JP2016205805A - Metal fusion furnace - Google Patents

Metal fusion furnace Download PDF

Info

Publication number
JP2016205805A
JP2016205805A JP2016075066A JP2016075066A JP2016205805A JP 2016205805 A JP2016205805 A JP 2016205805A JP 2016075066 A JP2016075066 A JP 2016075066A JP 2016075066 A JP2016075066 A JP 2016075066A JP 2016205805 A JP2016205805 A JP 2016205805A
Authority
JP
Japan
Prior art keywords
furnace
molded member
refractory layer
molded
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016075066A
Other languages
Japanese (ja)
Other versions
JP6778357B2 (en
Inventor
巧 中村
Takumi Nakamura
巧 中村
肇 杉浦
Hajime Sugiura
肇 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAMAMATSU HEAT TEC KK
Original Assignee
HAMAMATSU HEAT TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAMAMATSU HEAT TEC KK filed Critical HAMAMATSU HEAT TEC KK
Publication of JP2016205805A publication Critical patent/JP2016205805A/en
Application granted granted Critical
Publication of JP6778357B2 publication Critical patent/JP6778357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal fusion furnace capable of preventing an inside refractory layer from deforming due to temperature difference, and capable of being prevented from damaged due to occurrence of a crack or the like.SOLUTION: A metal fusion furnace 1 has at least two layer of an outside heat insulation layer α comprising heat insulation material and an inside refractory layer β comprising refractory material formed inside the outside heat insulation layer α, and can hold a predetermined capacity of molten metal. The inside refractory material layer β is formed by assembling a plurality of pre-molded molding members β1-β5. Between the inside refractory layer β and the outside heat insulation material α, formed is an outside refractory layer γ comprising material having high compression strength.SELECTED DRAWING: Figure 2

Description

本発明は、断熱材から成る外側断熱層、及び当該外側断熱層の内側に形成された耐火物から成る内側耐火層の少なくとも2層を有し、所定容量の溶融金属を保持可能な金属溶融炉に関するものである。   The present invention relates to a metal melting furnace having at least two layers of an outer heat insulating layer made of a heat insulating material and an inner refractory layer made of a refractory formed inside the outer heat insulating layer and capable of holding a predetermined volume of molten metal. It is about.

鋳造に使用されるアルミニウム溶融金属を作成し、所定量保持するための金属溶融炉は、例えば特許文献1にて開示されているように、被溶融金属(例えばアルミニウム等から成るチップ状又は粉末状の処理材)を投入して溶融させ得る前炉(材料溶解室)と、該前炉と連通されるとともに、投入されて溶融された溶融金属を保持可能な保持炉(炉体)とを有して構成されており、保持炉は、バーナによって内部が高温に保持されている。   A metal melting furnace for producing and holding a predetermined amount of molten aluminum used for casting is a metal to be melted (for example, a chip or powder made of aluminum or the like as disclosed in Patent Document 1). A pre-furnace (material melting chamber) that can be charged and melted, and a holding furnace (furnace body) that can communicate with the pre-furnace and can hold molten metal that has been charged and melted. The inside of the holding furnace is held at a high temperature by a burner.

このような金属溶融炉は、その前炉として、通常、断熱材から成る外側断熱層、及び当該外側断熱層の内側に成形された耐火物から成る内側耐火層の少なくとも2層を有して成るものが用いられている。かかる金属溶融炉の前炉を得るには、例えば耐火物を所定の容器形状の成形型にて流し込んで内側耐火層を成形し、その内側耐火層を乾燥固化した後、当該内側耐火層を更に大きな別の容器形状の成形型に固定させる。そして、内側耐火層と当該成形型との間に断熱材を流し込むことによりインサート成形し、内側耐火層の外側に外側断熱層が形成された金属溶融炉の前炉を得るのである。   Such a metal melting furnace usually has at least two layers of an outer heat insulating layer made of a heat insulating material and an inner refractory layer made of a refractory formed inside the outer heat insulating layer as a pre-furnace. Things are used. In order to obtain a fore-furnace of such a metal melting furnace, for example, a refractory is poured into a predetermined container-shaped mold to form an inner refractory layer, the inner refractory layer is dried and solidified, and then the inner refractory layer is further formed. Fix to a large different container-shaped mold. And it insert-molds by pouring a heat insulating material between an inner side refractory layer and the said shaping | molding die, and obtains the front furnace of the metal melting furnace in which the outer side heat insulating layer was formed in the outer side of the inner side refractory layer.

特開2006−10214号公報JP 2006-10214 A

しかしながら、上記従来の金属溶融炉の前炉は、その上方が開放されて被溶融材料を投入可能とされているため、溶融金属の液位が上下することによって外気及び溶融金属の両方に曝されることとなり、その温度差によって内側耐火層が著しく変形してしまう虞があった。しかして、前炉の耐火層が温度差によって過度に変形すると、一部に応力が集中してクラック等が発生し、破損して溶融金属が漏れてしまう可能性があった。   However, the previous furnace of the conventional metal melting furnace is open at the top and can be charged with the material to be melted. Therefore, the molten metal is exposed to both the outside air and the molten metal as the liquid level rises and falls. As a result, the inner refractory layer may be significantly deformed by the temperature difference. However, if the refractory layer of the front furnace is excessively deformed due to a temperature difference, stress is concentrated on a part, cracks and the like are generated, and there is a possibility that the molten metal leaks due to damage.

本発明は、このような事情に鑑みてなされたもので、温度差によって内側耐火層が変形してしまうのを抑制することができ、クラック等の発生により破損してしまうのを防止することができる金属溶融炉を提供することにある。   The present invention has been made in view of such circumstances, and can suppress deformation of the inner refractory layer due to a temperature difference, and can prevent damage due to occurrence of a crack or the like. It is to provide a metal melting furnace that can be used.

請求項1記載の発明は、断熱材から成る外側断熱層、及び当該外側断熱層の内側に形成された耐火物から成る内側耐火層の少なくとも2層を有し、所定容量の溶融金属を保持可能な金属溶融炉において、前記内側耐火層は、予め成形した複数の成形部材を組み付けて成るとともに、当該内側耐火層と前記外側断熱層の間に圧縮強度の高い材料から成る外側耐火層が形成されたことを特徴とする。   The invention according to claim 1 has at least two layers of an outer heat insulating layer made of a heat insulating material and an inner refractory layer made of a refractory formed inside the outer heat insulating layer, and can hold a predetermined volume of molten metal. In such a metal melting furnace, the inner refractory layer is formed by assembling a plurality of preformed molded members, and an outer refractory layer made of a material having a high compressive strength is formed between the inner refractory layer and the outer heat insulating layer. It is characterized by that.

