JP2016203097A - Production method of oil absorbent - Google Patents

Production method of oil absorbent Download PDF

Info

Publication number
JP2016203097A
JP2016203097A JP2015088015A JP2015088015A JP2016203097A JP 2016203097 A JP2016203097 A JP 2016203097A JP 2015088015 A JP2015088015 A JP 2015088015A JP 2015088015 A JP2015088015 A JP 2015088015A JP 2016203097 A JP2016203097 A JP 2016203097A
Authority
JP
Japan
Prior art keywords
oil
expanded graphite
water
oil content
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015088015A
Other languages
Japanese (ja)
Inventor
健司 竹内
Kenji Takeuchi
健司 竹内
遠藤 守信
Morinobu Endo
守信 遠藤
昇 阿久沢
Noboru Akusawa
昇 阿久沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2015088015A priority Critical patent/JP2016203097A/en
Publication of JP2016203097A publication Critical patent/JP2016203097A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an oil absorbent capable of removing an emulsion-state fine oil content contained in accompanying water discharged after extracting crude oil during crude oil production time, to equal to or less than 5 ppm which is the level of not blocking a reverse osmosis membrane and a precise membrane filter, and achieving processing of the accompanying water as a prestage of a membrane separation process by the reverse osmosis membrane and the precise membrane filter.SOLUTION: There is provided the oil absorbent which can absorb efficiently at short time, an emulsion-state fine oil content, by performing thermal treatment and oxidizing expanded graphite at temperature of 400°C or more and 500°C or less, under the presence of steam.SELECTED DRAWING: Figure 1

Description

本発明は、油吸着材の製造方法であって、特に、原油とともに排出される大量の随伴水の中に含まれる油分を分離・除去する油吸着材の製造方法に関する。   The present invention relates to a method for producing an oil adsorbent, and more particularly to a method for producing an oil adsorbent that separates and removes oil contained in a large amount of accompanying water discharged together with crude oil.

石油や天然ガスの生産に伴って、地層から大量の水が排出される。このような水を随伴水という。随伴水には、水と分離している粒子の大きなものからエマルジョン状の微細なものまで、多くの油分が含まれている。随伴水は、油田への還流処分のほか、環境放出がされている。この環境放出時には、随伴水のもつ油分や諸有機物由来の環境汚染が問題となる。このため、随伴水は、油分・有機物の分離除去処理が行われ、必要に応じて逆浸透膜分離、精密膜ろ過膜分離等による高度な処理が後工程として付加されて、環境に放出される。   A large amount of water is discharged from the formation as oil and natural gas are produced. Such water is called accompanying water. Accompanying water contains a large amount of oil, from large particles separated from water to fine emulsions. The associated water is discharged to the oil field and released to the environment. At the time of this environmental release, the oil content of the accompanying water and environmental pollution derived from various organic matters become a problem. For this reason, the accompanying water is subjected to separation / removal treatment of oil and organic matter, and advanced treatment such as reverse osmosis membrane separation, precision membrane filtration membrane separation, etc. is added as a post-process and released to the environment as necessary. .

随伴水中の油分を吸着し分離除去する方法として、様々な方法が検討されている。
例えば、随伴水に含まれる油分を分離する方法として、特許文献1および非特許文献1に、磁性粉と凝集剤によりフロック化し(凝集体を形成し)、このフロックを磁石によって引き寄せることで水と油を分離する凝集磁気分離法が開示されている。この方法により随伴水中の油分は15ppm以下まで除去される。
Various methods have been studied as a method for adsorbing and separating oil in the accompanying water.
For example, as a method for separating the oil contained in the accompanying water, Patent Document 1 and Non-Patent Document 1 describe that flocking is performed with magnetic powder and a flocculant (forming an agglomerate), and the floc is attracted with a magnet to attract water. An agglomerated magnetic separation method for separating oil is disclosed. By this method, the oil content in the accompanying water is removed to 15 ppm or less.

