JP2016209345A - Pneumoperitoneum device - Google Patents

Pneumoperitoneum device Download PDF

Info

Publication number
JP2016209345A
JP2016209345A JP2015096682A JP2015096682A JP2016209345A JP 2016209345 A JP2016209345 A JP 2016209345A JP 2015096682 A JP2015096682 A JP 2015096682A JP 2015096682 A JP2015096682 A JP 2015096682A JP 2016209345 A JP2016209345 A JP 2016209345A
Authority
JP
Japan
Prior art keywords
pressure
measurement
value
unit
measurement unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096682A
Other languages
Japanese (ja)
Other versions
JP6438837B2 (en
Inventor
侑磨 糟谷
Yuma Kasuya
侑磨 糟谷
上杉 武文
Takefumi Uesugi
武文 上杉
弘治 山岡
Hiroharu Yamaoka
弘治 山岡
都敏 平賀
Kuniharu Hiraga
都敏 平賀
古川 喜之
Yoshiyuki Furukawa
喜之 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2015096682A priority Critical patent/JP6438837B2/en
Publication of JP2016209345A publication Critical patent/JP2016209345A/en
Application granted granted Critical
Publication of JP6438837B2 publication Critical patent/JP6438837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surgical Instruments (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumoperitoneum device capable of determining in a short time whether a body cavity internal pressure is measured accurately or not with a pressure measurement dedicated tube in the pneumoperitoneum device measuring the body cavity internal pressure by connecting the pressure measurement dedicated tube to the body cavity.SOLUTION: A pneumoperitoneum device 1 includes: a gas supply conduit 19 communicated with a gas supply source 11 supplying a predetermined gas and supplying the gas to an abdominal cavity 13 of a patient 12, and connected with a pressure gauge 6; an electromagnetic valve 4 switching supply and stop of the gas; a measurement conduit 20 connected with a pressure gauge 18 for measuring a pressure of the abdominal cavity 13 of the patient 12; and a control section 7 controlling a gas supply amount of the gas. During stopping supply of the gas, the control section 7 detects an abnormality of the pressure gauge 18 by comparing the initial minimal value and the initial maximal value in a pressure oscillation wave form representing a pressure state within the gas supply conduit 19 based on a measurement value of the pressure gauge 6 with a cavity internal pressure measurement result having measured a body cavity internal pressure through the measurement conduit based on a measurement value of the pressure gauge 18.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、気腹装置に関し、特に、圧力測定専用のチューブを腔に接続してリアルタイムで体腔内圧力を計測する気腹装置に関する。   Embodiments of the present invention relate to an insufflation apparatus, and more particularly, to an insufflation apparatus that measures a body cavity pressure in real time by connecting a tube dedicated to pressure measurement to a cavity.

近年、患者への侵襲を小さくする目的で、開腹することなく、治療処置を行う腹腔鏡下外科手術が行われている。この腹腔鏡下外科手術においては、患者の腹部に、例えば観察用の内視鏡を体腔内に導く第1のトラカールと、処置具を処置部位に導く第2のトラカールとが穿刺される。この腹腔鏡下外科手術では、第1のトラカールの挿通孔を介して腹腔内に挿入された内視鏡を用いて、処置部位と第2のトラカールの挿通孔を介して挿入された処置具を観察しながら処置等が行われる。   In recent years, laparoscopic surgery for performing therapeutic treatment without performing laparotomy has been performed for the purpose of reducing invasion to patients. In this laparoscopic surgery, a patient's abdomen is punctured with, for example, a first trocar for guiding an observation endoscope into a body cavity and a second trocar for guiding a treatment tool to a treatment site. In this laparoscopic surgery, using a endoscope inserted into the abdominal cavity through the insertion hole of the first trocar, the treatment tool inserted through the insertion hole of the treatment site and the second trocar Treatment is performed while observing.

このような腹腔鏡下外科手術においては、内視鏡の視野を確保する目的及び処置具を操作するための領域を確保する目的で、気腹装置が用いられている。気腹装置は、体腔内に気腹用気体として例えば二酸化炭素ガスなどを注入して腔内を一定の圧力に拡張し、内視鏡の視野や処置具の操作領域を確保する。   In such a laparoscopic surgical operation, an insufflation apparatus is used for the purpose of securing the field of view of the endoscope and the area for operating the treatment tool. The pneumoperitoneum device injects, for example, carbon dioxide gas as a gas for a pneumoperitone into a body cavity and expands the inside of the cavity to a certain pressure, and secures the field of view of the endoscope and the operation area of the treatment tool.

一般的に、気腹装置は、体腔への送気を行う送気チューブを用いて腔内の圧力測定も行う。このため、体腔への送気を一定時間行った後に、送気を一旦停止させて体腔内の圧力を測定する。そして、体腔内の圧力が設定圧力に到達するまでこのような間欠送気を行う。   Generally, an insufflation apparatus also measures pressure in a cavity using an air supply tube that supplies air to a body cavity. For this reason, after supplying air to the body cavity for a certain time, the air supply is temporarily stopped and the pressure in the body cavity is measured. Then, such intermittent air supply is performed until the pressure in the body cavity reaches the set pressure.

間欠送気を行う従来の気腹装置は、腔内の圧力が設定圧力に到達するまでに時間がかかってしまうため、近年、送気チューブの他に腔内圧力測定専用のチューブを設けて腔に接続し、この専用チューブで腔内の圧力をリアルタイムで監視する方法(RTPS)を用いた気腹装置が開発されている。この気腹装置は、圧力計測と送気とを別々のチャネルで行うことにより、連続的に送気することができるため、腔内の圧力を短時間で設定圧力に到達させることができる。また、体腔内の気体を排煙処理するための循環装置を気腹装置と組み合わせて用い、循環装置の吸引チューブで腔内の圧力をリアルタイムに監視する気腹システムも開発されている(例えば、特許文献1参照)。   The conventional insufflation apparatus that performs intermittent air supply takes time until the pressure in the cavity reaches the set pressure. In recent years, in addition to the air supply tube, a tube dedicated to measuring the intracavity pressure is provided. A pneumoperitoneum using a method (RTPS) for monitoring the pressure in the cavity in real time with this dedicated tube has been developed. This insufflation apparatus can continuously supply air by performing pressure measurement and air supply in separate channels, so that the pressure in the cavity can reach the set pressure in a short time. In addition, an insufflation system has been developed that uses a circulation device for exhausting gas in a body cavity in combination with an insufflation device, and monitors the pressure in the cavity in real time with a suction tube of the circulation device (for example, Patent Document 1).

上述のように送気チューブと別のチューブで圧力測定を行う場合、圧力測定用チューブに体腔内から異物が侵入したり、チューブ上に設けられたフィルタが目詰まりしたり、チューブが途中で折れ曲がっていたりすると、腔内の圧力が正確に測定できなくなってしまう。このため、圧力測定用チューブにフラッシング用ガスを供給して、チューブ内の目詰まりなどを解消する気腹装置が提案されている(例えば、特許文献2参照)。   As described above, when measuring pressure with a tube other than the air supply tube, foreign matter enters the pressure measurement tube from inside the body cavity, the filter provided on the tube is clogged, or the tube is bent in the middle. Otherwise, the pressure in the cavity cannot be measured accurately. For this reason, an insufflation apparatus has been proposed in which flushing gas is supplied to a pressure measurement tube to eliminate clogging in the tube (for example, see Patent Document 2).

特開2014−113256号公報JP 2014-113256 A 特開2012−200530号公報JP 2012-200530 A

しかしながら、特許文献2に記載された気腹装置では、毎圧力測定時にフラッシング用ガスを供給することで、圧力測定用チューブ内に侵入した異物等を除去して詰まりを解消することはできるが、圧力測定用チューブが正しく腹腔圧を測定できているか否かを検知する手段を持たないため、体腔内圧が正しく測れない可能性がある。   However, in the pneumoperitoneum device described in Patent Document 2, by supplying the flushing gas at the time of each pressure measurement, it is possible to remove foreign matters and the like that have entered the pressure measurement tube, to eliminate clogging, Since the pressure measuring tube does not have a means for detecting whether or not the abdominal pressure can be measured correctly, the body cavity pressure may not be measured correctly.

