JP2016196414A - METHOD FOR PRODUCING β-ARBUTIN - Google Patents

METHOD FOR PRODUCING β-ARBUTIN Download PDF

Info

Publication number
JP2016196414A
JP2016196414A JP2015075885A JP2015075885A JP2016196414A JP 2016196414 A JP2016196414 A JP 2016196414A JP 2015075885 A JP2015075885 A JP 2015075885A JP 2015075885 A JP2015075885 A JP 2015075885A JP 2016196414 A JP2016196414 A JP 2016196414A
Authority
JP
Japan
Prior art keywords
arbutin
solvent
extraction
methanol
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015075885A
Other languages
Japanese (ja)
Other versions
JP6294259B2 (en
Inventor
聡一 中嶋
Soichi Nakajima
聡一 中嶋
好美 尾田
Yoshimi Oda
好美 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTH KK
Original Assignee
NTH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTH KK filed Critical NTH KK
Priority to JP2015075885A priority Critical patent/JP6294259B2/en
Publication of JP2016196414A publication Critical patent/JP2016196414A/en
Application granted granted Critical
Publication of JP6294259B2 publication Critical patent/JP6294259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high-purity β-arbutin from Dendrobium phalaenopsis plants or processed products thereof in an industrial advantageous manner.SOLUTION: Dendrobium phalaenopsis plants or processed products thereof are subjected to extraction with hydrophilic solvent, an extract therefrom is concentrated, a concentrate therefrom is subjected to fractionating extraction with lipophilic solvent and hydrophilic solvent, and the resultant lipophilic solvent layer is concentrated, so that high-purity β-arbutin can be obtained.SELECTED DRAWING: Figure 1

Description

本発明は、式(I):   The present invention is directed to formula (I):

で表されるβ-アルブチンの製造方法に関する。更に詳しくは、植物デンファレ又はその処理物から工業的有利に高純度のβ-アルブチンを製造する方法に関する。 In which β-arbutin is produced. More specifically, the present invention relates to a method for producing highly pure β-arbutin from a plant denfare or a processed product thereof in an industrially advantageous manner.

デンファレとは、デンドロビウム・ファレノプシスの略で、この群の基本となる原種の学名から来ている。デンドロビウム・ファレノプシスは、この種および近縁の種を元にした園芸品種の総称として使われ、原種も含めてこう呼ばれる。名称としては、略称であるデンファレ系ないし単にデンファレが使われている。幾つかの原種を元に、多くの交配品種があり、花色や花形は様々だが、その多くは花の様子がコチョウラン属(ファレノプシス)に似ている。洋ランのデンドロビウムの中の重要な一群である。   Denfare is an abbreviation for Dendrobium Phalaenopsis and comes from the scientific name of the basic species that is the basis of this group. Dendrobium phalaenopsis is used as a general term for horticultural varieties based on this species and related species, including the original species. As the name, the abbreviation Denfare system or simply Denfare is used. There are many hybrid varieties based on several original species, and the flower colors and shapes vary, but most of them are similar to the genus Phalaenopsis. It is an important group in the orchid dendrobium.

一方、アルブチン (arbutin) はバラ科の梨、ツツジ科のコケモモやウワウルシ等の植物に含まれている天然型フェノール性配糖体である。メラニン合成に関わるチロシナーゼに直接作用し、メラニンの合成を阻害するため、美白効果があるとして、化粧品などに使用されている(特許文献1)。β型とα型が存在するが一般に使用されているのはβ-アルブチンである。また、利尿作用と尿路殺菌作用があり、尿路消毒薬とされる。   On the other hand, arbutin is a natural type phenolic glycoside contained in plants such as pears of the family Rosaceae, bilberries of the azalea family, and otters. Since it acts directly on tyrosinase involved in melanin synthesis and inhibits melanin synthesis, it is used in cosmetics and the like because it has a whitening effect (Patent Document 1). There are β-type and α-type, but β-arbutin is generally used. In addition, it has diuretic action and urinary tract bactericidal action, and is considered as a urinary disinfectant.

特開昭61−227516号公報JP-A 61-227516

本発明は上記したように有用なβ-アルブチンの製造方法、更に詳しくは、植物デンファレ又はその処理物から工業的有利に高純度のβ-アルブチンを製造する方法を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、デンファレ又はその処理物を親水性溶媒で抽出し、抽出液を濃縮し、濃縮物を親油性溶媒と親水性溶媒で分配抽出して得た親油性溶媒層を濃縮することにより上記課題が一挙に解決されることを見出した。本発明者らは、そのような新知見を得て更に検討を重ねて本発明を完成するに至った。
An object of the present invention is to provide a method for producing useful β-arbutin as described above, more specifically, a method for producing highly pure β-arbutin industrially advantageously from plant denfare or a processed product thereof.
As a result of intensive studies to solve the above problems, the present inventors have extracted Denfare or its treated product with a hydrophilic solvent, concentrated the extract, and the concentrate with a lipophilic solvent and a hydrophilic solvent. It has been found that the above problems can be solved at once by concentrating the lipophilic solvent layer obtained by partition extraction. The inventors of the present invention have obtained such new knowledge and have further studied to complete the present invention.

