JP2016196630A - Novel polyimide copolymer - Google Patents

Novel polyimide copolymer Download PDF

Info

Publication number
JP2016196630A
JP2016196630A JP2016049079A JP2016049079A JP2016196630A JP 2016196630 A JP2016196630 A JP 2016196630A JP 2016049079 A JP2016049079 A JP 2016049079A JP 2016049079 A JP2016049079 A JP 2016049079A JP 2016196630 A JP2016196630 A JP 2016196630A
Authority
JP
Japan
Prior art keywords
polyimide
solution
film
formula
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016049079A
Other languages
Japanese (ja)
Inventor
淳一 石井
Junichi Ishii
淳一 石井
長谷川 匡俊
Masatoshi Hasegawa
匡俊 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Toho University
Original Assignee
Taoka Chemical Co Ltd
Toho University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd, Toho University filed Critical Taoka Chemical Co Ltd
Publication of JP2016196630A publication Critical patent/JP2016196630A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide having exceptional solvent solubility (solvent processability), a solution comprising the polyimide, and a polyimide film obtained by applying and drying the same and having high heat resistance, low linear thermal expansion coefficient and high transparency at the same time.SOLUTION: The present invention provides a polyimide solution in which a polyimide copolymer having a repeating unit represented by formula (1) and a repeating unit represented by formula (2) is stable at room temperature, and a polyimide film obtained by applying and drying the same.SELECTED DRAWING: None

Description

本発明は、スピロ構造を有する新規なポリイミド共重合体に関する。   The present invention relates to a novel polyimide copolymer having a spiro structure.

芳香族テトラカルボン酸二無水物(電子受容性)と芳香族ジアミン(電子供与性)から得られるポリイミドは、イミド環のカルボニル基間双極子・双極子相互作用や分子間の電荷移動相互作用によって高分子鎖間の凝集力が強まり分子運動が制限され、ガラス転移温度が汎用樹脂に比べて遥かに高くなる。電荷移動相互作用は分子内でも生じ、分子内と分子間の電荷移動相互作用によってポリイミドフィルムの多くは、可視領域の光透過率が非常に低くなる(非特許文献1)。また、直線的で剛直な化学構造を有するポリイミドでは、フィルムの線熱膨張係数(CTE)が無機材料と同程度まで低くなる場合があり、熱に対して優れた熱寸法安定性を示す耐熱フィルム材料となる(非特許文献2)。   Polyimides obtained from aromatic tetracarboxylic dianhydrides (electron-accepting) and aromatic diamines (electron-donating) are produced by dipole-dipole interactions between carbonyl groups of imide rings and charge transfer interactions between molecules. The cohesive force between the polymer chains is strengthened, the molecular motion is restricted, and the glass transition temperature is much higher than that of general-purpose resins. The charge transfer interaction also occurs in the molecule, and most of the polyimide film has a very low light transmittance in the visible region due to the charge transfer interaction between the molecule and the molecule (Non-patent Document 1). In addition, in a polyimide having a linear and rigid chemical structure, the linear thermal expansion coefficient (CTE) of the film may be as low as that of an inorganic material, and the heat resistant film exhibits excellent thermal dimensional stability against heat. It becomes a material (Non-Patent Document 2).

一般に、ポリイミドフィルムは、溶媒に可溶なポリイミドの前駆体、即ちポリアミド酸の溶液(ワニス)を支持体上に流延・乾燥してポリアミド酸フィルムとした後に、これを高温で脱水閉環反応(熱イミド化)させて製造される(非特許文献3)。一般に、熱イミド化の際、副生成物である水やフィルム中の残留溶媒の脱離を伴いながら進行するためフィルム面方向に沿って強い収縮力が発生し、フィルムが支持体等に固定されている場合は、見かけ上延伸されることになる。直線的で剛直な化学構造を有するポリイミド系では、このような延伸作用により、ポリイミド鎖はフィルム面に沿って高度に配向する(非特許文献4,5)。この作用により、前記ポリイミドフィルムは低熱膨張性、即ち優れた熱寸法安定性を示すようになる。現在、高寸法安定性ポリイミドは、半導体素子やフレキシブルプリント配線基板などの絶縁層として広く使用されている。しかしながら、耐熱性および熱寸法安定性に優れたポリイミドは通常、不溶・不融であるため加工性に乏しく、溶媒に可溶な前駆体(ポリアミド酸)の段階でフィルム状に加工しておき、これを熱イミド化する工程を選択せざるを得ない。熱イミド化工程では、300℃以上の高温を必要とするため、無着色透明なポリイミドフィルムが求められる用途(特に光学デバイス)では、このような高温製膜プロセスは不利である。そこで、既にイミド化が完結している状態で溶媒に可溶な溶液加工性ポリイミドや、溶融成型可能な熱可塑性ポリイミドの開発検討が近年なされている。   In general, a polyimide film is a polyimide precursor soluble in a solvent, that is, a polyamic acid solution (varnish) is cast and dried on a support to form a polyamic acid film, which is then subjected to a dehydration ring-closing reaction at a high temperature ( (Non-patent document 3). In general, during thermal imidization, it proceeds with the elimination of water as a by-product and residual solvent in the film, so a strong shrinkage force is generated along the film surface direction, and the film is fixed to a support. If it is, it will be apparently stretched. In a polyimide system having a linear and rigid chemical structure, the polyimide chain is highly oriented along the film surface by such a stretching action (Non-patent Documents 4 and 5). Due to this action, the polyimide film exhibits low thermal expansion, that is, excellent thermal dimensional stability. Currently, high dimensional stability polyimide is widely used as an insulating layer for semiconductor elements and flexible printed wiring boards. However, polyimides with excellent heat resistance and thermal dimensional stability are usually insoluble and infusible, so they have poor workability, and are processed into a film at the stage of a solvent-soluble precursor (polyamic acid). A process for thermal imidization of this must be selected. Since a high temperature of 300 ° C. or higher is required in the thermal imidization step, such a high-temperature film forming process is disadvantageous in applications (particularly optical devices) where a non-colored transparent polyimide film is required. In view of this, development studies have been made in recent years on solution-processable polyimides that are soluble in solvents and imprintable thermoplastic polyimides that have already been imidized.

溶液・熱加工性ポリイミドを得るには、ポリイミド主鎖中にシロキサン鎖やエーテル結合のような屈曲結合を導入することに加え、側鎖に嵩高い置換基を入れて高分子鎖の凝集を阻害したり、あるいは分子量の大きなモノマーを使用することで主鎖中のイミド基濃度を低下させるなどの方法が知られている(非特許文献6,7)。しかしながら、このような公知の方法により加工性ポリイミドを得ようとすると、ほぼ例外なくポリイミドフィルム本来の耐熱性の低下および線熱膨張係数の著しい増大(熱寸法安定性の悪化)を招くことになる(非特許文献5)。従って、ポリイミドワニスを塗布乾燥するだけで(熱イミド化工程なしで)高耐熱性と低熱膨張性を有するポリイミドフィルムを得ることは原理的に極めて困難である。このような事情により、溶液加工性、耐熱性および低熱膨張性に加え、各種光学用途へ適用するため無着色透明性も保持しているポリイミドを得るための方法は知られていない。   In order to obtain a solution / heat-processable polyimide, in addition to introducing a flexible bond such as a siloxane chain or an ether bond in the polyimide main chain, bulky substituents are added to the side chain to inhibit polymer chain aggregation. Or by using a monomer having a large molecular weight to reduce the imide group concentration in the main chain (Non-Patent Documents 6 and 7). However, attempts to obtain a workable polyimide by such a known method will almost certainly cause a decrease in the inherent heat resistance of the polyimide film and a significant increase in the linear thermal expansion coefficient (deterioration in thermal dimensional stability). (Non-patent document 5). Therefore, in principle, it is extremely difficult to obtain a polyimide film having high heat resistance and low thermal expansion by simply applying and drying the polyimide varnish (without the thermal imidization step). Under such circumstances, there is no known method for obtaining a polyimide that retains uncolored transparency for application to various optical uses in addition to solution processability, heat resistance, and low thermal expansion.

Prog.Polym.Sci.,26,259(2001).Prog. Polym. Sci. , 26, 259 (2001). J.Appl.Polym.Sci.,31,101(1986).J. et al. Appl. Polym. Sci. 31, 101 (1986). Prog.Polym.Sci.,16,561(1991).Prog. Polym. Sci. 16, 561 (1991). Polym.,30,1170(1989).Polym. 30, 1170 (1989). Macromolecules,29,7897(1996).Macromolecules, 29, 7897 (1996). Polym.Eng.Sci.,29,1413(1989).Polym. Eng. Sci. 29, 1413 (1989). Polym.,39,1945(1998).Polym. 39, 1945 (1998).

本発明は、溶媒溶解性(溶液加工性)に優れたポリイミドと該ポリイミドを含む溶液、およびこれを塗布・乾燥して得られ、高い耐熱性、低い線熱膨張係数および高い透明性を同時に有するポリイミドフィルムを提供することを目的とする。 The present invention is obtained by applying a polyimide having excellent solvent solubility (solution processability), a solution containing the polyimide, and applying and drying the same, and has high heat resistance, low linear thermal expansion coefficient and high transparency at the same time. An object is to provide a polyimide film.

本発明者らは、上記課題を解決するために鋭意研究した結果、下記式(1)で表される繰り返し単位及び下記一般式(2)で表される繰り返し単位を有するポリイミドの共重合体が室温で安定なポリイミド溶液を与え、これを塗布・乾燥することで、高い耐熱性、低い線熱膨張係数および高い透明性を同時に有するポリイミドフィルムが得られることを見出し、本発明を完成させた。本発明は以下の通りである。 As a result of intensive research to solve the above problems, the present inventors have found that a polyimide copolymer having a repeating unit represented by the following formula (1) and a repeating unit represented by the following general formula (2) is obtained. It was found that a polyimide film having a high heat resistance, a low linear thermal expansion coefficient and a high transparency can be obtained at the same time by giving a polyimide solution stable at room temperature and applying and drying the solution, thereby completing the present invention. The present invention is as follows.