請求項2記載の発明は、請求項1記載の金属溶融炉において、前記複数の成形部材は、耐火性及び伸縮性を有した接着材料にて接着されつつ組み付けられて前記内側耐火層を形成したことを特徴とする。   According to a second aspect of the present invention, in the metal melting furnace according to the first aspect, the plurality of molded members are assembled while being bonded with an adhesive material having fire resistance and stretchability to form the inner refractory layer. It is characterized by that.

請求項3記載の発明は、請求項1又は請求項2記載の金属溶融炉において、前記成形部材の組み付け部位には、組み付け時、嵌合可能な凸形状及び凹形状がそれぞれ形成されたことを特徴とする。   According to a third aspect of the present invention, in the metal melting furnace according to the first or second aspect, a convex shape and a concave shape that can be fitted at the time of assembling are formed in the assembling portion of the molded member. Features.

請求項4記載の発明は、請求項1〜3の何れか1つに記載の金属溶融炉において、被溶融金属を投入して溶融させ得る前炉と、内部が高温に保持されて前記前炉と連通して形成されるとともに、溶融金属を保持可能な保持炉と、前記保持炉と連通して形成されるとともに、当該保持炉で保持された溶融金属を取り出し可能な排出炉とを有するとともに、当該前炉又は排出炉に前記内側耐火層、外側耐火層及び外側断熱層が形成されたことを特徴とする。   A fourth aspect of the present invention is the metal melting furnace according to any one of the first to third aspects, wherein the pre-furnace is configured such that the metal to be melted is charged and melted, and the interior is maintained at a high temperature. And a holding furnace capable of holding molten metal, and a discharge furnace formed in communication with the holding furnace and capable of taking out the molten metal held in the holding furnace. The inner furnace refractory layer, the outer refractory layer and the outer heat insulation layer are formed in the fore-furnace or the discharge furnace.

請求項5記載の発明は、請求項4記載の金属溶融炉において、前記内側耐火層は、一端が前記保持炉に連結可能なフランジ部に固定された第2成形部材及び第3成形部材と、これら第2成形部材の他端及び第3成形部材の他端に亘って組み付けられる第1成形部材とを有して構成され、当該第2成形部材及び第3成形部材は、他端側が互いに近接する方向に屈曲したL字形状の部材から成るとともに、当該第1成形部材は、その両端が第2成形部材における屈曲部の先端及び第3成形部材における屈曲部の先端に組み付けられる略直線状の部材から成ることを特徴とする。   The invention according to claim 5 is the metal melting furnace according to claim 4, wherein the inner refractory layer has a second molded member and a third molded member, one end of which is fixed to a flange portion connectable to the holding furnace, The other end of the second molded member and the first molded member assembled across the other end of the third molded member are configured, and the second molded member and the third molded member are close to each other on the other end side. The first molded member has a substantially linear shape whose both ends are assembled to the distal end of the bent portion of the second molded member and the distal end of the bent portion of the third molded member. It consists of members.

請求項1の発明によれば、内側耐火層は、予め成形した複数の成形部材を組み付けて成るとともに、当該内側耐火層と外側断熱層の間に圧縮強度の高い材料から成る外側耐火層が形成されたので、温度差によって内側耐火層が変形してしまうのを抑制することができ、クラック等の発生により破損してしまうのを防止することができる。   According to the invention of claim 1, the inner refractory layer is formed by assembling a plurality of preformed molded members, and an outer refractory layer made of a material having high compressive strength is formed between the inner refractory layer and the outer heat insulating layer. As a result, the inner refractory layer can be prevented from being deformed due to a temperature difference, and can be prevented from being damaged by the occurrence of cracks or the like.

請求項2の発明によれば、複数の成形部材は、耐火性及び伸縮性を有した接着材料にて接着されつつ組み付けられて内側耐火層を形成したので、温度差によって各成形部材が変形すると、その変形を接着材料にて吸収させることができ、全体の変形量を効果的に抑制することができる。   According to the invention of claim 2, since the plurality of molded members are assembled together while being bonded with an adhesive material having fire resistance and stretchability to form the inner refractory layer, each molded member is deformed due to a temperature difference. The deformation can be absorbed by the adhesive material, and the entire deformation amount can be effectively suppressed.

請求項3の発明によれば、成形部材の組み付け部位には、組み付け時、嵌合可能な凸形状及び凹形状がそれぞれ形成されたので、より容易且つ精度よく成形部材を組み付けて内側耐火層を形成することができるとともに、組み付け後の成形部材のずれを防止することができる。   According to the invention of claim 3, since the convex part and the concave shape that can be fitted at the time of assembling are formed in the assembling part of the molding member, respectively, the molding member can be assembled more easily and accurately to form the inner refractory layer. While being able to form, the shift | offset | difference of the shaping | molding member after an assembly | attachment can be prevented.

請求項4の発明によれば、被溶融金属を投入して溶融させ得る前炉と、内部が高温に保持されて前炉と連通して形成されるとともに、溶融金属を保持可能な保持炉と、保持炉と連通して形成されるとともに、当該保持炉で保持された溶融金属を取り出し可能な排出炉とを有するとともに、当該前炉又は排出炉に内側耐火層、外側耐火層及び外側断熱層が形成されたので、溶融金属の液位の変化によって温度変化が著しく生じる前炉又は排出炉の変形を効果的に抑制することができる。   According to the invention of claim 4, a pre-furnace in which a metal to be melted can be charged and melted, a holding furnace in which the interior is held at a high temperature and communicated with the pre-furnace, and can hold the molten metal And a discharge furnace formed in communication with the holding furnace and capable of taking out the molten metal held in the holding furnace, and having an inner refractory layer, an outer refractory layer and an outer heat insulation layer in the previous furnace or the discharge furnace. Therefore, it is possible to effectively suppress the deformation of the front furnace or the discharge furnace in which the temperature change is remarkably caused by the change in the liquid level of the molten metal.