しかしこの方法は、高分子凝集剤を添加するものであり、直鎖アルカン類などの浮遊している脂溶性の高い油分は除去されるもの、水にわずかに溶解する低分子量の芳香族類などの油分は処理が難しいという問題があった。   However, in this method, a polymer flocculant is added, and floating oil-soluble oils such as linear alkanes are removed, and low molecular weight aromatics slightly soluble in water, etc. There was a problem that the oil content of was difficult to process.

また、特許文献2および非特許文献2には、海面等に流出し水面に浮遊する多量の油について膨張黒鉛を使用し回収する方法が開示されている。ここで、膨張黒鉛とは、天然の黒鉛を濃硝酸、濃硝酸に浸漬するなどによって黒鉛の層間に硫酸、硝酸分子を挿入した黒鉛層間化合物を形成し、その後の水洗浄と乾燥、急加熱によって黒鉛層間化合物の急激に放出させ発砲化した粉体をいう。上記方法では、膨張黒鉛が自重の50〜80倍の重油や潤滑油等を吸収し、当該重油や潤滑油等を分離することができる。膨張黒鉛には、アコーディオン状に広がった細孔があり、この細孔で多量の油を吸着することができる。   Patent Document 2 and Non-Patent Document 2 disclose a method for recovering a large amount of oil that flows out to the sea surface or the like and floats on the water surface by using expanded graphite. Here, expanded graphite forms a graphite intercalation compound in which sulfuric acid and nitric acid molecules are inserted between graphite layers by immersing natural graphite in concentrated nitric acid or concentrated nitric acid, and then by washing with water, drying, and rapid heating. This refers to powder that has been rapidly released from a graphite intercalation compound. In the above method, the expanded graphite absorbs 50 to 80 times its own weight of heavy oil, lubricating oil, etc., and the heavy oil, lubricating oil, etc. can be separated. Expanded graphite has pores spreading like an accordion, and a large amount of oil can be adsorbed through these pores.

しかし、上記方法については、エマルジョン状の微細な油分や低分子量の芳香族類などの油分の除去に関して検討されておらず、随伴水中の油分の除去処理に関し、技術的に確立していない。エマルジョン状の微細な油分等を効率よく吸着するためには、膨張黒鉛の表面により微細な孔を形成する必要があると考えられる。   However, the above method has not been studied for removal of oil such as fine oily emulsion or low molecular weight aromatics, and has not been technically established for removal of oil in associated water. In order to efficiently adsorb emulsion-like fine oil and the like, it is considered necessary to form fine pores on the surface of expanded graphite.

特許第5422516号Japanese Patent No. 5422516 特開平4−22403号公報JP-A-4-22403

http://www.jogmec.go.jp/library/recommend_library_10_000037.htmlhttp: // www. joggec. go. jp / library / recommend_library — 10 — 000037. html 日本化学会誌、1999、No.3、p193−p198Journal of the Chemical Society of Japan, 1999, No. 3, p193-p198

本発明は、上記事情に鑑み、従来の問題を解決するものであって、随伴水中のエマルジョン状の微細な油分や低分子量の芳香族類などの油分等の溶存有機化合物を、短時間に効率よく吸収し、逆浸透膜や精密膜ろ過膜を閉塞させないレベルの5ppm以下にまで除去できる油吸着材の製造方法を提供することを目的とする。   In view of the above circumstances, the present invention solves the conventional problems, and it can efficiently dissolve dissolved organic compounds such as emulsion fine oils in the accompanying water and oils such as low molecular weight aromatics in a short time. An object of the present invention is to provide a method for producing an oil adsorbent that can be absorbed well and removed to a level of 5 ppm or less that does not clog a reverse osmosis membrane or a precision membrane filtration membrane.

本発明者は、上記目的を達成するため鋭意研究を重ねた結果、膨張黒鉛を水蒸気の存在下で熱処理した後、当該膨張黒鉛を油吸着材として使用することによって、エマルジョン状の微細な油分に対する吸着性能が向上することを見出し、本発明の完成に至った。   As a result of intensive research to achieve the above object, the present inventor has conducted heat treatment on expanded graphite in the presence of water vapor, and then used the expanded graphite as an oil adsorbent, thereby reducing the emulsion-like fine oil content. The inventors have found that the adsorption performance is improved and have completed the present invention.