〔1〕
下記式(1):
[1]
Following formula (1):

Figure 2016196630
で表される繰り返し単位及び下記一般式(2):
Figure 2016196630
The repeating unit represented by the following general formula (2):

Figure 2016196630
(式中、Xは下記式(3)〜(8)からなる群より選ばれる少なくとも1種の4価の芳香族基を表す。)で表される繰り返し単位を有するポリイミド共重合体。
Figure 2016196630
(Wherein X represents at least one tetravalent aromatic group selected from the group consisting of the following formulas (3) to (8)), and a polyimide copolymer having a repeating unit represented by:

Figure 2016196630
Figure 2016196630

〔2〕
上記式(1)で表される繰り返し単位の含有率が、ポリイミド共重合体中の全繰り返し単位に対し2〜70mol%の範囲である〔1〕に記載のポリイミド共重合体。
[2]
The polyimide copolymer as described in [1] whose content rate of the repeating unit represented by the said Formula (1) is the range of 2-70 mol% with respect to all the repeating units in a polyimide copolymer.

〔3〕
〔1〕または〔2〕に記載のポリイミド共重合体を固形分濃度で5重量%以上含むポリイミド溶液。
[3]
A polyimide solution containing the polyimide copolymer according to [1] or [2] in a solid content concentration of 5% by weight or more.

〔4〕
〔1〕または〔2〕に記載のポリイミド共重合体を含むポリイミドフィルム。
[4]
A polyimide film comprising the polyimide copolymer according to [1] or [2].

〔5〕
以下の(A)、(B)及び(C)の特徴を有する〔4〕記載のポリイミドフィルム。
(A)波長400nmにおける光透過率が30%以上。
(B)線熱膨張係数が40ppm/K以下。
(C)ガラス転移温度(Tg)が260℃以上。
[5]
The polyimide film according to [4], which has the following features (A), (B) and (C).
(A) The light transmittance at a wavelength of 400 nm is 30% or more.
(B) The linear thermal expansion coefficient is 40 ppm / K or less.
(C) Glass transition temperature (Tg) is 260 ° C. or higher.

本発明によれば、優れた溶媒溶解性(溶液加工性)を有したポリイミド共重合体、及び、該ポリイミド共重合体又は該ポリイミド共重合体を含む溶液から、従来技術では極めて両立困難であった、高い耐熱性・高い透明性に加え低熱膨張性をも兼ね備えたポリイミドフィルムが提供可能となる。 According to the present invention, it is difficult to achieve compatibility with the prior art from a polyimide copolymer having excellent solvent solubility (solution processability) and the polyimide copolymer or a solution containing the polyimide copolymer. In addition, it is possible to provide a polyimide film having low thermal expansion in addition to high heat resistance and high transparency.

実施例1において測定したFT−IRのチャートである。2 is a chart of FT-IR measured in Example 1. 実施例2において測定したFT−IRのチャートである。4 is a chart of FT-IR measured in Example 2. 実施例4において測定したFT−IRのチャートである。6 is a chart of FT-IR measured in Example 4. 実施例6において測定したFT−IRのチャートである。7 is a chart of FT-IR measured in Example 6. 実施例8において測定したFT−IRのチャートである。10 is a chart of FT-IR measured in Example 8. 実施例10において測定したFT−IRのチャートである。10 is a chart of FT-IR measured in Example 10. 実施例11において測定したFT−IRのチャートである。10 is a chart of FT-IR measured in Example 11.

本発明のポリイミド共重合体(以下、本発明のポリイミドと称することもある)は、下記式(1)で表される繰り返し単位及び下記一般式(2)で表される繰り返し単位を有する。なお、式(2)中、Xは下記式(3)〜(8)からなる群より選ばれる少なくとも1種の4価の芳香族基を表す。 The polyimide copolymer of the present invention (hereinafter sometimes referred to as the polyimide of the present invention) has a repeating unit represented by the following formula (1) and a repeating unit represented by the following general formula (2). In the formula (2), X represents at least one tetravalent aromatic group selected from the group consisting of the following formulas (3) to (8).

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

本発明のポリイミドは、下記式(9)で表されるテトラカルボン酸二無水物及び下記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物と下記式(16)で表されるジアミンから製造される。   The polyimide of the present invention comprises a tetracarboxylic dianhydride represented by the following formula (9) and at least one tetracarboxylic dianhydride selected from the group consisting of the following formulas (10) to (15) and the following formula: It is manufactured from the diamine represented by (16).

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

本発明のポリイミドの製造方法として例えば、上記式(9)で表されるテトラカルボン酸二無水物及び上記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物と上記式(16)で表されるジアミンとを反応させて本発明のポリイミド前駆体(ポリアミド酸)を得た後、イミド化する工程を経る二段階合成法、または高沸点溶媒中、上記式(9)で表されるテトラカルボン酸二無水物及び上記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物と上記式(16)で表されるジアミンとを150〜220℃で撹拌しながら反応させる一段階合成法がある。 As a method for producing the polyimide of the present invention, for example, at least one tetracarboxylic dianhydride selected from the group consisting of the tetracarboxylic dianhydride represented by the above formula (9) and the above formulas (10) to (15) is used. In a two-step synthesis method or a high-boiling solvent through a step of imidization after obtaining a polyimide precursor (polyamic acid) of the present invention by reacting a product and a diamine represented by the above formula (16). The tetracarboxylic dianhydride represented by the formula (9) and at least one tetracarboxylic dianhydride selected from the group consisting of the above formulas (10) to (15) and the above formula (16). There is a one-step synthesis method in which a diamine is reacted at 150 to 220 ° C. with stirring.

本発明にかかるポリイミドの特性を著しく損なわない範囲で、上記式(16)で表されるジアミンとともに他のジアミンが併用可能である。使用可能なジアミンとして例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、p−ターフェニレンジアミン、ベンジジン、3,3’−ジヒドロキシベンジジン、3,3’−ジメトキシベンジジン、o−トリジン、m−トリジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンズアニリド、4−アミノフェニル−4’−アミノベンゾエート、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、2,4−ジアミノデュレン、4,4’−ジアミノジフェニルメタン、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)等の芳香族ジアミン、4,4’−メチレンビス(シクロヘキシルアミン)、イソホロンジアミン、トランス−1,4−ジアミノシクロヘキサン、シス−1,4−ジアミノシクロヘキサン、1,4−シクロヘキサンビス(メチルアミン)、2,5−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8−ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3−ジアミノアダマンタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、2,2−ビス(4−アミノシクロヘキシル)ヘキサフルオロプロパン等の脂環式ジアミン、1,3−プロパンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、1,9−ノナメチレンジアミン、ジアミノシロキサン等の鎖状脂肪族ジアミンが挙げられる。また、これらを2種類以上併用することもできる。 Other diamines can be used in combination with the diamine represented by the above formula (16) as long as the characteristics of the polyimide according to the present invention are not significantly impaired. Examples of diamines that can be used include p-phenylenediamine, m-phenylenediamine, 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, and bis (4- ( 4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2 -Bis (4-aminophenyl) hexafluoropropane, p-terphenylenediamine, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, o-tolidine, m-tolidine, 1,4-bis ( 4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3- (3-aminophenoxy) benzene, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzanilide, 4-aminophenyl-4′-aminobenzoate, 2,4-diamino Toluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2,6-dimethylaniline), aromatic diamines such as 4,4′-methylenebis (2,6-diethylaniline), 4,4′-methylenebis (cyclohexylamine), isophoronediamine, trans-1,4-diamino Cyclohexane, cis-1,4-diaminocyclohexane, 1,4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) Bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 2,2-bis (4-aminocyclohexyl) propane Alicyclic diamines such as 2,2-bis (4-aminocyclohexyl) hexafluoropropane, 1,3-propanediamine, -Chains such as tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, diaminosiloxane And an aliphatic diamine. Two or more of these may be used in combination.

本発明にかかるポリイミドの特性を著しく損なわない範囲で、上記式(9)〜(15)で表されるテトラカルボン酸二無水物とともに、他のテトラカルボン酸二無水物が併用可能である。使用可能なテトラカルボン酸二無水物として例えば、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,4,2’,3’−ビフェニルエーテルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルエーテルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルスルホンテトラカルボン酸二無水物、3,4,2’,3’−ビフェニルスルホンテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルスルホンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物等の芳香族テトラカルボン酸二無水物や、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、5−(ジオキソテトラヒドロフリル−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)テトラリン−1,2−ジカルボン酸無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、ビシクロ−3,3’,4,4’−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。また、これらを2種類以上併用することもできる。   Other tetracarboxylic dianhydrides can be used in combination with the tetracarboxylic dianhydrides represented by the above formulas (9) to (15) as long as the properties of the polyimide according to the present invention are not significantly impaired. Examples of usable tetracarboxylic dianhydrides include 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,2 ′, 3′-biphenyltetracarboxylic dianhydride, 1, 4,5,8-naphthalene tetracarboxylic dianhydride, 3,4,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 2,3,2 ′, 3′-benzophenone tetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenyl ether tetracarboxylic dianhydride, 3,4,2 ′, 3′-biphenyl ether tetra Carboxylic dianhydride, 2,3,2 ′, 3′-biphenyl ether tetracarboxylic dianhydride, 3,4,3 ′, 4′-biphenylsulfone tetracarboxylic dianhydride, 3,4,2 ′ , 3 ' Biphenylsulfonetetracarboxylic dianhydride, 2,3,2 ′, 3′-biphenylsulfonetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride Aromatic tetracarboxylic dianhydrides such as 2,2′-bis (3,4-dicarboxyphenyl) propanoic dianhydride, and bicyclo [2.2.2] oct-7-ene-2,3 , 5,6-tetracarboxylic dianhydride, 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3- Yl) tetralin-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ', 4,4'-tetracarboxylic Aliphatic tetracarboxylic dianhydrides such as dianhydrides, 1,2,3,4-cyclobutanetetracarboxylic dianhydrides, 1,2,3,4-cyclopentanetetracarboxylic dianhydrides, and the like. Two or more of these may be used in combination.

本発明にかかるポリイミドまたはポリアミド酸を合成する際の溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド等の非プロトン性溶媒が好ましいが、原料と生成するポリイミド前駆体、そしてイミド化されたポリイミドが溶解すれば如何なる溶媒であっても何ら問題なく使用でき、特にその溶媒の種類に限定されない。 As the solvent for synthesizing the polyimide or polyamic acid according to the present invention, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like are preferable. However, any solvent can be used without any problem as long as the raw material, the polyimide precursor to be produced, and the imidized polyimide are dissolved, and the type of the solvent is not particularly limited.