すなわち、本発明は、以下の発明に関する。
[1] デンファレ又はその処理物を親水性溶媒で抽出し、抽出液を濃縮し、濃縮物を親油性溶媒と親水性溶媒で分配抽出して得た親油性溶媒層を濃縮することを特徴とするβ-アルブチンの製造方法。
[2] デンファレの処理物がデンファレ花部の乾燥物であることを特徴とする[1]に記載の製造方法。
[3] 親水性溶媒がメタノールであることを特徴とする[1]又は[2]に記載の製造方法。
[4] 親油性溶媒が酢酸エチルであることを特徴とする[1]乃至[3]のいずれかに記載の製造方法。
[5] 親水性溶媒抽出を70℃〜90℃の親水性溶媒を用いて行なうことを特徴とする[1]乃至[4]のいずれかに記載の製造方法。
[6] 親油性溶媒層の濃縮物を精製することを特徴とする[1]乃至[5]のいずれかに記載の製造方法。
[7] 精製手段が順相クロマトグラフィ、逆相クロマトグラフィ又は液層クロマトグラフィであることを特徴とする[6]に記載の製造方法。
That is, the present invention relates to the following inventions.
[1] It is characterized by extracting Denfare or its treated product with a hydrophilic solvent, concentrating the extract, and concentrating the lipophilic solvent layer obtained by partitioning extraction of the concentrate with a lipophilic solvent and a hydrophilic solvent. To produce β-arbutin.
[2] The production method according to [1], wherein the processed product of Denfare is a dried product of Denfare flowers.
[3] The production method according to [1] or [2], wherein the hydrophilic solvent is methanol.
[4] The production method according to any one of [1] to [3], wherein the lipophilic solvent is ethyl acetate.
[5] The method according to any one of [1] to [4], wherein the hydrophilic solvent extraction is performed using a hydrophilic solvent at 70 ° C to 90 ° C.
[6] The production method according to any one of [1] to [5], wherein the concentrate of the lipophilic solvent layer is purified.
[7] The production method according to [6], wherein the purification means is normal phase chromatography, reverse phase chromatography, or liquid layer chromatography.

本発明によって、有用なβ-アルブチンを工業的に有利に製造することができる。即ち本発明方法によって、β-アルブチンは、高純度、高収率で、複雑な処理を必要とせず、特殊な装置を必要とせず、低製造コストで製造できる。   According to the present invention, useful β-arbutin can be advantageously produced industrially. That is, according to the method of the present invention, β-arbutin can be produced with high purity, high yield, no complicated treatment, no special equipment, and low production cost.

デンファレ (Dendrobium phalaenopsis)からβ-アルブチンを抽出により取得する工程の概略を示す図である。It is a figure which shows the outline of the process of acquiring (beta) -arbutin by extraction from Denfale (Dendrobium phalaenopsis).

β-アルブチンは、現状、工業的には専ら化学合成によって製造されており、抽出による取得は、量産化には至っていない。
一方、β-アルブチンは、ツツジ科(Ericaceae)、バラ科(Rosaceae)、ユキノシタ科(Saxifragaceae)などに属する植物体に広く存在することが知られ、優れた生理活性を有していることより、近年、注目されており、特に、美白効果があるとして、化粧品等にも使用されている。
At present, β-arbutin is industrially produced exclusively by chemical synthesis, and acquisition by extraction has not led to mass production.
On the other hand, β-arbutin is known to exist widely in plants belonging to the family Azalea (Ericaceae), Rosaceae (Rosaceae), Saxifragaceae (Saxifragaceae), etc., and has excellent physiological activity. In recent years, it has been attracting attention, and is also used in cosmetics and the like because it has a whitening effect.

しかし、このような用途に鑑みれば、上記化学合成による方法は、安全性の観点等から未だ改善の余地を残していると言わざるを得ず、植物体よりβ-アルブチンを直接抽出する製造方法が確立されれば、より高いレベルの安全性を確保することが期待される。   However, in view of such applications, the chemical synthesis method has to be said that there is still room for improvement from the viewpoint of safety and the like, and a production method for directly extracting β-arbutin from a plant body Once established, it is expected to ensure a higher level of safety.