送気チューブによる圧力測定値と比較することにより、圧力測定用チューブで正しく体腔内圧が測定できているか否かを判定することはできるが、送気チューブ内の圧力振動波形が収束するのを待ってから圧力値の比較を行うと、送気を停止する時間が長くなってしまい、気腹時間が長時間化してしまうという問題があった。   By comparing with the pressure measurement value by the air supply tube, it can be judged whether the body pressure is correctly measured by the pressure measurement tube, but it waits for the pressure oscillation waveform in the air supply tube to converge. When the pressure values are compared after that, there is a problem that the time for stopping air feeding becomes longer and the insufflation time becomes longer.

そこで、本発明は、圧力測定専用のチューブを腔に接続して体腔内圧力を計測する気腹装置において、圧力測定専用チューブで正しく体腔内圧が測定されているか否かを短時間で判定することができる気腹装置を提供することを目的とする。   Therefore, the present invention determines in a short time whether or not the body cavity pressure is correctly measured with the pressure measurement tube in the pneumothorax apparatus that measures the pressure in the body cavity by connecting a tube dedicated to pressure measurement to the cavity. An object of the present invention is to provide a pneumoperitoneum device that can perform the above.

本発明の一態様の気腹装置は、所定の気体を送気する送気源に連通して、患者の体腔へ前記気体を供給する送気管路と、前記送気管路上に設けられ、前記気体の供給と停止とを切り替える切替部と、前記送気管路に接続される第一の圧力測定部と、前記患者の体腔内の圧力を測定するための測定管路と、前記測定管路に接続される第二の圧力測定部と、前記気体の送気量を制御する制御部と、を有し、前記制御部は、前記患者の体腔への前記気体の送気が停止されている期間において、前記第一の圧力測定部の測定値に基づき前記送気管路内の圧力状態を表す圧力振動波形における最初の極小値及び最初の極大値と、前記第二の圧力測定部の測定値に基づき前記測定管路を介して体腔内の圧力が測定された腔内圧力測定結果とを比較し、前記第二の圧力測定部の異常を検出する測定管路異常判定部を有する。   An insufflation apparatus according to one aspect of the present invention is provided on an air supply line that communicates with an air supply source that supplies a predetermined gas and supplies the gas to a body cavity of a patient. A switching unit that switches between supply and stop of the device, a first pressure measurement unit connected to the air supply line, a measurement line for measuring the pressure in the body cavity of the patient, and a connection to the measurement line A second pressure measurement unit, and a control unit that controls the amount of gas supplied, and the control unit is configured to stop the gas supply to the body cavity of the patient during the period. The first minimum value and the first maximum value in the pressure vibration waveform representing the pressure state in the air supply line based on the measurement value of the first pressure measurement unit, and the measurement value of the second pressure measurement unit Compared with the intracavitary pressure measurement result in which the pressure in the body cavity is measured via the measurement conduit, Having a measuring tube abnormality determination unit for detecting an abnormality of the second pressure measuring unit.

本発明の気腹装置によれば、圧力測定専用のチューブを腔に接続して体腔内圧力を計測する気腹装置において、圧力測定専用チューブで正しく体腔内圧が測定されているか否かを短時間で判定することができる。   According to the insufflation apparatus of the present invention, in the insufflation apparatus for measuring the pressure in the body cavity by connecting a tube dedicated for pressure measurement to the cavity, it is determined whether or not the body cavity pressure is correctly measured with the tube for pressure measurement. Can be determined.

本発明の実施形態に係わる気腹装置1の全体構成の一例を説明する図。The figure explaining an example of the whole structure of the pneumoperitoneum apparatus 1 concerning embodiment of this invention. 気腹装置1による送気制御の手順の一例を説明するフローチャート。The flowchart explaining an example of the procedure of the air supply control by the pneumoperitoneum apparatus. 圧力計18の誤測定検出動作の一例を説明するフローチャート。The flowchart explaining an example of the erroneous measurement detection operation of the pressure gauge. 送気停止中における送気管路及び測定管路の圧力の経時変化の一例を説明する図。The figure explaining an example of the time-dependent change of the pressure of an air supply line and a measurement line during an air supply stop. 第2の実施形態における圧力計18の誤測定検出動作の一例を説明するフローチャート。The flowchart explaining an example of the erroneous measurement detection operation | movement of the pressure gauge 18 in 2nd Embodiment.

以下、図面を参照して実施形態を説明する。
(第1の実施形態)
Hereinafter, embodiments will be described with reference to the drawings.
(First embodiment)

図1は、本発明の第1の実施形態に係わる気腹装置1の全体構成の一例を説明する図である。図1に示すように、本実施形態の気腹装置1内には、減圧器2と、送気管路19内を流れる気体の流量を調整する電空比例弁3と、送気管路19の開閉を行う切替部としての電磁弁4と、送気する気体の流量を測定する流量計5と、送気管路19内の圧力を測定する圧力計6と、気腹装置1内の各構成部位の制御を行う制御部7とが主に設けられている。   FIG. 1 is a diagram illustrating an example of the overall configuration of an insufflation apparatus 1 according to the first embodiment of the present invention. As shown in FIG. 1, in the pneumoperitoneum apparatus 1 of the present embodiment, the decompressor 2, the electropneumatic proportional valve 3 that adjusts the flow rate of the gas flowing in the air supply line 19, and the opening and closing of the air supply line 19 The solenoid valve 4 as a switching unit that performs the above operation, the flow meter 5 that measures the flow rate of the gas to be fed, the pressure gauge 6 that measures the pressure in the air feeding line 19, and the components of the insufflation apparatus 1. A control unit 7 that performs control is mainly provided.

気腹装置1には、高圧ガス用チューブ10を介して、ガス供給源11(例えば、炭酸ガスボンベ)が接続されている。また、気腹装置1には、患者12の腹腔13に挿入されたトラカール14を介して体腔内に炭酸ガスなどの気腹用ガスを送気するための送気チューブ15が接続されている。   A gas supply source 11 (for example, a carbon dioxide gas cylinder) is connected to the insufflation apparatus 1 via a high-pressure gas tube 10. The insufflation apparatus 1 is connected to an insufflation tube 15 for supplying insufflation gas such as carbon dioxide into a body cavity via a trocar 14 inserted into the abdominal cavity 13 of the patient 12.

一方、気腹装置1には、送気管路19のほかに、体腔圧測定用の管路も設けられている。体腔圧測定用管路(以下、測定管路20と示す)は、圧力計18、測定用チューブ17で構成されており、患者12の腹腔13に挿入されたトラカール16を介して体腔内の圧力を測定するための管路である。   On the other hand, in addition to the air supply conduit 19, the insufflation apparatus 1 is also provided with a conduit for measuring body cavity pressure. A body cavity pressure measurement line (hereinafter, referred to as a measurement line 20) is composed of a pressure gauge 18 and a measurement tube 17, and the pressure inside the body cavity via a trocar 16 inserted into the abdominal cavity 13 of the patient 12. It is a pipe line for measuring.

減圧器2は、ガス供給源11から供給される高圧のガスを、所定の圧力に減圧する。例えば、ガス供給源11から6MPa程度の高圧で供給されるガスを、0.4MPa程度にまで減圧する。   The decompressor 2 decompresses the high-pressure gas supplied from the gas supply source 11 to a predetermined pressure. For example, the gas supplied from the gas supply source 11 at a high pressure of about 6 MPa is decompressed to about 0.4 MPa.

電空比例弁3は、電気駆動弁の一種で、弁部に作用する減圧ばねの力を変化させることにより弁部の開度を電気的に多段階調整することで、送気圧を所定の圧力値に調整できるように構成されている。制御部7から入力される制御信号に基づいて、減圧器2で減圧された炭酸ガスの圧力を、0〜80mmHg程度の範囲内の送気圧に変化させる。   The electropneumatic proportional valve 3 is a kind of electrically driven valve, and by electrically adjusting the opening degree of the valve part by changing the force of the pressure reducing spring acting on the valve part, the air pressure is supplied to a predetermined pressure. It is configured so that it can be adjusted to the value. Based on the control signal input from the control unit 7, the pressure of the carbon dioxide gas decompressed by the decompressor 2 is changed to an air pressure within a range of about 0 to 80 mmHg.

電磁弁4は、制御部7から入力される制御信号に基づいて開閉動作を行う。   The electromagnetic valve 4 performs an opening / closing operation based on a control signal input from the control unit 7.

流量計5は、体腔内に供給される炭酸ガスの流量を測定し、測定結果を制御部7へ出力する。   The flow meter 5 measures the flow rate of the carbon dioxide gas supplied into the body cavity and outputs the measurement result to the control unit 7.