すなわち、第1発明の油吸着材の製造方法は、膨張黒鉛を水蒸気の存在下で熱処理することを特徴とする。   That is, the method for producing an oil adsorbent according to the first invention is characterized in that the expanded graphite is heat-treated in the presence of water vapor.

第2発明の油吸着材の製造方法は、請求項1の発明において、前記熱処理の温度が、400℃以上500℃以下であることを特徴とする。   The method for producing an oil adsorbent according to a second aspect of the invention is characterized in that, in the invention of claim 1, the temperature of the heat treatment is 400 ° C. or higher and 500 ° C. or lower.

第1発明によれば、水蒸気の存在下で膨張黒鉛を熱処理することによって、膨張黒鉛を酸化させ一部ガス化することができる。これにより、当該膨張黒鉛の表面に微細孔を作り出し、随伴水中のエマルジョン状の油分を効率的に吸着することができる。   According to the first invention, the expanded graphite can be oxidized and partially gasified by heat-treating the expanded graphite in the presence of water vapor. Thereby, a micropore can be created in the surface of the said expanded graphite, and the emulsion-like oil component in accompanying water can be adsorb | sucked efficiently.

第2発明によれば、前記熱処理の温度を制御することによって、前記膨張黒鉛の酸化を促進させ、かつ熱エネルギーによる前記膨張黒鉛の層状構造の破壊を抑制することができる。   According to the second invention, by controlling the temperature of the heat treatment, the oxidation of the expanded graphite can be promoted, and the destruction of the layered structure of the expanded graphite due to thermal energy can be suppressed.

実施例および比較例1〜4で用いた油吸着材の油吸着特性(残存油分量の時間変化)を示すグラフである。It is a graph which shows the oil adsorption characteristic (time change of the amount of residual oil) of the oil adsorption material used in the Example and Comparative Examples 1-4.

以下、本発明の実施形態に係る油吸着材の製造方法を説明する。   Hereinafter, the manufacturing method of the oil adsorption material which concerns on embodiment of this invention is demonstrated.

本発明に用いる膨張黒鉛は、熱膨張性黒鉛を加熱膨張させて得られるものであり、従来から公知のものを特に限定なく使用することができる。すなわち、当該膨張黒鉛は、公知の方法により製造することができ、天然黒鉛、熱分解黒鉛、キャッシュ黒鉛など原料黒鉛を、例えば、濃硫酸、硝酸などの無機酸とそれら酸を挿入しやすくするための濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、過酸化水素、あるいは重クロム酸塩などの強酸化剤をともに処理し、黒鉛層間化合物を生成させた後、中和工程、水洗・乾燥工程を経て、さらに急速加熱処理工程を経て、製造できる。係る膨張黒鉛は、既に、市販され工業的に利用されているので容易に入手することができる。   The expanded graphite used in the present invention is obtained by thermally expanding thermally expandable graphite, and conventionally known ones can be used without any particular limitation. That is, the expanded graphite can be produced by a known method. For example, natural graphite, pyrolytic graphite, and cache graphite can be used to easily insert an inorganic acid such as concentrated sulfuric acid and nitric acid and the acid. After processing together with strong oxidizing agents such as concentrated nitric acid, perchloric acid, perchlorate, permanganate, hydrogen peroxide, or dichromate to form a graphite intercalation compound, neutralization step, It can be manufactured through a water washing / drying process and a rapid heat treatment process. Since such expanded graphite is already commercially available and industrially used, it can be easily obtained.