一方、従来より、β-アルブチンを含有することが知られている上記植物資源を抽出原料とするには、種々の制約があった。即ち、β-アルブチン含有植物体としては、上記のように、ツツジ科のウワウルシ、コケモモ、あるいはバラ科ナシ属のニホンナシ、セイヨウナシ等が例示できるが、例えば、日本国内での製造を想定した場合、ウワウルシは日本国内に自生しておらず、コケモモは自生しているものの、高山植物であることから採取は禁止されている。バラ科ナシ属植物は果樹として広く栽培されており、抽出原料としてはこれらの中では最も有望と言えるが、上記したウワウルシ、コケモモも含めて木本類であり、β-アルブチンを多く含有するとされる樹皮近傍には、各種ポリフェノール類等の夾雑物が多く存在し、また植物体自体が堅く、裁断等の前処理に多大の労力を要するという問題があった。   On the other hand, conventionally, there have been various restrictions on using the above plant resources known to contain β-arbutin as an extraction raw material. That is, as the β-arbutin-containing plant, as mentioned above, there can be exemplified the azalea family walrus, cowberry, or the Rosaceae genus Japanese pear, pear, etc., for example, when production in Japan is assumed Species are not native to Japan, but cowberry are native, but they are alpine plants and are prohibited from being collected. The Rosaceae species are widely cultivated as fruit trees, and the most promising raw material for extraction is woody, including the above-mentioned walnuts and bilberries, and is said to contain a large amount of β-arbutin. In the vicinity of the bark, there are many contaminants such as various polyphenols, the plant itself is hard, and there is a problem that a large amount of labor is required for pretreatment such as cutting.

この度、本発明者らは、上記のように、デンファレ又はその処理物を親水性溶媒で抽出し、抽出液を濃縮し、濃縮物を親油性溶媒と親水性溶媒で分配抽出して得た親油性溶媒層を濃縮することにより、高純度、高収率で、複雑な処理や、特殊な装置を必要とせず、低製造コストでβ-アルブチンを製造できることを見出した。   At this time, as described above, the present inventors extracted Denfare or its treated product with a hydrophilic solvent, concentrated the extract, and distributed and extracted the concentrate with a lipophilic solvent and a hydrophilic solvent. It has been found that by concentrating the oily solvent layer, β-arbutin can be produced at a low production cost with high purity and high yield, without requiring complicated processing and special equipment.

本発明によれば、β-アルブチンは、デンファレ (Dendrobium phalaenopsis)から好適に取得される。抽出用植物は、デンファレに限定されることなく、β-アルブチンを含む植物であればどのような植物であっても製造原料として使用されうるが、鑑賞用の草本類として栽培方法が確立され、広く栽培されているデンファレが入手や抽出処理の容易さの点で特に優れている。   According to the present invention, β-arbutin is preferably obtained from Dendrobium phalaenopsis. The plant for extraction is not limited to Denfale, and any plant containing β-arbutin can be used as a raw material for production, but the cultivation method is established as a herb for viewing, Widely cultivated denfare is particularly excellent in terms of availability and extraction process.

β-アルブチンは、上記植物から溶媒抽出され、抽出物からβ-アルブチンを取得し、所望により、精製手段に付して単離する。抽出に用いられるデンファレは、全草であってもよく、その部分若しくは、その処理物であってもよい。被抽出物としては花、実、葉、茎、根等が例示され、当該植物の裁断物であってもよいが、好ましくはその乾燥物である。
溶媒抽出に用いられる溶媒としては、β-アルブチンを溶解する溶媒であればどのようなものでもよく、優れた抽出溶媒としては、例えば、水の他、メタノール、エタノール、イソプロパノール、n-ブタノール等のアルコール類、例えば、ジオキサン、メチルエチルエーテル、ジエチルエーテル等のエーテル類、例えば、アセトン、メチルエチルケトン等のケトン類、例えば、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素、例えば、ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒等が例示されるが、中でも、水、アルコール等のプロトン性溶媒が好ましい。また、各種ポリフェノール類等の夾雑物の溶解度が低く、アルブチンを選択的に抽出可能な点では、水よりも、メタノール、エタノール等の低級アルコール類が更に好ましく、抽出能力に優れ、低価格、低沸点で留去が容易なメタノールが特に好ましい。これらの溶媒は単独で用いても、2種以上を混合して用いてもよく、目的に応じて適宜に使用できる。
β-Arbutin is solvent-extracted from the plant, β-arbutin is obtained from the extract, and if desired, is isolated by purification means. The denfare used for extraction may be whole grass, or a part thereof or a processed product thereof. Examples of the extract include flowers, fruits, leaves, stems, roots, and the like, and may be cuts of the plant, but are preferably dried.
The solvent used for solvent extraction may be any solvent that dissolves β-arbutin. Examples of excellent extraction solvents include water, methanol, ethanol, isopropanol, and n-butanol. Alcohols, for example, ethers such as dioxane, methyl ethyl ether, diethyl ether, etc., ketones such as acetone, methyl ethyl ketone, etc., halogenated hydrocarbons such as dichloromethane, dichloroethane, etc., polarities such as dimethylformamide, dimethyl sulfoxide, etc. Examples of the solvent include a protic solvent such as water and alcohol. In addition, lower alcohols such as methanol and ethanol are more preferable than water in terms of low solubility of contaminants such as various polyphenols and the ability to selectively extract arbutin. Particularly preferred is methanol which has a boiling point and can be easily distilled off. These solvents may be used alone or in combination of two or more, and can be used appropriately depending on the purpose.

