JP2016211073A - High strength hot rolled steel sheet and production method therefor - Google Patents

High strength hot rolled steel sheet and production method therefor Download PDF

Info

Publication number
JP2016211073A
JP2016211073A JP2016076328A JP2016076328A JP2016211073A JP 2016211073 A JP2016211073 A JP 2016211073A JP 2016076328 A JP2016076328 A JP 2016076328A JP 2016076328 A JP2016076328 A JP 2016076328A JP 2016211073 A JP2016211073 A JP 2016211073A
Authority
JP
Japan
Prior art keywords
less
temperature
rolling
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076328A
Other languages
Japanese (ja)
Other versions
JP6327282B2 (en
Inventor
純二 嶋村
Junji Shimamura
純二 嶋村
俊介 豊田
Shunsuke Toyoda
俊介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016211073A publication Critical patent/JP2016211073A/en
Application granted granted Critical
Publication of JP6327282B2 publication Critical patent/JP6327282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength high toughness hot rolled steel sheet and a production method therefor.SOLUTION: A steel raw material having a composition containing, by mass%, C:0.08% or more and less than 0.16%, Si:0.01 to 1.0%, Mn:0.8 to 2.0%, Al:0.005 to 0.10%, N:0.002 to 0.006% and further Nb, Ti, Cr and B is heated at a temperature of 1100 to 1250°C and is subjected to rough rolling with RDT:900 to 1100°C and finish rolling with FET:900 to 1100°C, FDT:800 to 900°C and cumulative draft in a temperature range of less than 930°C of 20 to 90%, cooled to a cooling stop temperature of 300°C or less at average cooling speed of 100°C/s or more and wound at a temperature of 300°C or less. This provides a high strength hot rolled steel sheet excellent in low temperature toughness, having an M phase and/or a tempered M phase of 90 area% or more as a main phase, an average particle diameter of a prior γ grain of 20 μm at an L cross section, an aspect ratio of 18 or less and a YS:960 MPa or more.SELECTED DRAWING: None

Description

本発明は、建設用機械や産業用機械の構造部材(以下、「建産機の構造部材」ともいう)用として好適な、高強度熱延鋼板およびその製造方法に係り、とくに、低温靭性の向上に関する。なお、ここでいう「鋼板」は、鋼帯を含むものとする。また、ここでいう「高強度熱延鋼板」とは、降伏強さYS:960〜1200MPa級の高強度を有する熱延鋼板(熱延鋼帯)をいうものとする。   The present invention relates to a high-strength hot-rolled steel sheet suitable for a structural member of a construction machine or an industrial machine (hereinafter also referred to as “structural member of a construction machine”) and a method for producing the same. Regarding improvement. Here, the “steel plate” includes a steel strip. The “high-strength hot-rolled steel sheet” here refers to a hot-rolled steel sheet (hot-rolled steel strip) having a high strength of yield strength YS: 960 to 1200 MPa.

近年、建築物の高層化に伴って、建築物の建設に使用するクレーンやトラック等の建設用機械も大型化され、また、産業用機械も大型化する傾向にある。このため、これら機械の自重を軽くすることが必要とされ、これらの大型建産機の構造部材用として、降伏強さYS:960MPa以上の高強度を有する薄鋼板への要望が高くなっている。   In recent years, construction machines such as cranes and trucks used for construction of buildings have been increased in size, and industrial machines tend to be increased in size with the rise of buildings. For this reason, it is necessary to reduce the weight of these machines, and there is a growing demand for thin steel sheets having a high yield strength of YS: 960 MPa or more for structural members of these large construction machines. .

このような要望に対し、例えば、特許文献1には、質量%でC:0.05〜0.15%、Si:1.50%以下、Mn:0.70〜2.50%、Ni:0.25〜1.5%、Ti:0.12〜0.30%、B:0.0005〜0.0015%を含み、さらにP、S、Al、Nを適正量に調整して含む鋼スラブを、1250℃以上に加熱し、Ar変態点〜950℃で全仕上圧下率80%以上で熱間圧延し、800〜500℃の範囲の冷却速度を30〜80℃/sで冷却し500℃以下で巻取る、加工性および溶接性の良い高強度熱延鋼板の製造方法が提案されている。特許文献1に記載された技術によれば、降伏点890MPa以上、引張強さ950MPa以上を有し、曲げ加工性、溶接性に優れた高強度熱延鋼板を製造できるとしている。 In response to such a request, for example, in Patent Document 1, in mass%, C: 0.05 to 0.15%, Si: 1.50% or less, Mn: 0.70 to 2.50%, Ni: 0.25 to 1.5%, Ti: 0.12 to 0.30 %, B: 0.0005 to 0.0015%, and steel slab containing P, S, Al, and N adjusted to appropriate amounts are heated to 1250 ° C or higher, and the total finishing reduction rate is from Ar 3 transformation point to 950 ° C. A method for producing a high strength hot rolled steel sheet having good workability and weldability, hot rolled at 80% or more, cooled at a cooling rate in the range of 800 to 500 ° C at 30 to 80 ° C / s and wound at 500 ° C or less Has been proposed. According to the technique described in Patent Document 1, a high-strength hot-rolled steel sheet having a yield point of 890 MPa or more and a tensile strength of 950 MPa or more and excellent in bending workability and weldability can be manufactured.

また、特許文献2には、質量%で、C:0.05〜0.20%、Si:0.60%以下、Mn:0.10〜2.50%、sol.Al:0.004〜0.10%、Ti:0.04〜0.30%、B:0.0005〜0.0015%を含む連続鋳造スラブを、少なくとも1100℃から、TiCの溶体化温度以上1400℃以下の加熱温度までの温度領域を150℃/h以上の昇温速度で加熱し、加熱温度での保定時間を5〜30minとし、その後熱間圧延する、高強度熱延鋼板の製造方法が提案されている。特許文献2に記載された技術では、微量のTiを析出硬化元素とし、微量の固溶Bをオーステナイト(γ)安定化元素として利用し、冷却時の変態温度を低下させ、変態後のフェライト組織を微細化することにより、引張強さ1020MPa程度の高強度と破面選移温度vTrs:−70℃程度の高靭性とを有する熱延鋼板が得られるとしている。   Further, in Patent Document 2, in mass%, C: 0.05 to 0.20%, Si: 0.60% or less, Mn: 0.10 to 2.50%, sol.Al: 0.004 to 0.10%, Ti: 0.04 to 0.30%, B: A continuous cast slab containing 0.0005 to 0.0015% is heated at a heating rate of 150 ° C / h or more at a temperature range from at least 1100 ° C to a heating temperature of TiC solution temperature to 1400 ° C. A method for producing a high-strength hot-rolled steel sheet is proposed in which the holding time is set to 5 to 30 minutes and then hot rolling is performed. In the technique described in Patent Document 2, a small amount of Ti is used as a precipitation hardening element, and a small amount of solute B is used as an austenite (γ) stabilizing element to lower the transformation temperature during cooling, and the ferrite structure after transformation. It is said that a hot-rolled steel sheet having a high strength of about 1020 MPa in tensile strength and a high toughness of about fractal surface transition temperature vTrs: −70 ° C. can be obtained by refining.

また、特許文献3には、質量%で、C:0.05〜0.15%、Si:1.50%以下、Mn:0.70〜2.50%、Ni:0.25〜1.5%、Ti:0.12〜0.30%、B:0.0005〜0.0015%を含み、さらにP、S、Al、Nを適正量に調整して含む鋼スラブを、1250℃以上に加熱し、Ar変態点〜950℃で全仕上げ圧下率80%以上で熱間圧延し、800〜200℃の範囲を冷却速度20℃/s以上30℃/s未満で冷却し、200℃以下で巻取り、0.2〜5.0%の加工歪を付与し、100〜400℃の範囲の温度で適正時間保持する熱処理を施し、加工性および溶接性の良い高強度熱延鋼板の製造方法が提案されている。特許文献3に記載された技術によれば、降伏点890N/mm以上、引張強さ950N/mm以上の高強度熱延鋼板を容易に製造することができるとしている。 Further, in Patent Document 3, in mass%, C: 0.05 to 0.15%, Si: 1.50% or less, Mn: 0.70 to 2.50%, Ni: 0.25 to 1.5%, Ti: 0.12 to 0.30%, B: 0.0005 to A steel slab containing 0.0015% and containing P, S, Al, and N adjusted to appropriate amounts is heated to 1250 ° C or higher and hot at an Ar 3 transformation point to 950 ° C with a total finishing reduction of 80% or higher. Rolled, cooled in the range of 800-200 ° C at a cooling rate of 20 ° C / s or more and less than 30 ° C / s, wound at 200 ° C or less, imparted 0.2-5.0% processing strain, and in the range of 100-400 ° C A method for producing a high-strength hot-rolled steel sheet having a good workability and weldability has been proposed by performing a heat treatment that is maintained for an appropriate period of time at the above temperature. According to the technique described in Patent Document 3, it has a yield point 890N / mm 2 or more, and a tensile strength of 950 N / mm 2 or more high-strength hot-rolled steel sheet can be easily manufactured.

また、特許文献4には、wt%で、C:0.05〜0.20%、Si:0.05〜0.50%、Mn:1.0〜3.5%、P:0.05%以下、S:0.01%以下、Nb:0.005〜0.30%、Ti:0.001〜0.100%、Cr:0.01〜1.0%、Al:0.1%以下を含有する組成からなり、かつSi、P、Cr、Ti、Nb、Mnを特定の関係を満たして含有する鋼スラブを鋳造後、直ちに又は一旦冷却し、1100〜1300℃に加熱したのち、仕上げ圧延終了温度950〜800℃にて熱問圧延し、圧延終了後0.5秒以内に冷却を開始して、30℃/s以上の冷却速度で冷却を行い、500〜300℃で巻取る、加工性に優れた超高強度熱延鋼板の製造方法が記載されている。これにより、金属組織が体積分率で60〜90%未満のベイナイトを主相とし、パーライト、フェライト、残留オーステナイト、マルテンサイトのうちの少なくとも1種を第2相とする組織で、しかもベイナイト相の平均粒径が4μm未満である、加工性に優れ、引張強さが980MPa以上でありながら、伸びフランジ成形性と強度延性バランスがともに優れ、かつ低降伏比をも具えた、超高強度熱延鋼板が得られるとしている。   In Patent Document 4, wt%, C: 0.05 to 0.20%, Si: 0.05 to 0.50%, Mn: 1.0 to 3.5%, P: 0.05% or less, S: 0.01% or less, Nb: 0.005 to 0.30 %, Ti: 0.001 to 0.100%, Cr: 0.01 to 1.0%, Al: Steel containing 0.1% or less and containing Si, P, Cr, Ti, Nb, Mn in a specific relationship Immediately or once after the slab is cast, it is cooled to 1100-1300 ° C, and then hot rolled at a finish rolling finish temperature of 950-800 ° C. A method for producing an ultra-high strength hot-rolled steel sheet excellent in workability, which is cooled at a cooling rate of at least / s and wound at 500 to 300 ° C. is described. As a result, the metal structure has a bainite having a volume fraction of 60 to less than 90% as a main phase and at least one of pearlite, ferrite, retained austenite, and martensite as a second phase, and also has a bainite phase. Super high strength hot rolling with an average particle size of less than 4μm, excellent workability, tensile strength of 980MPa or more, excellent stretch flange formability and strength ductility balance, and low yield ratio It is said that a steel plate is obtained.