第一の圧力測定部としての圧力計6は、送気管路19内の圧力を測定する。電磁弁4が開の状態の場合(送気中)は、電空比例弁3から出力されるガスの圧力を計測し、電磁弁4が閉の状態の場合(送気停止中)は、送気チューブ15を介して腹腔13の圧力を測定する。圧力計6での測定結果は、制御部7へ出力される。   The pressure gauge 6 as the first pressure measuring unit measures the pressure in the air supply line 19. When the solenoid valve 4 is open (air supply), the pressure of the gas output from the electropneumatic proportional valve 3 is measured, and when the solenoid valve 4 is closed (air supply is stopped) The pressure in the abdominal cavity 13 is measured via the air tube 15. The measurement result of the pressure gauge 6 is output to the control unit 7.

送気チューブ15は、気腹装置1から送出されたガスをトラカール14へと導くチューブである。一般的に、柔軟性を有する材質で形成されており、約3m程度の長さを有する。   The air supply tube 15 is a tube that guides the gas delivered from the insufflation apparatus 1 to the trocar 14. Generally, it is formed of a flexible material and has a length of about 3 m.

第二の圧力測定部としての圧力計18は、測定用チューブ17を介して体腔内の圧力を測定し、測定結果を制御部7へ出力する。   The pressure gauge 18 as the second pressure measurement unit measures the pressure in the body cavity via the measurement tube 17 and outputs the measurement result to the control unit 7.

次に、本実施形態の気腹装置1を用い、患者の体腔内にガスを送気し気腹する手順について、図2を用いて説明する。図2は、気腹装置1による送気制御の手順の一例を説明するフローチャートである。   Next, a procedure for insufflation by supplying gas into the body cavity of a patient using the pneumoperitoneum apparatus 1 of the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart for explaining an example of a procedure for air supply control by the pneumoperitoneum apparatus 1.

まず、患者12の腹腔13の気腹目標となる腹腔圧(設定圧)を気腹装置1に入力する(ステップS1)。次に、ユーザにより送気開始のスイッチがオンに設定されるなど、送気の開始指示が気腹装置1に入力されると、送気管路19への送気が開始される(ステップS2)。続いて、電磁弁4を開き、患者12の腹腔13にガスを送気可能な状態にする(ステップS3)。以降、ユーザにより送気終了のスイッチがオンに設定されるなど、送気の終了指示が気腹装置1に入力されるまで、ステップS4からステップS12の一連の手順が実行され、患者12の腹腔13にガスが送気され体腔内を気腹する。   First, the abdominal pressure (set pressure) which becomes the pneumoperitoneum target of the abdominal cavity 13 of the patient 12 is input to the pneumoperitoneum apparatus 1 (step S1). Next, when an insufflation start instruction is input to the insufflation apparatus 1, such as when an insufflation start switch is turned on by the user, insufflation to the insufflation line 19 is started (step S2). . Subsequently, the electromagnetic valve 4 is opened, and the gas can be supplied to the abdominal cavity 13 of the patient 12 (step S3). Thereafter, a series of procedures from step S4 to step S12 are executed until an insufflation end instruction is input to the insufflation apparatus 1, such as when the insufflation end switch is turned on by the user. Gas is sent to 13 and the body cavity is inhaled.

ステップS4では、圧力計18により体腔内の圧力を測定する。圧力計18は、測定管路20に配置された圧力計であるので、腹腔13へのガスの送気を停止することなく、リアルタイムで体腔内圧力を測定する。ステップS4で測定された腹腔圧に基づき、電空比例弁3の出力を調整する(ステップS5)。具体的には、腹腔圧がステップS1で設定した設定圧に近づくに従い、電空比例弁3の出力を下げるように制御する。すなわち、腹腔圧が設定圧に近づくに従い、ガスの送気量を少なくしていき、ガスの過送気(体腔内にガスを供給しすぎて、設定圧をオーバーしてしまう状態)を防止する。   In step S4, the pressure in the body cavity is measured by the pressure gauge 18. Since the pressure gauge 18 is a pressure gauge arranged in the measurement pipeline 20, the pressure in the body cavity is measured in real time without stopping the gas supply to the abdominal cavity 13. Based on the abdominal pressure measured in step S4, the output of the electropneumatic proportional valve 3 is adjusted (step S5). Specifically, control is performed so that the output of the electropneumatic proportional valve 3 is lowered as the abdominal cavity pressure approaches the set pressure set in step S1. That is, as the abdominal pressure approaches the set pressure, the amount of gas supplied is decreased to prevent excessive gas supply (a state where the gas exceeds the set pressure by supplying too much gas into the body cavity). .

続いて、流量計5で送気流量を測定する(ステップS6)。続いて、ステップS6で測定された送気流量を積算して、積算流量Qを算出する(ステップS7)。積算流量が予め設定された閾値Qth以上である場合(ステップS8、YES)、測定管路20上に発生した詰まりやガス漏れなどにより、圧力計18による腹腔圧の測定が正常に行えない状態になっている可能性がないかどうかを確認する(ステップS9)。以下、ステップS9における確認動作を、誤測定検出動作と示す。一方、積算流量が予め設定された閾値に達していない場合(ステップS8、NO)、ステップS4に戻り、腹腔13内へのガスの送気と圧力計18による腹腔圧の測定、及び、送気流量の測定を継続する。なお、ユーザにより送気終了のスイッチがオンに設定されるなど、送気の終了指示が気腹装置1に入力されると(ステップS12、YES)、電磁弁4を閉じて(ステップS13)、患者12の腹腔13へのガスの送気を停止する。   Subsequently, the air flow rate is measured with the flow meter 5 (step S6). Subsequently, the air flow rate measured in step S6 is integrated to calculate an integrated flow rate Q (step S7). When the integrated flow rate is greater than or equal to the preset threshold value Qth (step S8, YES), the abdominal pressure cannot be normally measured by the pressure gauge 18 due to clogging or gas leakage occurring on the measurement line 20. It is confirmed whether there is a possibility of being (step S9). Hereinafter, the confirmation operation in step S9 is referred to as an erroneous measurement detection operation. On the other hand, when the integrated flow rate has not reached the preset threshold value (step S8, NO), the process returns to step S4, the gas is fed into the abdominal cavity 13, the abdominal pressure is measured by the pressure gauge 18, and the gas is fed. Continue measuring flow. When an instruction to end air supply is input to the insufflation apparatus 1 (step S12, YES), such as when the user sets the air supply end switch to ON, the electromagnetic valve 4 is closed (step S13). The gas supply to the abdominal cavity 13 of the patient 12 is stopped.

ステップS9における、圧力計18の誤測定検出動作について、図3及び図4を用いて説明する。図3は、圧力計18の誤測定検出動作の一例を説明するフローチャートである。また、図4は、送気停止中における送気管路19及び測定管路20の圧力の経時変化の一例を説明する図である。   The erroneous measurement detection operation of the pressure gauge 18 in step S9 will be described with reference to FIGS. FIG. 3 is a flowchart for explaining an example of the erroneous measurement detection operation of the pressure gauge 18. FIG. 4 is a diagram for explaining an example of the change over time in the pressure of the air supply pipe line 19 and the measurement pipe line 20 when the air supply is stopped.

まず、電磁弁4を閉にし、腹腔13へのガスの送気を停止する(ステップS21)。電磁弁4を閉にして送気を停止すると、圧力計6で測定される送気管路19内の圧力と、圧力計18で測定される測定管路20の圧力とは、図4に示すように経時間変化する。図4の縦軸は、圧力計6及び圧力計18の測定値(送気管路19及び測定管路20内の圧力)であり、横軸は時間をあらわしている。図4において、白抜き四角のプロットは、圧力計6の測定値を示しており、白抜き三角のプロットは、圧力計18の測定値を示している。圧力計6で測定している送気管路19内の圧力の圧力振動波形は、通常、時間の経過と共に振幅が徐々に小さくなる減衰振動と呼ばれる振動波形を示す。   First, the electromagnetic valve 4 is closed, and the gas supply to the abdominal cavity 13 is stopped (step S21). When the solenoid valve 4 is closed and air supply is stopped, the pressure in the air supply line 19 measured by the pressure gauge 6 and the pressure in the measurement line 20 measured by the pressure gauge 18 are as shown in FIG. Changes over time. The vertical axis in FIG. 4 represents the measured values of the pressure gauge 6 and the pressure gauge 18 (pressure in the air supply pipe line 19 and the measurement pipe line 20), and the horizontal axis represents time. In FIG. 4, the white square plot indicates the measurement value of the pressure gauge 6, and the white triangle plot indicates the measurement value of the pressure gauge 18. The pressure vibration waveform of the pressure in the air supply pipe line 19 measured by the pressure gauge 6 usually shows a vibration waveform called a damped vibration whose amplitude gradually decreases with time.