本発明に用いる膨張黒鉛は、発泡体状であり、嵩密度が0.002g/cm3以上0.02g/cm3以下の範囲であることが好ましい。嵩密度が0.002g/cm3より小さいと体積を占める細孔の割合が多すぎて膨張黒鉛の強度を維持することが困難になる場合がある。嵩密度が0.02g/cm3より大きいと体積を占める細孔の割合が少なすぎて膨張黒鉛の表面積が小さくなり、油分の吸着材としての性能が落ちる。嵩密度は、質量と体積から決定される。例えば、所定量の膨張黒鉛の質量を電子天秤等で測定し、その体積をメスシリンダー等で測定することで算出できる。   The expanded graphite used in the present invention is in the form of a foam and preferably has a bulk density in the range of 0.002 g / cm 3 or more and 0.02 g / cm 3 or less. If the bulk density is less than 0.002 g / cm 3, the proportion of pores occupying the volume is too large, and it may be difficult to maintain the strength of the expanded graphite. When the bulk density is larger than 0.02 g / cm 3, the proportion of pores occupying the volume is too small, the surface area of the expanded graphite becomes small, and the performance as an oil adsorbent is lowered. Bulk density is determined from mass and volume. For example, it can be calculated by measuring the mass of a predetermined amount of expanded graphite with an electronic balance or the like and measuring the volume with a graduated cylinder or the like.

本発明においては、酸化性ガスの存在下で膨張黒鉛を熱処理し、膨張黒鉛の表面を酸化させ微細孔を形成する。すなわち、熱処理によって膨張黒鉛と酸化性ガスを高温にして反応させ、当該膨張黒鉛の表面の一部を気化させる。これにより、膨張黒鉛の表面に微細孔を形成する。酸化性ガスとしては、水蒸気、二酸化炭素、空気、その他のガス等があるが、本発明においては、酸化性に優れ微細孔を大きくできることから水蒸気が選択される。   In the present invention, the expanded graphite is heat-treated in the presence of an oxidizing gas to oxidize the surface of the expanded graphite to form micropores. That is, the expanded graphite and the oxidizing gas are reacted at a high temperature by heat treatment to vaporize a part of the surface of the expanded graphite. Thereby, micropores are formed on the surface of the expanded graphite. Examples of the oxidizing gas include water vapor, carbon dioxide, air, and other gases. In the present invention, water vapor is selected because it is excellent in oxidizing properties and can enlarge micropores.

水蒸気により膨張黒鉛を効率よく酸化させる手段としては、前記膨張黒鉛を水に浸漬し濡らした後、前記膨張黒鉛を炉内で加熱し水を蒸発させて、前記膨張黒鉛と水蒸気を反応させることが有効である。   As a means for efficiently oxidizing the expanded graphite with water vapor, the expanded graphite is immersed in water and wetted, and then the expanded graphite is heated in a furnace to evaporate the water and react the expanded graphite with water vapor. It is valid.

本発明において、膨張黒鉛を熱処理する温度は、300℃以上600℃以下が好ましいが、さらに好ましくは400℃以上500℃以下である。熱処理の温度が500℃より大きいと熱エネルギーによって膨張黒鉛の層状構造が壊れやすく油吸着特性が劣化する場合がある。また熱処理の温度が400℃より小さいと膨張黒鉛の層間の奥まで酸化が進行せず油吸着特性が良好とならない場合がある。   In the present invention, the temperature at which the expanded graphite is heat-treated is preferably from 300 ° C to 600 ° C, more preferably from 400 ° C to 500 ° C. If the temperature of the heat treatment is higher than 500 ° C., the layer structure of the expanded graphite is likely to be broken by the heat energy, and the oil adsorption characteristics may be deteriorated. On the other hand, if the temperature of the heat treatment is lower than 400 ° C., the oxidation does not proceed to the back of the expanded graphite layer and the oil adsorption characteristics may not be improved.

油分を含む水として、原油生産時に原油を抽出した後に排出される随伴水が挙げられる。油分とは、水中に溶存あるいは分散状態で存在している疎水性有機化合物からなる液体成分をいうが、より具体的には石油系炭化水素などをいう。随伴水には、ベンゼン、エチルベンゼン、トルエン、及びキシレンやナフタレン、メシチレン、インドール、クレゾール、ヘプタン、トリメチルフェノールなどの油分がエマルジョン状の微細な状態で含まれる。   Examples of water containing oil include associated water discharged after extracting crude oil during crude oil production. The oil component refers to a liquid component composed of a hydrophobic organic compound that is dissolved or dispersed in water, and more specifically, petroleum hydrocarbons. The accompanying water contains benzene, ethylbenzene, toluene, and oils such as xylene, naphthalene, mesitylene, indole, cresol, heptane, and trimethylphenol in a fine emulsion state.