また、特許文献5には、質量%で、C:0.10〜0.25%、Si:1.5%以下、Mn:1.0〜3.0%、P:0.10%以下、S:0.005%以下、Al:0.01〜0.5%、N:0.010%以下、V:0.10〜1.0%を含み、(10Mn+V)/Cが50以上を満足するように含有する組成の鋼スラブを、1000℃以上に加熱後、粗圧延によりシートバーとし、ついで仕上げ圧延出側温度:800℃以上の条件で仕上げ圧延を施したのち、仕上げ圧延完了後3秒以内に、平均冷却速度:20℃/s以上の冷却速度で、400〜600℃の温度範囲で、かつ11000−3000[%V]≦24×Ta≦15000−1000[%V]を満足するTa℃まで冷却して巻取る、高強度熱延綱板の製造方法が記載されている。これにより、焼戻しマルテンサイト相の体積率が80%以上で、粒径:20nm以下のVを含む炭化物が1000個/μm以上析出し、かつ該粒径:20nm以下のVを含む炭化物の平均粒径が10nm以下である組織を有し、引張強さが980MPa以上で、強度−延性バランスに優れた高強度熱延鋼板が得られるとしている。 Moreover, in patent document 5, in mass%, C: 0.10-0.25%, Si: 1.5% or less, Mn: 1.0-3.0%, P: 0.10% or less, S: 0.005% or less, Al: 0.01-0.5% N: 0.010% or less, V: 0.10 to 1.0%, and a steel slab having a composition containing (10Mn + V) / C satisfying 50 or more is heated to 1000 ° C or more, and then rolled into a sheet bar by rough rolling. Next, after finishing rolling at a finish rolling exit temperature of 800 ° C. or more, within 3 seconds after the completion of finish rolling, an average cooling rate of 400 ° C. to 600 ° C. at a cooling rate of 20 ° C./s or more. The manufacturing method of a high strength hot-rolled steel sheet is described which is cooled to Ta ° C. satisfying 11000−3000 [% V] ≦ 24 × Ta ≦ 15000−1000 [% V]. As a result, an average of the carbides containing V having a tempered martensite phase volume ratio of 80% or more and having a particle size of 1000 nm / μm 3 or less and containing V having a particle size of 20 nm or less. It is said that a high-strength hot-rolled steel sheet having a structure with a particle size of 10 nm or less, a tensile strength of 980 MPa or more, and an excellent balance between strength and ductility can be obtained.

また、特許文献6には、質量%で、C:0.08〜0.25%、Si:0.01〜1.0%、Mn:0.8〜1.5%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Mo:0.1〜1.0%、Cr:0.1〜1.0%を含み、さらに、B:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を1100〜1250℃の温度に加熱し、仕上げ圧延入側温度FETを900〜1100℃の範囲の温度とし、仕上げ圧延出側温度FDTを800〜900℃の範囲の温度とし、再結晶オーステナイト域での累積圧下率を60%以上90%以下とする仕上圧延を施し、熱間圧延終了後、直ちに冷却を開始し、750〜500℃の温度範囲を、板厚中心部での冷却速度CRでマルテンサイト生成臨界冷却速度以上の冷却速度で、冷却開始から30s以内に(Ms点+50℃)以下の冷却停止温度まで冷却し、該冷却停止温度±100℃の温度範囲で10〜60s間保持し、冷却停止温度±100℃の範囲の温度で巻き取る低温靭性に優れる高強度熱延鋼板の製造方法が記載されている。これにより、マルテンサイト相または焼戻マルテンサイト相を主相とし、圧延方向断面における旧オーステナイト粒のアスペクト比が3〜18である組織を有する、降伏強さYS:960MPa以上の低温靭性に優れた高強度熱延鋼板が得られるとしている。   Further, in Patent Document 6, in mass%, C: 0.08 to 0.25%, Si: 0.01 to 1.0%, Mn: 0.8 to 1.5%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10 %, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.05%, Mo: 0.1 to 1.0%, Cr: 0.1 to 1.0%, and further B: 0.0005 to 0.0050%, the balance Fe and inevitable impurities The steel material having the composition is heated to a temperature of 1100 to 1250 ° C, the finish rolling entry temperature FET is set to a temperature in the range of 900 to 1100 ° C, and the finish rolling exit temperature FDT is set to a temperature in the range of 800 to 900 ° C. Then, finish rolling is performed so that the cumulative reduction ratio in the recrystallized austenite region is 60% or more and 90% or less. After the hot rolling is finished, cooling is started immediately, and a temperature range of 750 to 500 ° C is applied at the center of the plate thickness. At a cooling rate CR equal to or higher than the critical cooling rate for martensite generation, cooling to a cooling stop temperature of (Ms point + 50 ° C) or less within 30 s from the start of cooling, and the cooling stop temperature A method for producing a high-strength hot-rolled steel sheet having excellent low-temperature toughness that is held for 10 to 60 seconds in a temperature range of ± 100 ° C. and wound at a temperature in the range of cooling stop temperature ± 100 ° C. is described. As a result, the martensite phase or tempered martensite phase is the main phase, and the aspect ratio of the prior austenite grains in the cross section in the rolling direction is 3 to 18, and the yield strength YS: excellent low temperature toughness of 960 MPa or more It is said that a high-strength hot-rolled steel sheet can be obtained.

特開平05−230529号公報Japanese Patent Laid-Open No. 05-230529 特開平05−345917号公報JP 05-345917 A 特開平07−138638号公報JP 07-138638 A 特開2000−282175号公報JP 2000-282175 A 特開2006−183141号公報JP 2006-183141 A 特開2011−052321号公報JP 2011-052321 A

しかしながら、特許文献1〜5に記載された技術では、所望の形状が安定して得られにくい。加えて、特許文献1〜5に記載された技術では、降伏強さYS:960MPa以上の、960MPa級〜1200MPa級の高強度と、かつシャルピー衝撃試験の試験温度:−40℃における吸収エネルギーvE−40が40J以上の高靭性とを兼備した熱延鋼板を容易に製造することが難しいという問題があった。また、特許文献6に記載された技術では、高価なMoを必須含有する必要があり、製造コストが高騰するという問題があった。 However, with the techniques described in Patent Documents 1 to 5, it is difficult to stably obtain a desired shape. In addition, in the techniques described in Patent Documents 1 to 5, the yield strength YS: 960 MPa or higher, high strength of 960 MPa class to 1200 MPa class, and Charpy impact test temperature: absorbed energy vE −40 ° C. There was a problem that it was difficult to easily manufacture hot-rolled steel sheets having 40 high toughness of 40J or more. Further, the technique described in Patent Document 6 has a problem that it is necessary to contain expensive Mo essentially, and the manufacturing cost increases.

本発明は、上記した従来技術の問題を解決し、板厚が3mm以上12mm以下で、大型建産機の構造部材用として好適な、降伏強さYS:960MPa以上の高強度を有し、さらにシャルピー衝撃試験の試験温度:−40℃における吸収エネルギーvE−40が40J以上、好ましくは50J以上の高靭性を有し、さらに表面硬さがブリネル硬さで360HB以上を有し優れた耐摩耗性を有する高強度高靭性の熱延鋼板および該高強度高靭性の熱延鋼板を安定して、かつ安価に製造できる熱延鋼板の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, has a plate thickness of 3 mm or more and 12 mm or less, has a high yield strength YS: 960 MPa or more suitable for a structural member of a large construction machine, Charpy impact test temperature: Absorbed energy at -40 ° C, vE -40 has high toughness of 40J or higher, preferably 50J or higher, and surface hardness is Brinell hardness of 360HB or higher. An object of the present invention is to provide a high-strength, high-toughness hot-rolled steel sheet having a high-strength and high-toughness hot-rolled steel sheet and a method for producing a hot-rolled steel sheet that can be stably and inexpensively manufactured.

本発明者らは、上記した目的を達成するために、降伏強さYS:960MPa以上の高強度を有する熱延鋼板の強度・靭性に影響を及ぼす各種要因について、鋭意研究した。その結果、Moフリー組成で、マルテンサイトまたは焼戻マルテンサイトを主相とし、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下で、かつ圧延方向に垂直な断面で15μm以下であり、圧延方向の断面で旧オーステナイト粒(旧γ粒)のアスペクト比(圧延方向長さ/板厚方向長さ)が18以下となるような組織に調整することにより、高強度であるにもかかわらず、所望の高靭性、さらには所望の曲げ特性が得られることを知見した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting the strength and toughness of a hot rolled steel sheet having a high yield strength YS: 960 MPa or more. As a result, with Mo-free composition, with martensite or tempered martensite as the main phase, the average grain size of the prior austenite grains is 20 μm or less in the cross section parallel to the rolling direction and 15 μm or less in the cross section perpendicular to the rolling direction. By adjusting the structure so that the aspect ratio (length in the rolling direction / length in the thickness direction) of the prior austenite grains (former γ grains) is 18 or less in the cross section in the rolling direction, the strength is high. Nevertheless, it has been found that desired high toughness and further desired bending characteristics can be obtained.

さらに、上記した組織は、Moを含有しない組成において、Bを必須含有させ、さらにC、Si、Mn、Nb、Ti、Crをそれぞれ適正範囲に調整したうえ、930℃未満の温度域での累積圧下率を20〜90%とし、さらに熱間圧延後の冷却を100℃/s以上の平均冷却速度で、300℃以下の冷却停止温度まで冷却する処理とし、ついで巻き取ることにより、得られることを見出した。   Furthermore, the above-mentioned structure contains B in the composition not containing Mo, further adjusts C, Si, Mn, Nb, Ti, and Cr to appropriate ranges, and accumulates in a temperature range of less than 930 ° C. Obtained by setting the rolling reduction to 20 to 90% and further cooling after hot rolling to a cooling stop temperature of 300 ° C. or lower at an average cooling rate of 100 ° C./s or higher and then winding. I found.