送気停止から十分に時間が経過して、圧力が一定の値に収束した状態での送気管路内圧(収束圧)は、腹腔内の圧力とほぼ一致する。従って、圧力計6により測定された収束圧と、圧力計18の測定値とを比較することにより、圧力計18による腹腔圧の測定が正常に行えているかどうかを確認することができる。しかし、降下圧が収束するまでには、通常、250〜300msec程度の時間を要していた。   The air pressure in the air supply line (convergence pressure) in a state where a sufficient time has elapsed from the stop of air supply and the pressure has converged to a constant value substantially matches the pressure in the abdominal cavity. Therefore, by comparing the convergent pressure measured by the pressure gauge 6 with the measured value of the pressure gauge 18, it can be confirmed whether or not the measurement of the abdominal pressure by the pressure gauge 18 is normally performed. However, it usually takes about 250 to 300 msec for the pressure drop to converge.

これに対し、本実施形態では、送気管路内圧の経時変化における、1回目の極小値及び1回目の極大値を、圧力計18の測定値と比較することで、圧力計18の測定値に異常がないかどうかを判定する。1回目の極大値及び極小値は、送気停止から100msec程度で取得できるため、従来の方法に比べて短時間で誤測定検出動作を行うことができる。   On the other hand, in the present embodiment, the first minimum value and the first maximum value in the time-dependent change in the pressure in the air supply pipe line are compared with the measured value of the pressure gauge 18 to obtain the measured value of the pressure gauge 18. Determine if there are any abnormalities. Since the first maximum value and the minimum value can be acquired in about 100 msec after the air supply is stopped, the erroneous measurement detection operation can be performed in a shorter time than the conventional method.

ステップS21で腹腔13へのガスの送気を停止したら、続いて、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)とを検出する(ステップS22)。なお、iは測定圧検出の試行回数を表しており、送気停止直後の1回目の測定をi=0とし、2回目の測定はi=1、3回目の測定はi=2…と、測定圧検出動作を行う度にカウントアップされる。   If the gas supply to the abdominal cavity 13 is stopped in step S21, then the measured pressure Pa (i) of the pressure gauge 6 and the measured pressure Pb (i) of the pressure gauge 18 are detected (step S22). In addition, i represents the number of trials of measurement pressure detection, the first measurement immediately after stopping the air supply is i = 0, the second measurement is i = 1, the third measurement is i = 2, and so on. It is counted up every time the measurement pressure detection operation is performed.

続いて、圧力計6で測定される送気管路19内の圧力振動波形における1回目の極小値を検出する。具体的には、ステップS22で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較する。今回の測定圧Pa(i)のほうが前回の測定圧Pa(i-1)以下である場合は(ステップS23、NO)、送気管路内圧が減少し続けているため、第1回目の極小値に至っていないと判断される。従って、測定圧検出の試行回数をカウントアップし(ステップS24)、ステップS22に戻って、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける。なお、圧力計6及び圧力計18の測定は、例えば10msec間隔など一定間隔で実施する。   Subsequently, the first minimum value in the pressure vibration waveform in the air supply conduit 19 measured by the pressure gauge 6 is detected. Specifically, the measured pressure Pa (i) of the pressure gauge 6 measured in step S22 is compared with the previous measured pressure Pa (i-1). If the current measured pressure Pa (i) is less than or equal to the previous measured pressure Pa (i-1) (step S23, NO), the air supply line pressure continues to decrease, so the first minimum value is obtained. It is judged that it has not reached. Accordingly, the number of trials for detecting the measured pressure is counted up (step S24), and the process returns to step S22 to continue detecting the measured pressure Pa (i) of the pressure gauge 6 and the measured pressure Pb (i) of the pressure gauge 18. Note that the pressure gauge 6 and the pressure gauge 18 are measured at regular intervals such as 10 msec.

一方、ステップS22で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較し、今回の測定圧Pa(i)のほうが前回の測定圧Pa(i-1)よりも大きい場合は(ステップS23、YES)、送気管路内圧が増加に転じていると判断し、前回の測定圧Pa(i-1)を第1回目の極小値Pt1とする(ステップS25)。また、極小値発生時における圧力計18の測定圧Pb(i-1)を、Pt1との比較対象値Ps1とする(ステップS25)。   On the other hand, the measurement pressure Pa (i) of the pressure gauge 6 measured in step S22 is compared with the previous measurement pressure Pa (i-1), and the current measurement pressure Pa (i) is the previous measurement pressure Pa ( If it is greater than i-1) (YES in step S23), it is determined that the air supply line pressure has started to increase, and the previous measured pressure Pa (i-1) is set to the first minimum value Pt1. (Step S25). Further, the measured pressure Pb (i-1) of the pressure gauge 18 when the minimum value is generated is set as a comparison target value Ps1 with Pt1 (step S25).

送気管路内圧は減衰振動の振動波形を示すため、第1回目の極小値Pt1は、腹腔内の圧力よりも小さくなる。圧力計18による測定が正常に行えているのであれば、圧力計18での測定圧Ps1は腹腔圧であるので、Pt1はPs1より小さい値になる。従って、Pt1がPs1より小さい値でない場合(ステップS26、NO)には、圧力計18による測定が正常に行えておらず測定用管路に異常があると判定し(ステップS32)、誤測定検出動作を終了する。   Since the air supply line internal pressure indicates the vibration waveform of the damped vibration, the first minimum value Pt1 is smaller than the pressure in the abdominal cavity. If the measurement with the pressure gauge 18 can be performed normally, the measurement pressure Ps1 with the pressure gauge 18 is the abdominal pressure, so Pt1 is smaller than Ps1. Accordingly, when Pt1 is not a value smaller than Ps1 (step S26, NO), it is determined that the measurement by the pressure gauge 18 is not performed normally and the measurement pipe is abnormal (step S32), and erroneous measurement is detected. End the operation.

一方、Pt1がPs1より小さい値である場合(ステップS26、YES)、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける(ステップS27)。続いて、圧力計6で測定される送気管路19内の圧力振動波形における1回目の極大値を検出する。具体的には、ステップS27で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較する。今回の測定圧Pa(i)のほうが前回の測定圧Pa(i-1)以上である場合は(ステップS28、NO)、送気管路内圧が増加し続けているため、第1回目の極大値に至っていないと判断される。従って、測定圧検出の試行回数をカウントアップし(ステップS29)、ステップS27に戻って、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける。   On the other hand, when Pt1 is smaller than Ps1 (step S26, YES), detection of the measured pressure Pa (i) of the pressure gauge 6 and the measured pressure Pb (i) of the pressure gauge 18 is continued (step S27). Subsequently, the first maximum value in the pressure vibration waveform in the air supply line 19 measured by the pressure gauge 6 is detected. Specifically, the measured pressure Pa (i) of the pressure gauge 6 measured in step S27 is compared with the previous measured pressure Pa (i-1). If the current measured pressure Pa (i) is greater than or equal to the previous measured pressure Pa (i-1) (step S28, NO), the air supply line pressure continues to increase, so the first maximum value is reached. It is judged that it has not reached. Accordingly, the number of trials of measurement pressure detection is counted up (step S29), and the process returns to step S27 to continue detection of the measurement pressure Pa (i) of the pressure gauge 6 and the measurement pressure Pb (i) of the pressure gauge 18.

一方、ステップS27で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較し、今回の測定圧Pa(i)のほうが前回の測定圧Pa(i-1)よりも小さい場合は(ステップS28、YES)、送気管路内圧が減少に転じていると判断し、前回の測定圧Pa(i-1)を第1回目の極大値Pt2とする(ステップS30)。また、極大値発生時における圧力計18の測定圧Pb(i-1)を、Pt2との比較対象値Ps2とする(ステップS30)。   On the other hand, the measurement pressure Pa (i) of the pressure gauge 6 measured in step S27 is compared with the previous measurement pressure Pa (i-1), and the current measurement pressure Pa (i) is the previous measurement pressure Pa ( If it is smaller than i-1) (YES in step S28), it is determined that the air supply line pressure has started to decrease, and the previous measured pressure Pa (i-1) is set to the first maximum value Pt2. (Step S30). Further, the measured pressure Pb (i-1) of the pressure gauge 18 when the maximum value is generated is set as a comparison target value Ps2 with Pt2 (step S30).