このような難溶性ではあるものの随伴水中に溶存あるいは分散状態で存在している微細な油分を回収・除去できる油吸着材が、本発明の実施形態の油吸着材の製造方法によって製造可能となる。   An oil adsorbent that is capable of recovering and removing such fine oils that are hardly soluble but dissolved or dispersed in the accompanying water can be produced by the method for producing an oil adsorbent according to the embodiment of the present invention. .

以下、本発明の実施例を具体的に説明するが、本発明は、下記実施例に制限されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to the following examples.

<随伴水>
模擬的な随伴水として、蒸留水に合成エンジンオイルを添加して用いた。すなわち、模擬随伴水は所定量の合成エンジンオイルを室温で蒸留水とともにマグネチックスターラ(950回転/分)とホモジナイザーの併用で混合してエマルジョン状態に調製した。油分濃度は100ppmである。油分濃度は、溶媒抽出−非分散赤外線吸収分析法により油分の濃度を計測する、油分濃度計(Horiba oil content meter OCMA 505)を用いた。
<Built water>
As simulated accompanying water, synthetic engine oil was added to distilled water. That is, simulated accompanying water was prepared in an emulsion state by mixing a predetermined amount of synthetic engine oil together with distilled water at room temperature using a magnetic stirrer (950 rpm) and a homogenizer. The oil concentration is 100 ppm. For the oil concentration, an oil concentration meter (Horiba oil content meter OCMA 505) that measures the oil concentration by solvent extraction-non-dispersive infrared absorption analysis was used.

<実施例>
本発明に係る油吸着材は、膨張黒鉛を、水蒸気の存在下で熱処理し酸化処理して作製した。すなわち、30ccの蒸留水を入れた500ccのステンレス製耐熱容器に、膨張黒鉛2gを入れ前記蒸留水に浸漬し撹拌させた。次に、前記水を含んだ膨張黒鉛を取り出し、電気炉(アサヒ理化学製作所製、型番AMF-20N)の中に入れた。そして、450℃の温度で1時間加熱し、膨張黒鉛に付着していた水を蒸発させ、前記膨張黒鉛を水蒸気の存在下で熱処理した。これにより膨張黒鉛を酸化処理し油吸着材を得た。当該酸化処理後の膨張黒鉛は、発泡体状であり、嵩密度が0.006g/cmで、比表面積43.5m/gであった。
<Example>
The oil adsorbent according to the present invention was produced by subjecting expanded graphite to heat treatment in the presence of water vapor and oxidation treatment. That is, 2 g of expanded graphite was placed in a 500 cc stainless steel heat-resistant container containing 30 cc of distilled water and immersed in the distilled water and stirred. Next, the expanded graphite containing water was taken out and placed in an electric furnace (manufactured by Asahi Riken Corporation, model number AMF-20N). And it heated at the temperature of 450 degreeC for 1 hour, the water adhering to the expanded graphite was evaporated, and the said expanded graphite was heat-processed in presence of water vapor | steam. Thus, the expanded graphite was oxidized to obtain an oil adsorbent. The expanded graphite after the oxidation treatment was in the form of a foam, had a bulk density of 0.006 g / cm 3 and a specific surface area of 43.5 m 2 / g.

その後、ガラス製ビーカー(1000cc)に前記模擬随伴水を入れ、スターラーで撹拌しながら、前記酸化処理後の膨張黒鉛を100mg投入した。そして、前記模擬随伴水中の吸着後の残存油分量を時間の関数(5分〜60分)で計測した。   Thereafter, the simulated accompanying water was put into a glass beaker (1000 cc), and 100 mg of the expanded graphite after the oxidation treatment was added while stirring with a stirrer. And the residual oil amount after adsorption | suction in the said simulation accompanying water was measured by the function (5 minutes-60 minutes) of time.