抽出操作は、例えば、上記被抽出物と抽出溶媒とを混合し、好ましくは攪拌し、抽出液と抽出残渣を分離する。抽出温度は、一概には言えないが、好ましくは、15℃〜150℃であり、抽出時間は、一概には言えないが、好ましくは、30分〜1週間程度である。抽出液と抽出残渣の分離は、特に限定されるべきものではなく、例えば、濾過、遠心分離等の手段により行なわれるのが好ましい。抽出液から抽出溶媒を除去することにより、デンファレ抽出エキスが得られる。抽出溶媒除去は、常圧下、又は減圧下に行なわれ、減圧下が好ましい。   In the extraction operation, for example, the extract and the extraction solvent are mixed, preferably stirred, and the extract and the extraction residue are separated. Although the extraction temperature cannot be generally specified, it is preferably 15 ° C. to 150 ° C., and the extraction time cannot be generally specified, but is preferably about 30 minutes to 1 week. The separation of the extraction liquid and the extraction residue is not particularly limited, and is preferably performed by means such as filtration and centrifugation. By removing the extraction solvent from the extract, a defale extract can be obtained. The extraction solvent is removed under normal pressure or reduced pressure, preferably under reduced pressure.

デンファレ抽出エキスはβ-アルブチンを含有する。デンファレ抽出エキスを精製手段に付することにより、精製β-アルブチンを取得することができる。そのような精製手段は、例えば、分配抽出、濃縮、クロマトグラフィ、結晶化、再結晶等から適宜に選択又は組み合わされてよい。このような精製手段は、従来、当該技術分野で充分に発達しており、本発明においてもそれらに従ってよい。分配抽出のための溶媒の組み合わせとしては、酢酸エチルエステルと水との組み合わせ又は、n-ブタノールと水との組み合わせが好ましい。クロマトグラフィとしては、順相シリカゲル, 逆相ODSカラムクロマトグラフィーおよび逆相HPLCが挙げられるがこれらを適宜組み合わせて繰り返し行なうのがよい。
このようにして、β-アルブチンを取得することができるが、取得の確認は、例えば、旋光度、又は、MSスペクトルによって行なうことができる。
Denfale extract contains β-arbutin. Purified β-arbutin can be obtained by subjecting the defale extract to purification means. Such purification means may be appropriately selected or combined, for example, from partition extraction, concentration, chromatography, crystallization, recrystallization and the like. Such purification means have been well developed in the art, and may be followed in the present invention. As a solvent combination for partition extraction, a combination of ethyl acetate and water or a combination of n-butanol and water is preferable. Chromatography includes normal phase silica gel, reverse phase ODS column chromatography, and reverse phase HPLC, but these may be repeated in appropriate combinations.
In this way, β-arbutin can be obtained, but confirmation of the acquisition can be performed by, for example, optical rotation or MS spectrum.

β-アルブチンの塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩が例示される。塩の製法は、当業者に自明である。β-アルブチンのエステル類は、β-アルブチンのフェノール性水酸基をカルボン酸、スルホン酸、又はホスホン酸、又はその反応性誘導体でエステル化することにより得られる。エステル化は、自体公知の手段によって行なわれて良く、例えば、β-アルブチンと上記酸の酸クロリドとを反応させることにより行なわれる。当該反応によりエステル残基が水酸基の水素原子と置換され、かかるエステル残基としては、アルキルカルボニル、アルキルスルホニル、アルキルフォスフォリル等が挙げられ、アルキル基としては、例えば、メチル、エチル、プロピル、ブチル等のC1〜C4の低級アルキルが好ましい。   Examples of the salt of β-arbutin include alkali metal salts such as sodium salt and potassium salt, and alkaline earth metal salts such as magnesium salt and calcium salt. The preparation of the salt will be obvious to those skilled in the art. Esters of β-arbutin can be obtained by esterifying the phenolic hydroxyl group of β-arbutin with carboxylic acid, sulfonic acid, phosphonic acid, or a reactive derivative thereof. The esterification may be carried out by means known per se, for example, by reacting β-arbutin with the acid chloride of the above acid. By the reaction, the ester residue is replaced with a hydrogen atom of a hydroxyl group. Examples of the ester residue include alkylcarbonyl, alkylsulfonyl, alkylphosphoryl, etc. Examples of the alkyl group include methyl, ethyl, propyl, C1-C4 lower alkyl such as butyl is preferred.