このような工程を施して得られた熱延鋼板は、上記した、マルテンサイトまたは焼戻マルテンサイトを主相とし、旧オーステナイト粒(旧γ粒)の平均粒径が、圧延方向に平行な断面で20μm以下で、かつ圧延方向に垂直な断面で15μm以下で、圧延方向の断面で旧γ粒のアスペクト比(圧延方向長さ/板厚方向長さ)が18以下であることに加えて、ラス内に微細なセメンタイトが析出し、さらには旧γ粒界、ラス界面に析出した粒径:1μm以上の粗大板状セメンタイトが体積率で0.5%以下となる組織を有し、高強度、高靭性に加えて、耐遅れ破壊性、さらには耐摩耗性にも優れた鋼板となることを知見した。   The hot-rolled steel sheet obtained by performing such a process has the above-described martensite or tempered martensite as the main phase, and the average grain size of the prior austenite grains (old γ grains) is a cross section parallel to the rolling direction. 20 μm or less, and 15 μm or less in the cross section perpendicular to the rolling direction, and the aspect ratio of the old γ grains (the length in the rolling direction / the length in the plate thickness direction) is 18 or less in the cross section in the rolling direction, Fine cementite precipitates in the lath, and also has a structure in which coarse plate-like cementite with a grain size of 1 μm or more deposited at the prior γ grain boundary and lath interface has a volume ratio of 0.5% or less, high strength, high In addition to toughness, it was found that the steel sheet has excellent delayed fracture resistance and also excellent wear resistance.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.08%以上0.16%未満、Si:0.01〜1.0%、Mn:0.8〜2.0%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、N:0.002〜0.006%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Cr:0.01〜1.0%を含み、さらに、B:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相または焼戻マルテンサイト相を主相とし、該主相が組織全体に対する体積率で90%以上であり、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下、圧延方向に垂直な断面で15μm以下であり、かつ圧延方向に平行な断面における旧オーステナイト粒のアスペクト比が18以下である組織と、を有することを特徴とする低温靭性に優れた高強度熱延鋼板。
(2)(1)において、前記マルテンサイト相または前記焼戻マルテンサイト相は、ラス内に平均粒径が0.5μm以下の微細セメンタイトを有する組織であることを特徴とする高強度熱延鋼板。
(3)(1)において、前記マルテンサイト相または前記焼戻マルテンサイト相は、ラス内に平均粒径が0.5μm以下の微細セメンタイトを有し、さらに旧オーステナイト粒界および/またはラス界面に析出した粒径:1μm以上のセメンタイトが、体積率で0.5%以下である組織であることを特徴とする高強度熱延鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%でV:0.001〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高強度熱延綱板。
(5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする高強度熱延鋼板。
(6)鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、冷却工程と、巻取工程を順次施し、熱延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.08%以上0.16%未満、Si:0.01〜1.0%、Mn:0.8〜2.0%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、N:0.002〜0.006%、Nb:0.001〜0.05%、Ti:0.001〜0.05%、Cr:0.01〜1.0%、B:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とし、前記加熱工程が、1100〜1250℃の温度に加熱する工程であり、前記熱延工程が、粗圧延出側温度RDTを900〜1100℃の範囲の温度とする粗圧延と、さらに仕上圧延入側温度FETを900〜1100℃の範囲の温度、仕上圧延出側温度FDTを800〜900℃の範囲の温度とし、930℃未満の温度域での累積圧下率を20〜90%とする仕上圧延と、を施す工程であり、前記冷却工程が、熱間圧延終了後、直ちに冷却を開始し、750〜500℃の温度範囲を、板厚中心部での冷却速度CRで100℃/s以上の平均冷却速度で、300℃以下の冷却停止温度まで冷却する工程であり、前記巻取工程が、巻取温度を300℃以下の温度として、コイル状に巻き取る工程であることを特徴とする低温靭性に優れる高強度熱延鋼板の製造方法。
(7)(6)において、前記組成に加えてさらに、質量%でV:0.001〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高強度熱延鋼板の製造方法。
(8)(6)または(7)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする高強度熱延鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.0%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N : 0.002 to 0.006%, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.05%, Cr: 0.01 to 1.0%, and further B: 0.0005 to 0.0050%, the balance consisting of Fe and inevitable impurities And the martensite phase or tempered martensite phase as the main phase, the main phase is 90% or more by volume ratio with respect to the entire structure, and the average grain size of the prior austenite grains is 20 μm or less in a cross section parallel to the rolling direction. A high strength heat excellent in low temperature toughness, characterized by having a structure having a cross section perpendicular to the rolling direction of 15 μm or less and an aspect ratio of prior austenite grains in a cross section parallel to the rolling direction of 18 or less. Rolled steel sheet.
(2) The high-strength hot-rolled steel sheet according to (1), wherein the martensite phase or the tempered martensite phase is a structure having fine cementite having an average particle size of 0.5 μm or less in the lath.
(3) In (1), the martensite phase or the tempered martensite phase has fine cementite having an average particle size of 0.5 μm or less in the lath and further precipitates at the prior austenite grain boundaries and / or the lath interface. A high-strength hot-rolled steel sheet characterized by having a structure in which cementite having a particle diameter of 1 μm or more has a volume ratio of 0.5% or less.
(4) In any one of (1) to (3), in addition to the above composition, it is further selected from V: 0.001 to 0.50%, Cu: 0.01 to 0.50%, and Ni: 0.01 to 0.50% by mass%. A high-strength hot-rolled steel sheet characterized by having a composition containing one or more kinds.
(5) In any one of (1) to (4), a high-strength hot-rolled steel sheet characterized by having a composition containing Ca: 0.0005 to 0.005% by mass% in addition to the above composition.
(6) A heating process for heating the steel material, a hot rolling process for subjecting the heated steel material to hot rolling comprising rough rolling and finish rolling, a cooling process, and a winding process. In order to make a hot-rolled steel sheet sequentially, the steel material is in mass%, C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.0%, P: 0.025% or less, S: Contains 0.005% or less, Al: 0.005-0.10%, N: 0.002-0.006%, Nb: 0.001-0.05%, Ti: 0.001-0.05%, Cr: 0.01-1.0%, B: 0.0005-0.0050%, the balance A steel material having a composition composed of Fe and inevitable impurities, the heating step is a step of heating to a temperature of 1100 to 1250 ° C, and the hot rolling step is a range of the rough rolling outlet temperature RDT of 900 to 1100 ° C In the rough rolling with the temperature of, the finish rolling entry temperature FET is set to a temperature in the range of 900 to 1100 ° C, the finish rolling exit temperature FDT is set to a temperature in the range of 800 to 900 ° C, and the temperature range is less than 930 ° C. And finishing rolling with a rolling reduction ratio of 20 to 90%, and the cooling step starts cooling immediately after the hot rolling is finished, and a temperature range of 750 to 500 ° C. is set at the center of the plate thickness. The cooling rate is an average cooling rate of 100 ° C./s or higher at a cooling rate CR, and is cooled to a cooling stop temperature of 300 ° C. or lower. The winding step is performed at a coiling temperature of 300 ° C. or lower. A method for producing a high-strength hot-rolled steel sheet having excellent low-temperature toughness, characterized in that it is a step of winding it into a roll.
(7) In (6), in addition to the above composition, one or more selected from V: 0.001 to 0.50%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50% in mass% The manufacturing method of the high intensity | strength hot-rolled steel sheet characterized by setting it as a composition containing this.
(8) In (6) or (7), in addition to the said composition, it is set as the composition which contains Ca: 0.0005-0.005% by the mass% further, The manufacturing method of the high strength hot-rolled steel sheet characterized by the above-mentioned.

本発明によれば、高価な合金元素を含有することなく、降伏強さYS:960MPa以上の高強度と、vE−40が40J以上の高靭性とを有し、さらに曲げ加工性、耐遅れ破壊性にも優れ、また、ブリネル硬さで360HB以上の表面硬さを有し耐摩耗性に優れ、建設用機械や産業用機械の構造部材用として好適な、熱延鋼板を、容易に製造でき、産業上格段の効果を奏する。また、本発明になる熱延鋼板は、板厚3mm以上12mm以下程度の熱延鋼板であり、大型の建設用機械や産業用機械の構造部材用として好適で、建設用機械や産業用機械の車体重量の軽減に大きく寄与するという効果もある。 According to the present invention, without containing an expensive alloy element, the yield strength YS: high strength of 960 MPa or more, high toughness of vE- 40 of 40 J or more, bending workability, delayed fracture resistance It is easy to manufacture hot-rolled steel sheets that are excellent in wear resistance, have a Brinell hardness of 360 HB or more and excellent wear resistance, and are suitable for structural members of construction and industrial machinery. It has a remarkable industrial effect. The hot-rolled steel sheet according to the present invention is a hot-rolled steel sheet having a thickness of 3 mm or more and 12 mm or less, which is suitable for structural members of large construction machines and industrial machines. There is also an effect that it greatly contributes to the reduction of the vehicle weight.

まず、本発明の熱延鋼板の組成限定理由について説明する。とくに断らないかぎり、質量%は単に%と記す。   First, the reason for limiting the composition of the hot-rolled steel sheet of the present invention will be described. Unless otherwise specified, mass% is simply written as%.

C:0.08%以上0.16%未満
Cは、鋼の強度を増加させる作用を有する元素であり、本発明では所望の高強度を得るために、0.08%以上含有することが必要である。一方、0.16%以上と過剰に含有すると、溶接性を低下させるとともに、母材靭性を低下させる。このため、Cの含有量は0.08%以上0.16%未満の範囲に限定した。なお、好ましくは0.10〜0.15%である。
C: 0.08% or more and less than 0.16%
C is an element having an action of increasing the strength of steel, and in the present invention, it is necessary to contain 0.08% or more in order to obtain a desired high strength. On the other hand, when it contains excessively as 0.16% or more, it will reduce weldability and base material toughness. For this reason, the C content is limited to a range of 0.08% or more and less than 0.16%. In addition, Preferably it is 0.10 to 0.15%.

Si:0.01〜1.0%
Siは、固溶強化、焼入れ性を向上させて、鋼の強度を増加させる作用を有する。このような効果はSiを0.01%以上含有することで認められる。一方、Siを1.0%を超えて多量に含有させると、Cをγ相に濃化させ、γ相を安定化させて組織の複合化を促進させる。このため、強度が低下する。また、Siを1.0%を超えて多量に含有させると、溶接部にSiを含む酸化物を形成し、溶接部品質を低下させる。このため、本発明では、Siの含有量は0.01〜1.0%の範囲に限定した。なお、組織の複合化を抑制する観点から、Siの含有量は0.8%以下とすることが好ましい。
Si: 0.01-1.0%
Si has the effect of increasing the strength of steel by improving solid solution strengthening and hardenability. Such an effect is recognized by containing 0.01% or more of Si. On the other hand, when Si is contained in a large amount exceeding 1.0%, C is concentrated in the γ phase, the γ phase is stabilized, and the composite of the structure is promoted. For this reason, intensity | strength falls. Moreover, when Si is contained in a large amount exceeding 1.0%, an oxide containing Si is formed in the welded portion, and the quality of the welded portion is deteriorated. For this reason, in this invention, content of Si was limited to the range of 0.01 to 1.0%. In addition, from the viewpoint of suppressing the composite of the structure, the Si content is preferably 0.8% or less.

Mn:0.8〜2.0%
Mnは、焼入性を向上させることによって、鋼板の強度を増加させる作用を有する。また、Mnは、MnSを形成してSを固定することにより、Sの粒界偏析を防止してスラブ(鋼素材)割れを抑制する。このような効果を得るためには、Mnは0.8%以上含有させることが必要である。一方、Mnが2.0%を超えると、スラブ鋳造時の凝固偏析を助長させる。また、鋼板にMn濃化部を残存させて、セパレーションの発生を増加させる。このようなMn濃化部を消失させるには、スラブを1300℃を超える温度に加熱する必要があり、このような熱処理を工業的規模で実施することは現実的でない。このため、Mnの含有量は0.8〜2.0%の範囲に限定した。なお、好ましくは1.1〜1.8%である。
Mn: 0.8-2.0%
Mn has the effect of increasing the strength of the steel sheet by improving the hardenability. Further, Mn forms MnS and fixes S to prevent grain boundary segregation of S and suppress slab (steel material) cracking. In order to obtain such an effect, it is necessary to contain 0.8% or more of Mn. On the other hand, if Mn exceeds 2.0%, solidification segregation during slab casting is promoted. In addition, the Mn-enriched portion remains in the steel sheet to increase the occurrence of separation. In order to eliminate such a Mn enriched part, it is necessary to heat the slab to a temperature exceeding 1300 ° C., and it is not practical to carry out such a heat treatment on an industrial scale. For this reason, the Mn content is limited to the range of 0.8 to 2.0%. In addition, Preferably it is 1.1 to 1.8%.

P:0.025%以下
Pは、鋼中に不純物として不可避的に含まれるが、鋼の強度を上昇させる作用を有する。しかし、Pが0.025%を超えて過剰に含有すると溶接性が低下する。このため、Pの含有量は0.025%以下に限定した。なお、好ましくは0.015%以下である。
P: 0.025% or less
P is inevitably contained as an impurity in the steel, but has the effect of increasing the strength of the steel. However, if P exceeds 0.025% and is contained excessively, weldability deteriorates. Therefore, the P content is limited to 0.025% or less. In addition, Preferably it is 0.015% or less.

S:0.005%以下
Sは、Pと同様に、鋼中に不純物として不可避的に含まれるが、Sが0.005%を超えると、スラブ割れが生起するとともに、熱延鋼板中に粗大なMnSが形成され、延性の低下が生じる。このため、Sの含有量は0.005%以下に限定した。なお、好ましくは0.004%以下である。
S: 0.005% or less
S, like P, is inevitably contained as an impurity in steel, but when S exceeds 0.005%, slab cracking occurs and coarse MnS is formed in the hot-rolled steel sheet, reducing ductility. Occurs. For this reason, the S content is limited to 0.005% or less. In addition, Preferably it is 0.004% or less.

Al:0.005〜0.10%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、Alを0.005%以上含有させることが必要となる。一方、Alが0.10%を超えると、溶接部の清浄性が著しく低下する。このため、Alの含有量は0.005〜0.10%の範囲に限定した。なお、好ましくは0.05%以下である。
Al: 0.005-0.10%
Al is an element that acts as a deoxidizing agent. In order to obtain such an effect, it is necessary to contain Al in an amount of 0.005% or more. On the other hand, when Al exceeds 0.10%, the cleanliness of the welded portion is significantly lowered. For this reason, content of Al was limited to 0.005 to 0.10% of range. In addition, Preferably it is 0.05% or less.

N:0.002〜0.006%
Nは、Ti等と窒化物を形成し、オーステナイト粒の粗大化を抑制し鋼板の低温靭性の向上に貢献する。鋼板中に微細に析出した窒化物は、オーステナイト粒界をピンニングし、オーステナイト粒の粗大化を抑制する。このような効果を得るためには、Nは0.002%以上含有する必要がある。一方、Nを0.006%を超えて過剰に含有すると、Tiなどと粗大な窒化物を形成して鋼板の低温靭性を低下させる。このため、Nの含有量は0.002〜0.006%の範囲に限定した。なお、好ましくは0.004%以下である。
N: 0.002 to 0.006%
N forms nitrides with Ti and the like, suppresses coarsening of austenite grains, and contributes to improvement of low temperature toughness of the steel sheet. The nitride finely precipitated in the steel sheet pins the austenite grain boundary and suppresses the coarsening of the austenite grain. In order to acquire such an effect, N needs to contain 0.002% or more. On the other hand, when N is contained excessively exceeding 0.006%, coarse nitrides are formed with Ti and the like, and the low temperature toughness of the steel sheet is lowered. For this reason, the N content is limited to a range of 0.002 to 0.006%. In addition, Preferably it is 0.004% or less.