送気管路内圧は減衰振動の振動波形を示すため、第1回目の極大値Pt2は、腹腔内の圧力よりも大きくなる。圧力計18による測定が正常に行えているのであれば、圧力計18での測定圧Ps2は腹腔圧であるので、Pt2はPs2より大きい値になる。一方、圧力計18が腹腔圧を実際の値よりも低く測定しており、測定誤差が過圧誤差許容範囲(例えば、5mmHg)を超えてしまう場合、腹腔内にガスを過送気してしまう恐れがある。これを防止するために、圧力計18の測定誤差が過圧誤差許容範囲を超えていないかどうかを判定する必要がある。従って、測定圧Ps2に過圧誤差許容範囲を加えた値より、第1回目の極大値Pt2が小さいことを、同時に確認する。   Since the air supply line internal pressure shows the vibration waveform of the damped vibration, the first maximum value Pt2 is larger than the pressure in the abdominal cavity. If the measurement with the pressure gauge 18 is performed normally, the measurement pressure Ps2 with the pressure gauge 18 is the abdominal pressure, and therefore Pt2 is larger than Ps2. On the other hand, if the pressure gauge 18 measures the abdominal pressure lower than the actual value and the measurement error exceeds the overpressure error allowable range (for example, 5 mmHg), the gas is excessively fed into the abdominal cavity. There is a fear. In order to prevent this, it is necessary to determine whether or not the measurement error of the pressure gauge 18 exceeds the overpressure error allowable range. Accordingly, it is confirmed at the same time that the first maximum value Pt2 is smaller than the value obtained by adding the overpressure error allowable range to the measured pressure Ps2.

すなわち、第1回目の極大値Pt2が測定圧Ps2より大きく、かつ、測定圧Ps2に過圧誤差許容範囲を加えた値より小さい場合には、異常は検出されないと判断し、そのまま誤測定検出動作を終了する(ステップS31、YES)。その際、積算流量Qの値をリセットする(ステップS33)。   In other words, if the first maximum value Pt2 is larger than the measured pressure Ps2 and smaller than the measured pressure Ps2 plus the allowable overpressure error, it is determined that no abnormality is detected, and the erroneous measurement detection operation is performed as it is. Is finished (step S31, YES). At that time, the value of the integrated flow rate Q is reset (step S33).

一方、第1回目の極大値Pt2が測定圧Ps2以下である場合、または、測定圧Ps2に過圧誤差許容範囲を加えた値以上である場合には、圧力計18による測定が正常に行えておらず測定用管路に異常があると判定し(ステップS32)、誤測定検出動作を終了する。   On the other hand, when the first maximum value Pt2 is equal to or less than the measured pressure Ps2, or when the measured pressure Ps2 is equal to or greater than the value obtained by adding the overpressure error allowable range, the measurement with the pressure gauge 18 can be performed normally. It is determined that there is an abnormality in the measurement pipeline (step S32), and the erroneous measurement detection operation is terminated.

以上の一連の手順により、ステップS9の誤測定検出動作を終了すると、ステップS10に進む。誤測定検出動作において、異常があると判定された場合(ステップS10、YES)、測定用管路を用いずに、送気用管路を用いてガスの送気と腹腔圧検出とを交互に行う間欠送気制御に移行する(ステップS11)。一方、誤測定検出動作において異常があると判定されなかった場合(ステップS10、NO)、ステップS4に戻り、腹腔13内へのガスの送気と圧力計18による腹腔圧の測定、及び、送気流量の測定を継続する。積算流量Qは誤測定検出動作後にリセットされ、再度カウントされる。誤測定検出動作は、積算流量Qが予め設定された閾値Qthに達する度に実行される。なお、ユーザにより送気終了のスイッチがオンに設定されるなど、送気の終了指示が気腹装置1に入力されると(ステップS12、YES)、電磁弁4を閉じて(ステップS13)、患者12の腹腔13へのガスの送気を停止し、気腹を終了する。   When the erroneous measurement detection operation in step S9 is completed by the above series of procedures, the process proceeds to step S10. In the erroneous measurement detection operation, when it is determined that there is an abnormality (step S10, YES), gas supply and abdominal pressure detection are alternately performed using the supply line without using the measurement line. The process proceeds to the intermittent air supply control to be performed (step S11). On the other hand, if it is not determined that there is an abnormality in the erroneous measurement detection operation (step S10, NO), the process returns to step S4, the gas is fed into the abdominal cavity 13 and the abdominal pressure is measured and sent by the pressure gauge 18. Continue measuring airflow. The accumulated flow Q is reset after the erroneous measurement detection operation and is counted again. The erroneous measurement detection operation is executed every time the integrated flow rate Q reaches a preset threshold value Qth. When an instruction to end air supply is input to the insufflation apparatus 1 (step S12, YES), such as when the user sets the air supply end switch to ON, the electromagnetic valve 4 is closed (step S13). The gas supply to the abdominal cavity 13 of the patient 12 is stopped, and the pneumoperitoneum is terminated.

このように、本実施形態によれば、送気停止時に、圧力計6で測定される送気管路内圧が減衰振動と呼ばれる振動波形となることを利用し、同振動波形の1回目の極小値及び1回目の極大値を、圧力計18の測定値と比較することで、圧力計18の測定値に異常がないかどうかを判定する。1回目の極大値及び極小値は、送気停止から100msec程度で取得できるため、減衰振動が収束するのを待って圧力計18の測定値と比較するよりも、短時間で誤測定検出動作を行うことができ、圧力測定専用チューブで正しく体腔内圧が測定されているか否かを短時間で判定することができる。   As described above, according to the present embodiment, when the air supply is stopped, the internal pressure measured by the pressure gauge 6 becomes a vibration waveform called a damped vibration, and the first minimum value of the vibration waveform is used. And it is determined whether there is no abnormality in the measurement value of the pressure gauge 18 by comparing the first maximum value with the measurement value of the pressure gauge 18. Since the first maximum and minimum values can be acquired in about 100 msec after the air supply is stopped, the erroneous measurement detection operation can be performed in a shorter time than comparing with the measured value of the pressure gauge 18 after waiting for the damping vibration to converge. It can be performed, and it can be determined in a short time whether or not the body cavity pressure is correctly measured with the pressure measurement tube.

また、第1回目の極大値Pt2と測定圧Ps2とを比較する際に、過圧誤差許容範囲を加味して比較を行っているので、圧力計18が腹腔圧を実際の値よりも低く測定している場合に、測定誤差が過圧誤差許容範囲を超える可能性の有無を検知することができ、患者12の腹腔13にガスを過送気するのを防止することができる。
(第2の実施形態)
Further, when comparing the first maximum value Pt2 and the measured pressure Ps2, the comparison is performed taking into account the overpressure error allowable range, so the pressure gauge 18 measures the abdominal pressure lower than the actual value. In this case, it is possible to detect whether or not there is a possibility that the measurement error exceeds the allowable overpressure error range, and it is possible to prevent the gas from being excessively supplied to the abdominal cavity 13 of the patient 12.
(Second Embodiment)

上述した第1の実施形態の気腹装置1では、送気管路内圧の振動波形において、第1回目の極小値及び極大値を用いた2回の判定で、圧力計18の測定値に異常があるかどうかを判定していた。このため、送気管路19内に発生する圧力振動の振幅が大きく、第1回目の極大値Pt2と収束圧(腹腔圧)との差が過圧誤差許容範囲よりも大きい場合には、測定管路20に異常がなくても、異常ありと判定されてしまっていた。これに対し、本実施形態においては、異常、または正常のどちらかの判定がなされるまで、2回目以降の極小値及び極大値を用い、異常有無の判定を継続的に行う点が異なっている。   In the pneumoperitoneum device 1 of the first embodiment described above, in the vibration waveform of the air supply line internal pressure, the measurement value of the pressure gauge 18 is abnormal in two determinations using the first minimum value and the maximum value. It was judged whether there was. For this reason, when the amplitude of the pressure vibration generated in the air supply line 19 is large and the difference between the first maximum value Pt2 and the convergence pressure (abdominal pressure) is larger than the allowable overpressure error, the measurement tube Even if there was no abnormality in the road 20, it was determined that there was an abnormality. On the other hand, the present embodiment is different in that determination of presence / absence of abnormality is continuously performed using the minimum value and the maximum value after the second time until determination of either abnormality or normal is made. .