β-アルブチンのエーテル類は、例えば、β-アルブチン又はその薬理学的に許容される塩とハロゲン化物(例えば、ハロゲン化アルキル)とを反応させることにより得られる。上記エーテル化反応は従来充分確立されているので、本発明においてもそれに従ってよい。この場合におけるアルキル基としては、例えば、メチル、エチル、プロピル、ブチル等のC1〜C4の低級アルキルが好ましい。当該反応によって水酸基の水素原子はアルキル基に置換される。   Ethers of β-arbutin can be obtained, for example, by reacting β-arbutin or a pharmacologically acceptable salt thereof with a halide (for example, alkyl halide). Since the etherification reaction has been well established in the past, it can be followed in the present invention. As the alkyl group in this case, for example, C1-C4 lower alkyl such as methyl, ethyl, propyl, and butyl is preferable. By this reaction, the hydrogen atom of the hydroxyl group is replaced with an alkyl group.

上記反応及び反応混合物からの上記エステル類又はエーテル類の取得は、自体公知の手段によって行なわれて良く、例えば、β-アルブチンと上記ハロゲン化物とを反応させ、分配抽出、濃縮、クロマトグラフィ、結晶化、再結晶等から適宜に選択又は組み合わせて目的物質を取得することができる。   Acquisition of the esters or ethers from the reaction and reaction mixture may be performed by means known per se, for example, by reacting β-arbutin with the halide, partition extraction, concentration, chromatography, crystallization. The target substance can be obtained by appropriately selecting or combining from recrystallization and the like.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

<抽出、精製操作>
タイ産デンファレ(Dendrobium phalaenopsis)の乾燥花部(2.0kg)をメタノールで熱時(80℃)抽出した。抽出液を濾過し、残渣にメタノールを加え、同様の抽出操作を3回行った。メタノール抽出液を合わせて減圧下溶媒留去し、メタノール抽出エキス(516.4g、収率25.8%)を得た。得られたメタノール抽出エキスのうち200.0gを酢酸エチルと水で分配抽出後、得られた水移行部をn−ブタノールでさらに分配抽出し、各移行部を減圧下溶媒留去して、酢酸エチル移行部(21.9g、収率2.8%)、n−ブタノール移行部(62.6g、収率8.1%)及び水移行部(115.5g、収率14.9%)を得た(図1)。
<Extraction and purification operations>
Dendrobium phalaenopsis dried flower parts (2.0 kg) were extracted with methanol when heated (80 ° C.). The extract was filtered, methanol was added to the residue, and the same extraction operation was performed 3 times. The methanol extracts were combined and the solvent was distilled off under reduced pressure to obtain a methanol extract (516.4 g, yield 25.8%). 200.0 g of the obtained methanol extract was distributed and extracted with ethyl acetate and water, and then the obtained water transfer portion was further partitioned and extracted with n-butanol. Each transfer portion was evaporated under reduced pressure to remove acetic acid. Ethyl transfer part (21.9 g, yield 2.8%), n-butanol transfer part (62.6 g, yield 8.1%) and water transfer part (115.5 g, yield 14.9%). Obtained (FIG. 1).

得られた酢酸エチル移行部(20.0g)を順相シリカゲルカラムクロマトグラフィー[上記吸着剤を600g使用し、展開溶媒を順次、以下のように変更しつつ実施した。(ヘキサン→[ヘキサン:酢酸エチル=(30:1)]→[ヘキサン:酢酸エチル=(20:1)]→[ヘキサン:酢酸エチル=(7:1)]→[ヘキサン:酢酸エチル=(1:1)]→[ヘキサン:酢酸エチル=(1:2)]→酢酸エチル→[クロロホルム:メタノール=(30:1)]→[クロロホルム:メタノール=(10:1)]→[クロロホルム:メタノール=(5:1)]→メタノール)]にて分画し、フラクション1(586.4mg)、フラクション2(2983.1mg)、フラクション3(5251.8mg)、フラクション4(8815.5mg)及びフラクション5(2363.2mg)を得た。   The obtained ethyl acetate transfer part (20.0 g) was subjected to normal phase silica gel column chromatography [600 g of the above adsorbent was used, and the developing solvent was sequentially changed as follows. (Hexane → [hexane: ethyl acetate = (30: 1)] → [hexane: ethyl acetate = (20: 1)] → [hexane: ethyl acetate = (7: 1)] → [hexane: ethyl acetate = (1 1)] → [hexane: ethyl acetate = (1: 2)] → ethyl acetate → [chloroform: methanol = (30: 1)] → [chloroform: methanol = (10: 1)] → [chloroform: methanol = (5: 1)] → methanol)], fraction 1 (586.4 mg), fraction 2 (2983.1 mg), fraction 3 (5251.8 mg), fraction 4 (8815.5 mg) and fraction 5 (2363.2 mg) was obtained.