すなわち、前記酸化処理後の膨張黒鉛を投入後、所定時間を経た後に50ccの前記模擬随伴水を採取してその油分を計測した。油分濃度計測は、前記油分濃度計(Horiba oil content meter OCMA 505)を用い、ガラス容器の器壁付着油分を十分に除去しながら計測した。
実施例で用いた酸化処理後の膨張黒鉛の残存油分量の時間変化を図1に示す。
That is, after adding the expanded graphite after the oxidation treatment, 50 cc of the simulated accompanying water was collected after a predetermined time, and the oil content was measured. The oil concentration was measured using the oil concentration meter (Horiba oil content meter OCMA 505) while sufficiently removing the oil adhering to the wall of the glass container.
The time change of the residual oil content of the expanded graphite after the oxidation treatment used in the examples is shown in FIG.

<比較例1>
実施例における膨張黒鉛を酸化処理する前の膨張黒鉛を用いた。当該酸化処理前の膨張黒鉛は、発泡体状であり、嵩密度が0.007g/cmで、比表面積49.7m/gであった。ガラス製ビーカー(1000cc)に模擬随伴水を入れ、スターラーで撹拌しながら、前記酸化処理前の膨張黒鉛を100mg投入した。その後、油分濃度計(Horiba oil content meter OCMA 505)を用いて前記模擬随伴水中の吸着後の残存油分量を時間の関数で計測した。
前記酸化処理前の市販の膨張黒鉛の残存油分量の時間変化を図1に示す。
<Comparative Example 1>
The expanded graphite before oxidizing the expanded graphite in the examples was used. The expanded graphite before the oxidation treatment was in the form of a foam, had a bulk density of 0.007 g / cm 3 and a specific surface area of 49.7 m 2 / g. Simulated accompanying water was put into a glass beaker (1000 cc), and 100 mg of expanded graphite before the oxidation treatment was added while stirring with a stirrer. Thereafter, the residual oil content after adsorption in the simulated accompanying water was measured as a function of time using an oil content meter (Horiba oil content meter OCMA 505).
FIG. 1 shows the change over time in the amount of residual oil in commercially available expanded graphite before the oxidation treatment.

<比較例2>
市販の膨張黒鉛(中越黒鉛工業製SMF)を用いた。当該膨張黒鉛は、発泡体状であり、嵩密度が0.017g/cmで、比表面積24.4m/gであった。ガラス製ビーカー(1000cc)に模擬随伴水を入れ、スターラーで撹拌しながら、前記膨張黒鉛(中越黒鉛工業製SMF)を100mg投入した。その後、油分濃度計(Horiba oil content meter OCMA 505)を用いて前記模擬随伴水中の吸着後の残存油分量を時間の関数で計測した。
前記膨張黒鉛(中越黒鉛工業製SMF)の残存油分量の時間変化を図1に示す。
<Comparative example 2>
Commercially available expanded graphite (SMF manufactured by Chuetsu Graphite Industry) was used. The expanded graphite was in the form of a foam, had a bulk density of 0.017 g / cm 3 and a specific surface area of 24.4 m 2 / g. Simulated accompanying water was put into a glass beaker (1000 cc), and 100 mg of the expanded graphite (SMF manufactured by Chuetsu Graphite Industry) was added while stirring with a stirrer. Thereafter, the residual oil content after adsorption in the simulated accompanying water was measured as a function of time using an oil content meter (Horiba oil content meter OCMA 505).
FIG. 1 shows the time change of the residual oil content of the expanded graphite (SMF manufactured by Chuetsu Graphite Industry).

<比較例3>
市販の膨張黒鉛(中越黒鉛工業製SFF-80B)を用いた。当該膨張黒鉛は、発泡体状であり、嵩密度が0.009g/cmで、比表面積28.4m/gであった。ガラス製ビーカー(1000cc)に模擬随伴水を入れ、スターラーで撹拌しながら、前記膨張黒鉛(中越黒鉛工業製SFF-80B)を100mg投入した。その後、油分濃度計(Horiba oil content meter OCMA 505)を用いて前記模擬随伴水中の吸着後の残存油分量を時間の関数で計測した。
前記膨張黒鉛(中越黒鉛工業製SFF-80B)の残存油分量の時間変化を図1に示す。
<Comparative Example 3>
Commercially available expanded graphite (SFF-80B manufactured by Chuetsu Graphite Industry) was used. The expanded graphite was in the form of a foam, had a bulk density of 0.009 g / cm 3 and a specific surface area of 28.4 m 2 / g. Simulated accompanying water was placed in a glass beaker (1000 cc), and 100 mg of the expanded graphite (SFF-80B manufactured by Chuetsu Graphite Industry) was added while stirring with a stirrer. Thereafter, the residual oil content after adsorption in the simulated accompanying water was measured as a function of time using an oil content meter (Horiba oil content meter OCMA 505).
FIG. 1 shows the time change of the residual oil content of the expanded graphite (SFF-80B manufactured by Chuetsu Graphite Industry).