請求項5の発明によれば、内側耐火層は、一端が保持炉に連結可能なフランジ部に固定された第2成形部材及び第3成形部材と、これら第2成形部材の他端及び第3成形部材の他端に亘って組み付けられる第1成形部材とを有して構成され、当該第2成形部材及び第3成形部材は、他端側が互いに近接する方向に屈曲したL字形状の部材から成るとともに、当該第1成形部材は、その両端が第2成形部材における屈曲部の先端及び第3成形部材における屈曲部の先端に組み付けられる略直線状の部材から成るので、温度差によって前炉又は排出炉に亀裂が生じてしまうのを防止することができる。   According to the invention of claim 5, the inner refractory layer includes the second molded member and the third molded member, one end of which is fixed to the flange portion connectable to the holding furnace, the other end of the second molded member and the third molded member. A first molded member assembled over the other end of the molded member, and the second molded member and the third molded member are formed from an L-shaped member bent in a direction in which the other end sides are close to each other. And the first molded member is composed of a substantially linear member whose both ends are assembled to the tip of the bent portion of the second molded member and the tip of the bent portion of the third molded member. It is possible to prevent cracks from occurring in the discharge furnace.

本発明の第1の実施形態に係る金属溶融炉を示す平面図The top view which shows the metal melting furnace which concerns on the 1st Embodiment of this invention 図1におけるII−II線断面図II-II sectional view in FIG. 同金属溶融炉の前炉を示す平面図Plan view showing the front furnace of the same metal melting furnace 同金属溶融炉の前炉を示す背面図Rear view showing the front furnace of the same metal melting furnace 図3におけるV−V線断面図VV line sectional view in FIG. 図3におけるVI−VI線断面図Sectional view taken along line VI-VI in FIG. 図4におけるVII−VII線断面図VII-VII line sectional view in FIG. 同金属溶融炉の前炉における内側耐火層を示す平面図Plan view showing the inner refractory layer in the front furnace of the same metal melting furnace 同内側耐火層を示す背面図Rear view showing the inner refractory layer 同内側耐火層を構成する成形部材の組み付け部位を示す拡大図The enlarged view which shows the assembly | attachment site | part of the shaping | molding member which comprises the same inside fireproof layer 本発明の第2の実施形態に係る金属溶融炉を示す平面図The top view which shows the metal melting furnace which concerns on the 2nd Embodiment of this invention 図11におけるXII−XII線断面図XII-XII sectional view in FIG. 同金属溶融炉の前炉を示す平面図Plan view showing the front furnace of the same metal melting furnace 同金属溶融炉の前炉を示す背面図Rear view showing the front furnace of the same metal melting furnace 図13におけるXV−XV線断面図XV-XV cross-sectional view in FIG. 図13におけるXVI−XVI線断面図XVI-XVI sectional view in FIG. 図14におけるXVII−XVII線断面図XVII-XVII line sectional view in FIG. 同内側耐火層を構成する成形部材の組み付け部位を示す拡大図The enlarged view which shows the assembly | attachment site | part of the shaping | molding member which comprises the same inside fireproof layer

以下、本発明の実施形態について図面を参照しながら具体的に説明する。
第1の実施形態に係る金属溶融炉1は、図1、2に示すように、被溶融金属を投入して溶融させ得る前炉Aと、内部が高温に保持されて前炉Aと連通して形成されるとともに、溶融金属を保持可能な保持炉Bとを有し、所定容量の溶融金属を保持可能とされている。本実施形態に係る金属溶融炉1おいては、チップ状のアルミ材が被溶融金属として前炉Aに投入されるとともに、溶融したアルミニウム溶融金属が保持炉Bにて保持されるようになっている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIGS. 1 and 2, the metal melting furnace 1 according to the first embodiment communicates with the front furnace A in which the metal to be melted can be introduced and melted, and the interior is maintained at a high temperature and communicated with the front furnace A. And a holding furnace B that can hold molten metal, and can hold a predetermined volume of molten metal. In the metal melting furnace 1 according to the present embodiment, a chip-like aluminum material is introduced into the front furnace A as a metal to be melted, and the molten aluminum molten metal is held in the holding furnace B. Yes.

前炉Aは、保持炉Bの所定部位から延設されるとともに、上方が開口して被溶融金属の投入が可能とされたもので、内部が保持炉Bと連通して構成されている。なお、本実施形態に係る前炉Aには、複数のネジ孔が形成されたフランジ部Fが形成されており、当該フランジ部Fを保持炉Bの連結部に当接させつつボルト等にて取付可能とされている。また、前炉Aにおける保持炉Bとの連通部には、仕切り板3が配設されており、この仕切り板3を上方に移動させることによって、前炉Aが保持炉Bに連通した状態とされ、下方に移動させることにより、前炉Aが保持炉Bと遮蔽された状態とされる。   The pre-furnace A extends from a predetermined portion of the holding furnace B, and is opened at the top so that the molten metal can be input. The inner furnace is configured to communicate with the holding furnace B. In addition, the front furnace A according to the present embodiment is formed with a flange portion F in which a plurality of screw holes are formed, and the flange portion F is brought into contact with the connecting portion of the holding furnace B with a bolt or the like. It can be attached. In addition, a partition plate 3 is disposed in a communication portion between the front furnace A and the holding furnace B, and the front furnace A communicates with the holding furnace B by moving the partition plate 3 upward. Then, the front furnace A is shielded from the holding furnace B by being moved downward.

保持炉Bは、その内部に溶融金属を収容するとともに、内部の雰囲気温度を高温に保持するためのバーナ2が取り付けられている。これにより、前炉Aに投入された被溶融金属は、直接バーナ2によって加熱されず、雰囲気温度によって溶融金属内で溶融されつつ保持炉B内で収容されることとなる。そして、保持炉Bにて保持された溶融金属は、必要に応じて取出手段(不図示)にて外部に取り出されるようになっている。なお、図中符号Dは、メンテナンス時に保持炉Bの内部を開放させ得る扉を示しているとともに、符号Lは、この保持炉B及び前炉Aに収容された溶融金属の液位を示している。   The holding furnace B is provided with a burner 2 for containing molten metal therein and for maintaining the internal atmospheric temperature at a high temperature. As a result, the molten metal charged into the front furnace A is not directly heated by the burner 2 but is accommodated in the holding furnace B while being melted in the molten metal by the atmospheric temperature. And the molten metal hold | maintained at the holding furnace B is taken out outside by an extraction means (not shown) as needed. In addition, while the code | symbol D in the figure has shown the door which can open the inside of the holding furnace B at the time of a maintenance, the code | symbol L shows the liquid level of the molten metal accommodated in this holding furnace B and the front furnace A Yes.