フラクション4(8802.4mg)を逆相ODSカラムクロマトグラフィー[上記吸着剤を270g使用し、展開溶媒を順次、以下のように変更しつつ実施した。([メタノール:水=(40:60)]→[メタノール:水=(50:50)]→[メタノール:水=(60:40)]→[メタノール:水=(70:30)]→[メタノール:水=(80:20)]→[メタノール:水=(85:15)]→([メタノール:水=90:10)]→メタノール→アセトニトリル→2−プロパノ−ル)]にて分画し、フラクション4−1(34.1mg)、フラクション4−2(1543.2mg)、フラクション4−3(644.2mg)、フラクション4−4(1707.5mg)、フラクション4−5(594.6mg)、フラクション4−6(1670.0mg)及びフラクション4−7(2608.8mg)を得た。   Fraction 4 (8802.4 mg) was subjected to reverse phase ODS column chromatography [using 270 g of the above adsorbent and the developing solvent sequentially changed as follows. ([Methanol: Water = (40:60)] → [Methanol: Water = (50:50)] → [Methanol: Water = (60:40)] → [Methanol: Water = (70:30)] → [ Methanol: water = (80:20)] → [methanol: water = (85:15)] → ([methanol: water = 90: 10)] → methanol → acetonitrile → 2-propanol)] Fraction 4-1 (34.1 mg), fraction 4-2 (1543.2 mg), fraction 4-3 (644.2 mg), fraction 4-4 (1707.5 mg), fraction 4-5 (594.6 mg) ), Fraction 4-6 (1670.0 mg) and fraction 4-7 (2608.8 mg).

フラクション4−2(1528.7mg)を順相シリカゲルカラムクロマトグラフィー[上記吸着剤を200g使用し、展開溶媒を順次、以下のように変更しつつ実施した。(クロロホルム→[クロロホルム: メタノール=(70:1)]→[クロロホルム: メタノール=(50:1)]→[クロロホルム: メタノール=(20:1)]→[クロロホルム: メタノール=(10:1)]→[クロロホルム: メタノール=(7:1)]→[クロロホルム: メタノール=(5:1)]→[クロロホルム:メタノール=(3:1)]→[クロロホルム:メタノール=(1:1)]→メタノール)]にて分画し、フラクション4−2−1(117.3mg)、フラクション4−2−2(233.6mg)、フラクション4−2−3(119.1mg)、フラクション4−2−4(108.7mg)、フラクション4−2−5(489.6mg)、フラクション4−2−6(56.7mg)、フラクション4−2−7(77.3mg)、フラクション4−2−8(38.6mg)、フラクション4−2−9(74.5mg)及びフラクション4−2−10(213.3mg)を得た。   Fraction 4-2 (1528.7 mg) was subjected to normal phase silica gel column chromatography [200 g of the above adsorbent was used, and the developing solvent was sequentially changed as follows. (Chloroform → [chloroform: methanol = (70: 1)] → [chloroform: methanol = (50: 1)] → [chloroform: methanol = (20: 1)] → [chloroform: methanol = (10: 1)] → [chloroform: methanol = (7: 1)] → [chloroform: methanol = (5: 1)] → [chloroform: methanol = (3: 1)] → [chloroform: methanol = (1: 1)] → methanol )], Fraction 4-2-1 (117.3 mg), fraction 4-2-2 (233.6 mg), fraction 4-2-3 (119.1 mg), fraction 4-2-4 (108.7 mg), fraction 4-2-5 (489.6 mg), fraction 4-2-6 (56.7 mg), fraction 4-2-7 77.3 mg), fractions 4-2-8 (38.6 mg), to give a fraction 4-2-9 (74.5 mg) and fraction 4-2-10 (213.3mg).

フラクション4−2−7(77.3mg)をHPLC[カラム;COSMOSIL 5C18−PAQ, 移動相;メタノール:水=(5:95)]を用いて分離精製し、β−アルブチン(12.5mg、0.00178%)を単離した。   Fraction 4-2-7 (77.3 mg) was separated and purified using HPLC [column; COSMOSIL 5C18-PAQ, mobile phase; methanol: water = (5:95)], and β-arbutin (12.5 mg, 0 .00178%) was isolated.