<比較例4>
ベルミキュライトを用いた。当該ベルミキュライトは、粒状であり、嵩密度が0.172g/cmで、比表面積6.8m/gであった。ガラス製ビーカー(1000cc)に模擬随伴水を入れ、スターラーで撹拌しながら、前記ベルミキュライトを100mg投入した。その後、油分濃度計(Horiba oil content meter OCMA 505)を用いて前記模擬随伴水中の吸着後の残存油分量を時間の関数で計測した。
前記ベルミキュライトの残存油分量の時間変化を図1に示す。
<Comparative example 4>
Vermiculite was used. The vermiculite was granular, had a bulk density of 0.172 g / cm 3 and a specific surface area of 6.8 m 2 / g. Simulated accompanying water was put into a glass beaker (1000 cc), and 100 mg of the vermiculite was added while stirring with a stirrer. Thereafter, the residual oil content after adsorption in the simulated accompanying water was measured as a function of time using an oil content meter (Horiba oil content meter OCMA 505).
The time change of the residual oil content of the vermiculite is shown in FIG.

<比較例5>
ヤシ殻活性炭を用いた。当該ヤシ殻活性炭は、粒状であり、嵩密度が2.04g/cmで、比表面積1176.1m/gであった。ガラス製ビーカー(1000cc)に模擬随伴水を入れ、スターラーで撹拌しながら、前記ヤシ殻活性炭を100mg投入した。その後、油分濃度計(Horiba oil content meter OCMA 505)を用いて前記模擬随伴水中の吸着後の残存油分量を時間の関数で計測した。
前記ヤシ殻活性炭の残存油分量の時間変化を図1に示す。
<Comparative Example 5>
Coconut shell activated carbon was used. The coconut shell activated carbon was granular, had a bulk density of 2.04 g / cm 3 and a specific surface area of 1176.1 m 2 / g. Simulated accompanying water was put into a glass beaker (1000 cc), and 100 mg of the coconut shell activated carbon was added while stirring with a stirrer. Thereafter, the residual oil content after adsorption in the simulated accompanying water was measured as a function of time using an oil content meter (Horiba oil content meter OCMA 505).
The time change of the residual oil content of the coconut shell activated carbon is shown in FIG.

図1の結果から、水蒸気の存在下で熱処理し酸化処理した膨張黒鉛の残存油分量は、30分後には4ppm以下となっている。このように当該酸化処理した膨張黒鉛は、酸化処理していない膨張黒鉛や、ヤシ殻活性炭、ベルミキュライトに比べ残存油分量が大幅に減少し、油分を非常に短時間で効率よく吸着する。   From the results of FIG. 1, the amount of residual oil in the expanded graphite heat-treated and oxidized in the presence of water vapor is 4 ppm or less after 30 minutes. In this way, the oxidized expanded graphite significantly reduces the amount of residual oil compared to expanded graphite that has not been oxidized, coconut shell activated carbon, and vermiculite, and adsorbs oil efficiently in a very short time. .

本発明の製造方法によれば、随伴水中の油分の溶存有機化合物を非常に短時間で5ppm以下にまで除去する油吸着材を製造することが可能となる。本発明により製造した油吸着材は、逆浸透膜や精密膜ろ過膜による膜分離プロセスに至る前段階として随伴水を処理することできるので、随伴水処理の分野で利用価値が高い。

According to the production method of the present invention, it is possible to produce an oil adsorbent that removes dissolved organic compounds of the oil in the accompanying water to 5 ppm or less in a very short time. Since the oil adsorbent produced according to the present invention can treat the accompanying water as a pre-stage leading to the membrane separation process using a reverse osmosis membrane or a precision membrane filtration membrane, it is highly useful in the field of accompanying water treatment.