ここで、本実施形態に係る前炉Aは、図3〜7に示すように、断熱材から成る外側断熱層α、外側断熱層αの内側に形成された耐火物から成る内側耐火層β及び外側耐火層γ(不定形耐火物層)を有して構成されている。外側断熱層αは、例えばケイ酸カルシウム質断熱材から成るもので、断熱効果に富み、所謂「断熱材」と称されるものであれば、種々の化学成分から成る材料を用いるようにしてもよい。   Here, as shown in FIGS. 3 to 7, the front furnace A according to the present embodiment includes an outer heat insulating layer α made of a heat insulating material, an inner refractory layer β made of a refractory formed inside the outer heat insulating layer α, and It has an outer refractory layer γ (an irregular refractory layer). The outer heat insulating layer α is made of, for example, a calcium silicate heat insulating material, and has a high heat insulating effect, so long as it is called a “heat insulating material”, materials made of various chemical components may be used. Good.

内側耐火層βは、前炉Aにおける溶融金属と直接接触する壁面及び底面を構成する耐火物にて構成されるとともに、例えば炭化ケイ素系材料又はアルミナ系材料から成る。本実施形態に係る内側耐火層βは、図8〜10に示すように、予め成形した複数の成形部材(本実施形態においては、第1成形部材β1、第2成形部材β2、第3成形部材β3、第4成形部材β4及び第5成形部材β5の5つの成形部材)を組み付けて成るものとされている。すなわち、内側耐火層βは、第1成形部材β1〜第5成形部材β5を有した分割構成とされており、温度変化に曝された際、各々に付与される熱応力を分散して小さくすることができるのである。   The inner refractory layer β is composed of a refractory material that constitutes a wall surface and a bottom surface that are in direct contact with the molten metal in the front furnace A, and is made of, for example, a silicon carbide-based material or an alumina-based material. As shown in FIGS. 8 to 10, the inner refractory layer β according to the present embodiment includes a plurality of preformed molded members (in the present embodiment, a first molded member β1, a second molded member β2, and a third molded member). (5 molded members of β3, fourth molded member β4, and fifth molded member β5) are assembled. That is, the inner refractory layer β has a divided configuration including the first molded member β1 to the fifth molded member β5, and when exposed to a temperature change, the thermal stress applied to each is dispersed and reduced. It can be done.

具体的には、予めパーツ毎に成形された成形部材(β1〜β5)を組み付けることにより、第1成形部材β1が正面側の壁部を構成するとともに、第2、3成形部材β2、β3が側面の壁部、第4成形部材β4が底面部を構成するようになっている。なお、第5成形部材β5は、第2成形部材β2と第3成形部材β3とに跨って取り付けられ、これら第2成形部材β及び第3成形部材β3が内側に撓んでしまうのを防止し得るものである。   Specifically, by assembling the molding members (β1 to β5) molded in advance for each part, the first molding member β1 constitutes the wall on the front side, and the second and third molding members β2, β3 The side wall portion and the fourth molding member β4 constitute the bottom surface portion. The fifth molded member β5 is attached across the second molded member β2 and the third molded member β3, and can prevent the second molded member β and the third molded member β3 from bending inward. Is.

さらに、成形部材(β1〜β5)の組み付け部位には、図10に示すように、組み付け時、嵌合可能な凸形状a及び凹形状bがそれぞれ形成されている。すなわち、成形部材(β1〜β5)を組み付ける際、凸形状aと凹形状bとが嵌合し、内側耐火層βを構成するので、より容易且つ精度よく成形部材(β1〜β5)を組み付けて内側耐火層βを形成することができるとともに、組み付け後の成形部材(β1〜β5)のずれを防止することができる。   Further, as shown in FIG. 10, a convex shape a and a concave shape b that can be fitted at the time of assembly are formed at the assembly parts of the molded members (β1 to β5). That is, when the molded member (β1 to β5) is assembled, the convex shape a and the concave shape b are fitted to form the inner refractory layer β, so that the molded member (β1 to β5) is assembled more easily and accurately. The inner refractory layer β can be formed, and displacement of the molded members (β1 to β5) after assembly can be prevented.

またさらに、複数の成形部材(β1〜β5)は、耐火性及び伸縮性を有した接着材料(例えば粘着性を有した耐火性部材)にて接着されつつ組み付けられて内側耐火層βを形成している。すなわち、成形部材(β1〜β5)を組み付ける際、組み付け部位に接着材料を塗布することにより、伸縮性を有しつつ接着可能とされているのである。これにより、温度差によって各成形部材(β1〜β5)が変形すると、その変形を接着材料にて吸収させることができ、全体の変形量を効果的に抑制することができる。   Further, the plurality of molded members (β1 to β5) are assembled while being bonded with an adhesive material having fire resistance and stretchability (for example, a fire resistant member having tackiness) to form an inner fireproof layer β. ing. That is, when assembling the molded members (β1 to β5), an adhesive material is applied to the assembling site, thereby allowing adhesion while having stretchability. Thereby, if each shaping | molding member ((beta) 1- (beta) 5) deform | transforms with a temperature difference, the deformation | transformation can be absorbed with an adhesive material, and the whole deformation amount can be suppressed effectively.