<β-アルブチンの分離及び検出方法>
高速液体クロマトグラフィー(HPLC)では、ポンプはShimadzu LC-6ADを、示差屈折率検出器はShimadzu RID-6Aを、紫外可視吸光度検出器はShimadzu SPD-20Aを、カラムは5C18-PAQを用いた。
カラムクロマトグラフィーの吸着剤は、順相系はシリカゲルSilica Gel BW-200(富士シリシア、150―350mesh)、逆相系はクロマトレックスODS DM1020T (富士シリシア、100―200mesh)を用いた。
薄層クロマトグラフィー(TLC)には、Silica Gel 60F254 (Merck、順相)、RP-18 60F254(Merck、逆相)、Silica Gel 60F254 HPTLC (Merck、順相)、RP-18 WF254 HPTLC(Merck、逆相)を使用し、スポットの検出はUV(254nm)及び1重量%Ce(SO/10重量%HSO水溶液を噴霧し、加熱時の呈色により行った。
<Method for Separation and Detection of β-Arbutin>
In high performance liquid chromatography (HPLC), Shimadzu LC-6AD was used as a pump, Shimadzu RID-6A was used as a differential refractive index detector, Shimadzu SPD-20A was used as an ultraviolet-visible absorbance detector, and 5C18-PAQ was used as a column.
As the adsorbent for column chromatography, silica gel Silica Gel BW-200 (Fuji Silysia, 150-350 mesh) was used for the normal phase system, and Chromatrex ODS DM1020T (Fuji Silysia, 100-200 mesh) was used for the reverse phase system.
Thin layer chromatography (TLC) includes Silica Gel 60F254 (Merck, normal phase), RP-18 60F254 (Merck, reverse phase), Silica Gel 60F254 HPTLC (Merck, normal phase), RP-18 WF254 HPTLC (Merck, using reverse phase), the detection spots were sprayed with UV (254 nm) and 1 wt% Ce (SO 4) 2/ 10 wt% H 2 SO 4 aqueous solution was carried out by coloration upon heating.

本発明のβ-アルブチンの製造方法は、鑑賞用の草本類として広く栽培されており、入手や抽出処理の容易な植物デンファレ又はその処理物から工業的有利に高純度のβ-アルブチンを製造する方法であるので化粧品や医薬品分野等への産業分野への広範な利用が可能である。   The method for producing β-arbutin of the present invention is widely cultivated as a herb for viewing, and produces highly pure β-arbutin from an industrially advantageous plant denfare or a processed product thereof that can be easily obtained and extracted. The method can be widely used in the industrial field such as the cosmetics and pharmaceutical fields.

Claims (7)

デンファレ又はその処理物を親水性溶媒で抽出し、抽出液を濃縮し、濃縮物を親油性溶媒と親水性溶媒で分配抽出して得た親油性溶媒層を濃縮することを特徴とするβ-アルブチンの製造方法。   Defale or its treated product is extracted with a hydrophilic solvent, the extract is concentrated, and the lipophilic solvent layer obtained by partitioning extraction of the concentrate with a lipophilic solvent and a hydrophilic solvent is concentrated. A method for producing arbutin. デンファレの処理物がデンファレ花部の乾燥物であることを特徴とする請求項1記載の製造方法。   The process according to claim 1, wherein the processed product of Denfare is a dried product of Denfare flowers. 親水性溶媒がメタノールであることを特徴とする請求項1又は請求項2に記載の製造方法。   The method according to claim 1 or 2, wherein the hydrophilic solvent is methanol. 親油性溶媒が酢酸エチルであることを特徴とする請求項1乃至請求項3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the lipophilic solvent is ethyl acetate. 親水性溶媒抽出を70℃〜90℃の親水性溶媒を用いて行なうことを特徴とする請求項1乃至請求項4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the hydrophilic solvent extraction is performed using a hydrophilic solvent at 70 ° C to 90 ° C. 親油性溶媒層の濃縮物を精製することを特徴とする請求項1乃至請求項5のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 5, wherein the concentrate of the lipophilic solvent layer is purified. 精製手段が順相クロマトグラフィ、逆相クロマトグラフィ又は液層クロマトグラフィであることを特徴とする請求項6記載の製造方法。   The production method according to claim 6, wherein the purification means is normal phase chromatography, reverse phase chromatography or liquid layer chromatography.
JP2015075885A 2015-04-02 2015-04-02 Process for producing β-arbutin Active JP6294259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075885A JP6294259B2 (en) 2015-04-02 2015-04-02 Process for producing β-arbutin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075885A JP6294259B2 (en) 2015-04-02 2015-04-02 Process for producing β-arbutin