Claims (2)

膨張黒鉛を水蒸気の存在下で熱処理することを特徴とする油吸着材の製造方法。   A method for producing an oil adsorbent characterized by heat-treating expanded graphite in the presence of water vapor. 前記熱処理の温度が、400℃以上500℃以下であることを特徴とする請求項1記載の油吸着材の製造方法。

The method for producing an oil adsorbent according to claim 1, wherein a temperature of the heat treatment is 400 ° C. or more and 500 ° C. or less.

JP2015088015A 2015-04-23 2015-04-23 Production method of oil absorbent Pending JP2016203097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088015A JP2016203097A (en) 2015-04-23 2015-04-23 Production method of oil absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088015A JP2016203097A (en) 2015-04-23 2015-04-23 Production method of oil absorbent

Publications (1)

Publication Number Publication Date
JP2016203097A true JP2016203097A (en) 2016-12-08

Family

ID=57488461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088015A Pending JP2016203097A (en) 2015-04-23 2015-04-23 Production method of oil absorbent

Country Status (1)

Country Link
JP (1) JP2016203097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980723A (en) * 2019-12-27 2020-04-10 洛阳森蓝化工材料科技有限公司 Graphite puffing treatment process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980723A (en) * 2019-12-27 2020-04-10 洛阳森蓝化工材料科技有限公司 Graphite puffing treatment process
CN110980723B (en) * 2019-12-27 2022-10-21 洛阳森蓝化工材料科技有限公司 Graphite puffing treatment process

Similar Documents

Publication Publication Date Title
Lorenc-Grabowska Effect of micropore size distribution on phenol adsorption on steam activated carbons
Rajak et al. Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion
Gupta et al. Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire
US10011503B2 (en) Method for making activated carbon-supported transition metal-based nanoparticles
Rodríguez et al. Adsorption of dyes on carbon nanomaterials from aqueous solutions
Diraki et al. Removal of oil from oil–water emulsions using thermally reduced graphene and graphene nanoplatelets
Yuan et al. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions
Rambabu et al. Adsorption characteristics of atrazine on granulated activated carbon and carbon nanotubes
Adeola et al. Optimization of the sorption of selected polycyclic aromatic hydrocarbons by regenerable graphene wool
Yusof et al. Feasibility study of cadmium adsorption by palm oil fuel ash (POFA)-based low-cost hollow fibre zeolitic membrane
WO2015066816A1 (en) Generation of high quality birch-based activated carbons for adsorption of heavy metals and pah from water
Tene et al. Removal of mercury (II) from aqueous solution by partially reduced graphene oxide
Salehin et al. Activated carbon from residual oil fly ash for heavy metals removal from aqueous solution
Takeuchi et al. Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments
Piriya et al. Comparative adsorption study of malachite green dye on acid-activated carbon
Nunes et al. Efficiency evaluation of thermal, ultrasound and solvent techniques in activated carbon regeneration
JP2016203097A (en) Production method of oil absorbent
Kamilya et al. Effect of magnetic field on the removal of copper from aqueous solution using activated carbon derived from rice husk
Din et al. Adsorption of methyl violet dye on acid modified activated carbon: isotherms and thermodynamics
JP5002652B2 (en) Adsorbents for treating contaminated liquids
Soudani et al. Effects of nitrogen plasma treatment on the surface characteristics of olive stone-based activated carbon
Faraji et al. Use of carbon materials for produced water treatment: A review on adsorption process and performance
Gui et al. Amine‐functionalization of multi‐walled carbon nanotubes for adsorption of carbon dioxide
KR102498178B1 (en) Sponge type sorbent media coated with reduced graphene oxide for removal of organic compound and oil contaminants and the manufacturing method thereof
Shi et al. Adsorption behaviors of lead ion onto acetate modified activated carbon fiber