具体的には例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m−クレゾール、p−クレゾール、o−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル等のエーテル系溶媒、その他汎用溶媒として、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用でき、これらを2種類以上混合して用いてもよい。 Specifically, for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, ester solvents such as butyl acetate, ethyl acetate, and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycols such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether Solvents, phenol solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl Ketone solvents such as ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, ether solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, and other general-purpose solvents include acetophenone, 1,3-dimethyl- 2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, Petroleum naphtha solvents can also be used, and two or more of these may be used in combination.

本発明に使用される上記式(9)〜(15)で表されるテトラカルボン酸二無水物の製造方法は特に限定されない。例えば、その構造にエステル基を有する上記式(9)、および上記式(13)〜(15)で表されるテトラカルボン酸二無水物は、公知のエステル化反応を適宜用いることにより製造される。具体的には、無水トリメリット酸クロリドを脱水非プロトン性溶媒に溶解させた溶液、及び下記式(17)〜(20)のジオールと脱酸剤を脱水非プロトン性溶媒に溶解させた溶液をそれぞれ調製した後、これらの溶液をメカニカルスターラー等を用いて、温度−78℃〜0℃の範囲、好ましくは−30℃〜−5℃で0.5〜48時間、好ましくは1〜24時間で徐々に混合させる。その後、反応溶液を0〜100℃、好ましくは10〜50℃まで昇温させ0.5〜24時間、好ましくは1〜12時間撹拌しエステル化を完結させた後、生成物を含む溶液から生成物を単離し、適宜洗浄し、真空乾燥器等で100〜220℃、より好ましくは120〜200℃で乾燥させることで、本発明に使用される上記式(9)、および上記式(13)〜(15)で表されるテトラカルボン酸二無水物を得ることができる。本発明の上記式(9)、および上記式(13)〜(15)で表されるテトラカルボン酸二無水物の純度が低い場合は、公知の方法、例えば昇華法や再結晶法で適宜精製できる。 The manufacturing method of the tetracarboxylic dianhydride represented by the said Formula (9)-(15) used for this invention is not specifically limited. For example, the above formula (9) having an ester group in its structure and the tetracarboxylic dianhydride represented by the above formulas (13) to (15) are produced by appropriately using a known esterification reaction. . Specifically, a solution in which trimellitic anhydride chloride is dissolved in a dehydrated aprotic solvent, and a solution in which a diol of the following formulas (17) to (20) and a deoxidizer are dissolved in a dehydrated aprotic solvent are used. After each preparation, using a mechanical stirrer or the like, these solutions are in a temperature range of −78 ° C. to 0 ° C., preferably −30 ° C. to −5 ° C. for 0.5 to 48 hours, preferably 1 to 24 hours. Mix slowly. Thereafter, the reaction solution is heated to 0 to 100 ° C., preferably 10 to 50 ° C., stirred for 0.5 to 24 hours, preferably 1 to 12 hours to complete esterification, and then formed from a solution containing the product. The product is isolated, washed as appropriate, and dried at 100 to 220 ° C., more preferably 120 to 200 ° C. with a vacuum dryer or the like, whereby the above formula (9) and the above formula (13) used in the present invention are used. The tetracarboxylic dianhydride represented by-(15) can be obtained. When the purity of the tetracarboxylic dianhydride represented by the above formula (9) and the above formulas (13) to (15) of the present invention is low, it is appropriately purified by a known method such as a sublimation method or a recrystallization method. it can.

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

Figure 2016196630
Figure 2016196630

本発明のポリイミド及び該ポリイミドを含む溶液を合成する方法は特に限定されず、公知のイミド化反応を適宜用いることができる。なお、下記するイミド化反応においては、上記式(9)で表されるテトラカルボン酸二無水物と上記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物とを併用する必要があるが、その混合比率は通常、上記式(9)で表されるテトラカルボン酸二無水物1モルに対し上記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物を通常1〜99mol%、好ましくは2〜70mol%使用する。混合比率を適宜調整することにより、本発明のポリイミド中の上記式(1)で表される繰り返し単位と上記式(2)で表される繰り返し単位の含有率を調整することができる。 The method for synthesizing the polyimide of the present invention and the solution containing the polyimide is not particularly limited, and a known imidization reaction can be appropriately used. In the imidation reaction described below, at least one tetracarboxylic dianhydride selected from the group consisting of the tetracarboxylic dianhydride represented by the above formula (9) and the above formulas (10) to (15) is used. The mixing ratio is usually selected from the group consisting of the above formulas (10) to (15) with respect to 1 mol of tetracarboxylic dianhydride represented by the above formula (9). At least one tetracarboxylic dianhydride is usually used in an amount of 1 to 99 mol%, preferably 2 to 70 mol%. By appropriately adjusting the mixing ratio, the content of the repeating unit represented by the above formula (1) and the repeating unit represented by the above formula (2) in the polyimide of the present invention can be adjusted.

具体的には、例えば、以下の一段階合成法で合成できる。上記式(16)で表されるジアミンを高沸点溶媒に溶解させ、この溶液に上記式(9)で表されるテトラカルボン酸二無水物と上記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物の全テトラカルボン酸二無水物量がジアミンと等モルとなるように粉末を徐々に、または分割して加えた後、トルエンなどの共沸剤を加え、不活性ガスを導入しながら150〜220℃、より好ましくは、160〜190℃でメカニカルスターラー等を用いて0.5〜10時間、より好ましくは1〜5時間で撹拌し、イミド化時に生成する水を共沸剤とともに系外に除去することでイミド化でき、室温に戻すだけで本発明のポリイミドを含むポリイミド溶液を得ることができる。尚、イミド化反応の副生成物である水や共沸剤を除去する際に、反応容器内を減圧にすることも可能であり、この工程により固形分濃度を高めることもできる。この時に使用される溶媒は、ポリイミドが析出しない溶媒であれば特に限定されない。   Specifically, for example, it can be synthesized by the following one-step synthesis method. The diamine represented by the above formula (16) is dissolved in a high boiling point solvent, and the tetracarboxylic dianhydride represented by the above formula (9) and the above formula (10) to (15) are dissolved in this solution. After adding powder gradually or divided so that the total tetracarboxylic dianhydride amount of at least one selected tetracarboxylic dianhydride is equimolar with diamine, an azeotropic agent such as toluene is added. The mixture is stirred at 150 to 220 ° C. while introducing an inert gas, more preferably at 160 to 190 ° C. using a mechanical stirrer for 0.5 to 10 hours, and more preferably 1 to 5 hours. By removing water to be removed from the system together with the azeotropic agent, it is possible to obtain a polyimide solution containing the polyimide of the present invention simply by returning to room temperature. In addition, when removing the water and the azeotropic agent which are by-products of the imidation reaction, the inside of the reaction vessel can be reduced in pressure, and the solid content concentration can be increased by this step. The solvent used at this time will not be specifically limited if it is a solvent in which a polyimide does not precipitate.

また、本発明のポリイミド及び該ポリイミドを含む溶液は以下の二段階合成法を用いても合成できる。まず、第一段階目として、上記式(16)で表されるジアミンを溶媒に溶解させ、この溶液に上記式(9)で表されるテトラカルボン酸二無水物と上記式(10)〜(15)からなる群より選ばれる少なくとも1種のテトラカルボン酸二無水物の全テトラカルボン酸二無水物量がジアミンと等モルとなるように粉末を徐々に、または分割して加えた後、メカニカルスターラー等を用いて、温度0〜100℃の範囲、より好ましくは、5〜50℃で0.5〜168時間、より好ましくは1〜96時間撹拌することで、ポリイミド前駆体であるポリアミド酸が得られる。この際の固形分濃度は、ポリアミド酸の分子量を最大限に高めるため、溶液が均一となり撹拌できる最大濃度が望ましい。即ち、固形分濃度は1〜50重量%、より好ましくは5〜40重量%である。このような固形分濃度であれば、生成するポリアミド酸の重合度が十分高くなる。また、脂肪族ジアミンを使用した場合、重合初期にしばしば塩形成が起こり、重合が妨害されるが、塩形成を抑制しつつできるだけ重合度を上げるためには、重合時の固形分濃度を上記の好適な濃度範囲に管理することが好ましい。 The polyimide of the present invention and the solution containing the polyimide can also be synthesized using the following two-step synthesis method. First, as a first step, a diamine represented by the above formula (16) is dissolved in a solvent, and a tetracarboxylic dianhydride represented by the above formula (9) and the above formulas (10) to (10) are added to this solution. 15) After adding the powder gradually or divided so that the total amount of tetracarboxylic dianhydride of at least one tetracarboxylic dianhydride selected from the group consisting of 15) is equimolar with diamine, mechanical stirrer The polyamic acid which is a polyimide precursor is obtained by stirring at a temperature in the range of 0 to 100 ° C., more preferably 5 to 50 ° C. for 0.5 to 168 hours, more preferably 1 to 96 hours. It is done. In this case, the solid concentration is preferably the maximum concentration at which the solution becomes uniform and can be stirred in order to maximize the molecular weight of the polyamic acid. That is, the solid content concentration is 1 to 50% by weight, more preferably 5 to 40% by weight. With such a solid content concentration, the degree of polymerization of the produced polyamic acid is sufficiently high. In addition, when an aliphatic diamine is used, salt formation often occurs at the initial stage of polymerization and the polymerization is hindered, but in order to increase the degree of polymerization as much as possible while suppressing salt formation, the solid content concentration during the polymerization is It is preferable to manage within a suitable concentration range.

次いで、第二段階目として前記で得られたポリイミド前駆体、即ちポリアミド酸をイミド化する方法について説明する。本発明のポリイミドを得るための方法は、熱的に脱水閉環する高温溶液イミド化法、脱水剤を用いる化学イミド化法などの公知の方法が適宜使用できる。   Next, a method for imidizing the polyimide precursor obtained above, that is, polyamic acid, will be described as the second stage. As a method for obtaining the polyimide of the present invention, known methods such as a high-temperature solution imidization method in which thermal dehydration and ring closure are carried out and a chemical imidization method using a dehydrating agent can be used as appropriate.