外側耐火層γは、内側耐火層βと外側断熱層αの間に形成された圧縮強度の高い材料(少なくとも内側耐火層βより圧縮強度の高い材料)から成るもので、例えば低セメント系不定形耐火物(炭化珪素質不定形耐火物や高アルミナ質不定形耐火物等)から成る。なお、外側耐火層γは、内側耐火層βと外側断熱層αの間に形成された圧縮強度の高い材料から成るものであれば、他の材質のものに代えてもよい。しかして、前炉Aにおける最も内側に内側耐火層βが形成され、その外側に外側耐火層γ、更なる外側に外側断熱層αが形成されており、例えば溶融金属の液面Lが上下して温度変化が著しい場合であっても、外側耐火層γにて内側耐火層βの形状が保持されて、成形部材(β1〜β5)の変形を抑制することができるのである。   The outer refractory layer γ is made of a material having a high compressive strength (at least a material having a compressive strength higher than that of the inner refractory layer β) formed between the inner refractory layer β and the outer heat insulating layer α. It consists of a refractory (silicon carbide-based amorphous refractory, high-alumina amorphous refractory, etc.). The outer refractory layer γ may be replaced with another material as long as it is made of a material having a high compressive strength formed between the inner refractory layer β and the outer heat insulating layer α. Thus, the inner refractory layer β is formed on the innermost side in the front furnace A, the outer refractory layer γ is formed on the outer side, and the outer heat insulating layer α is formed on the outer side. For example, the liquid level L of the molten metal moves up and down. Even when the temperature change is significant, the shape of the inner refractory layer β is maintained by the outer refractory layer γ, and deformation of the molded members (β1 to β5) can be suppressed.

本実施形態によれば、内側耐火層βは、予め成形した複数の成形部材(β1〜β5)を組み付けて成るとともに、当該内側耐火層βと外側断熱層αの間に圧縮強度の高い材料から成る外側耐火層γが形成されたので、温度差によって内側耐火層βが変形してしまうのを抑制することができ、クラック等の発生により破損してしまうのを防止することができる。   According to the present embodiment, the inner refractory layer β is formed by assembling a plurality of molded members (β1 to β5) molded in advance, and a material having a high compressive strength between the inner refractory layer β and the outer heat insulating layer α. Since the outer refractory layer γ is formed, the inner refractory layer β can be prevented from being deformed due to a temperature difference, and can be prevented from being damaged due to the occurrence of a crack or the like.

また、被溶融金属を投入して溶融させ得る前炉Aと、内部が高温に保持されて前炉Aと連通して形成されるとともに、溶融金属を保持可能な保持炉Bとを有するとともに、当該前炉Aに内側耐火層β、外側耐火層γ及び外側断熱層αが形成されたので、溶融金属の液位Lの変化によって温度変化が著しく生じる前炉Aの変形を効果的に抑制することができる。   In addition, it has a fore-furnace A in which a metal to be melted can be charged and melted, and a holding furnace B in which the inside is held at a high temperature and communicated with the fore-furnace A and can hold the molten metal, Since the inner refractory layer β, the outer refractory layer γ, and the outer heat insulation layer α are formed in the front furnace A, it is possible to effectively suppress deformation of the front furnace A in which a temperature change is significantly caused by a change in the liquid level L of the molten metal. be able to.

次に、本発明に係る第2の実施形態について説明する。
本実施形態に係る金属溶融炉は、図11、12に示すように、被溶融金属を投入して溶融させ得る前炉Aと、内部が高温に保持されて前炉Aと連通して形成されるとともに、溶融金属を保持可能な保持炉Bと、保持炉Bと連通して形成されるとともに、当該保持炉Bで保持された溶融金属を取り出し可能な排出炉Cとを有し、所定容量の溶融金属を保持可能とされている。本実施形態に係る金属溶融炉1おいては、チップ状のアルミ材が被溶融金属として前炉Aに投入されるとともに、溶融したアルミニウム溶融金属が保持炉Bにて保持され、その保持された溶融金属を排出炉Cから取り出し可能とされている。なお、第1の実施形態と同様の構成要素には同一の符号を付し、それらの詳細な説明を省略する。
Next, a second embodiment according to the present invention will be described.
As shown in FIGS. 11 and 12, the metal melting furnace according to the present embodiment is formed in such a manner that the fore-furnace A in which the metal to be melted can be charged and melted, and the interior is maintained at a high temperature and communicated with the fore-furnace A. A holding furnace B capable of holding the molten metal, and a discharge furnace C formed in communication with the holding furnace B and capable of taking out the molten metal held in the holding furnace B, and having a predetermined capacity It is possible to hold molten metal. In the metal melting furnace 1 according to the present embodiment, a chip-shaped aluminum material is charged into the front furnace A as a metal to be melted, and the molten aluminum molten metal is held in the holding furnace B and held. The molten metal can be taken out from the discharge furnace C. In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment, and those detailed description is abbreviate | omitted.

本実施形態に係る前炉Aは、図13〜18に示すように、断熱材から成る外側断熱層α、外側断熱層αの内側に形成された耐火物から成る内側耐火層β’及び外側耐火層γ(不定形耐火物層)を有して構成されている。内側耐火層β’は、前炉Aにおける溶融金属と直接接触する壁面及び底面を構成する耐火物にて構成されるとともに、例えば炭化ケイ素系材料又はアルミナ系材料から成る。   As shown in FIGS. 13 to 18, the front furnace A according to the present embodiment includes an outer heat insulating layer α made of a heat insulating material, an inner fireproof layer β ′ made of a refractory formed inside the outer heat insulating layer α, and an outer fire resistant material. It has a layer γ (amorphous refractory layer). The inner refractory layer β 'is composed of a refractory material that constitutes a wall surface and a bottom surface that are in direct contact with the molten metal in the front furnace A, and is made of, for example, a silicon carbide-based material or an alumina-based material.

具体的には、本実施形態に係る内側耐火層β’は、予め成形した複数の成形部材(本実施形態においては、第1成形部材β’1、第2成形部材β’2、第3成形部材β’3、第4成形部材β’4及び第5成形部材β’5の5つの成形部材)を組み付けて成るものとされている。すなわち、内側耐火層β’は、第1の実施形態と同様、第1成形部材β’1〜第5成形部材β’5を有した分割構成とされており、温度変化に曝された際、各々に付与される熱応力を分散して小さくすることができるのである。   Specifically, the inner refractory layer β ′ according to the present embodiment includes a plurality of preformed molded members (first molded member β′1, second molded member β′2, third molded in the present embodiment). (5 molded members of member β′3, fourth molded member β′4, and fifth molded member β′5) are assembled. That is, as in the first embodiment, the inner refractory layer β ′ has a divided configuration having the first molded member β′1 to the fifth molded member β′5, and when exposed to a temperature change, The thermal stress applied to each can be dispersed and reduced.