Publications (2)

Publication Number Publication Date
JP2016196414A true JP2016196414A (en) 2016-11-24
JP6294259B2 JP6294259B2 (en) 2018-03-14

Family

ID=57357554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075885A Active JP6294259B2 (en) 2015-04-02 2015-04-02 Process for producing β-arbutin

Country Status (1)

Country Link
JP (1) JP6294259B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570338A (en) * 1991-09-12 1993-03-23 Nonogawa Shoji Kk Cosmetic
JP2002003336A (en) * 2000-06-19 2002-01-09 Naris Cosmetics Co Ltd Cosmetic
JP2002205933A (en) * 2001-01-05 2002-07-23 Ichimaru Pharcos Co Ltd Cosmetic composition containing extract of orchidaceous plant
JP2006282538A (en) * 2005-03-31 2006-10-19 Kose Corp Ultraviolet ray damage-improving agent, and external preparation for skin, containing the same
JP2006524211A (en) * 2003-04-24 2006-10-26 コティ ビー.ヴィ. Depigmenting cosmetics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570338A (en) * 1991-09-12 1993-03-23 Nonogawa Shoji Kk Cosmetic
JP2002003336A (en) * 2000-06-19 2002-01-09 Naris Cosmetics Co Ltd Cosmetic
JP2002205933A (en) * 2001-01-05 2002-07-23 Ichimaru Pharcos Co Ltd Cosmetic composition containing extract of orchidaceous plant
JP2006524211A (en) * 2003-04-24 2006-10-26 コティ ビー.ヴィ. Depigmenting cosmetics
JP2006282538A (en) * 2005-03-31 2006-10-19 Kose Corp Ultraviolet ray damage-improving agent, and external preparation for skin, containing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACTA HORTICULTURAE, vol. 878, JPN6017046852, 2010, pages 89 - 95, ISSN: 0003738051 *
JIANG, FUSHENG, ET AL., PLOS ONE, vol. 8(2), JPN6017046850, 2013, pages 11 - 58004, ISSN: 0003738050 *
一丸ファルコス株式会社: "オーキッドエキスN", フレグランスジャーナル, vol. 38(4), JPN6016013111, 15 April 2010 (2010-04-15), pages 97 - 98, ISSN: 0003738049 *

Also Published As

Publication number Publication date
JP6294259B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
US7622599B2 (en) Isolation and purification of carotenoids from marigold flowers
ES2439457T3 (en) Xanthophyll purification process
Hou et al. Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications
D'Este et al. Novel protocol for lutein extraction from microalga Chlorella vulgaris
AU2010200636B2 (en) A process for isolation of carotenoids from plant sources
KR101769280B1 (en) Process for the preparation of ajoene
JP2016514733A (en) Purification method of .BETA.-hydroxy-.BETA.-methylbutyric acid.
EP1795201A1 (en) Isolation of oleuropein from the leaves of olive tree
JP4815041B2 (en) Isolation method of compound scopoletin useful as nitric oxide synthesis inhibitor
CA2640401C (en) Process for the isolation of calliterpenone (16alpha, 17-dihydroxy-3-oxo-phyllocladane)
US8481769B2 (en) Isolation and purification of cartenoids from marigold flowers
EP2963049B1 (en) Method for preparing coumestrol
JP6294259B2 (en) Process for producing β-arbutin
EP0908460B1 (en) A process for the simultaneous production of artemisinin and essential oil from the plant artemisia annua
KR101600497B1 (en) Isolation method of flavonoid from Cirsium setidens
WO2014186680A1 (en) Process for simultaneous extraction and separation of esterified and unesterified monohydroxycarotenoids
CN104016954B (en) The preparation of Nebivolol Intermediates and purification process
JP2014114283A (en) Method for producing polyphenol
JP4268905B2 (en) Method for producing flavanone compounds
KR101949617B1 (en) Method for preparing the extract fortified with iridoids from by-product of Noni fruits Juice
JP2001302659A (en) New material isolated from ecklonia cava, method for extraction and purification of the same, method for using the same as antioxidant
ES2951983T3 (en) Method of obtaining oleacein and oleomisional-type secairidoids and production of respective pharmaceutical preparations
JP2001302655A (en) New substance isolated from ecklonia cava, method for extracting and purifying the new substance and method for using the new substance as antioxidant
JP2005298382A (en) Method for preparing 3,4,5-tri-o-caffeoylquinic acid
ES2262431B1 (en) &#34;NEW ANTIOXIDANTS OBTAINED FROM NATURAL AND SYNTHETIC SOURCE AND OBTAINING PROCEDURE&#34;.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180215

R150 Certificate of patent or registration of utility model

Ref document number: 6294259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250