具体的には、例えば、高温溶液イミド化法を適用する場合は、高沸点溶媒中で合成した前記方法で得られたポリアミド酸溶液に、上述したポリアミド酸を製造する際に使用可能な溶媒、特に前記ポリアミド酸製造時に用いた溶媒と同一の溶媒を加えて撹拌し易い適度な溶液粘度とし、更にトルエンなどの共沸剤を加え、不活性ガスを導入しながら150〜220℃、より好ましくは、160〜190℃でメカニカルスターラー等を用いて0.5〜10時間、より好ましくは1〜5時間で撹拌し、イミド化時に生成する水を共沸剤とともに系外に除去することで容易にイミド化でき、これを室温に戻すだけで本発明のポリイミドが溶媒に溶解したポリイミド溶液を得ることができる。尚、イミド化時に副生成物である水や共沸剤を除去する際に、反応容器内を減圧にすることも可能であり、この工程により固形分濃度を高めることもできる。   Specifically, for example, when applying a high temperature solution imidization method, a solvent that can be used in producing the above-described polyamic acid to the polyamic acid solution obtained by the above method synthesized in a high boiling point solvent, In particular, the same solvent as that used in the production of the polyamic acid is added to obtain an appropriate solution viscosity that is easy to stir. Further, an azeotropic agent such as toluene is added, and 150 to 220 ° C., more preferably while introducing an inert gas. , By stirring for 0.5 to 10 hours, more preferably 1 to 5 hours using a mechanical stirrer at 160 to 190 ° C., and easily removing water generated during imidization together with the azeotropic agent from the system. A polyimide solution in which the polyimide of the present invention is dissolved in a solvent can be obtained by simply imidizing it and returning it to room temperature. In addition, when removing water and an azeotropic agent which are by-products at the time of imidation, the inside of the reaction vessel can be reduced in pressure, and the solid content concentration can be increased by this step.

また、化学イミド化法を適用する場合は、前記方法で得られたポリアミド酸溶液に上述したポリアミド酸を製造する際に使用可能な溶媒、特に前記ポリアミド酸製造時に用いた溶媒と同一の溶媒を加えて撹拌し易い適度な溶液粘度とし、メカニカルスターラーなどで撹拌しながら、有機酸の無水物と、塩基性触媒として3級アミンからなる脱水閉環剤(化学イミド化剤)を滴下し、温度0〜100℃、好ましくは10〜50℃で1〜72時間撹拌することで化学的にイミド化を完結させることができる。その際に使用可能な有機酸無水物としては特に限定されないが、無水酢酸、無水プロピオン酸等が挙げられる。試薬の取り扱いや分離のし易さから無水酢酸が好適に使用される。また塩基性触媒としては、ピリジン、トリエチルアミン、キノリン等が使用できるが試薬の取り扱いや分離のし易さからピリジンが好適に用いられるが、これらに限定されない。化学イミド化剤中の有機酸無水物量は、ポリアミド酸の理論脱水量の1〜20倍モルの範囲であり、より好ましくは1〜10倍モルである。また塩基性触媒の量は、有機酸無水物量に対して0.1〜2倍モルの範囲であり、より好ましくは0.1〜1倍モルの範囲である。 In addition, when applying the chemical imidization method, a solvent that can be used for producing the above-described polyamic acid to the polyamic acid solution obtained by the above-described method, in particular, the same solvent as that used for producing the polyamic acid is used. In addition, the solution viscosity is set to an appropriate level that is easy to stir, and while stirring with a mechanical stirrer or the like, an organic acid anhydride and a dehydrating cyclization agent (chemical imidization agent) composed of a tertiary amine as a basic catalyst are dropped. The imidization can be completed chemically by stirring at -100 ° C, preferably 10-50 ° C for 1-72 hours. Although it does not specifically limit as an organic acid anhydride which can be used in that case, Acetic anhydride, propionic anhydride, etc. are mentioned. Acetic anhydride is preferably used because of easy handling and separation of the reagent. As the basic catalyst, pyridine, triethylamine, quinoline and the like can be used, but pyridine is preferably used because of easy handling and separation of the reagent, but is not limited thereto. The amount of the organic acid anhydride in the chemical imidizing agent is in the range of 1 to 20 times mol, more preferably 1 to 10 times mol of the theoretical dehydration amount of the polyamic acid. Moreover, the quantity of a basic catalyst is the range of 0.1-2 times mole with respect to the amount of organic acid anhydrides, More preferably, it is the range of 0.1-1 times mole.

前記化学イミド化法で得られた反応溶液中には、塩基や未反応の化学イミド化剤、有機酸などの副生成物(以下、不純物という)が混入しているため、これらを除去してポリイミドを単離・精製してもよい。精製は公知の方法が利用できる。例えば、最も簡便な方法としては、イミド化した反応溶液を撹拌しながら大量の貧溶媒中に滴下してポリイミドを析出させた後、ポリイミド粉末を回収して不純物が除去されるまで繰返し洗浄し、減圧乾燥して、ポリイミド粉末を得る方法が適用できる。この時、使用できる溶媒としては、ポリイミドを析出させ、不純物を効率よく除去でき、乾燥し易い溶媒であれば特に限定されないが、例えば、水をはじめ、メタノール、エタノール、イソプロパノールなどのアルコール類が好適であり、これらを混合して用いてもよい。貧溶媒中に滴下して析出させる際のポリイミド溶液の濃度(固形分濃度)は、高すぎると析出するポリイミドが粒塊となり、その粗大な粒子中に不純物が残留する場合や、得られたポリイミド粉末を溶媒に再溶解する際に長時間要する場合がある。一方、ポリイミド溶液の濃度を薄くし過ぎると、多量の貧溶媒が必要となり、廃溶剤処理による環境負荷増大や製造コスト高になる場合がある。したがって、貧溶媒中に滴下する時のポリイミド溶液の濃度は、20重量%以下、より好ましくは10重量%以下である。この時使用する貧溶媒の量はこの時使用する貧溶媒の量はポリイミド溶液中の溶媒やポリイミドの種類に応じて当業者であれば適宜調整可能である。前述のように析出させたポリイミド粉末は回収し、残留溶媒を真空乾燥や熱風乾燥などで除去する。乾燥温度と時間は、ポリイミドが変質しない温度であれば制限はなく、温度30〜150℃で3〜24時間乾燥させることが好ましい。   In the reaction solution obtained by the chemical imidization method, by-products (hereinafter referred to as impurities) such as bases, unreacted chemical imidization agents, and organic acids are mixed. Polyimide may be isolated and purified. A known method can be used for purification. For example, as the simplest method, after dripping in a large amount of poor solvent while stirring the imidized reaction solution to precipitate polyimide, the polyimide powder is recovered and repeatedly washed until impurities are removed, A method of obtaining polyimide powder by drying under reduced pressure can be applied. At this time, the solvent that can be used is not particularly limited as long as it can precipitate polyimide, efficiently remove impurities, and can be easily dried. For example, water, alcohols such as methanol, ethanol, and isopropanol are preferable. These may be used in combination. When the concentration (solid content concentration) of the polyimide solution when it is dropped into a poor solvent and deposited is too high, the deposited polyimide becomes agglomerates and impurities remain in the coarse particles, or the obtained polyimide It may take a long time to redissolve the powder in the solvent. On the other hand, if the concentration of the polyimide solution is too thin, a large amount of poor solvent is required, which may increase the environmental load and increase the manufacturing cost due to waste solvent treatment. Therefore, the concentration of the polyimide solution when dropped in the poor solvent is 20% by weight or less, more preferably 10% by weight or less. The amount of the poor solvent used at this time can be appropriately adjusted by those skilled in the art according to the type of the solvent and the polyimide in the polyimide solution. The polyimide powder deposited as described above is collected, and the residual solvent is removed by vacuum drying or hot air drying. The drying temperature and time are not limited as long as the polyimide does not change in quality, and it is preferable to dry at a temperature of 30 to 150 ° C. for 3 to 24 hours.

このようにして得られたポリイミド粉末は、本発明のポリイミドを含むポリイミド溶液とするために、溶媒に溶解する必要がある。使用可能な溶媒としては、ポリイミド溶液の使用用途や加工条件に合わせて適宜選択可能である。具体的には例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m−クレゾール、p−クレゾール、o−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル等のエーテル系溶媒、その他汎用溶媒として、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用でき、これらを2種類以上混合して用いてもよい。   The polyimide powder thus obtained needs to be dissolved in a solvent in order to obtain a polyimide solution containing the polyimide of the present invention. The solvent that can be used can be appropriately selected according to the use application and processing conditions of the polyimide solution. Specifically, for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, ester solvents such as butyl acetate, ethyl acetate, and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycols such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether Solvents, phenol solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl Ketone solvents such as ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, ether solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, and other general-purpose solvents include acetophenone, 1,3-dimethyl- 2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, Petroleum naphtha solvents can also be used, and two or more of these may be used in combination.

特に、長時間にわたり連続塗工する場合、ポリイミド溶液中の溶媒が大気中の水分を吸湿し、ポリイミドが析出する恐れがある場合は、トリエチレングリコールジメチルエーテル、γ−ブチロラクトンあるいはシクロペンタノンなどの低吸湿性溶媒を使用することが好ましい。また、吸湿性溶媒であるN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒でも、上記低吸湿性溶媒と組み合わせることで、ポリイミドの析出を抑制することもできる。ポリイミド溶液とする方法として例えば、空気中、または不活性ガス中で室温〜溶媒の沸点以下の温度範囲で1〜48時間かけてポリイミド粉末を前述の溶媒に溶解させる方法が挙げられる。   In particular, when applying continuously over a long period of time, if the solvent in the polyimide solution absorbs moisture in the air and the polyimide may be deposited, the low concentration of triethylene glycol dimethyl ether, γ-butyrolactone, cyclopentanone, etc. It is preferable to use a hygroscopic solvent. In addition, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like, which are hygroscopic solvents, suppress the precipitation of polyimide by combining with the low hygroscopic solvent. You can also. Examples of a method for preparing a polyimide solution include a method in which polyimide powder is dissolved in the above-mentioned solvent in air or in an inert gas in a temperature range from room temperature to the boiling point of the solvent over 1 to 48 hours.

