super high-rise building with crabapple corners

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304134A (en) * 1989-05-19 1990-12-17 Takenaka Komuten Co Ltd Monlayer lattice shell using square steel pipe
JP2006348739A (en) * 2006-06-26 2006-12-28 Takenaka Komuten Co Ltd Column base structure of steel pipe column and erection method
JP2006348738A (en) * 2006-06-26 2006-12-28 Takenaka Komuten Co Ltd Steel pipe joining member and steel pipe joining method
CN102031831A (en) * 2010-11-30 2011-04-27 哈尔滨工业大学 Reinforcement cage containing high-strength concrete batter post transferring node and construction method thereof
KR101206792B1 (en) * 2011-06-30 2012-11-30 재단법인 포항산업과학연구원 Diagrid joining structure
JP2013213390A (en) * 2012-03-08 2013-10-17 Okumura Corp Compressive buckling stiffening structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02304134A (en) * 1989-05-19 1990-12-17 Takenaka Komuten Co Ltd Monlayer lattice shell using square steel pipe
JP2006348739A (en) * 2006-06-26 2006-12-28 Takenaka Komuten Co Ltd Column base structure of steel pipe column and erection method
JP2006348738A (en) * 2006-06-26 2006-12-28 Takenaka Komuten Co Ltd Steel pipe joining member and steel pipe joining method
CN102031831A (en) * 2010-11-30 2011-04-27 哈尔滨工业大学 Reinforcement cage containing high-strength concrete batter post transferring node and construction method thereof
KR101206792B1 (en) * 2011-06-30 2012-11-30 재단법인 포항산업과학연구원 Diagrid joining structure
JP2013213390A (en) * 2012-03-08 2013-10-17 Okumura Corp Compressive buckling stiffening structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082092A (en) * 2017-11-01 2019-05-30 大成建設株式会社 Base-isolated building
JP2019173403A (en) * 2018-03-28 2019-10-10 三井住友建設株式会社 Structure of building
JP2020060042A (en) * 2018-10-10 2020-04-16 株式会社竹中工務店 Joint member and shaft member joint structure
JP7092287B2 (en) 2018-10-10 2022-06-28 株式会社竹中工務店 Joint member and shaft member joint structure
CN115559555A (en) * 2022-12-01 2023-01-03 北京市第三建筑工程有限公司 Reconstruction construction method of super high-rise building with crabapple corners
CN115559555B (en) * 2022-12-01 2023-03-24 北京市第三建筑工程有限公司 Reconstruction construction method of super high-rise building with crabapple corners

Also Published As

Publication number Publication date
JP6839910B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
KR101118608B1 (en) Phi truss structure
JP2016211164A (en) Joint structure
JP2008002136A (en) Structure plane reinforcing structure
JP2008255646A (en) Column reinforcing structure
JP6763653B2 (en) Unit building
JP2014077339A (en) Equipment material construction structure and beam joint structure
JPWO2019077916A1 (en) Beam joining method, beam joining structure, and support members
JP6390360B2 (en) Structure and method for joining reinforced concrete beam and steel pipe column
JP2016216905A (en) Column-beam frame
JP7055978B2 (en) Column-beam joint structure
JP2020111930A (en) Wooden beam joint structure
JP6174984B2 (en) Steel beam
JP7219529B2 (en) Combination structure of steel materials, shoring structure and construction method
JP2019027151A (en) Beam joint structure
JP5096979B2 (en) Reinforcement structure of ramen structure
JP6633940B2 (en) Reinforcement structure of column and beam frame
KR20210079526A (en) Composite column and connecting structure of composite column and beam
JP2019137988A (en) Brace structure
JP2020101002A (en) Structure
JP2006265897A (en) Seismic reinforcing structure for building
JP7095836B2 (en) Building structure
JP5769458B2 (en) Reinforcement structure of frame
JP7358142B2 (en) unit building
KR102175363B1 (en) Connecting core for column-beam joint
JP2018172859A (en) Box section column and column-beam connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6839910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150