ここで、本実施形態に係る内側耐火層β’は、図13、14に示すように、一端cが保持炉Bに連結可能なフランジ部Fに固定された第2成形部材β’2及び第3成形部材β’3と、これら第2成形部材β’2の他端d及び第3成形部材β’3の他端dに亘って組み付けられる第1成形部材β’1とを有して構成され、当該第2成形部材β’2及び第3成形部材β’3は、他端d側が互いに近接する方向に屈曲したL字形状の部材(図13参照)から成るとともに、当該第1成形部材β’1は、その両端(一端f及び他端g)が第2成形部材β’2における屈曲部eの先端(他端d)及び第3成形部材β’3における屈曲部eの先端(他端d)に組み付けられる略直線状の部材(図18参照)から成るものとされている。   Here, as shown in FIGS. 13 and 14, the inner refractory layer β ′ according to the present embodiment includes a second molded member β′2 and a second molded member β′2 fixed to a flange portion F that can be connected to the holding furnace B at one end c. 3 molded members β′3 and a first molded member β′1 assembled across the other end d of the second molded member β′2 and the other end d of the third molded member β′3. The second molded member β′2 and the third molded member β′3 are made of an L-shaped member (see FIG. 13) bent in a direction in which the other end d side approaches each other, and the first molded member β′1 has both ends (one end f and the other end g) at the tip (the other end d) of the bent portion e in the second molded member β′2 and the tip (the other end) of the bent portion e in the third molded member β′3. It is made of a substantially linear member (see FIG. 18) assembled to the end d).

すなわち、一端cがフランジ部Fに固定された第2成形部材β’2及び第3成形部材β’3をL字形状とし、それら第2成形部材β’2及び第3成形部材β’3の他端dに略直線状の第1成形部材β’1を連結して組み付けることにより内側耐火層β’を構成しているので、側面(フランジ部Fに対して直交する面)でなく後面(フランジ部Fが形成された面と対向する面)で分割することができ、第1の実施形態の如く第1成形部材β1が平面視でコの字形とされたものに比べ、温度変化に伴う後面の応力集中を緩和させて亀裂の発生を抑制することができるのである。   That is, the second molded member β′2 and the third molded member β′3 whose one end c is fixed to the flange portion F are L-shaped, and the second molded member β′2 and the third molded member β′3 Since the inner refractory layer β ′ is configured by connecting and assembling the substantially linear first molded member β′1 to the other end d, the rear surface (the surface orthogonal to the flange portion F) is not the rear surface (the surface orthogonal to the flange portion F). The surface formed opposite to the surface on which the flange portion F is formed) can be divided, and the first molded member β1 has a U shape in plan view as in the first embodiment, and is accompanied by a temperature change. It is possible to reduce the stress concentration on the rear surface and suppress the occurrence of cracks.

一方、本実施形態に係る金属溶融炉は、保持炉Bと連通して形成されるとともに、当該保持炉Bで保持された溶融金属を取り出し可能な排出炉Cが取り付けられている。かかる排出炉Cは、前炉Aと同様、断熱材から成る外側断熱層α、外側断熱層αの内側に形成された耐火物から成る内側耐火層β’及び外側耐火層γ(不定形耐火物層)を有して構成されている。なお、本実施形態に係る排出炉Cは、前炉Aと同様の構成とされているが、当該前炉Aとは異なる構成としてもよい。   On the other hand, the metal melting furnace according to the present embodiment is formed in communication with the holding furnace B, and a discharge furnace C capable of taking out the molten metal held in the holding furnace B is attached. Like the previous furnace A, the discharge furnace C includes an outer heat insulating layer α made of heat insulating material, an inner refractory layer β ′ made of refractory formed inside the outer heat insulating layer α, and an outer refractory layer γ (indefinite refractory material). Layer). In addition, although the discharge furnace C which concerns on this embodiment is set as the structure similar to the front furnace A, it is good also as a structure different from the said front furnace A.

さらに、成形部材(β’1〜β’5)の組み付け部位には、第1の実施形態と同様、図18に示すように、組み付け時、嵌合可能な凸形状a及び凹形状bがそれぞれ形成されている。すなわち、成形部材(β’1〜β’5)を組み付ける際、凸形状aと凹形状bとが嵌合し、内側耐火層β’を構成するので、より容易且つ精度よく成形部材(β’1〜β’5)を組み付けて内側耐火層β’を形成することができるとともに、組み付け後の成形部材(β’1〜β’5)のずれを防止することができる。   Further, as shown in FIG. 18, the assembling portions of the molded members (β′1 to β′5) each have a convex shape a and a concave shape b that can be fitted when assembled, as shown in FIG. Is formed. That is, when the molded members (β′1 to β′5) are assembled, the convex shape a and the concave shape b are fitted to form the inner refractory layer β ′, so that the molded member (β ′ is easier and more accurate). 1 to β′5) can be assembled to form the inner refractory layer β ′, and displacement of the molded members (β′1 to β′5) after assembly can be prevented.

またさらに、複数の成形部材(β’1〜β’5)は、第1の実施形態と同様、耐火性及び伸縮性を有した接着材料(例えば粘着性を有した耐火性部材)にて接着されつつ組み付けられて内側耐火層β’を形成している。すなわち、成形部材(β’1〜β’5)を組み付ける際、組み付け部位に接着材料を塗布することにより、伸縮性を有しつつ接着可能とされているのである。これにより、温度差によって各成形部材(β’1〜β’5)が変形すると、その変形を接着材料にて吸収させることができ、全体の変形量を効果的に抑制することができる。   Further, the plurality of molded members (β′1 to β′5) are bonded with an adhesive material having fire resistance and stretchability (for example, a fire resistant member having tackiness), as in the first embodiment. As a result, the inner refractory layer β ′ is formed. That is, when assembling the molding members (β′1 to β′5), the adhesive material can be applied to the assembling site so that it can be bonded while having stretchability. As a result, when the molding members (β′1 to β′5) are deformed by the temperature difference, the deformation can be absorbed by the adhesive material, and the entire deformation amount can be effectively suppressed.