本実施形態の気腹装置の構成は、第1の実施形態と同様の構成である。また、患者12の腹腔13内にガスを送気し腹腔圧を制御する手順(図2)も同様である。以下、本実施形態における圧力計18の誤測定検出動作について、図5を用いて説明する。図5は、第2の実施形態における圧力計18の誤測定検出動作の一例を説明するフローチャートである。   The configuration of the pneumoperitoneum according to the present embodiment is the same as that of the first embodiment. The procedure for supplying gas into the abdominal cavity 13 of the patient 12 to control the abdominal pressure (FIG. 2) is also the same. Hereinafter, the erroneous measurement detection operation of the pressure gauge 18 in the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart for explaining an example of the erroneous measurement detection operation of the pressure gauge 18 in the second embodiment.

まず、第1の実施形態と同様に、ステップS41で腹腔13へのガスの送気を停止し、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)とを検出する(ステップS42)。   First, as in the first embodiment, gas supply to the abdominal cavity 13 is stopped in step S41, and the measured pressure Pa (i) of the pressure gauge 6 and the measured pressure Pb (i) of the pressure gauge 18 are set. It detects (step S42).

続いて、圧力計6で測定される送気管路19内の圧力振動波形における1回目の極小値を検出する。今回の測定圧Pa(i)が前回の測定圧Pa(i-1)以下である場合は(ステップS43、NO)、送気管路内圧が減少し続けているため、第1回目の極小値に至っていないと判断される。従って、測定圧検出の試行回数をカウントアップし(ステップS44)、ステップS42に戻って、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける。   Subsequently, the first minimum value in the pressure vibration waveform in the air supply conduit 19 measured by the pressure gauge 6 is detected. If the current measured pressure Pa (i) is equal to or lower than the previous measured pressure Pa (i-1) (step S43, NO), the air supply line pressure continues to decrease, so the first minimum value is reached. It is judged that it has not reached. Accordingly, the number of trials of measurement pressure detection is counted up (step S44), and the process returns to step S42 to continue detection of the measurement pressure Pa (i) of the pressure gauge 6 and the measurement pressure Pb (i) of the pressure gauge 18.

一方、ステップS42で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較し、今回の測定圧Pa(i)が前回の測定圧Pa(i-1)よりも大きい場合は(ステップS43、YES)、送気管路内圧が増加に転じていると判断し、前回の測定圧Pa(i-1)を第1回目の極小値Pt(j)とする(ステップS45)。また、極小値発生時における圧力計18の測定圧Pb(i-1)を、Pt(j)との比較対象値Ps(j)とする(ステップS45)。なお、jはピーク値の出現回数を表しており、第1回目の極小値をj=1、第1回目の極大値をj=2、2回目の極小値をj=3…と、ピーク値が出現する度にカウントアップされる。   On the other hand, the measured pressure Pa (i) of the pressure gauge 6 measured in step S42 is compared with the previous measured pressure Pa (i-1), and the current measured pressure Pa (i) is compared with the previous measured pressure Pa (i). -1) (step S43, YES), it is determined that the air supply line pressure has started to increase, and the previous measured pressure Pa (i-1) is the first minimum value Pt (j). (Step S45). Further, the measured pressure Pb (i-1) of the pressure gauge 18 when the minimum value is generated is set as a comparison target value Ps (j) with Pt (j) (step S45). Note that j represents the number of occurrences of the peak value. The first local minimum value is j = 1, the first local maximum value is j = 2, the second local minimum value is j = 3, and so on. Counts up each time

1回目の極小値Pt(1)がPs(1)より小さい値でない場合(ステップS46、NO)には、圧力計18による測定が正常に行えておらず測定用管路に異常があると判定し(ステップS57)、誤測定検出動作を終了する。   If the first minimum value Pt (1) is not smaller than Ps (1) (NO in step S46), it is determined that the measurement by the pressure gauge 18 is not performed normally and the measurement pipe is abnormal. (Step S57), and the erroneous measurement detection operation is terminated.

一方、Pt(1)がPs(1)より小さい値である場合(ステップS46、YES)、ピーク値の出現回数jをカウントアップし(ステップS47)、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける(ステップS48)。続いて、圧力計6で測定される送気管路19内の圧力振動波形における1回目の極大値を検出する。具体的には、ステップS48で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較する。今回の測定圧Pa(i)のほうが前回の測定圧Pa(i-1)以上である場合は(ステップS49、NO)、送気管路内圧が増加し続けているため、第1回目の極大値に至っていないと判断される。従って、測定圧検出の試行回数をカウントアップし(ステップS50)、ステップS48に戻って、圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける。   On the other hand, when Pt (1) is smaller than Ps (1) (step S46, YES), the peak number of appearances j is counted up (step S47), and the measured pressure Pa (i) of the pressure gauge 6 is calculated. The detection of the measurement pressure Pb (i) of the pressure gauge 18 is continued (step S48). Subsequently, the first maximum value in the pressure vibration waveform in the air supply line 19 measured by the pressure gauge 6 is detected. Specifically, the measured pressure Pa (i) of the pressure gauge 6 measured in step S48 is compared with the previous measured pressure Pa (i-1). If the current measured pressure Pa (i) is greater than or equal to the previous measured pressure Pa (i-1) (step S49, NO), the air supply line pressure continues to increase, so the first maximum value is reached. It is judged that it has not reached. Accordingly, the number of trials for detecting the measured pressure is counted up (step S50), and the process returns to step S48 to continue detecting the measured pressure Pa (i) of the pressure gauge 6 and the measured pressure Pb (i) of the pressure gauge 18.

一方、ステップS48で測定した圧力計6の測定圧Pa(i)と、前回の測定圧Pa(i-1)とを比較し、今回の測定圧Pa(i)のほうが前回の測定圧Pa(i-1)よりも小さい場合は(ステップS49、YES)、送気管路内圧が減少に転じていると判断し、前回の測定圧Pa(i-1)を第1回目の極大値Pt(j)とする(ステップS51)。また、極大値発生時における圧力計18の測定圧Pb(i-1)を、Pt(j)との比較対象値Ps(j)とする(ステップS51)。   On the other hand, the measurement pressure Pa (i) of the pressure gauge 6 measured in step S48 is compared with the previous measurement pressure Pa (i-1), and the current measurement pressure Pa (i) is the previous measurement pressure Pa ( If it is smaller than i-1) (YES in step S49), it is determined that the pressure in the air supply line has started to decrease, and the previous measured pressure Pa (i-1) is the first maximum value Pt (j ) (Step S51). Further, the measured pressure Pb (i-1) of the pressure gauge 18 when the maximum value is generated is set as a comparison target value Ps (j) with Pt (j) (step S51).

第1回目の極大値Pt(j)が測定圧Ps(j)より大きく、かつ、測定圧Ps(j)に過圧誤差許容範囲を加えた値より小さい場合には(ステップS52、YES)、異常は検出されないと判断し(ステップS56)、誤測定検出動作を終了する。その際、積算流量Qの値をリセットする(ステップS58)。   When the first local maximum value Pt (j) is larger than the measured pressure Ps (j) and smaller than the value obtained by adding the allowable overpressure error to the measured pressure Ps (j) (step S52, YES), It is determined that no abnormality is detected (step S56), and the erroneous measurement detection operation is terminated. At that time, the value of the integrated flow rate Q is reset (step S58).

一方、第1回目の極大値Pt(j)が測定圧Ps(j)以下である場合、または、測定圧Ps(j)に過圧誤差許容範囲を加えた値以上である場合には(ステップS52、NO)、異常の有無がただちに判定できない。なぜなら、送気管路19内に発生する圧力振動の振幅が大きいことに起因して、第1回目の極大値Pt2と収束圧(腹腔圧)との差が過圧誤差許容範囲よりも大きくなっている可能性があるためである。従って、引き続き、圧力振動波形の収束判定を行う。   On the other hand, if the first local maximum value Pt (j) is less than or equal to the measured pressure Ps (j), or if it is greater than or equal to the value obtained by adding the allowable overpressure error to the measured pressure Ps (j) (step) S52, NO), the presence or absence of abnormality cannot be immediately determined. This is because the difference between the first maximum value Pt2 and the convergent pressure (abdominal pressure) becomes larger than the overpressure error allowable range due to the large amplitude of the pressure vibration generated in the air supply duct 19. Because there is a possibility that. Accordingly, the convergence determination of the pressure vibration waveform is subsequently performed.