Nb:0.001〜0.05%
Nbは、炭窒化物として鋼板中に微細析出することにより、溶接性を損なうことなく、少ない含有量で熱延鋼板を高強度化する作用を有する。また、オーステナイト粒の粗大化、再結晶を抑制する作用をも有する元素であり、熱間仕上圧延におけるオーステナイト未再結晶温度域圧延を可能にする。このような効果を得るために、Nbは0.001%以上含有する必要がある。一方、Nbを0.05%を超えて多量に含有すると、熱間仕上圧延中の圧延荷重の増大をもたらし、熱間圧延が困難となる場合がある。このため、Nbの含有量は0.001〜0.05%の範囲に限定した。なお、好ましくは0.01〜0.04%である。
Nb: 0.001 to 0.05%
Nb has the effect of increasing the strength of a hot-rolled steel sheet with a small content without impairing weldability by being finely precipitated in the steel sheet as a carbonitride. Moreover, it is an element which also has the effect | action which suppresses the coarsening and recrystallization of an austenite grain, and enables the austenite non-recrystallization temperature range rolling in hot finish rolling. In order to obtain such an effect, Nb needs to be contained by 0.001% or more. On the other hand, if Nb is contained in a large amount exceeding 0.05%, the rolling load during hot finish rolling is increased, which may make hot rolling difficult. For this reason, the Nb content is limited to a range of 0.001 to 0.05%. In addition, Preferably it is 0.01 to 0.04%.

Ti:0.001〜0.05%
Tiは、炭化物として鋼板中に微細析出することにより、鋼板を高強度化し、また、窒化物を形成することでNを固定し、スラブ割れを防止するとともに、オーステナイト粒の粗大化を抑制する作用を有する。このような効果は、Tiを0.001%以上含有することで顕著になる。一方、Tiを0.05%を超えて多量に含有すると、析出強化により降伏点が著しく上昇し、靭性が低下する。また、Ti炭窒化物の溶体化に、1250℃超という高温加熱を必要とし、旧γ粒の粗大化を招き、所望の旧γ粒の微細化が困難となる。このため、Tiの含有量は0.001〜0.05%の範囲に限定した。なお、好ましくは0.01〜0.03%である。
Ti: 0.001 to 0.05%
Ti finely precipitates in the steel sheet as carbide, strengthens the steel sheet, and also fixes N by forming nitrides, prevents slab cracking, and suppresses austenite grain coarsening Have Such an effect becomes remarkable by containing 0.001% or more of Ti. On the other hand, when Ti is contained in a large amount exceeding 0.05%, the yield point is remarkably increased due to precipitation strengthening, and the toughness is lowered. Further, the solution of Ti carbonitride requires high-temperature heating exceeding 1250 ° C., leading to coarsening of the old γ grains, making it difficult to refine the desired old γ grains. For this reason, content of Ti was limited to 0.001 to 0.05% of range. In addition, Preferably it is 0.01 to 0.03%.

Cr:0.01〜1.0%
Crは、焼入性を向上させ、鋼板強度を増加させる作用を有する元素である。このような効果を得るためには、Crを0.01%以上含有させる必要がある。一方、Crを1.0%を超えて含有すると、溶接性が低下する。このため、Crの含有量は0.01〜1.0%の範囲に限定した。なお、好ましくは0.1〜0.6%である。
Cr: 0.01-1.0%
Cr is an element that has the effect of improving hardenability and increasing the strength of the steel sheet. In order to acquire such an effect, it is necessary to contain 0.01% or more of Cr. On the other hand, when Cr is contained exceeding 1.0%, weldability is lowered. For this reason, the Cr content is limited to a range of 0.01 to 1.0%. In addition, Preferably it is 0.1 to 0.6%.

B:0.0005〜0.0050%
Bは、γ粒界に偏析し、少ない含有量でも焼入れ性を顕著に向上させ、鋼の強度を高くする作用を有する元素である。このような効果を得るために、0.0005%以上含有する必要がある。一方、0.0050%を超えてBを含有させても、効果が飽和するため、含有量に見合う効果が期待できず経済的に不利となる。このため、Bの含有量は0.0005〜0.0050%の範囲に限定した。なお、好ましくは0.0005〜0.0030%である。
B: 0.0005-0.0050%
B is an element that segregates at the γ grain boundary, significantly improves the hardenability even with a small content, and increases the strength of the steel. In order to acquire such an effect, it is necessary to contain 0.0005% or more. On the other hand, even if it contains B exceeding 0.0050%, since the effect is saturated, an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, the content of B is limited to a range of 0.0005 to 0.0050%. In addition, Preferably it is 0.0005 to 0.0030%.

上記した成分が基本の成分であるが、基本の組成に加えて、さらに必要に応じて、選択元素として、V:0.001〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.005%を含有することができる。   The above-mentioned components are basic components. In addition to the basic composition, if necessary, V: 0.001 to 0.50%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50% 1 or 2 or more types selected from the above, and / or Ca: 0.0005 to 0.005%.

V:0.001〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちから選ばれた1種または2種以上
V、Cu、Niは、いずれも鋼板の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上含有することができる。
V: 0.001 ~ 0.50%, Cu: 0.01 ~ 0.50%, Ni: 0.01 ~ 0.50%
V, Cu, and Ni are all elements that contribute to an increase in strength of the steel sheet, and can be selected as necessary and contained in one or more kinds.

Vは、鋼中に固溶することにより鋼板の強度増加に寄与するとともに、炭化物、窒化物あるいは炭窒化物として鋼板中に析出して、析出強化により強度増加に寄与する元索である。このような効果を得るためには、Vは0.001%以上含有させることが好ましい。一方、0.50%を超えて含有すると、靭性が低下する。このため、含有させる場合には、Vの含有量は0.001〜0.50%の範囲に限定することが好ましい。   V contributes to an increase in the strength of the steel sheet by dissolving in the steel, and precipitates in the steel sheet as a carbide, nitride or carbonitride, and contributes to an increase in strength by precipitation strengthening. In order to obtain such an effect, V is preferably contained in an amount of 0.001% or more. On the other hand, if the content exceeds 0.50%, the toughness decreases. For this reason, when it contains, it is preferable to limit content of V to 0.001 to 0.50% of range.

Cuは、鋼中に固溶して強度増加に寄与するとともに、耐食性をも向上させる元素である。このような効果を得るためには、Cuは0.01%以上含有させることが好ましい。一方、0.50%を超えて含有すると、鋼板の表面性状が劣化する。このため、含有させる場合には、Cuの含有量は0.01〜0.50%の範囲に限定することが好ましい。   Cu is an element that dissolves in steel and contributes to an increase in strength and also improves corrosion resistance. In order to acquire such an effect, it is preferable to contain Cu 0.01% or more. On the other hand, if the content exceeds 0.50%, the surface properties of the steel sheet deteriorate. For this reason, when making it contain, it is preferable to limit content of Cu to the range of 0.01 to 0.50%.

Niは、鋼中に固溶して強度増加に寄与するとともに、靭性を向上させる元素である。このような効果を得るためには、Niを0.01%以上含有させることが好ましい。一方、0.50%を超えて含有すると、材料コストの高騰を招く。このため、含有させる場合には、Niの含有量は0.01〜0.50%の範囲に限定することが好ましい。   Ni is an element that dissolves in steel and contributes to an increase in strength and improves toughness. In order to obtain such an effect, it is preferable to contain 0.01% or more of Ni. On the other hand, if the content exceeds 0.50%, the material cost increases. For this reason, when making it contain, it is preferable to limit content of Ni to 0.01 to 0.50% of range.

Ca:0.0005〜0.005%
Caは、SをCaSとして固定し、硫化物系介在物を球状化し、介在物の形態を制御する作用を有する。さらに、介在物の周囲のマトリックスの格子歪を小さくし、水素のトラップ能を低下させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、Caを0.0005%以上含有させることが望ましい。一方、0.005%を超えて含有すると、CaOの増加を招き、耐食性、靭性が低下する。このため、含有させる場合には、Caの含有量は0.0005〜0.005%の範囲に限定することが好ましい。なお、より好ましくは0.0005〜0.0030%である。
Ca: 0.0005 to 0.005%
Ca has the action of fixing S as CaS, spheroidizing sulfide inclusions, and controlling the form of the inclusions. Furthermore, it is an element having an action of reducing the lattice strain of the matrix around the inclusion and reducing the trapping ability of hydrogen, and can be contained as necessary. In order to obtain such an effect, it is desirable to contain 0.0005% or more of Ca. On the other hand, if it exceeds 0.005%, CaO is increased, and the corrosion resistance and toughness are lowered. For this reason, when it contains, it is preferable to limit content of Ca to the range of 0.0005 to 0.005%. In addition, More preferably, it is 0.0005 to 0.0030%.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、O(酸素):0.005%以下、Mg:0.003%以下、Sn:0.005%以下が許容できる。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include O (oxygen): 0.005% or less, Mg: 0.003% or less, and Sn: 0.005% or less.

O(酸素)は、鋼中では各種の酸化物として存在し、熱間加工性、耐食性、靭性等を低下させる原因となる。このため、本発明ではO(酸素)含有量をできるだけ低減させることが望ましいが、0.005%までは許容できる。このため、O(酸素)の含有量は0.005%以下となることが望ましい。   O (oxygen) exists as various oxides in steel, and causes hot workability, corrosion resistance, toughness, and the like to decrease. For this reason, in the present invention, it is desirable to reduce the O (oxygen) content as much as possible, but it is acceptable up to 0.005%. For this reason, the content of O (oxygen) is preferably 0.005% or less.

Mgは、Caと同様に酸化物、硫化物を形成し、粗大なMnSの形成を抑制する作用を有するが、Mg含有量が0.003%を超えると、Mg酸化物、Mg硫化物のクラスターが数多く発生し、靭性の低下を招く。このため、Mgの含有量は0.003%以下とすることが望ましい。   Mg, like Ca, forms oxides and sulfides and has the effect of suppressing the formation of coarse MnS. However, if the Mg content exceeds 0.003%, there are many clusters of Mg oxides and Mg sulfides. Occurs, leading to a reduction in toughness. For this reason, it is desirable that the Mg content be 0.003% or less.

Snは、製鋼原料として使用されるスクラップ等から混入する。Snは粒界等に偏析しやすい元素であり、Snの含有量が0.005%を超えると、粒界強度が低下し靭性の低下を招く。このため、Snの含有量は0.005%以下とすることが望ましい。   Sn is mixed from scraps used as steelmaking raw materials. Sn is an element that easily segregates at grain boundaries and the like, and if the Sn content exceeds 0.005%, the grain boundary strength decreases and the toughness decreases. Therefore, the Sn content is desirably 0.005% or less.

本発明になる熱延鋼板は、上記した組成を有し、さらにマルテンサイト相または焼戻マルテンサイト相を主相とし、旧オーステナイト粒(旧γ粒)の平均粒径が、圧延方向に平行な断面で20μm以下、圧延方向に垂直な断面で15μm以下であり、かつ圧延方向に平行な断面における旧γ粒のアスペクト比が18以下である組織を有する。   The hot-rolled steel sheet according to the present invention has the above-described composition, further has a martensite phase or a tempered martensite phase as a main phase, and the average grain size of prior austenite grains (old γ grains) is parallel to the rolling direction. The cross section is 20 μm or less, the cross section perpendicular to the rolling direction is 15 μm or less, and the aspect ratio of the old γ grains in the cross section parallel to the rolling direction is 18 or less.