本実施形態によれば、被溶融金属を投入して溶融させ得る前炉Aと、内部が高温に保持されて前炉Aと連通して形成されるとともに、溶融金属を保持可能な保持炉Bと、保持炉Bと連通して形成されるとともに、当該保持炉Bで保持された溶融金属を取り出し可能な排出炉Cとを有するとともに、当該前炉A又は排出炉Cに内側耐火層β’、外側耐火層γ及び外側断熱層αが形成されたので、溶融金属の液位の変化によって温度変化が著しく生じる前炉A又は排出炉Cの変形を効果的に抑制することができる。   According to the present embodiment, the front furnace A that can be melted by introducing a metal to be melted, and the holding furnace B that is formed in communication with the front furnace A while the interior is held at a high temperature and that can hold the molten metal. And a discharge furnace C that is formed in communication with the holding furnace B and from which the molten metal held in the holding furnace B can be taken out, and has an inner refractory layer β ′ in the front furnace A or the discharge furnace C. Since the outer refractory layer γ and the outer heat insulation layer α are formed, it is possible to effectively suppress the deformation of the fore furnace A or the discharge furnace C in which the temperature change is remarkably caused by the change in the liquid level of the molten metal.

さらに、内側耐火層β’は、一端cが保持炉Bに連結可能なフランジ部Fに固定された第2成形部材β’2及び第3成形部材β’3と、これら第2成形部材β’2の他端d及び第3成形部材β’3の他端dに亘って組み付けられる第1成形部材β’1とを有して構成され、当該第2成形部材β’2及び第3成形部材β’3は、他端d側が互いに近接する方向に屈曲したL字形状の部材から成るとともに、当該第1成形部材β’1は、その両端(一端f及び他端g)が第2成形部材β’2における屈曲部eの先端及び第3成形部材β’3における屈曲部eの先端に組み付けられる略直線状の部材から成るので、温度差によって前炉A又は排出炉Cに亀裂が生じてしまうのを防止することができる。   Further, the inner refractory layer β ′ includes a second molded member β′2 and a third molded member β′3 each having one end c fixed to the flange portion F connectable to the holding furnace B, and the second molded member β ′. 2 and the first molded member β′1 assembled over the other end d of the third molded member β′3, the second molded member β′2 and the third molded member. β′3 is formed of an L-shaped member bent in the direction in which the other end d side is close to each other, and both ends (one end f and the other end g) of the first molded member β′1 are second molded members. Since it consists of a substantially linear member assembled to the tip of the bent portion e in β′2 and the tip of the bent portion e in the third molded member β′3, a crack occurs in the front furnace A or the discharge furnace C due to a temperature difference. Can be prevented.

以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば保持炉Bにおいても、外側断熱層α、内側耐火層β及び外側耐火層γが形成された金属溶融炉としてもよい。また、本実施形態に係る内側耐火層β、β’は、5つの成形部材を組み付けて構成されているが、予め成形した複数の成形部材であれば、2〜4つ或いは6つ以上の成形部材から成るものとしてもよい。なお、溶融金属は、アルミニウム材に限定されず、他の種々金属であってもよい。   As mentioned above, although this embodiment was described, this invention is not limited to this, For example, also in the holding furnace B, the metal melting furnace in which the outer side heat insulation layer (alpha), the inner side refractory layer (beta), and the outer side refractory layer (gamma) were formed. It is good. In addition, the inner refractory layers β and β ′ according to the present embodiment are configured by assembling five molded members. If the molded members are a plurality of preformed molded members, 2 to 4 or 6 or more molded members are formed. It may be composed of members. The molten metal is not limited to the aluminum material, and may be other various metals.

内側耐火層は、予め成形した複数の成形部材を組み付けて成るとともに、当該内側耐火層と外側断熱層の間に圧縮強度の高い材料から成る外側耐火層が形成された金属溶融炉であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。   The inner refractory layer is a metal melting furnace in which a plurality of preformed molded members are assembled and an outer refractory layer made of a material having high compressive strength is formed between the inner refractory layer and the outer heat insulating layer. The present invention can also be applied to ones having different appearance shapes or those having other functions added.

1 金属溶融炉
2 バーナ
3 仕切り板
α 外側断熱層
β、β’ 内側耐火層
β1〜β5、β’1〜β’5 複数の成形部材
γ 外側耐火層
A 前炉
B 保持炉
C 排出炉
1 Metal melting furnace 2 Burner 3 Partition plate α Outer heat insulation layer β, β ′ Inner refractory layers β1 to β5, β′1 to β′5 Plural molded members γ Outer refractory layer A Pre-furnace B Holding furnace C Discharge furnace

Claims (5)

断熱材から成る外側断熱層、及び当該外側断熱層の内側に形成された耐火物から成る内側耐火層の少なくとも2層を有し、所定容量の溶融金属を保持可能な金属溶融炉において、
前記内側耐火層は、予め成形した複数の成形部材を組み付けて成るとともに、当該内側耐火層と前記外側断熱層の間に圧縮強度の高い材料から成る外側耐火層が形成されたことを特徴とする金属溶融炉。
In a metal melting furnace having at least two layers of an outer heat insulating layer made of a heat insulating material and an inner refractory layer made of a refractory formed inside the outer heat insulating layer, and capable of holding a predetermined volume of molten metal,
The inner refractory layer is formed by assembling a plurality of preformed molded members, and an outer refractory layer made of a material having a high compressive strength is formed between the inner refractory layer and the outer heat insulating layer. Metal melting furnace.
前記複数の成形部材は、耐火性及び伸縮性を有した接着材料にて接着されつつ組み付けられて前記内側耐火層を形成したことを特徴とする請求項1記載の金属溶融炉。   2. The metal melting furnace according to claim 1, wherein the plurality of molded members are assembled while being bonded with an adhesive material having fire resistance and stretchability to form the inner refractory layer. 前記成形部材の組み付け部位には、組み付け時、嵌合可能な凸形状及び凹形状がそれぞれ形成されたことを特徴とする請求項1又は請求項2記載の金属溶融炉。   The metal melting furnace according to claim 1, wherein a convex shape and a concave shape that can be fitted at the time of assembling are formed at an assembling site of the molded member. 被溶融金属を投入して溶融させ得る前炉と、
内部が高温に保持されて前記前炉と連通して形成されるとともに、溶融金属を保持可能な保持炉と、
前記保持炉と連通して形成されるとともに、当該保持炉で保持された溶融金属を取り出し可能な排出炉と、
を有するとともに、当該前炉又は排出炉に前記内側耐火層、外側耐火層及び外側断熱層が形成されたことを特徴とする請求項1〜3の何れか1つに記載の金属溶融炉。
A pre-furnace that can be melted by introducing the metal to be melted;
A holding furnace capable of holding a molten metal, while the inside is maintained at a high temperature and communicated with the previous furnace;
A discharge furnace formed in communication with the holding furnace and capable of taking out the molten metal held in the holding furnace;
The metal melting furnace according to any one of claims 1 to 3, wherein the inner refractory layer, the outer refractory layer, and the outer heat insulating layer are formed in the front furnace or the discharge furnace.
前記内側耐火層は、一端が前記保持炉に連結可能なフランジ部に固定された第2成形部材及び第3成形部材と、これら第2成形部材の他端及び第3成形部材の他端に亘って組み付けられる第1成形部材とを有して構成され、当該第2成形部材及び第3成形部材は、他端側が互いに近接する方向に屈曲したL字形状の部材から成るとともに、当該第1成形部材は、その両端が第2成形部材における屈曲部の先端及び第3成形部材における屈曲部の先端に組み付けられる略直線状の部材から成ることを特徴とする請求項4記載の金属溶融炉。   The inner refractory layer includes a second molded member and a third molded member, one end of which is fixed to a flange portion connectable to the holding furnace, and the other end of the second molded member and the other end of the third molded member. The second molded member and the third molded member are L-shaped members bent in directions in which the other end sides are close to each other, and the first molded member is assembled. 5. The metal melting furnace according to claim 4, wherein the member comprises a substantially linear member whose both ends are assembled to the tip of the bent portion of the second molded member and the tip of the bent portion of the third molded member.
JP2016075066A 2015-04-27 2016-04-04 Metal melting furnace Active JP6778357B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015090477 2015-04-27
JP2015090477 2015-04-27