送気管路19内の圧力振動波形の収束判定では、第1回目の極大値Pt(j)と、一つ前のピーク値である第1回目の極小値Pt(j-1)との差分を算出する。算出された差分が収束判定閾値(例えば、1mmHg)以上の場合、圧力振動波形は収束していないと判定される(ステップS53、NO)。この場合、ピーク値の出現回数jをカウントアップし(ステップS54)、ステップS42に戻って圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)の検出を続ける。   In the convergence determination of the pressure oscillation waveform in the air supply pipe 19, the difference between the first maximum value Pt (j) and the first minimum value Pt (j-1) which is the previous peak value is calculated. calculate. When the calculated difference is equal to or greater than the convergence determination threshold (for example, 1 mmHg), it is determined that the pressure vibration waveform has not converged (NO in step S53). In this case, the number of appearances j of the peak value is counted up (step S54), and the process returns to step S42 to continue detection of the measured pressure Pa (i) of the pressure gauge 6 and the measured pressure Pb (i) of the pressure gauge 18.

一方、算出された差分が収束判定閾値(例えば、1mmHg)未満の場合、圧力振動波形は収束していると判定される(ステップS53、YES)。圧力振動波形が収束している場合、その時点での圧力計6の測定圧Pa(i)と、圧力計18の測定圧Pb(i)とを比較して、差が誤差判定閾値(例えば、1mmHg)未満であるか否かを判定する。両者の差が誤差判定閾値未満の場合(ステップS55、YES)、異常は検出されないと判断し(ステップS56)、誤測定検出動作を終了する。一方、両者の差が誤差判定閾値(例えば、1mmHg)以上の場合(ステップS55、NO)、測定用管路に異常があると判定し(ステップS57)、誤測定検出動作を終了する。   On the other hand, when the calculated difference is less than the convergence determination threshold value (for example, 1 mmHg), it is determined that the pressure vibration waveform has converged (step S53, YES). When the pressure vibration waveform has converged, the measured pressure Pa (i) of the pressure gauge 6 at that time is compared with the measured pressure Pb (i) of the pressure gauge 18, and the difference is an error determination threshold (for example, Judge whether it is less than 1mmHg). When the difference between the two is less than the error determination threshold value (step S55, YES), it is determined that no abnormality is detected (step S56), and the erroneous measurement detection operation is terminated. On the other hand, if the difference between the two is equal to or greater than an error determination threshold (for example, 1 mmHg) (step S55, NO), it is determined that there is an abnormality in the measurement pipe (step S57), and the erroneous measurement detection operation is terminated.

このように、本実施形態では、極大値Pt(j)が測定圧Ps(j)に過圧誤差許容範囲を加えた値以上である場合には、引き続き、圧力振動波形の収束判定を行う。圧力振動波形が収束していないと判定された場合には、次の極小値及び極大値を用いて異常有無の判定を継続的に行うことで、測定用管路が異常であるか正常であるかを確実に判定することができる。従って、第1の実施形態では、測定用管路が異常である可能性があると、間欠送気制御に切り替えて気腹する必要があるのに対し、本実施形態では、確実に異常であると判定された場合のみ間欠送気制御に切り替えて気腹するため、より効率よく気腹することができる。   Thus, in this embodiment, when the maximum value Pt (j) is equal to or greater than the value obtained by adding the allowable overpressure error to the measured pressure Ps (j), the convergence determination of the pressure vibration waveform is subsequently performed. When it is determined that the pressure oscillation waveform has not converged, the measurement pipeline is abnormal or normal by continuously determining whether there is an abnormality using the next minimum value and maximum value. Can be determined reliably. Therefore, in the first embodiment, if there is a possibility that the measurement pipe line is abnormal, it is necessary to switch to intermittent air supply control and inhale, whereas in the present embodiment, it is definitely abnormal. Since it is switched to intermittent air supply control only when it is determined that the air is inhaled, it is possible to inhale more efficiently.

本明細書における各「部」は、実施の形態の各機能に対応する概念的なもので、必ずしも特定のハードウェアやソフトウエア・ルーチンに1対1には対応しない。従って、本明細書では、実施の形態の各機能を有する仮想的回路ブロック(部)を想定して実施の形態を説明した。また、本実施の形態における各手順の各ステップは、その性質に反しない限り、実行順序を変更し、複数同時に実行し、あるいは実行毎に異なった順序で実行してもよい。さらに、本実施の形態における各手順の各ステップの全てあるいは一部をハードウェアにより実現してもよい。   Each “unit” in this specification is a conceptual one corresponding to each function of the embodiment, and does not necessarily correspond to a specific hardware or software routine on a one-to-one basis. Therefore, in the present specification, the embodiment has been described assuming a virtual circuit block (unit) having each function of the embodiment. In addition, each step of each procedure in the present embodiment may be executed in a different order for each execution by changing the execution order and performing a plurality of steps at the same time, as long as it does not contradict its nature. Furthermore, all or part of each step of each procedure in the present embodiment may be realized by hardware.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として例示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are illustrated by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…気腹装置、2…減圧器、3…電空比例弁、4…電磁弁、5…流量計、6、18…圧力計、7…制御部、10…高圧ガス用チューブ、11…ガス供給源、12…患者、13…腹腔、14、16…トラカール、15…送気チューブ、17…測定用チューブ、 DESCRIPTION OF SYMBOLS 1 ... Pneumatic stomach apparatus, 2 ... Pressure reducing device, 3 ... Electropneumatic proportional valve, 4 ... Solenoid valve, 5 ... Flow meter, 6, 18 ... Pressure gauge, 7 ... Control part, 10 ... Tube for high pressure gas, 11 ... Gas Source: 12 ... Patient, 13 ... Abdominal cavity, 14, 16 ... Tracar, 15 ... Air supply tube, 17 ... Measurement tube,

Claims (6)