本発明になる熱延鋼板は、マルテンサイト相または焼戻マルテンサイト相を主相とする。ここでいう「マルテンサイト相」は、焼戻されていない、転位密度が高いマルテンサイト相をいうものとする。また、「主相」とは、当該相が体積率で90%以上、好ましくは95%以上である場合をいうものとする。主相をマルテンサイト相または焼戻マルテンサイト相とすることにより、所望の高強度を得ることができる。なお、主相以外の第二相は、ベイナイト相、フェライト相、パーライト相のうちの少なくとも1種からなるものとする。第二相の組織分率が高くなると、強度が低下し、所望の高強度を得ることができなくなる。このため、第二相は体積率で10%以下、好ましくは5%以下とすることが好ましい。   The hot-rolled steel sheet according to the present invention has a martensite phase or a tempered martensite phase as a main phase. The “martensitic phase” here refers to a martensitic phase that is not tempered and has a high dislocation density. In addition, the “main phase” refers to a case where the phase is 90% or more, preferably 95% or more by volume. A desired high strength can be obtained by making the main phase a martensite phase or a tempered martensite phase. The second phase other than the main phase is composed of at least one of a bainite phase, a ferrite phase, and a pearlite phase. When the structure fraction of the second phase is increased, the strength is lowered and the desired high strength cannot be obtained. For this reason, the second phase is preferably 10% or less, preferably 5% or less by volume.

また、本発明の熱延鋼板は、マルテンサイト相または焼戻マルテンサイト相を主相とした組織で、圧延方向に平行な断面(L方向断面)における旧γ粒の平均粒径が20μm以下で、かつ圧延方向に垂直な断面(C方向断面)における旧γ粒の平均粒径が15μm以下である組織を有する。このような組織とすることにより、シャルピー衝撃試験の試験温度:−40℃における吸収工ネルギーvE−40が40J以上を得ることができ、高靭性でかつ曲げ加工性にも優れた熱延鋼板となる。旧γ粒が、平均粒径でL方向断面で20μmを、C方向断面で15μmを、超えて粗大化すると、上記した高靭性を得ることができなくなる。なお、旧γ粒の平均粒径は、好ましくはL方向断面で18μm以下、C方向断面で13μm以下である。 The hot-rolled steel sheet of the present invention has a structure having a martensite phase or a tempered martensite phase as a main phase, and the average grain size of old γ grains in a cross section (L direction cross section) parallel to the rolling direction is 20 μm or less. And the average grain size of the old γ grains in the cross section perpendicular to the rolling direction (C direction cross section) is 15 μm or less. By adopting such a structure, it is possible to obtain an absorption energy vE- 40 of 40 J or more at a test temperature of -40 ° C. in a Charpy impact test, and a hot rolled steel sheet having high toughness and excellent bending workability. Become. If the old γ grains become larger than the average grain size exceeding 20 μm in the L direction cross section and 15 μm in the C direction cross section, the high toughness described above cannot be obtained. The average particle size of the prior γ grains is preferably 18 μm or less in the L direction cross section and 13 μm or less in the C direction cross section.

また、本発明の熱延鋼板では、圧延方向に平行な断面における旧γ粒のアスペクト比を18以下とする。旧γ粒のアスペクト比は、圧延方向に平行な断面で測定した、旧γ粒の圧延方向長さと板厚方向長さの比、すなわち(旧γ粒の圧延方向長さ/旧γ粒の板厚方向長さ)で定義される。この旧γ粒のアスペクト比が18を超えると、曲げ加工性が低下する。このため、旧γ粒のアスペクト比は18以下の範囲に限定した。なお、好ましくは、15以下である。アスペクト比が1に近いほど、曲げ加工性は向上するが、本発明の圧延条件では旧γ粒のアスペクト比が3程度以下となることは実際上ない。   In the hot-rolled steel sheet of the present invention, the aspect ratio of the old γ grains in the cross section parallel to the rolling direction is 18 or less. The aspect ratio of the old γ grain is the ratio of the length of the old γ grain in the rolling direction to the length in the plate thickness direction measured in a cross section parallel to the rolling direction, ie, the length of the old γ grain in the rolling direction / the old γ grain plate (Length in the thickness direction). When the aspect ratio of the old γ grains exceeds 18, the bending workability is lowered. For this reason, the aspect ratio of the old γ grains was limited to a range of 18 or less. Preferably, it is 15 or less. As the aspect ratio is closer to 1, the bending workability is improved. However, under the rolling conditions of the present invention, the aspect ratio of the old γ grains is practically not about 3 or less.

また、本発明の熱延鋼板では、マルテンサイト相または焼戻マルテンサイト相のラス内に平均粒径が0.5μm以下の微細セメンタイトを分散させ、あるいはさらに旧γ粒界および/またはラス界面に析出した粒径1μm以上のセメンタイトを、体積率で0.5%以下に抑制した組織とする。粗大なセメンタイトがラス内に析出する、および/または、ラス界面、旧γ粒界に析出したセメンタイトが粗大化すると、水素のトラップサイトとなり遅れ破壊が生起しやすくなる。このため、本発明では、ラス内に析出分散するセメンタイトを平均粒径:0.5μm以下の微細セメンタイトに、また粒径が1μm以上のセメンタイトのラス界面、旧γ粒界への析出量を体積率で0.5%以下に抑制することが好ましい。   In the hot-rolled steel sheet of the present invention, fine cementite having an average particle size of 0.5 μm or less is dispersed in the lath of the martensite phase or tempered martensite phase, or further precipitated at the old γ grain boundary and / or the lath interface. The cementite having a particle size of 1 μm or more is made a structure in which the volume ratio is suppressed to 0.5% or less. When coarse cementite precipitates in the lath and / or cementite precipitated at the lath interface or the former γ grain boundary becomes coarse, it becomes a hydrogen trap site, and delayed fracture tends to occur. For this reason, in the present invention, the cementite precipitated and dispersed in the lath is converted into fine cementite having an average particle size of 0.5 μm or less, and the amount of precipitation of the cementite having a particle size of 1 μm or more at the lath interface and the former γ grain boundary is expressed as a volume fraction. Is preferably suppressed to 0.5% or less.

次に、上記した本発明の熱延鋼板の製造方法について説明する。
本発明の製造方法では、鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、熱延工程に続けて冷却工程と、巻取工程と、を順次実施し、熱延鋼板とする。なお、鋼素材の製造方法は、とくに限定する必要はないが、上記した組成の溶鋼を転炉等の常用の方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。
Next, the manufacturing method of the above-described hot-rolled steel sheet of the present invention will be described.
In the production method of the present invention, the steel material is heated in a heating step, the hot rolling step is performed by hot rolling comprising rough rolling and finish rolling, and the hot rolling step. Subsequently, a cooling process and a winding process are sequentially performed to obtain a hot-rolled steel sheet. In addition, the manufacturing method of the steel material is not particularly limited, but the molten steel having the above composition is melted by a conventional method such as a converter, and a steel material such as a slab by a conventional casting method such as a continuous casting method. It is preferable that

まず、加熱工程について説明する。
加熱工程では、上記した組成の鋼素材を1100〜1250℃の温度に加熱する。加熱温度が1100℃未満の場合、熱間圧延での変形抵抗が高く圧延負荷が増大し、圧延機への負荷が大きくなる。一方、加熱温度が1250℃を超えて高温になると、結晶粒が粗大化して、得られる熱延鋼板の低温靭性が低下するうえ、スケール生成量が増大し、歩留りが低下する。このため、鋼素材の加熱温度を1100〜1250℃の範囲の温度に限定した。なお、好ましくは1240℃以下である。
First, the heating process will be described.
In the heating step, the steel material having the above composition is heated to a temperature of 1100 to 1250 ° C. When the heating temperature is less than 1100 ° C., the deformation resistance in hot rolling is high, the rolling load increases, and the load on the rolling mill increases. On the other hand, when the heating temperature is higher than 1250 ° C., the crystal grains are coarsened, the low temperature toughness of the resulting hot rolled steel sheet is lowered, the amount of scale generation is increased, and the yield is lowered. For this reason, the heating temperature of the steel material was limited to a temperature in the range of 1100 to 1250 ° C. In addition, Preferably it is 1240 degrees C or less.

ついで、加熱された鋼素材をシートバーとする粗圧延と、該シートバーを熱延鋼板とする仕上圧延とからなる熱延工程を実施する。
粗圧延は、鋼素材を所望の寸法形状のシートバーとするとともに、仕上げ圧延における930℃未満の温度域での圧下率を所望の範囲内に調整できるようにするため、粗圧延出側温度RDTを900〜1100℃の範囲の温度とする。なお、粗圧延における温度は表面温度を用いるものとする。
Next, a hot rolling process is performed, which includes rough rolling using a heated steel material as a sheet bar and finish rolling using the sheet bar as a hot rolled steel sheet.
In the rough rolling, the steel material is made into a sheet bar having a desired size and shape, and the rolling reduction temperature RDT in the temperature range of less than 930 ° C in the finish rolling can be adjusted within a desired range. Is in the range of 900 to 1100 ° C. In addition, surface temperature shall be used for the temperature in rough rolling.

粗圧延出側温度RDTが900℃未満の場合、粗圧延に続く仕上圧延で、930℃未満の温度域での圧下率を所望の範囲内に調整することが困難となる。また、粗圧延出側温度RDTが1100℃を超えて高温となると、粗圧延に続く仕上圧延で、930℃未満の温度域での圧下率を所望の範囲内に調整することが困難となる。   When the rough rolling exit temperature RDT is less than 900 ° C, it is difficult to adjust the rolling reduction in the temperature range of less than 930 ° C within a desired range by finish rolling subsequent to the rough rolling. Moreover, when the rough rolling outlet temperature RDT exceeds 1100 ° C. and becomes high, it becomes difficult to adjust the rolling reduction in the temperature range of less than 930 ° C. within a desired range by finish rolling subsequent to rough rolling.

また、粗圧延に続く仕上圧延は、仕上圧延入側温度FETを900〜1100℃の範囲の温度とし、仕上圧延出側温度FDTを800〜900℃の範囲の温度とし、930℃未満の温度域での累積圧下率を20〜90%とする圧延とする。なお、仕上圧延における温度は、表面温度を用いるものとする。
なお、累積圧下率は、次式
累積圧下率(%)={(当該温度域における圧延開始板厚)−(当該温度域における圧延終了板厚)}×100/(当該温度域における圧延開始板厚)
を用いて算出するものとする。
In addition, the finish rolling subsequent to the rough rolling has a finish rolling entry temperature FET in the range of 900 to 1100 ° C, a finish rolling exit temperature FDT in the range of 800 to 900 ° C, and a temperature range of less than 930 ° C. Rolling with a cumulative reduction ratio of 20 to 90%. The surface temperature is used as the temperature in finish rolling.
The cumulative rolling reduction is expressed by the following formula: cumulative rolling reduction (%) = {(rolling start plate thickness in the temperature range) − (rolling finish plate thickness in the temperature range)} × 100 / (rolling start plate in the temperature range) Thickness)
It shall be calculated using

930℃以上の温度域は、本発明範囲の鋼組成においては、ほぼ再結晶オーステナイト域に相当する。再結晶オーステナイト域においては、圧延によってオーステナイト結晶粒は圧延方向に伸展され、さらに結晶粒界およびオーステナイト結晶粒内に生ずる変形帯を核にして発生する再結晶によって、オーステナイト結晶粒は微細になる。しかし、930℃以上の温度域においては、結晶粒の成長速度も大きいため圧延再結晶による結晶粒の微細化には限界がある。一方、930℃未満の温度域は、本発明範囲の鋼組成においては、ほぼ部分再結晶あるいは未再結晶オーステナイト域に相当する。この温度域では再結晶は起こりにくいが、結晶粒の成長速度も小さいため、この温度域での圧延によって、オーステナイト結晶粒は圧延方向に伸展されるとともに微細になる。   The temperature range of 930 ° C. or higher substantially corresponds to the recrystallized austenite range in the steel composition within the range of the present invention. In the recrystallized austenite region, the austenite crystal grains are extended in the rolling direction by rolling, and the austenite crystal grains become finer by recrystallization that occurs with the deformation bands generated in the grain boundaries and austenite crystal grains as nuclei. However, in the temperature range of 930 ° C. or higher, there is a limit to the refinement of crystal grains by rolling recrystallization because the growth rate of crystal grains is high. On the other hand, the temperature range below 930 ° C. corresponds to a partially recrystallized or non-recrystallized austenite range in the steel composition within the range of the present invention. Although recrystallization hardly occurs in this temperature range, since the growth rate of the crystal grains is small, the austenite crystal grains are expanded in the rolling direction and become fine by rolling in this temperature range.