Publications (2)

Publication Number Publication Date
JP2016205805A true JP2016205805A (en) 2016-12-08
JP6778357B2 JP6778357B2 (en) 2020-11-04

Family

ID=57489482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075066A Active JP6778357B2 (en) 2015-04-27 2016-04-04 Metal melting furnace

Country Status (1)

Country Link
JP (1) JP6778357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112705693A (en) * 2020-12-14 2021-04-27 浙江英洛华磁业有限公司 Package in middle of multilayer combination formula for casting
JP2021146381A (en) * 2020-03-21 2021-09-27 株式会社アクセル技研 Double tank type molten metal holding furnace for low pressure casting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122123U (en) * 1975-03-29 1976-10-04
JPS555039U (en) * 1978-06-23 1980-01-14
JPS63282484A (en) * 1987-05-15 1988-11-18 株式会社ティーディーイー Non-ferrous metal melting furnace
JPH04329840A (en) * 1991-04-30 1992-11-18 Ngk Insulators Ltd Molten metal filtrate-incorporating vessel
JPH04329839A (en) * 1991-04-30 1992-11-18 Ngk Insulators Ltd Lining brick for aluminum incorporating vessel and aluminum incorporating vessel using this lining brick
JP2002035927A (en) * 2000-07-31 2002-02-05 Hitachi Metals Ltd Molten metal furnace
CN201662315U (en) * 2010-04-13 2010-12-01 上海胜僖汽车配件有限公司 High-thermal-efficiency melting bath type melting and holding surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122123U (en) * 1975-03-29 1976-10-04
JPS555039U (en) * 1978-06-23 1980-01-14
JPS63282484A (en) * 1987-05-15 1988-11-18 株式会社ティーディーイー Non-ferrous metal melting furnace
JPH04329840A (en) * 1991-04-30 1992-11-18 Ngk Insulators Ltd Molten metal filtrate-incorporating vessel
JPH04329839A (en) * 1991-04-30 1992-11-18 Ngk Insulators Ltd Lining brick for aluminum incorporating vessel and aluminum incorporating vessel using this lining brick
JP2002035927A (en) * 2000-07-31 2002-02-05 Hitachi Metals Ltd Molten metal furnace
CN201662315U (en) * 2010-04-13 2010-12-01 上海胜僖汽车配件有限公司 High-thermal-efficiency melting bath type melting and holding surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146381A (en) * 2020-03-21 2021-09-27 株式会社アクセル技研 Double tank type molten metal holding furnace for low pressure casting
CN112705693A (en) * 2020-12-14 2021-04-27 浙江英洛华磁业有限公司 Package in middle of multilayer combination formula for casting

Also Published As

Publication number Publication date
JP6778357B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
EP3088829B1 (en) Heat receiving structure and heat sink
JP2016205805A (en) Metal fusion furnace
US20100126701A1 (en) Plate-type heat pipe and method for manufacturing the same
CN205825776U (en) Temperature equalizing plate structure
JP7000421B2 (en) Cooking container
JP2005303248A (en) Radiation module
WO2009128282A1 (en) Immersion nozzle for continuous casting
JP4406753B2 (en) Cooling element manufacturing mold and cooling element manufactured using the mold
WO2011158607A1 (en) Circulation tube refractory product for an rh furnace
KR101944582B1 (en) Heater tube
JP2005262318A5 (en)
ITMI20060557A1 (en) MOLD WITH THERMOREGULATION PIPES AND ITS CONSTRUCTION METHOD
CN206775883U (en) A kind of aluminium silicon carbide shell that capping can be welded on spontaneous aluminium lamination
CN211415928U (en) Novel high-temperature-resistant mold
ITMI961260A1 (en) BODY PRINTED IN MMC WITH MODULAR STRUCTURE
JP2010173164A (en) Vacuum mold device and molded article manufactured by the same
JP7244000B2 (en) Furnace wall structure of holding furnace for molten metal
CN208033597U (en) A kind of composite bimetal pipe casting sandbox
JP2017199515A (en) Manufacturing method of heater device and heater device
JP3631263B2 (en) Plunger for CRT glass molding
CN105750528A (en) Sealing structure of riser tube for casting
JP2009270955A (en) Glass sealing thermistor for temperature sensor
CN105364058A (en) Heat preservation layer structure on outer side of casting ladle
CN108160952A (en) A kind of composite bimetal pipe casting method and casting sandbox
JP3108547U (en) Ceramic ladle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6778357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150