所定の気体を送気する送気源に連通して、患者の体腔へ前記気体を供給する送気管路と、
前記送気管路上に設けられ、前記気体の供給と停止とを切り替える切替部と、
前記送気管路に接続される第一の圧力測定部と、
前記患者の体腔内の圧力を測定するための測定管路と、
前記測定管路に接続される第二の圧力測定部と、
前記気体の送気量を制御する制御部と、
を有し、前記制御部は、前記患者の体腔への前記気体の送気が停止されている期間において、前記第一の圧力測定部の測定値に基づき前記送気管路内の圧力状態を表す圧力振動波形における最初の極小値及び最初の極大値と、前記第二の圧力測定部の測定値に基づき前記測定管路を介して体腔内の圧力が測定された腔内圧力測定結果とを比較し、前記第二の圧力測定部の異常を検出する測定管路異常判定部を有することを特徴とする、気腹装置。
An air supply line that communicates with an air supply source for supplying a predetermined gas and supplies the gas to a body cavity of a patient;
A switching unit that is provided on the air supply pipe and switches between supply and stop of the gas;
A first pressure measuring unit connected to the air supply conduit;
A measuring line for measuring the pressure in the body cavity of the patient;
A second pressure measurement unit connected to the measurement pipeline;
A control unit for controlling the amount of gas supplied;
The control unit represents a pressure state in the air supply line based on a measurement value of the first pressure measurement unit in a period in which the supply of the gas to the body cavity of the patient is stopped The first minimum value and the first maximum value in the pressure oscillation waveform are compared with the intracavity pressure measurement result in which the pressure in the body cavity is measured through the measurement pipe line based on the measurement value of the second pressure measurement unit. And a pneumoconiosis device having a measurement line abnormality determination unit for detecting an abnormality of the second pressure measurement unit.
前記測定管路異常判定部は、前記圧力振動波形における前記極小値が、前記極小値取得時における前記第二の圧力測定部の測定値以上であるか、または、前記圧力振動波形における前記極大値が、前記極大値取得時における前記第二の圧力測定部の測定値以下である場合に、前記第二の圧力測定部が異常であると判定する、請求項1に記載の気腹装置。   The measurement line abnormality determining unit is configured such that the minimum value in the pressure vibration waveform is equal to or greater than a measurement value of the second pressure measurement unit at the time of acquiring the minimum value, or the maximum value in the pressure vibration waveform. The pneumoperitoneum according to claim 1, wherein when the maximum value is obtained, the second pressure measurement unit determines that the second pressure measurement unit is abnormal when it is equal to or less than the measurement value of the second pressure measurement unit. 前記測定管路異常判定部は、前記圧力振動波形における前記極大値が、前記極大値取得時における前記第二の圧力測定部の測定値に、前記腔内圧力測定において許容される加圧誤差範囲である過圧誤差許容値を足した値以上である場合に、前記第二の圧力測定部が異常であると判定する、請求項2に記載の気腹装置。   The measurement line abnormality determining unit is configured such that the maximum value in the pressure vibration waveform is a pressurization error range that is allowed in the intracavitary pressure measurement to the measurement value of the second pressure measurement unit at the time of acquiring the maximum value. The pneumoperitoneum according to claim 2, wherein the second pressure measurement unit determines that the second pressure measurement unit is abnormal when the overpressure error allowable value is equal to or greater than the value. 前記測定管路異常判定部は、前記圧力振動波形における前記極小値が、前記極小値取得時における前記第二の圧力測定部の測定値より小さく、かつ、前記圧力振動波形における前記極大値が、前記極大値取得時における前記第二の圧力測定部の測定値より大きく、かつ、前記圧力振動波形における前記極大値が、前記極大値取得時における前記第二の圧力測定部の測定値に、前記過圧誤差許容値を足した値未満である場合に、前記第二の圧力測定部は異常ないと判定する、請求項3に記載の気腹装置。   The measurement line abnormality determining unit is configured such that the minimum value in the pressure vibration waveform is smaller than the measurement value of the second pressure measurement unit at the time of acquiring the minimum value, and the maximum value in the pressure vibration waveform is The measurement value of the second pressure measurement unit is larger than the measurement value of the second pressure measurement unit at the time of obtaining the maximum value, and the measurement value of the second pressure measurement unit at the time of acquisition of the maximum value is greater than the measurement value of the second pressure measurement unit. The insufflation apparatus according to claim 3, wherein the second pressure measurement unit determines that there is no abnormality when the value is less than a value obtained by adding an allowable overpressure error value. 前記測定管路異常判定部は、前記圧力振動波形における前記最初の極小値と前記最初の極小値取得時における前記第二の圧力測定部の測定値との比較、及び、前記最初の極大値と前記最初の極大値取得時における前記第二の圧力測定部の測定値との比較において、前記第二の圧力測定部は異常ないと判定しなかった場合、前記圧力振動波形における次の極小値と前記次の極小値取得時における前記第二の圧力測定部の測定値との比較、及び、前記圧力振動波形における次の極大値と前記次の極大値取得時における前記第二の圧力測定部の測定値との比較を行い、前記第二の圧力測定部の異常を検出することを特徴とする、請求項4に記載の気腹装置。   The measurement line abnormality determination unit compares the first minimum value in the pressure vibration waveform with the measurement value of the second pressure measurement unit at the time of obtaining the first minimum value, and the first maximum value and In the comparison with the measurement value of the second pressure measurement unit at the time of obtaining the first maximum value, if the second pressure measurement unit does not determine that there is no abnormality, the next minimum value in the pressure vibration waveform and Comparison with the measurement value of the second pressure measurement unit at the time of obtaining the next minimum value, and the second pressure measurement unit at the time of obtaining the next maximum value and the next maximum value in the pressure vibration waveform 5. The pneumoperitoneum according to claim 4, wherein a comparison with a measured value is performed to detect an abnormality in the second pressure measurement unit. 前記測定管路異常判定部は、前記圧力振動波形が収束していると判断されるまでの間に、前記第二の圧力測定部の異常有無を判定できなかった場合、前記圧力振動波形が収束した時点における、前記第一の圧力測定部の測定値と前記第二の圧力測定部の測定値との差分が、誤差判定閾値よりも小さい場合に、前記第二の圧力測定部は異常ないと判定し、前記差分が前記誤差判定閾値以上である場合に、前記第二の圧力測定部は異常であると判定する、請求項5に記載の気腹装置。   If the measurement line abnormality determination unit cannot determine whether the second pressure measurement unit is abnormal before it is determined that the pressure vibration waveform has converged, the pressure vibration waveform converges. When the difference between the measured value of the first pressure measuring unit and the measured value of the second pressure measuring unit is smaller than the error determination threshold, the second pressure measuring unit is normal. The insufflation apparatus according to claim 5, wherein the second pressure measurement unit is determined to be abnormal when the difference is equal to or greater than the error determination threshold.
JP2015096682A 2015-05-11 2015-05-11 Pneumoperitoneum Active JP6438837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096682A JP6438837B2 (en) 2015-05-11 2015-05-11 Pneumoperitoneum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096682A JP6438837B2 (en) 2015-05-11 2015-05-11 Pneumoperitoneum

Publications (2)

Publication Number Publication Date
JP2016209345A true JP2016209345A (en) 2016-12-15
JP6438837B2 JP6438837B2 (en) 2018-12-19

Family

ID=57549033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096682A Active JP6438837B2 (en) 2015-05-11 2015-05-11 Pneumoperitoneum

Country Status (1)

Country Link
JP (1) JP6438837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677253A (en) * 2019-04-16 2021-11-19 奥林巴斯株式会社 Endoscope system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209901A (en) * 1993-01-13 1994-08-02 Olympus Optical Co Ltd Device for pneumoperitoneum
JPH0938029A (en) * 1995-07-28 1997-02-10 Olympus Optical Co Ltd Pneumoperitoneum apparatus
WO2015019695A1 (en) * 2013-08-06 2015-02-12 オリンパスメディカルシステムズ株式会社 Pneumoperitoneum apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209901A (en) * 1993-01-13 1994-08-02 Olympus Optical Co Ltd Device for pneumoperitoneum
JPH0938029A (en) * 1995-07-28 1997-02-10 Olympus Optical Co Ltd Pneumoperitoneum apparatus
WO2015019695A1 (en) * 2013-08-06 2015-02-12 オリンパスメディカルシステムズ株式会社 Pneumoperitoneum apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677253A (en) * 2019-04-16 2021-11-19 奥林巴斯株式会社 Endoscope system
JPWO2020213063A1 (en) * 2019-04-16 2021-12-23 オリンパス株式会社 Endoscope system, control device and air supply control method
JP7150982B2 (en) 2019-04-16 2022-10-11 オリンパス株式会社 Endoscope system, controller, and air supply control method

Also Published As

Publication number Publication date
JP6438837B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6348805B2 (en) Pneumoperitoneum
JP5011276B2 (en) Blockage detector for dual port tourniquet system
JP5319862B1 (en) Body cavity pressure adjusting device and endoscope system
WO2006064713A1 (en) Gas supply device, method of controlling gas supply device, gas supply system, and endoscope system
JP7080233B2 (en) Medical pump with improved degassing
JP2015058120A (en) Gas feeding device
WO2020115835A1 (en) Insufflation system and insufflation control method
JP6438837B2 (en) Pneumoperitoneum
JP6522421B2 (en) Insufflation system
US11607507B2 (en) Method and system for measuring pressure in a body cavity
JP6438836B2 (en) Pneumoperitoneum system
JP5945639B1 (en) Pneumoperitoneum
JPWO2017057065A1 (en) Circulating smoke exhaust system
JP2016209461A (en) Pneumoperitoneum system
CN117500551A (en) Medical pump for endoscope
US20150265784A1 (en) Insufflation System And Method For Operating The Insufflation System
JP4643246B2 (en) Laparoscopic surgical system
WO2019187191A1 (en) Pneumoperitoneum device
JPH0938029A (en) Pneumoperitoneum apparatus
JP3934437B2 (en) Insufflation apparatus and laparoscopic treatment system using the insufflation apparatus
US11534561B2 (en) Insufflation device and method of adjusting intra-abdominal pressure
JPH08256972A (en) Pneumoperitoneum apparatus
JP2006288881A (en) Gas supply device and endoscope system provided with gas supply device
JP2000139830A (en) Gas supply device
JP2014221151A (en) Air supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R151 Written notification of patent or utility model registration

Ref document number: 6438837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250