仕上圧延入側温度FETが900℃未満の場合、仕上圧延前段スタンドでの930℃以上の温度域での圧下率が減少し、旧オーステナイト粒の微細化が困難になる。また、930℃未満の温度域での累積圧下率が大きくなりすぎるため、旧オーステナイト粒のアスペクト比が過度に大きくなる。このため、曲げ加工性の低下を招く。一方、仕上圧延の入側温度FETが1100℃を超えると、所望の仕上圧延出側温度FDTを800〜900℃とすることが困難となる。   When the finish rolling entry temperature FET is less than 900 ° C., the reduction ratio in the temperature range of 930 ° C. or higher at the stand before the finish rolling is reduced, making it difficult to refine the prior austenite grains. Further, since the cumulative rolling reduction in the temperature range below 930 ° C. becomes too large, the aspect ratio of the prior austenite grains becomes excessively large. For this reason, bending workability is reduced. On the other hand, if the entry temperature FET of finish rolling exceeds 1100 ° C, it becomes difficult to set the desired finish rolling exit temperature FDT to 800 to 900 ° C.

また、仕上圧延出側温度FDTが800℃未満の場合、熱延鋼板の表層温度がAr変態点未満となる場合があり、板厚方向の組織が不均一となり靭性が低下する。一方、仕上圧延出側温度FDTが900℃を超えて高温となると、靭性の劣化を招く。 In addition, when the finish rolling exit temperature FDT is less than 800 ° C., the surface temperature of the hot-rolled steel sheet may be less than the Ar 3 transformation point, the structure in the sheet thickness direction becomes uneven, and the toughness decreases. On the other hand, when the finish rolling exit temperature FDT exceeds 900 ° C. and becomes high, toughness is deteriorated.

なお、とくに熱延鋼板の板厚が厚い場合には、仕上圧延前のシートバーに加速冷却を施すか、あるいはテーブル上でオシレーションなどを行って仕上圧延入側温度を調整することが好ましい。一方、熱延鋼板の板厚が薄い場合には、バーヒーター等を用いるなどして、仕上圧延時の温度降下を緩和させてもよい。また、仕上圧延は、上記した圧延温度条件でかつ、930℃未満の温度域での累積圧下率が20〜90%となる圧延とする。   In particular, when the thickness of the hot-rolled steel sheet is thick, it is preferable to adjust the finish rolling entry temperature by performing accelerated cooling on the sheet bar before finish rolling or by performing oscillation on the table. On the other hand, when the thickness of the hot-rolled steel sheet is thin, a temperature drop during finish rolling may be reduced by using a bar heater or the like. In addition, the finish rolling is a rolling in which the cumulative rolling reduction in the temperature range below 930 ° C. is 20 to 90% under the above-described rolling temperature conditions.

930℃未満の温度域での累積圧下率が20%未満では、旧γ粒の平均粒径が粗大化するため、所望の靭性を得ることが困難となる。一方、930℃未満の温度域での累積圧下率が90%超となると、旧γ粒のアスペクト比が増大し、所望のアスペクト比範囲に調整することができず、曲げ加工性が低下する。   If the cumulative rolling reduction in the temperature range of less than 930 ° C. is less than 20%, the average grain size of the old γ grains becomes coarse, making it difficult to obtain the desired toughness. On the other hand, when the cumulative rolling reduction in the temperature range of less than 930 ° C. exceeds 90%, the aspect ratio of the old γ grains increases, and cannot be adjusted to a desired aspect ratio range, and bending workability is deteriorated.

上記した圧延条件とすることにより、旧γ粒の平均粒径が、圧延方向に平行な断面で20μm以下、圧延方向に垂直な断面で15μm以下で、かつ圧延方向に平行な断面における旧γ粒のアスペクト比が18以下である組織とすることができる。
熱延工程(熱間圧延終了)後、直ちにホットランテーブル上に設置された冷却装置で、冷却を開始し、冷却工程を実施する。
By adopting the rolling conditions described above, the average grain size of the old γ grains is 20 μm or less in a cross section parallel to the rolling direction, 15 μm or less in a cross section perpendicular to the rolling direction, and the old γ grains in a cross section parallel to the rolling direction. It is possible to obtain an organization having an aspect ratio of 18 or less.
Immediately after the hot rolling process (end of hot rolling), cooling is started by the cooling device installed on the hot run table, and the cooling process is performed.

冷却工程では、板厚中心部の温度が750〜500℃の温度範囲を、板厚中心部での冷却速度CRが100℃/s以上の平均冷却速度で、300℃以下の冷却停止温度まで冷却する。なお、冷却速度は750〜500℃の温度範囲の平均冷却速度を用いるものとする。また、冷却停止温度は表面温度を用いるものとする。   In the cooling process, the temperature at the center of the plate thickness is in the temperature range of 750 to 500 ° C, and the cooling rate CR at the center of the plate thickness is 100 ° C / s or more at an average cooling rate of 300 ° C or less. To do. In addition, the cooling rate shall use the average cooling rate of the temperature range of 750-500 degreeC. Further, the surface temperature is used as the cooling stop temperature.

なお、仕上圧延スタンドを出てから冷却を開始するまでの時間を、5s以内とすることが必要である。冷却開始までの滞留時間が長くなると、マルテンサイト形成臨界時間を超過する恐れがある。また、冷却を、板厚表面の温度が750℃以上であるうちに開始することが望ましい。板厚表面の温度が750℃未満となると、高温変態フェライト(ポリゴナルフェライト)あるいはベイナイトが形成され、所望の組織を形成できなくなる。   In addition, it is necessary to make time from starting a finishing rolling stand to starting cooling within 5 s. If the residence time until the start of cooling becomes long, the martensite formation critical time may be exceeded. Moreover, it is desirable to start cooling while the temperature of the plate thickness surface is 750 ° C. or higher. When the temperature of the plate thickness surface is less than 750 ° C., high-temperature transformation ferrite (polygonal ferrite) or bainite is formed, and a desired structure cannot be formed.

また、本発明の特徴であるMoフリーの成分系では、板厚中心部の冷却速度CRが、100℃/s未満では、マルテンサイト相または焼戻マルテンサイト相を主相とする所望の組織が得られなくなる。このため、冷却工程における板厚中心部の冷却速度CRを100℃/s以上とすることが好ましい。なお、冷却速度の上限は、使用する冷却装置の能力に依存して決定されるが、反り等の鋼板形状の悪化を伴わない冷却速度である、250℃/sとすることが好ましい。なお、より好ましい冷却速度CRは、100〜200℃/sである。   In addition, in the Mo-free component system that is a feature of the present invention, when the cooling rate CR at the center of the plate thickness is less than 100 ° C./s, a desired structure having a martensite phase or a tempered martensite phase as a main phase is obtained. It can no longer be obtained. For this reason, it is preferable to set the cooling rate CR at the center of the plate thickness in the cooling step to 100 ° C./s or more. The upper limit of the cooling rate is determined depending on the ability of the cooling device to be used, but is preferably 250 ° C./s, which is a cooling rate that does not cause deterioration of the steel plate shape such as warpage. A more preferable cooling rate CR is 100 to 200 ° C./s.

また、冷却停止温度が、300℃超えの場合は、マルテンサイト相または焼戻マルテンサイト相を主相とする所望の組織が得られなくなる。このため、冷却停止温度を300℃以下に限定する。なお、より好ましい冷却停止温度は200℃以下100℃以上である。   On the other hand, when the cooling stop temperature exceeds 300 ° C., a desired structure whose main phase is the martensite phase or the tempered martensite phase cannot be obtained. For this reason, the cooling stop temperature is limited to 300 ° C. or less. A more preferable cooling stop temperature is 200 ° C. or lower and 100 ° C. or higher.

冷却工程を終了したのち、ついで300℃以下の巻取温度でコイル状に巻き取る巻取工程を実施し、熱延鋼板とする。なお、巻取温度は、好ましくは100℃以上である。ここで、巻取温度は鋼板表面の温度である。このような巻取工程を実施することにより、生成したマルテンサイト相が焼戻され、ラス内に微細なセメンタイトが析出する。これにより、強度(降伏強さ)が上昇し、かつ靭性が向上するとともに、水素のトラップサイトとなる粗大なセメンタイトの旧γ粒界やラス界面等への生成を防止し、遅れ破壊を防止することができるようになる。
巻取温度が、300℃を超えて高温となると、焼戻効果が過剰となり、セメンタイトが粗大化して所望の靭性が得られず、また遅れ破壊が生起しやすくなる。
なお、巻取温度の調整手段としては、誘導加熱等の手段を用いることもできる。
After finishing the cooling step, a winding step of winding in a coil shape at a winding temperature of 300 ° C. or lower is performed to obtain a hot rolled steel sheet. The winding temperature is preferably 100 ° C. or higher. Here, the coiling temperature is the temperature of the steel sheet surface. By carrying out such a winding process, the generated martensite phase is tempered, and fine cementite is precipitated in the lath. This increases strength (yield strength) and improves toughness, and prevents the formation of coarse cementite that forms hydrogen trap sites at the old γ grain boundaries and lath interface, thereby preventing delayed fracture. Will be able to.
When the coiling temperature is higher than 300 ° C., the tempering effect becomes excessive, the cementite is coarsened, the desired toughness cannot be obtained, and delayed fracture tends to occur.
In addition, means, such as induction heating, can also be used as the winding temperature adjusting means.

以下、さらに実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1に示す組成のスラブ(鋼素材)(肉厚:230mm)を用いて、表2に示す加熱工程、熱延工程を施し、熱間圧延終了後、表2に示す条件の冷却と、表2に示す巻取温度で巻き取る巻取工程とを順次施し、表2に示す板厚の熱延鋼板(鋼帯)とした。   Using the slab (steel material) (thickness: 230 mm) having the composition shown in Table 1, the heating process and the hot rolling process shown in Table 2 were performed. A winding step of winding at the winding temperature shown in FIG. 2 was sequentially performed to obtain a hot-rolled steel plate (steel strip) having a thickness shown in Table 2.

なお、各鋼のMs点は、次のような方法で決定した値を用いた。各鋼(鋼板)から円柱状試験片を採取し、該試験片を1200℃に加熱し、300s間保持したのち、20℃/sの冷却速度で1000℃まで冷却し、該温度で1/sの歪速度で30%の圧下を加え、ついで1000℃で60s間保持する処理を行った。該処理後、引続き20℃/sの冷却速度で800℃まで冷却し、該温度で1/sの歪速度で50%の圧下を加え、ついで10〜50℃/sの冷却速度で150℃まで連続冷却した。連続冷却中、試験片の熱膨張変化を測定した。また、冷却後、各試験片の組織観察、硬さ(ビッカース硬さ)測定を行い、熱膨張測定、組織観察、硬さ測定結果からMs点を決定した。得られた結果を表1に併記した。   In addition, the value determined by the following methods was used for the Ms point of each steel. A cylindrical test piece is taken from each steel (steel plate), heated to 1200 ° C., held for 300 s, cooled to 1000 ° C. at a cooling rate of 20 ° C./s, and 1 / s at that temperature. A 30% reduction was applied at a strain rate of 1, and then a treatment was held at 1000 ° C. for 60 s. After the treatment, it is subsequently cooled to 800 ° C. at a cooling rate of 20 ° C./s, 50% reduction is applied at that temperature at a strain rate of 1 / s, and then to 150 ° C. at a cooling rate of 10-50 ° C./s. Cooled continuously. During continuous cooling, the change in thermal expansion of the specimen was measured. After cooling, the structure of each test piece was observed and the hardness (Vickers hardness) was measured, and the Ms point was determined from the results of thermal expansion measurement, structure observation, and hardness measurement. The obtained results are also shown in Table 1.

さらに、得られた熱延鋼板から試験片を採取し、組織観察、引張試験、衝撃試験、曲げ試験、遅れ破壊試験、硬さ試験を実施した。試験方法は次の通りとした。   Furthermore, specimens were sampled from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, impact test, bending test, delayed fracture test, and hardness test. The test method was as follows.