本発明のポリイミドにおける上記式(1)で表される繰り返し単位と上記式(2)で表される繰り返し単位の含有率は通常1〜99mol%であり、低線熱膨張性を保持させる点から、好ましくは2〜70mol%とする。 The content of the repeating unit represented by the above formula (1) and the repeating unit represented by the above formula (2) in the polyimide of the present invention is usually 1 to 99 mol%, from the viewpoint of maintaining low linear thermal expansibility. Preferably, the content is 2 to 70 mol%.

本発明のポリイミドの固有粘度は、ポリイミドフィルムの膜靭性を考慮すると、0.1dL/g以上、より好ましくは0.2dL/g以上であることが好ましい。固有粘度が0.1dL/g未満の場合、ポリイミドフィルムの膜靭性が確保できず、脆弱なフィルムになる場合がある。なお、本発明における固有粘度とは後述する方法で測定された値を表す。 In consideration of the film toughness of the polyimide film, the intrinsic viscosity of the polyimide of the present invention is preferably 0.1 dL / g or more, more preferably 0.2 dL / g or more. When the intrinsic viscosity is less than 0.1 dL / g, the film toughness of the polyimide film cannot be ensured and the film may be brittle. In addition, the intrinsic viscosity in this invention represents the value measured by the method mentioned later.

本発明のポリイミドの分子量はその成形性や取扱性の点から重量平均分子量で5000以上であることが好ましく、10000以上あることがより好ましい。なお、ポリイミドの分子量はポリイミド溶液の粘度を目安にすることができる。 The molecular weight of the polyimide of the present invention is preferably 5000 or more and more preferably 10,000 or more in terms of weight average molecular weight from the viewpoint of moldability and handling properties. The molecular weight of the polyimide can be based on the viscosity of the polyimide solution.

次に、本発明のポリイミドを含むポリイミド溶液及びそれを支持体上に塗布・乾燥して得られるポリイミドフィルムの製造方法について説明する。本発明のポリイミドを含むポリイミド溶液の固形分濃度としては、該溶液の用途に応じて適宜選択することができる。例えばフィルムとする場合、ポリイミドの分子量、製造方法や所望するフィルムの厚さにもよるが、固形分濃度を5重量%以上とすることが好ましい。固形分濃度が低すぎると、十分な膜厚のフィルムを形成することが困難となる場合があり、逆に固形分濃度が高いと溶液粘度が高すぎて塗工が困難になる場合がある。なお、本発明におけるポリイミドの固形分濃度とはポリイミド溶液から定法により溶媒を除去した後に残った固形分(主に上記式(2)で表されるポリイミド)の含量のことを表す。 Next, the polyimide solution containing the polyimide of this invention and the manufacturing method of the polyimide film obtained by apply | coating and drying it on a support body are demonstrated. The solid content concentration of the polyimide solution containing the polyimide of the present invention can be appropriately selected according to the use of the solution. For example, when it is set as a film, although it depends on the molecular weight of the polyimide, the production method, and the desired film thickness, the solid content concentration is preferably 5% by weight or more. If the solid content concentration is too low, it may be difficult to form a film having a sufficient film thickness. Conversely, if the solid content concentration is high, the solution viscosity may be too high and coating may be difficult. In addition, the solid content concentration of the polyimide in this invention represents the content of the solid content (mainly polyimide represented by the said Formula (2)) remaining after removing a solvent from a polyimide solution by a usual method.

また、本発明のポリイミドを含むポリイミド溶液には、必要に応じて離型剤、フィラー、シランカップリング剤、架橋剤、末端封止剤、酸化防止剤、消泡剤、レベリング剤などの添加物を加えることができる。 In addition, the polyimide solution containing the polyimide of the present invention may contain additives such as a release agent, filler, silane coupling agent, cross-linking agent, terminal sealing agent, antioxidant, antifoaming agent, and leveling agent as necessary. Can be added.

続いて、本発明のポリイミドを含むポリイミド溶液を用いて本発明のポリイミドフィルムを製造する最も好ましい形態について説明するが、膜靭性のある自立膜が作製できれば特に製造方法は限定されない。 Then, although the most preferable form which manufactures the polyimide film of this invention using the polyimide solution containing the polyimide of this invention is demonstrated, a manufacturing method will not be specifically limited if a self-supporting film | membrane with film | membrane toughness can be produced.

具体的には、例えば、ガラス基板などの支持体上にポリイミド溶液を公知の方法、例えば、ドクターブレードなどを用いて塗布後、乾燥し、ポリイミドフィルムを作製する方法がある。または、銅箔等の金属箔上に公知の方法、例えば、ドクターブレードなどを用いて塗布後、乾燥し、ポリイミド/金属箔の積層フィルムを得ることができ、ハンダ実装時の高温工程にも耐えられるフレキシブルプリント配線基板用の銅張積層板にも使用できる。更に前記ポリイミド溶液を半導体やフレキシブル配線基板用の絶縁材料に適用する場合であれば、直接デバイス上にコーティングし、溶媒を乾燥させることで絶縁層が容易に形成できる。 Specifically, for example, there is a known method of applying a polyimide solution on a support such as a glass substrate, for example, using a doctor blade, and then drying to prepare a polyimide film. Alternatively, it can be applied on a metal foil such as copper foil using a known method, for example, a doctor blade, and then dried to obtain a laminated film of polyimide / metal foil, which can withstand high temperature processes during solder mounting. It can also be used for copper-clad laminates for flexible printed wiring boards. Furthermore, if the polyimide solution is applied to an insulating material for a semiconductor or a flexible wiring board, the insulating layer can be easily formed by coating directly on the device and drying the solvent.

上述のように製造された本発明のポリイミドフィルムは通常、そのガラス転移温度が260℃以上となるため、例えば無鉛半田実装温度である260℃にも十分に耐え得る半導体やフレキシブル配線基板用の絶縁材料として好適に使用される。 Since the polyimide film of the present invention produced as described above usually has a glass transition temperature of 260 ° C. or higher, for example, insulation for semiconductors and flexible wiring boards that can sufficiently withstand the lead-free solder mounting temperature of 260 ° C. It is suitably used as a material.

また、本発明のポリイミドフィルムは高い光透過率及び低線熱膨張という特徴、即ち、通常、波長400nmにおける光透過率が30%以上となり、また、線熱膨張係数が40ppm/K以下となるため、透明性及び熱寸法安定性に優れることから各種光学用途や光学デバイスに好適に用いることができる。 In addition, the polyimide film of the present invention is characterized by high light transmittance and low linear thermal expansion, that is, usually the light transmittance at a wavelength of 400 nm is 30% or more, and the linear thermal expansion coefficient is 40 ppm / K or less. Since it is excellent in transparency and thermal dimensional stability, it can be suitably used for various optical applications and optical devices.

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples. The physical property values in the following examples were measured by the following methods.

(評価方法)
<赤外吸収スペクトル>
フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)を用い、KBr法にてテトラカルボン酸二無水物の赤外線吸収スペクトルを測定した。また、ポリイミドの赤外線吸収スペクトルについては、ポリイミド溶液を調整後、ガラス基板上に流延し、100℃で30分乾燥してガラス基板上から剥離したポリイミド薄膜試料(約5μm厚)を測定した。
(Evaluation method)
<Infrared absorption spectrum>
Using a Fourier transform infrared spectrophotometer FT / IR-4100 (manufactured by JASCO Corporation), the infrared absorption spectrum of tetracarboxylic dianhydride was measured by the KBr method. Moreover, about the infrared absorption spectrum of a polyimide, after preparing a polyimide solution, it cast | flow_spreaded on the glass substrate, dried for 30 minutes at 100 degreeC, and measured the polyimide thin film sample (about 5 micrometers thickness) peeled from the glass substrate.

H−NMRスペクトル>
フーリエ変換核磁気共鳴JNM―ECP400(JEOL製)を用い、重水素化ジメチルスルホキシド中でテトラカルボン酸二無水物および化学イミド化したポリイミド粉末のH−NMRスペクトルを測定した。標準物質はテトラメチルシランを使用した。
<1 H-NMR spectrum>
Using Fourier transform nuclear magnetic resonance JNM-ECP400 (manufactured by JEOL), 1 H-NMR spectra of tetracarboxylic dianhydride and chemically imidized polyimide powder in deuterated dimethyl sulfoxide were measured. Tetramethylsilane was used as the standard substance.

<示差走査熱量分析(融点)>
テトラカルボン酸二無水物の融点は、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)を用いて、窒素雰囲気中、昇温速度5℃/分で測定した。融点が高く融解ピークがシャープであるほど、高純度であることを示す。
<Differential scanning calorimetry (melting point)>
The melting point of tetracarboxylic dianhydride was measured at a heating rate of 5 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter DSC3100 (Netch Japan). The higher the melting point and the sharper the melting peak, the higher the purity.

<固有粘度>
0.5重量%のポリイミド前駆体溶液、または、ポリイミド溶液をオストワルド粘度計を用いて30℃で還元粘度を測定した。この値をもって固有粘度とみなした。
<Intrinsic viscosity>
The reduced viscosity of a 0.5 wt% polyimide precursor solution or polyimide solution was measured at 30 ° C. using an Ostwald viscometer. This value was regarded as the intrinsic viscosity.

<ポリイミド粉末の有機溶媒への溶解性試験>
ポリイミド粉末0.1gに対し、有機溶媒9.9g(固形分濃度1重量%)をサンプル管に入れ、試験管ミキサーを用いて5分間撹拌して溶解状態を目視で確認した。溶媒として、クロロホルム(CF)、アセトン、テトラヒドロフラン(THF)、1,4−ジオキサン(DOX)、酢酸エチル、シクロペンタノン(CPN)、シクロヘキサノン(CHN)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、m−クレゾール、ジメチルスルホキシド(DMSO)、γ−ブチロラクトン(GBL)、トリエチレングリコールジメチルエーテル(Tri-GL)を使用した。評価結果は、室温で溶解した場合を++、加熱により溶解し、且つ室温まで放冷後も均一性を保持していた場合を+、膨潤/一部溶解した場合を±、不溶の場合を−と表示した。
<Solubility test of polyimide powder in organic solvent>
To 0.1 g of polyimide powder, 9.9 g of organic solvent (solid content concentration: 1% by weight) was put in a sample tube, stirred for 5 minutes using a test tube mixer, and the dissolved state was visually confirmed. As a solvent, chloroform (CF), acetone, tetrahydrofuran (THF), 1,4-dioxane (DOX), ethyl acetate, cyclopentanone (CPN), cyclohexanone (CHN), N, N-dimethylformamide (DMF), N , N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m-cresol, dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL), triethylene glycol dimethyl ether (Tri-GL) were used. The evaluation results are ++ when dissolved at room temperature, + when dissolved by heating and maintaining uniformity even after being allowed to cool to room temperature, ± when swollen / partially dissolved, and − when insoluble. Is displayed.

<線熱膨張係数:CTE、およびガラス転移温度:Tg>
ポリイミドフィルムのガラス転移温度は、ネッチ・ジャパン社製TMA4000を用いて(サンプルサイズ 幅5mm、長さ15mm)、荷重(静荷重)を膜厚(μm)×0.5gとして、5℃/minで150℃まで一旦昇温(1回目の昇温)させた後、20℃まで冷却し、さらに5℃/minで昇温(2回目の昇温)させて2回目の昇温時のTMA曲線より計算した。線熱膨張係数は100〜200℃の間の平均値として求めた。
<Linear thermal expansion coefficient: CTE and glass transition temperature: Tg>
The glass transition temperature of the polyimide film is 5 ° C / min with TMA4000 manufactured by Netch Japan Co., Ltd. (sample size width 5 mm, length 15 mm) and the load (static load) is film thickness (μm) × 0.5 g. Temporarily raise the temperature to 150 ° C. (first temperature increase), then cool to 20 ° C., further increase the temperature at 5 ° C./min (second temperature increase), and from the TMA curve during the second temperature increase Calculated. The linear thermal expansion coefficient was determined as an average value between 100 and 200 ° C.

<ポリイミド膜の透過率:T400
紫外−可視分光光度計V−530(日本分光社製)を用い、波長200〜800nmにおけるポリイミドフィルムの光透過率(T%)を測定した。400nmの光透過率を透明性の指標として求め、透明性の評価を行った。
<Transmissivity of polyimide membrane: T400 >
Using a UV-visible spectrophotometer V-530 (manufactured by JASCO Corporation), the light transmittance (T%) of the polyimide film at a wavelength of 200 to 800 nm was measured. A light transmittance of 400 nm was obtained as an index of transparency, and the transparency was evaluated.

<黄色度(イエローネスインデックス):YI>
紫外−可視分光光度計V−530(日本分光社製)を用い、波長380〜780nmにおけるポリイミドフィルムの光透過率(T%)からVWCT−615型 カラー診断プログラム(日本分光社製)によってJISK77373に準拠して黄色度(YI)算出した。
<Yellowness (Yellowness Index): YI>
Using a UV-visible spectrophotometer V-530 (manufactured by JASCO Corp.), the light transmittance (T%) of the polyimide film at a wavelength of 380 to 780 nm was changed to JISK77373 by the VWCT-615 color diagnostic program (manufactured by JASCO Corp.). The yellowness (YI) was calculated based on this.

<全光線透過率およびヘイズ>
Haze Meter NDH4000(日本電色工業製)を用い、ポリイミドフィルムのJISK7361に準拠した全光線透過率とJISK7136に準拠したヘイズ(濁度)を求めた。
<Total light transmittance and haze>
Using Haze Meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), the total light transmittance of the polyimide film based on JISK7361 and the haze (turbidity) based on JISK7136 were determined.

<合成例1>(テトラカルボン酸二無水物の合成)
式(9)で表されるテトラカルボン酸二無水物の合成。
ナスフラスコに無水トリメリット酸クロリド6.4617g(30.687mmol)を入れ、脱水テトラヒドロフラン(THF)16.6mLに室温で溶解させ、セプタムシールして溶液Aを調製した(溶質濃度30.0重量%)。別のナスフラスコにスピロ[フルオレン−9,9’−(2’,7’−ジヒドロキシキサンテン)]3.6439g(10.057mmol)を脱水THF47.1mLに室温で溶解し(溶質濃度8.0重量%)、これにピリジン4.85mL(60.0mmol)を加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジにて徐々に滴下して1時間撹拌し、その後室温で12時間撹拌した。反応終了後、白色沈澱物を濾別し、THFと水で洗浄した。ピリジン塩酸塩の除去は、洗液に硝酸銀水溶液を添加し白色沈殿が見られなくなったことをもって確認した。洗浄した生成物を回収し、100℃で12時間真空乾燥した。得られた生成物は白色粉末であり、収量は2.8336g、収率は39.8%であった。
<Synthesis Example 1> (Synthesis of tetracarboxylic dianhydride)
Synthesis of tetracarboxylic dianhydride represented by formula (9).
6.4617 g (30.687 mmol) of trimellitic anhydride chloride was placed in an eggplant flask, dissolved in 16.6 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A (solute concentration: 30.0% by weight) ). Spiro [fluorene-9,9 ′-(2 ′, 7′-dihydroxyxanthene)] 3.6439 g (10.507 mmol) was dissolved in 47.1 mL of dehydrated THF at room temperature (solute concentration 8.0 wt.) In another eggplant flask. %), And 4.85 mL (60.0 mmol) of pyridine was added thereto, followed by septum sealing to prepare Solution B. While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe and stirred for 1 hour, and then stirred at room temperature for 12 hours. After completion of the reaction, the white precipitate was filtered off and washed with THF and water. Removal of pyridine hydrochloride was confirmed by adding a silver nitrate aqueous solution to the washing solution and no white precipitate was observed. The washed product was collected and dried in vacuum at 100 ° C. for 12 hours. The obtained product was a white powder, the yield was 2.8336 g, and the yield was 39.8%.

得られた生成物は、フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)より、1856cm−1および1781cm−1に酸無水物基C=O伸縮振動吸収帯、1738cm−1にエステル基C=O伸縮振動吸収帯を確認した。また、フーリエ変換核磁気共鳴JNM―ECP400(JEOL製)を用いてプロトンNMR測定を行った結果、DMSO−d,δ,ppm;8.62−8.51(m,4H),8.27(dd,2H,J=8.0,0.6Hz),8.15(dd,2H,J=8.3,1.8Hz),8.04(d,2H,J=7.7Hz),7.49−7.46(m,4H),7.32(t,2H,J=7.5Hz),6.94(dd,2H,J=8.7,2.4Hz,),6.41(d,2H,J=8.8Hz)と帰属でき、元素分析値は、計算値C:72.47%,H:2.83%,実測値C:72.61%,H:2.97%
と式(1)で表されるテトラカルボン酸二無水物と0.3%以内で一致した。また、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)によって融点を測定したところ、332℃に鋭い融解ピークを示したことからこの生成物は高純度であることが示唆された。
The resulting product, a Fourier transform infrared spectrophotometer FT / IR-4100 from (manufactured by JASCO Corporation), 1856cm -1 and 1781cm -1 to acid anhydride group C = O stretching vibration absorption band, 1738 cm -1 The ester group C = O stretching vibration absorption band was confirmed. Further, as a result of proton NMR measurement using Fourier transform nuclear magnetic resonance JNM-ECP400 (manufactured by JEOL), DMSO-d 6 , δ, ppm; 8.62-8.51 (m, 4H), 8.27 (Dd, 2H, J = 8.0, 0.6 Hz), 8.15 (dd, 2H, J = 8.3, 1.8 Hz), 8.04 (d, 2H, J = 7.7 Hz), 7.49-7.46 (m, 4H), 7.32 (t, 2H, J = 7.5 Hz), 6.94 (dd, 2H, J = 8.7, 2.4 Hz), 6. 41 (d, 2H, J = 8.8 Hz), and the elemental analysis values are calculated C: 72.47%, H: 2.83%, measured C: 72.61%, H: 2. 97%
With the tetracarboxylic dianhydride represented by the formula (1) within 0.3%. Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Japan Co., Ltd.), a sharp melting peak was observed at 332 ° C., suggesting that this product was of high purity.

<合成例2>(テトラカルボン酸二無水物の合成)
式(14)で表されるテトラカルボン酸二無水物の合成。
ナスフラスコに無水トリメリット酸クロリド8.4228g(40.0mmol)を入れ、脱水N,N−ジメチルホルムアミド(DMF)36mLに室温で溶解させ、セプタムシールして溶液Aを調製した(溶質濃度20wt%)。更に別のフラスコ中で4,4’−ビフェノール3.7242g(20.0mmol)を脱水DMF16mLに室温で溶解し(溶質濃度20wt%)、これにピリジン120mmolを加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジにて徐々に滴下し、その後室温で12時間撹拌した。反応終了後、黄色沈澱物を濾別し、DMFおよびイオン交換水で洗浄した。ピリジン塩酸塩の除去は、硝酸銀水溶液を用いて確認した。洗浄した生成物を回収し、180℃で12時間真空乾燥した。得られた生成物は黄色粉末であり、収量は4.8465g、収率は38.5%であった。得られた粗生成物は、γ−ブチロラクトン(GBL)で再結晶し精製した。得られた生成物は、フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)より、1861cm−1および1782cm−1に酸無水物基C=O伸縮振動、1730cm−1にエステル基C=O伸縮振動を確認した。また、フーリエ変換核磁気共鳴JNM―ECP400(JEOL製)を用いてプロトンNMR測定を行った結果、DMSO−d,δ,ppm:7.52(d,4H), 7.58(d,4H), 8.51(d,2H),8.6(m,4H), 8.71−8.76(m,4H)と帰属でき、目的物のテトラカルボン酸二無水物であることが確認された。また、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)によって融点を測定したところ、326℃に鋭い融解ピークを示したことからこの生成物は高純度であることが示唆された。
<Synthesis Example 2> (Synthesis of tetracarboxylic dianhydride)
Synthesis of tetracarboxylic dianhydride represented by formula (14).
8.4228 g (40.0 mmol) of trimellitic anhydride chloride was placed in an eggplant flask, dissolved in 36 mL of dehydrated N, N-dimethylformamide (DMF) at room temperature, and sealed with a septum to prepare solution A (solute concentration 20 wt%). ). Further, 3.7242 g (20.0 mmol) of 4,4′-biphenol was dissolved in 16 mL of dehydrated DMF at room temperature in a separate flask (solute concentration 20 wt%), and 120 mmol of pyridine was added thereto, followed by septum sealing to prepare solution B. . While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe, and then stirred at room temperature for 12 hours. After completion of the reaction, the yellow precipitate was filtered off and washed with DMF and ion exchange water. Removal of pyridine hydrochloride was confirmed using an aqueous silver nitrate solution. The washed product was collected and vacuum dried at 180 ° C. for 12 hours. The obtained product was a yellow powder, the yield was 4.8465 g, and the yield was 38.5%. The obtained crude product was purified by recrystallization from γ-butyrolactone (GBL). The resulting product, a Fourier transform infrared than spectrophotometer FT / IR-4100 (manufactured by JASCO Corporation), 1861cm -1 and 1782cm -1 to acid anhydride group C = O stretching vibration, ester 1730 cm -1 The group C = O stretching vibration was confirmed. Further, as a result of proton NMR measurement using Fourier transform nuclear magnetic resonance JNM-ECP400 (manufactured by JEOL), DMSO-d 6 , δ, ppm: 7.52 (d, 4H), 7.58 (d, 4H) ), 8.51 (d, 2H), 8.6 (m, 4H), 8.71-8.76 (m, 4H), confirming that it is the target tetracarboxylic dianhydride It was done. Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Japan Co., Ltd.), a sharp melting peak was observed at 326 ° C., suggesting that this product is of high purity.