(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向に平行な断面(L断面)、および、圧延方向に垂直な断面(幅方向断面、C断面)を研磨し、ナイタール液で腐食し、光学顕微鏡(倍率:500倍)で組織を観察した。観察位置は、L断面、C断面とも、鋼板表面から1/4t(ここで、t:板厚)の位置とした。また、各観察位置で各2視野以上観察し、撮像して、画像解析装置を用いて、組織の種類、各相の組織分率を測定した。
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, and a cross section parallel to the rolling direction (L cross section) and a cross section perpendicular to the rolling direction (cross section in the width direction, C cross section) are polished. The sample was corroded with a nital solution, and the structure was observed with an optical microscope (magnification: 500 times). The observation position was set to 1/4 t (here, t: plate thickness) from the surface of the steel plate for both the L cross section and the C cross section. Further, two or more visual fields were observed at each observation position, imaged, and the type of tissue and the tissue fraction of each phase were measured using an image analysis apparatus.

なお、旧γ粒(旧オーステナイト粒)の平均粒径は、以下の方法により求めた。
旧γ粒の粒界は、腐食液:ピクリン酸水溶液を用いて、現出した。そして、上記した各観察位置で各2視野以上観察し、撮像して、画像解析装置を用いて、圧延方向に平行な断面および圧延方向に直交する断面における各旧オーステナイト(γ)粒の面積を求め、該面積から円相当直径を算出し、当該旧オーステナイト粒の粒径とし、各旧オーステナイト粒の粒径を算術平均して、当該熱延鋼板の圧延方向に平行な断面における旧オーステナイト粒の平均粒径DLおよび圧延方向に直交する断面における旧オーステナイト粒の平均粒径DCとした。なお、測定した旧オーステナイト粒は、各断面で100個以上とした。
The average particle size of the prior γ grains (former austenite grains) was determined by the following method.
The grain boundaries of the former γ grains appeared using a corrosive solution: picric acid aqueous solution. Then, at least two fields of view are observed at each observation position described above, imaged, and the area of each prior austenite (γ) grain in the cross section parallel to the rolling direction and the cross section orthogonal to the rolling direction is measured using an image analyzer. Determine the equivalent circle diameter from the area, the grain size of the prior austenite grains, the arithmetic average of the grain size of each prior austenite grain, of the prior austenite grains in a cross section parallel to the rolling direction of the hot rolled steel sheet The average grain size DL and the average grain size DC of the prior austenite grains in the cross section perpendicular to the rolling direction were used. The measured prior austenite grains were 100 or more in each cross section.

さらに、L断面の旧γ粒について、圧延方向の長さおよび板厚方向の長さをそれぞれ測定し、(圧延方向の長さ)/(板厚方向の長さ)をもとめた。そして各視野で(圧延方向の長さ)/(板厚方向の長さ)の平均値をそれぞれ求め、さらにそれらの平均をその鋼板の旧γ粒のアスペクト比とした。   Furthermore, the length in the rolling direction and the length in the plate thickness direction were measured for the old γ grains having an L cross section, and (length in the rolling direction) / (length in the plate thickness direction) was determined. The average value of (length in the rolling direction) / (length in the plate thickness direction) was determined for each field of view, and the average was used as the aspect ratio of the old γ grains of the steel sheet.

また、ラス内に析出したセメンタイトについて、走査型電子顕微鏡(倍率:10000倍)で観察し、各セメンタイト粒の面積を測定し、円相当直径に換算した。得られた各セメンタイト粒の直径を平均し、当該鋼板のラス内のセメンタイトの平均粒径とした。また、旧γ粒界および/またはラス界面に析出したセメンタイトについても、同様に、各セメンタイト粒の面積を測定し、円相当直径に換算し、粒径1μm以上のセメンタイトの分率(体積%)を算出した。なお、主相および主相以外の第二相の体積率は、各相内やラス界面に析出したセメンタイトを含めた体積率とした。   Further, the cementite precipitated in the lath was observed with a scanning electron microscope (magnification: 10000 times), and the area of each cementite grain was measured and converted to an equivalent circle diameter. The diameters of the obtained cementite grains were averaged to obtain the average particle diameter of cementite in the lath of the steel sheet. Similarly, for cementite precipitated at the prior γ grain boundary and / or lath interface, the area of each cementite grain is similarly measured and converted to a circle equivalent diameter, and the fraction (volume%) of cementite having a particle diameter of 1 μm or more. Was calculated. The volume ratio of the main phase and the second phase other than the main phase was a volume ratio including cementite precipitated in each phase or lath interface.

(2)引張試験
得られた熱延鋼板の所定の位置(コイル長手方向端部、幅方向1/4の位置)から、圧延方向に垂直な方向(C方向)が長手方向となるように、板状の試験片(平行部幅:25mm、標点間距離:50mm)を採取し、JIS Z 2241の規定に準拠して、室温で引張試験を実施し、降伏強さYS、引張強さTS、伸びElを求めた。
(2) Tensile test From a predetermined position of the obtained hot-rolled steel sheet (coil longitudinal direction end, position in the width direction 1/4), a direction perpendicular to the rolling direction (C direction) is the longitudinal direction. A plate-shaped test piece (parallel part width: 25 mm, distance between gauge points: 50 mm) is collected and subjected to a tensile test at room temperature in accordance with JIS Z 2241. Yield strength YS, tensile strength TS , Asked for elongation El.

(3)衝撃試験
得られた熱延鋼板の所定の位置(コイル長手方向端部、幅方向1/4の位置)の板厚中心部から、圧延方向に垂直な方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:−40℃での吸収エネルギーvE−40(J)を求めた。なお、試験片は各3本とし、得られた吸収エネルギー値の算術平均をもとめ、その鋼板の吸収エネルギー値vE−40(J)とした。なお、板厚が10mm未満の鋼板については、板厚換算でフルサイズ試験片(10mm厚)における値(吸収エネルギー)に換算して示した。
(3) Impact test The direction (C direction) perpendicular to the rolling direction is the longitudinal direction from the center of the plate thickness at a predetermined position (coil longitudinal direction end, width direction 1/4 position) of the obtained hot-rolled steel sheet. V-notch test pieces were collected so that the Charpy impact test was performed in accordance with the provisions of JIS Z 2242, and the absorbed energy vE- 40 (J) at a test temperature of −40 ° C. was obtained. In addition, the test piece was set to three each, the arithmetic mean of the obtained absorbed energy value was calculated | required, and it was set as the absorbed energy value vE- 40 (J) of the steel plate. In addition, about the steel plate whose plate | board thickness is less than 10 mm, it converted into the value (absorption energy) in the full-size test piece (10-mm thickness) in plate | board thickness conversion, and showed.

(4)曲げ試験
得られた熱延鋼板の所定の位置(コイル長手方向端部、幅方向1/4の位置)から曲げ試験片(長辺側が圧延方向と直角方向となるように、短辺側が板厚の5倍以上となるようにした短柵状試験片)を採取し、180度曲げ試験を実施し、割れの発生しない最小曲げ半径(mm)を求め、最小曲げ半径/板厚で示した。最小曲げ半径/板厚が4.0以下である場合を曲げ加工性に優れると評価した。
(4) Bending test Bending test piece (short side so that long side is perpendicular to rolling direction) from predetermined position (coil longitudinal direction end, width direction 1/4 position) of the obtained hot rolled steel sheet Take a short-fence-shaped test piece that is 5 times the thickness of the plate) and conduct a 180-degree bending test to find the minimum bending radius (mm) at which no cracks occur. Indicated. The case where the minimum bending radius / plate thickness was 4.0 or less was evaluated as excellent in bending workability.

(5)遅れ破壊試験
得られた熱延鋼板から、圧延方向に垂直な方向(C方向)が長手方向となるように、丸棒引張試験片(GL.25mm)を採取し、陰極水素チャージをしたのち、電気亜鉛めっきを施し、鋼中に水素を封じ込めた試験片Aとした。このような処理を施さない試験片を試験片Bとし、これら試験片を歪速度:10×10-6/s(室温)で引張り、絞り値を求めた。得られた絞り値から絞り比(=(試験片Aの絞り値)/(試験片Bの絞り値))を求めた。絞り比が85%以上を耐遅れ破壊性に優れると評価した。
(5) Delayed fracture test From the obtained hot-rolled steel sheet, a round bar tensile specimen (GL.25mm) was taken so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and the cathode hydrogen charge was charged. After that, electrogalvanizing was performed to obtain a test piece A in which hydrogen was contained in steel. A test piece not subjected to such treatment was designated as test piece B, and these test pieces were pulled at a strain rate of 10 × 10 −6 / s (room temperature) to obtain a drawing value. An aperture ratio (= (aperture value of test piece A) / (aperture value of test piece B)) was determined from the obtained aperture value. A drawing ratio of 85% or more was evaluated as having excellent delayed fracture resistance.

(6)硬さ試験
得られた熱延鋼板の所定の位置(コイル長手方向端部、幅方向1/4の位置)から、硬さ試験片(大きさ:45mm幅×40mm長さ)を採取し、JIS Z 2243の規定に準拠して、ブリネル硬さ試験機を用いてブリネル硬さHBWを求めた。圧子を直径10mmの硬球(鋼球または超硬合金球)として、圧子を試験片表面に押圧荷重:3000kgfで押し込み、永久くぼみを形成させ、押圧荷重を得られた永久くぼみの表面積で除した値をブリネル硬さHBW10/3000として評価した。測定箇所は、任意に選んだ5箇所とし、得られた値の算術平均を求め、当該鋼板の表面硬さとした。
(6) Hardness test Take a hardness test piece (size: 45mm width x 40mm length) from a predetermined position (end in the coil longitudinal direction, 1/4 position in the width direction) of the obtained hot-rolled steel sheet. Then, in accordance with the provisions of JIS Z 2243, the Brinell hardness HBW was determined using a Brinell hardness tester. The value obtained by dividing the indenter by the surface area of the permanent indentation obtained by indenting the indenter into a hard ball (steel ball or cemented carbide ball) with a diameter of 10 mm and pressing the indenter onto the surface of the test piece with a pressing load of 3000 kgf to form a permanent depression. Was evaluated as Brinell hardness HBW10 / 3000. The measurement locations were arbitrarily selected 5 locations, the arithmetic average of the obtained values was obtained, and the surface hardness of the steel sheet.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2016211073
Figure 2016211073

Figure 2016211073
Figure 2016211073

Figure 2016211073
Figure 2016211073

本発明例はいずれも、降伏強さYS:960MPa以上の高強度と、vE−40が40J以上の高靭性と、さらに伸びEl:12%以上の高延性とを兼備し、360HBW10/3000以上の表面硬さを有し耐摩耗性に優れ、さらに、曲げ加工性に優れ、また耐遅れ破壊性にも優れた熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、降伏強さYSが960MPa未満であるか、vE−40が40J未満であるか、あるいは降伏強さYSが960MPa未満でvE−40が40J未満であるか、表面硬さが360HBW10/3000未満であるかして、所望の高強度、所望の高靭性、所望の表面硬さが得られない熱延鋼板となっている。 All examples of the present invention have a high yield strength of YS: 960 MPa or more, a high toughness of vE- 40 of 40 J or more, and an elongation El of 12% or more, and a high ductility of 360 HBW 10/3000 or more. It is a hot-rolled steel sheet having surface hardness, excellent wear resistance, bending workability, and delayed fracture resistance. On the other hand, the comparative examples outside the scope of the present invention have a yield strength YS of less than 960 MPa, a vE- 40 of less than 40 J, or a yield strength YS of less than 960 MPa and a vE- 40 of less than 40 J. Or the surface hardness is less than 360HBW10 / 3000, so that the desired high strength, desired high toughness, and desired surface hardness cannot be obtained.

Claims (8)

質量%で、
C :0.08%以上0.16%未満、 Si:0.01〜1.0%、
Mn:0.8〜2.0%、 P :0.025%以下、
S :0.005%以下、 Al:0.005〜0.10%、
N :0.002〜0.006%、 Nb:0.001〜0.05%、
Ti:0.001〜0.05%、 Cr:0.01〜1.0%、
B :0.0005〜0.0050%
を含有し、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相または焼戻マルテンサイト相を主相とし、該主相が組織全体に対する体積率で90%以上であり、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下、圧延方向に垂直な断面で15μm以下であり、かつ圧延方向に平行な断面における旧オーステナイト粒のアスペクト比が18以下である組織と、を有することを特徴とする低温靭性に優れた高強度熱延鋼板。
% By mass
C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%,
Mn: 0.8 to 2.0%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
N: 0.002 to 0.006%, Nb: 0.001 to 0.05%,
Ti: 0.001-0.05%, Cr: 0.01-1.0%,
B: 0.0005-0.0050%
Containing the balance Fe and inevitable impurities, the main phase is the martensite phase or tempered martensite phase, the main phase is 90% or more by volume ratio to the entire structure, the average of the prior austenite grains The grain size is 20 μm or less in a cross section parallel to the rolling direction, 15 μm or less in a cross section perpendicular to the rolling direction, and the aspect ratio of the prior austenite grains in the cross section parallel to the rolling direction is 18 or less. A high-strength hot-rolled steel sheet with excellent low-temperature toughness.
前記マルテンサイト相または前記焼戻マルテンサイト相は、ラス内に平均粒径が0.5μm以下の微細セメンタイトを有する組織であることを特徴とする請求項1に記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to claim 1, wherein the martensite phase or the tempered martensite phase is a structure having fine cementite having an average particle size of 0.5 µm or less in the lath. 前記マルテンサイト相または前記焼戻マルテンサイト相は、ラス内に平均粒径が0.5μm以下の微細セメンタイトを有し、さらに旧オーステナイト粒界および/またはラス界面に析出した粒径:1μm以上のセメンタイトが、体積率で0.5%以下である組織であることを特徴とする請求項1に記載の高強度熱延鋼板。   The martensite phase or the tempered martensite phase has fine cementite having an average particle size of 0.5 μm or less in the lath, and further has a grain size of 1 μm or more precipitated at the prior austenite grain boundaries and / or the lath interface. The high-strength hot-rolled steel sheet according to claim 1, wherein the structure has a volume ratio of 0.5% or less. 前記組成に加えてさらに、質量%でV:0.001〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の高強度熱延綱板。   In addition to the above composition, the composition further contains one or more selected from V: 0.001 to 0.50%, Cu: 0.01 to 0.50%, and Ni: 0.01 to 0.50% by mass%. The high-strength hot-rolled steel plate according to any one of claims 1 to 3. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする請求項1ないし4のいずれかに記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to any one of claims 1 to 4, wherein, in addition to the composition, the composition further contains Ca: 0.0005 to 0.005% by mass. 鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、冷却工程と、巻取工程を順次施し、熱延鋼板とするにあたり、
前記鋼素材を、質量%で、
C :0.08%以上0.16%未満、 Si:0.01〜1.0%、
Mn:0.8〜2.0%、 P :0.025%以下、
S :0.005%以下、 Al:0.005〜0.10%、
N:0.002〜0.006%、 Nb:0.001〜0.05%、
Ti:0.001〜0.05%、 Cr:0.01〜1.0%、
B :0.0005〜0.0050%
を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
前記加熱工程が、1100〜1250℃の温度に加熱する工程であり、
前記熱延工程が、粗圧延出側温度RDTを900〜1100℃の範囲の温度とする粗圧延と、さらに仕上圧延入側温度FETを900〜1100℃の範囲の温度、仕上圧延出側温度FDTを800〜900℃の範囲の温度とし、930℃未満の温度域での累積圧下率を20〜90%とする仕上圧延と、を施す工程であり、
前記冷却工程が、熱間圧延終了後、直ちに冷却を開始し、750〜500℃の温度範囲を、板厚中心部での冷却速度CRで100℃/s以上の平均冷却速度で、300℃以下の冷却停止温度まで冷却する工程であり、
前記巻取工程が、巻取温度を300℃以下の温度として、コイル状に巻き取る工程であることを特徴とする低温靭性に優れる高強度熱延鋼板の製造方法。
The steel material is subjected to a heating process for heating the steel material, a hot rolling process for subjecting the heated steel material to hot rolling consisting of rough rolling and finish rolling, a cooling process, and a winding process. In making a hot-rolled steel sheet,
The steel material in mass%,
C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%,
Mn: 0.8 to 2.0%, P: 0.025% or less,
S: 0.005% or less, Al: 0.005-0.10%,
N: 0.002 to 0.006%, Nb: 0.001 to 0.05%,
Ti: 0.001-0.05%, Cr: 0.01-1.0%,
B: 0.0005-0.0050%
A steel material having a composition comprising the balance Fe and unavoidable impurities,
The heating step is a step of heating to a temperature of 1100 to 1250 ° C,
The hot rolling step is a rough rolling in which the rough rolling outlet temperature RDT is set to a temperature in the range of 900 to 1100 ° C, and the finishing rolling inlet temperature FET is set to a temperature in the range of 900 to 1100 ° C, and the finishing rolling outlet temperature FDT. Is a process in which the temperature is in the range of 800 to 900 ° C. and the finish rolling in the temperature range of less than 930 ° C. is 20 to 90%.
The cooling process starts cooling immediately after the hot rolling is completed, and the temperature range of 750 to 500 ° C. is 300 ° C. or less at an average cooling rate of 100 ° C./s or more at the cooling rate CR at the center of the plate thickness. Cooling to the cooling stop temperature of
A method for producing a high-strength hot-rolled steel sheet having excellent low-temperature toughness, wherein the winding step is a step of winding in a coil shape at a winding temperature of 300 ° C or lower.
前記組成に加えてさらに、質量%でV:0.001〜0.50%、Cu:0.01〜0.50%、Ni:0.01〜0.50%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項6に記載の高強度熱延鋼板の製造方法。   In addition to the above composition, the composition further contains one or more selected from V: 0.001 to 0.50%, Cu: 0.01 to 0.50%, and Ni: 0.01 to 0.50% by mass%. The manufacturing method of the high intensity | strength hot-rolled steel plate of Claim 6 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.005%を含有する組成とすることを特徴とする請求項6または7に記載の高強度熱延鋼板の製造方法。   The method for producing a high-strength hot-rolled steel sheet according to claim 6 or 7, further comprising a composition containing Ca: 0.0005 to 0.005% by mass% in addition to the composition.
JP2016076328A 2015-05-12 2016-04-06 High strength hot rolled steel sheet and method for producing the same Active JP6327282B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015097070 2015-05-12
JP2015097070 2015-05-12

Publications (2)

Publication Number Publication Date
JP2016211073A true JP2016211073A (en) 2016-12-15
JP6327282B2 JP6327282B2 (en) 2018-05-23

Family

ID=57550679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076328A Active JP6327282B2 (en) 2015-05-12 2016-04-06 High strength hot rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6327282B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011458A (en) * 2017-08-09 2020-02-03 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
WO2020026593A1 (en) 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same
EP3584346A4 (en) * 2017-02-16 2020-08-05 Nippon Steel Corporation Hot rolled steel sheet and method for manufacturing same
WO2020170681A1 (en) 2019-02-18 2020-08-27 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
JP2021031708A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Abrasion resistant steel material excellent in fatigue resistant characteristics
JP2021031711A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Method for manufacturing wear resistant steel material excellent in fatigue resistance property
CN113025913A (en) * 2021-02-07 2021-06-25 首钢集团有限公司 700MPa steel based on multi-mode sheet billet continuous casting and rolling production line and production method thereof
WO2021153746A1 (en) * 2020-01-30 2021-08-05 日本製鉄株式会社 Hot rolled steel sheet and production method thereof
WO2021193310A1 (en) 2020-03-25 2021-09-30 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for producing same
CN113684415A (en) * 2021-07-09 2021-11-23 江苏沙钢集团有限公司 6mm EH36 steel and manufacturing method thereof
KR20220005094A (en) 2019-06-14 2022-01-12 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel sheet and its manufacturing method
WO2022153927A1 (en) 2021-01-15 2022-07-21 日本製鉄株式会社 Hot-rolled steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012315A (en) * 2009-07-02 2011-01-20 Nippon Steel Corp NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP2011052321A (en) * 2009-08-06 2011-03-17 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent low temperature toughness and method for producing the same
JP2012077336A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP2013117068A (en) * 2011-11-01 2013-06-13 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending characteristic and low-temperature toughness and method for producing the same
JP2013122076A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Hot stamping molding excellent in balance of strength and toughness, method for manufacturing the same, and method for manufacturing steel plate for hot stamping molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012315A (en) * 2009-07-02 2011-01-20 Nippon Steel Corp NON-TEMPERED HIGH TENSILE STRENGTH THICK STEEL PLATE HAVING YIELD STRENGTH OF 885 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP2011052321A (en) * 2009-08-06 2011-03-17 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent low temperature toughness and method for producing the same
JP2012077336A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP2013117068A (en) * 2011-11-01 2013-06-13 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending characteristic and low-temperature toughness and method for producing the same
JP2013122076A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Hot stamping molding excellent in balance of strength and toughness, method for manufacturing the same, and method for manufacturing steel plate for hot stamping molding

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584346A4 (en) * 2017-02-16 2020-08-05 Nippon Steel Corporation Hot rolled steel sheet and method for manufacturing same
US11274355B2 (en) 2017-02-16 2022-03-15 Nippon Steel Corporation Hot rolled steel sheet and method for producing same
KR102378147B1 (en) 2017-08-09 2022-03-24 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR20200011458A (en) * 2017-08-09 2020-02-03 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR20210024135A (en) 2018-07-31 2021-03-04 제이에프이 스틸 가부시키가이샤 High-strength hot rolled steel sheet and its manufacturing method
WO2020026593A1 (en) 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same
CN113383095A (en) * 2019-02-18 2021-09-10 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
EP3929315A4 (en) * 2019-02-18 2024-05-08 Nippon Steel Corp Hot-rolled steel sheet and method for manufacturing same
CN113383095B (en) * 2019-02-18 2023-03-14 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
KR20210110356A (en) 2019-02-18 2021-09-07 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet and its manufacturing method
WO2020170681A1 (en) 2019-02-18 2020-08-27 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
KR102618288B1 (en) * 2019-02-18 2023-12-29 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and manufacturing method thereof
KR20220005094A (en) 2019-06-14 2022-01-12 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel sheet and its manufacturing method
JP2021031711A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Method for manufacturing wear resistant steel material excellent in fatigue resistance property
JP2021031708A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Abrasion resistant steel material excellent in fatigue resistant characteristics
JP7163887B2 (en) 2019-08-21 2022-11-01 Jfeスチール株式会社 Wear-resistant steel with excellent fatigue resistance
JP7163889B2 (en) 2019-08-21 2022-11-01 Jfeスチール株式会社 Manufacturing method for wear-resistant steel with excellent fatigue resistance
CN114929918B (en) * 2020-01-30 2023-12-26 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
JP7372560B2 (en) 2020-01-30 2023-11-01 日本製鉄株式会社 Hot rolled steel sheet and its manufacturing method
CN114929918A (en) * 2020-01-30 2022-08-19 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
WO2021153746A1 (en) * 2020-01-30 2021-08-05 日本製鉄株式会社 Hot rolled steel sheet and production method thereof
JP7010418B1 (en) * 2020-03-25 2022-01-26 Jfeスチール株式会社 High-strength hot-rolled steel sheet and its manufacturing method
KR20220139983A (en) 2020-03-25 2022-10-17 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel sheet and manufacturing method thereof
WO2021193310A1 (en) 2020-03-25 2021-09-30 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for producing same
KR20230085173A (en) 2021-01-15 2023-06-13 닛폰세이테츠 가부시키가이샤 hot rolled steel
WO2022153927A1 (en) 2021-01-15 2022-07-21 日本製鉄株式会社 Hot-rolled steel sheet
CN113025913A (en) * 2021-02-07 2021-06-25 首钢集团有限公司 700MPa steel based on multi-mode sheet billet continuous casting and rolling production line and production method thereof
CN113684415A (en) * 2021-07-09 2021-11-23 江苏沙钢集团有限公司 6mm EH36 steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP6327282B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5609383B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5630125B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5594344B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5598225B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP4978741B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
JP5605526B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
WO2010087511A1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5672421B1 (en) High strength hot rolled steel sheet and method for producing the same
JP6327277B2 (en) High-strength hot-rolled steel sheet excellent in strength uniformity in the sheet width direction and method for producing the same
WO2010087512A1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250