<合成例3>(テトラカルボン酸二無水物の合成)
式(15)で表されるテトラカルボン酸二無水物の合成。
ナスフラスコに無水トリメリット酸クロリド4.3185(20mmol)を入れ、脱水THF11mLに室温で溶解させ、セプタムシールして溶液Aを調製した(溶質濃度30wt%)。更に別のフラスコ中で2,6−ジヒドロキシナフタレン1.6019g(10.0mmol)を脱水THF4.2mLに室温で溶解し(溶質濃度30wt%)、これにピリジン60mmolを加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジにて徐々に滴下し、その後室温で12時間撹拌した。反応終了後、淡黄色沈澱物を濾別し、THFおよびイオン交換水で洗浄した。ピリジン塩酸塩の除去は、硝酸銀水溶液を用いて確認した。洗浄した生成物を回収し、160℃で12時間真空乾燥した。得られた生成物は黄色粉末であり、収量は4.4853g、収率は88.2%であった。得られた粗生成物は、γ−ブチロラクトン(GBL)で再結晶し精製した。得られた生成物は、フーリエ変換赤外分光光度計FT/IR−4100(日本分光社製)より、1857cm−1および1780cm−1に酸無水物基C=O伸縮振動、1732cm−1にエステル基C=O伸縮振動を確認した。目的物のテトラカルボン酸二無水物であることが確認された。また、示差走査熱量分析装置DSC3100(ネッチ・ジャパン社)によって融点を測定したところ、301℃に鋭い融解ピークを示したことからこの生成物は高純度であることが示唆された。
<Synthesis Example 3> (Synthesis of tetracarboxylic dianhydride)
Synthesis of tetracarboxylic dianhydride represented by formula (15).
Trimellitic chloride 4.3185 (20 mmol) was placed in an eggplant flask, dissolved in 11 mL of dehydrated THF at room temperature, and sealed with a septum to prepare solution A (solute concentration 30 wt%). In another flask, 1.6019 g (10.0 mmol) of 2,6-dihydroxynaphthalene was dissolved in 4.2 mL of dehydrated THF at room temperature (solute concentration 30 wt%), 60 mmol of pyridine was added thereto, and the septum was sealed and solution B was added. Prepared. While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe, and then stirred at room temperature for 12 hours. After completion of the reaction, the pale yellow precipitate was filtered off and washed with THF and ion exchange water. Removal of pyridine hydrochloride was confirmed using an aqueous silver nitrate solution. The washed product was collected and dried in vacuum at 160 ° C. for 12 hours. The obtained product was a yellow powder, the yield was 4.44853 g, and the yield was 88.2%. The obtained crude product was purified by recrystallization from γ-butyrolactone (GBL). The resulting product, a Fourier transform infrared than spectrophotometer FT / IR-4100 (manufactured by JASCO Corporation), 1857cm -1 and 1780 cm -1 to the acid anhydride group C = O stretching vibration, ester 1732 cm -1 The group C = O stretching vibration was confirmed. It was confirmed that it was the target tetracarboxylic dianhydride. Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Japan Co., Ltd.), a sharp melting peak was shown at 301 ° C., suggesting that this product is of high purity.

<実施例1>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水N,N−ジメチルアセトアミド(DMAc)6.3gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.4965g(2.1mmol)と式(12)で表されるテトラカルボン酸二無水物粉末0.2414g(0.9mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度22.9重量%)。得られたポリアミド酸の固有粘度は、1.52dL/gであった。
<Example 1>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.3 g of dehydrated N, N-dimethylacetamide (DMAc). Here, 1.4965 g (2.1 mmol) of tetracarboxylic dianhydride powder represented by the formula (9), 0.2414 g (0.9 mmol) of tetracarboxylic dianhydride powder represented by the formula (12), and Was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluting with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 22.9% by weight). The resulting polyamic acid had an intrinsic viscosity of 1.52 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.99dL/gであった。イミド化の完結は、FT−IRによって確認した(図1)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.99 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 1). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でシクロペンタノン(CPN)に再溶解し、12重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で280℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in cyclopentanone (CPN) at room temperature to prepare a 12 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was dried again under reduced pressure at 280 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例2>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水DMAc6.0gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.2827g(1.8mmol)と式(12)で表されるテトラカルボン酸二無水物粉末0.3218g(1.2mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度24.6重量%)。得られたポリアミド酸の固有粘度は、1.15dL/gであった。
<Example 2>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.0 g of dehydrated DMAc. Here, 1.2827 g (1.8 mmol) of tetracarboxylic dianhydride powder represented by formula (9), 0.3218 g (1.2 mmol) of tetracarboxylic dianhydride powder represented by formula (12), and Was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 24.6% by weight). The obtained polyamic acid had an intrinsic viscosity of 1.15 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、1.10dL/gであった。イミド化の完結は、FT−IRによって確認した(図2)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 1.10 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 2). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でCPNに再溶解し、6重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で280℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in CPN at room temperature to prepare a 6 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was dried again under reduced pressure at 280 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例3>
実施例2で得られたポリイミド粉末を室温でDMAcに再溶解し、10重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で280℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
<Example 3>
The polyimide powder obtained in Example 2 was redissolved in DMAc at room temperature to prepare a 10% by weight solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was dried again under reduced pressure at 280 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例4>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水DMAc6.9gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.4965g(2.1mmol)と式(14)で表されるテトラカルボン酸二無水物粉末0.4810g(0.9mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度21重量%)。得られたポリアミド酸の固有粘度は、1.36dL/gであった。
<Example 4>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.9 g of dehydrated DMAc. Here, 1.4965 g (2.1 mmol) of tetracarboxylic dianhydride powder represented by formula (9) and 0.4810 g (0.9 mmol) of tetracarboxylic dianhydride powder represented by formula (14) Was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 21% by weight). The resulting polyamic acid had an intrinsic viscosity of 1.36 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.76dL/gであった。イミド化の完結は、FT−IRによって確認した(図3)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.76 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 3). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でCPNに再溶解し、20重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で250℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in CPN at room temperature to prepare a 20 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 250 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例5>
実施例4で得られたポリイミド粉末を室温でDMAcに再溶解し、20重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で250℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
<Example 5>
The polyimide powder obtained in Example 4 was redissolved in DMAc at room temperature to prepare a 20% by weight solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 250 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例6>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水DMAc6.7gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.2827g(1.8mmol)と式(14)で表されるテトラカルボン酸二無水物粉末0.6413g(1.2mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度25.1重量%)。得られたポリアミド酸の固有粘度は、1.30dL/gであった。
<Example 6>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.7 g of dehydrated DMAc. Here, 1.2827 g (1.8 mmol) of tetracarboxylic dianhydride powder represented by formula (9) and 0.6413 g (1.2 mmol) of tetracarboxylic dianhydride powder represented by formula (14) Was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 25.1% by weight). The obtained polyamic acid had an intrinsic viscosity of 1.30 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.87dL/gであった。イミド化の完結は、FT−IRによって確認した(図4)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.87 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 4). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でCPNに再溶解し、20重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で250℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in CPN at room temperature to prepare a 20 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 250 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例7>
実施例6で得られたポリイミド粉末を室温でDMAcに再溶解し、20重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で250℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
<Example 7>
The polyimide powder obtained in Example 6 was redissolved in DMAc at room temperature to prepare a 20% by weight solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 250 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例8>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水DMAc6.6gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.0689g(1.5mmol)と式(14)で表されるテトラカルボン酸二無水物粉末0.8016g(1.5mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度20.7重量%)。得られたポリアミド酸の固有粘度は、1.23dL/gであった。
<Example 8>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.6 g of dehydrated DMAc. Here, 1.0689 g (1.5 mmol) of tetracarboxylic dianhydride powder represented by formula (9) and 0.8016 g (1.5 mmol) of tetracarboxylic dianhydride powder represented by formula (14) Was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration: 20.7% by weight). The obtained polyamic acid had an intrinsic viscosity of 1.23 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.79dL/gであった。イミド化の完結は、FT−IRによって確認した(図5)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.79 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 5). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

<実施例9>
実施例8で得られたポリイミド粉末を室温でDMAcに再溶解し、12重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で250℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
<Example 9>
The polyimide powder obtained in Example 8 was redissolved in DMAc at room temperature to prepare a 12 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 250 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例10>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水DMAc6.6gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.2827g(1.8mmol)と式(15)で表されるテトラカルボン酸二無水物粉末0.6101g(1.2mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た。得られたポリアミド酸の固有粘度は、0.78dL/gであった。
<Example 10>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.6 g of dehydrated DMAc. Here, 1.2827 g (1.8 mmol) of tetracarboxylic dianhydride powder represented by formula (9) and 0.6101 g (1.2 mmol) of tetracarboxylic dianhydride powder represented by formula (15) Was slowly added and stirred at a solid concentration of 30% by weight. The mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor. The intrinsic viscosity of the obtained polyamic acid was 0.78 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.84dL/gであった。イミド化の完結は、FT−IRによって確認した(図6)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.84 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 6). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

(ポリイミド溶液の調製およびポリイミドフィルムの作製)
得られたポリイミド粉末を室温でCPNに再溶解し、20重量%の溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃で2時間熱風乾燥器によって乾燥した。その後、ガラス基板ごと減圧下200℃で1時間乾燥した後、室温まで放冷後、ガラス基板からポリイミドフィルムを剥した。このポリイミドフィルムをもう一度減圧下で250℃1時間乾燥した。得られたフィルムの膜物性を表2に示す。
(Preparation of polyimide solution and preparation of polyimide film)
The obtained polyimide powder was redissolved in CPN at room temperature to prepare a 20 wt% solution. This polyimide solution was cast on a glass substrate and dried by a hot air dryer at 60 ° C. for 2 hours. Then, after drying at 200 degreeC under pressure reduction for 1 hour with the glass substrate, the polyimide film was peeled from the glass substrate after standing to cool to room temperature. This polyimide film was again dried under reduced pressure at 250 ° C. for 1 hour. Table 2 shows the film physical properties of the obtained film.

<実施例11>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水DMAc6.5gに溶解した。ここに式(9)で表されるテトラカルボン酸二無水物粉末1.0689g(1.5mmol)と式(15)で表されるテトラカルボン酸二無水物粉末0.7626g(1.5mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度28.5重量%)。得られたポリアミド酸の固有粘度は、0.83dL/gであった。
<Example 11>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.5 g of dehydrated DMAc. Here, 1.0689 g (1.5 mmol) of tetracarboxylic dianhydride powder represented by formula (9) and 0.7626 g (1.5 mmol) of tetracarboxylic dianhydride powder represented by formula (15) Was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 28.5% by weight). The resulting polyamic acid had an intrinsic viscosity of 0.83 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液を脱水DMAcで固形分濃度8重量%に希釈後、3.0627g(30mmmol)の無水酢酸と1.1865g(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、その後24時間撹拌した。得られたポリイミド溶液を大量の脱イオン水に加え、目的生成物を沈澱させた。得られた析出物をメタノールで十分洗浄し、100℃で12時間真空乾燥しポリイミド粉末を得た。得られたポリイミドの固有粘度は、0.74dL/gであった。イミド化の完結は、FT−IRによって確認した(図7)。得られたポリイミド粉末の各溶媒に対する溶解性評価を表1に示す。
(Polyimide synthesis by chemical imidization)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 3.0627 g (30 mmol) of acetic anhydride and 1.1865 g (15 mmol) of pyridine was slowly added dropwise at room temperature. Stir for hours. The resulting polyimide solution was added to a large amount of deionized water to precipitate the desired product. The obtained precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours to obtain a polyimide powder. The intrinsic viscosity of the obtained polyimide was 0.74 dL / g. Completion of imidization was confirmed by FT-IR (FIG. 7). Table 1 shows the evaluation of the solubility of the obtained polyimide powder in each solvent.

<比較例1>
(ポリアミド酸の重合)
式(16)で表されるジアミン0.9607g(3mmol)を脱水N,N−ジメチルアセトアミド(DMAc)6.0gに溶解した。ここに式(14)で表されるテトラカルボン酸二無水物粉末1.6033g(3mmol)とをゆっくり加えて固形分濃度30重量%で撹拌した。適宜DMAcで希釈しながら室温で72時間撹拌しポリイミド前駆体であるポリアミド酸を得た(固形分濃度18.1重量%)。得られたポリアミド酸の固有粘度は、2.26dL/gであった。
<Comparative Example 1>
(Polyamide acid polymerization)
0.9607 g (3 mmol) of the diamine represented by the formula (16) was dissolved in 6.0 g of dehydrated N, N-dimethylacetamide (DMAc). To this, 1.6033 g (3 mmol) of tetracarboxylic dianhydride powder represented by the formula (14) was slowly added and stirred at a solid concentration of 30% by weight. While appropriately diluted with DMAc, the mixture was stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration: 18.1% by weight). The obtained polyamic acid had an intrinsic viscosity of 2.26 dL / g.

(化学イミド化によるポリイミドの合成)
得られたポリアミド酸溶液の半分を脱水DMAcで固形分濃度8重量%に希釈後、1.5314g(15mmmol)の無水酢酸と0.5932g(7.5mmol)のピリジンの混合溶液を室温でゆっくり滴下したところ、溶液の流動性がなくなり、ゲル化したため、反応を中断した。これは、高分子中にスピロ構造を含まないために、溶媒に対する溶解性が不十分となりゲル化したと考えられる。

(Polyimide synthesis by chemical imidization)
Half of the obtained polyamic acid solution was diluted with dehydrated DMAc to a solid concentration of 8% by weight, and then a mixed solution of 1.5314 g (15 mmol) acetic anhydride and 0.5932 g (7.5 mmol) pyridine was slowly added dropwise at room temperature. As a result, the fluidity of the solution disappeared and gelation occurred, so the reaction was interrupted. This is presumably because the polymer does not contain a spiro structure, so that its solubility in a solvent is insufficient and gelation occurs.

Figure 2016196630
Figure 2016196630

Figure 2016196630
なお、上記表2中、かっこ内で記載した数値は各物性値を測定した際のポリイミドフィルムの膜厚である。
Figure 2016196630
In Table 2, the numerical value described in parentheses is the film thickness of the polyimide film when each physical property value is measured.

Claims (5)

下記式(1):
Figure 2016196630
で表される繰り返し単位及び下記一般式(2):
Figure 2016196630
(式中、Xは下記式(3)〜(8)からなる群より選ばれる少なくとも1種の4価の芳香族基を表す。)で表される繰り返し単位を有するポリイミド共重合体。
Figure 2016196630
Following formula (1):
Figure 2016196630
The repeating unit represented by the following general formula (2):
Figure 2016196630
(Wherein X represents at least one tetravalent aromatic group selected from the group consisting of the following formulas (3) to (8)), and a polyimide copolymer having a repeating unit represented by:
Figure 2016196630
上記式(1)で表される繰り返し単位の含有率が、ポリイミド共重合体中の全繰り返し単位に対し2〜70mol%の範囲である請求項1に記載のポリイミド共重合体。   2. The polyimide copolymer according to claim 1, wherein the content of the repeating unit represented by the formula (1) is in the range of 2 to 70 mol% with respect to all repeating units in the polyimide copolymer. 請求項1または2に記載のポリイミド共重合体を固形分濃度で5重量%以上含むポリイミド溶液。   A polyimide solution comprising the polyimide copolymer according to claim 1 or 2 in a solid content concentration of 5% by weight or more. 請求項1または2に記載のポリイミド共重合体を含むポリイミドフィルム。 A polyimide film comprising the polyimide copolymer according to claim 1. 以下の(A)、(B)及び(C)の特徴を有する請求項4記載のポリイミドフィルム。
(A)波長400nmにおける光透過率が30%以上。
(B)線熱膨張係数が40ppm/K以下。
(C)ガラス転移温度(Tg)が260℃以上。
The polyimide film according to claim 4, which has the following characteristics (A), (B) and (C).
(A) The light transmittance at a wavelength of 400 nm is 30% or more.
(B) The linear thermal expansion coefficient is 40 ppm / K or less.
(C) Glass transition temperature (Tg) is 260 ° C. or higher.
JP2016049079A 2015-04-03 2016-03-14 Novel polyimide copolymer Pending JP2016196630A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015076560 2015-04-03
JP2015076560 2015-04-03

Publications (1)

Publication Number Publication Date
JP2016196630A true JP2016196630A (en) 2016-11-24

Family

ID=57357474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049079A Pending JP2016196630A (en) 2015-04-03 2016-03-14 Novel polyimide copolymer

Country Status (1)

Country Link
JP (1) JP2016196630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110973A1 (en) * 2016-12-15 2018-06-21 주식회사 엘지화학 Polyimide-based block copolymer and polyimide-based film comprising same
JP2020117614A (en) * 2019-01-23 2020-08-06 東洋紡株式会社 Polyimide film and method for producing polyimide film
CN114423745A (en) * 2019-10-29 2022-04-29 本州化学工业株式会社 2, 6-naphthalenediol-bis (trimellitic anhydride) powder and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110973A1 (en) * 2016-12-15 2018-06-21 주식회사 엘지화학 Polyimide-based block copolymer and polyimide-based film comprising same
US11377556B2 (en) 2016-12-15 2022-07-05 Lg Chem, Ltd. Polyimide-based block copolymer and polyimide-based film comprising the same
JP2020117614A (en) * 2019-01-23 2020-08-06 東洋紡株式会社 Polyimide film and method for producing polyimide film
JP7302179B2 (en) 2019-01-23 2023-07-04 東洋紡株式会社 Polyimide film and method for producing polyimide film
CN114423745A (en) * 2019-10-29 2022-04-29 本州化学工业株式会社 2, 6-naphthalenediol-bis (trimellitic anhydride) powder and method for producing same

Similar Documents

Publication Publication Date Title
JP6165153B2 (en) Polyimide and molded body thereof
JP5581463B2 (en) Diamine, polyimide, and polyimide film and use thereof
JP2012072121A (en) Amide group-bearing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
JP6353931B2 (en) Polyimide and film using the same
JP5985977B2 (en) Polyimide resin solution
JP2015218179A (en) Tetracarboxylic acid dianhydride, and polyimide obtained by using the same
JP2015214597A (en) Polyimide and use thereof
JP6693676B2 (en) Polyimide and polyimide film
JP6496263B2 (en) Novel tetracarboxylic dianhydride and polyimide obtained from the acid dianhydride
JP2020033421A (en) Polyimide resin and method for producing the same, polyimide solution, polyimide film and method for producing the same and method for producing tetracarboxylic acid dianhydride
JP2016196630A (en) Novel polyimide copolymer
JP2012236788A (en) Amide group-containing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
TWI708769B (en) Novel tetracarboxylic dianhydride, polyimide derived from the same and compact constructed by the polyimide
JP2018193343A (en) Diamine and polyimide, and use thereof
JP2014172911A (en) Polyimides
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof
WO2023048063A1 (en) Polyimide, polyamide, resin composition, polyimide film, display device, substrate for electronic material, method for producing polyamide and method for producing polyimide