JP2016194675A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2016194675A
JP2016194675A JP2016030654A JP2016030654A JP2016194675A JP 2016194675 A JP2016194675 A JP 2016194675A JP 2016030654 A JP2016030654 A JP 2016030654A JP 2016030654 A JP2016030654 A JP 2016030654A JP 2016194675 A JP2016194675 A JP 2016194675A
Authority
JP
Japan
Prior art keywords
scanning
optical
light beam
scanning device
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016030654A
Other languages
Japanese (ja)
Other versions
JP6700842B2 (en
JP2016194675A5 (en
Inventor
滝 慶行
Keiko Taki
慶行 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/077,465 priority Critical patent/US9645522B2/en
Publication of JP2016194675A publication Critical patent/JP2016194675A/en
Publication of JP2016194675A5 publication Critical patent/JP2016194675A5/ja
Application granted granted Critical
Publication of JP6700842B2 publication Critical patent/JP6700842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical scanner that can achieve both high definition and a reduction in cost.SOLUTION: There is provided an optical scanner comprising a deflector that deflects a light beam and optical scans a scanning target surface in a main scanning direction, and an imaging optical element that guides the light deflected by the deflector onto the scanning target surface, wherein when the fθ coefficient fof the imaging optical element, the focal distance fof the imaging optical element, and a point at which the optical axes of the deflector and the imaging optical element intersect with each other are original points, the coordinates Xin the optical axis direction of an intersection point of the principal ray of a light beam on the outside of an outermost axis and an incident surface of the imaging optical element, the coordinates Xin the optical axis direction of an intersection point of the principal ray of a light beam on the outside of an outermost axis and an emission surface of the imaging optical element, the coordinates Xin the optical axis of an intersection point of the principal ray of a light beam on the axis and the incident surface, and the coordinates X(mm) in the optical axis direction of an intersection point of the principal ray of the light beam on the axis and the emission surface, are appropriately set.SELECTED DRAWING: Figure 1

Description

本発明は、光走査装置に関し、例えばレーザービームプリンタ、デジタル複写機やマルチファンクションプリンタ(多機能プリンタ)等の画像形成装置に好適なものである。   The present invention relates to an optical scanning device and is suitable for an image forming apparatus such as a laser beam printer, a digital copying machine, or a multifunction printer (multifunction printer).

レーザービームプリンタ等の画像形成装置に搭載された光走査装置において、高精度な画像情報の記録を行なうためには、被走査面全域にわたって像面湾曲が良好に補正されていると共にスポット径が揃っていること、及び入射光の角度と像高とが比例関係となる歪曲収差(fθ特性)を有していることが求められている。
光走査装置の走査光学系の副走査断面内においては、偏向器からの発散光束を所定の倍率で被走査面に結像させる必要があり、主走査断面内に比べて屈折力が強くなる分、走査光学系で生じる収差の補正は困難となる。
さらに、画像形成装置のコンパクト化及び低コスト化に伴い、光走査装置にも低コスト化が求められている。
In an optical scanning device mounted on an image forming apparatus such as a laser beam printer, in order to record image information with high accuracy, the field curvature is corrected well over the entire scanned surface and the spot diameter is uniform. And having distortion (fθ characteristics) in which the angle of incident light and the image height are in a proportional relationship.
In the sub-scan section of the scanning optical system of the optical scanning device, it is necessary to form a divergent light beam from the deflector on the surface to be scanned at a predetermined magnification, and the refractive power becomes stronger than in the main scan section. Correction of aberrations that occur in the scanning optical system becomes difficult.
Further, with the downsizing and cost reduction of the image forming apparatus, the optical scanning apparatus is also required to reduce the cost.

特許文献1乃至3は、光走査装置において、収差等の良好な補正及び低コスト化双方の要望を両立するための手段を提案している。
特許文献1は、走査光学系を1枚のトーリックレンズで構成し、像面湾曲、歪曲収差等を良好に補正すると共に偏向器の製造誤差によるジッターや副走査方向のスポット径の像高変化の影響を低減した光走査装置を提案している。
特許文献2は、高精細な印字に適し、温度等の環境変化による性能への影響を低減する為に、走査光学系を1枚のレンズで構成し、且つ入射光学系が回折光学面を有する光走査装置を提案している。
特許文献3は、部品点数を削減しても歩留まりの向上を図ることが可能な走査光学系を提案している。
Patent Documents 1 to 3 propose means for satisfying both demands for good correction of aberration and the like and cost reduction in an optical scanning device.
In Patent Document 1, the scanning optical system is composed of a single toric lens, and the curvature of field, distortion, and the like are corrected satisfactorily, and jitter due to manufacturing errors of the deflector and the change in image height of the spot diameter in the sub-scanning direction. An optical scanning device with reduced influence is proposed.
Patent Document 2 is suitable for high-definition printing, and in order to reduce the influence on performance due to environmental changes such as temperature, the scanning optical system is composed of one lens, and the incident optical system has a diffractive optical surface. An optical scanning device is proposed.
Patent Document 3 proposes a scanning optical system that can improve the yield even if the number of parts is reduced.

光走査装置において低コスト化を図るためには、走査光学系にプラスチックの射出成形によって製造されるトーリックレンズを用い、且つ一度の射出成形で得られるレンズの個数を多くすることが有効であり、その為には、レンズの長さを短くすることが有効である。しかしながら、一般に、レンズの長さを短くすることは、像面湾曲、歪曲収差等が悪化することにつながる。   In order to reduce the cost in the optical scanning device, it is effective to use a toric lens manufactured by plastic injection molding in the scanning optical system and to increase the number of lenses obtained by one injection molding, For this purpose, it is effective to shorten the lens length. However, generally, shortening the lens length leads to worsening of field curvature, distortion, and the like.

特開平8−76011号公報JP-A-8-76011 特開2003−337295号公報JP 2003-337295 A 特開2007−45094号公報JP 2007-45094 A

そこで本発明は、走査光学系を1枚のレンズで構成し、像面湾曲及び歪曲収差を効果的に補正することによって、高精細化及び低コスト化の両立が可能な光走査装置を提供することを目的とする。   Accordingly, the present invention provides an optical scanning device that can achieve both high definition and low cost by configuring a scanning optical system with a single lens and effectively correcting curvature of field and distortion. For the purpose.

そこで、本発明に係る光走査装置は、光束を偏向して被走査面を主走査方向に光走査する偏向器と、偏向器によって偏向された光束を被走査面上に導光する結像光学素子と、を備え、結像光学素子のfθ係数をfθ、結像光学素子の焦点距離をfs、偏向器と結像光学素子の光軸とが交わる点を原点としたときの、最軸外光束の主光線と結像光学素子の入射面との交点の光軸方向における座標をX1max(mm)、最軸外光束の主光線と結像光学素子の出射面との交点の光軸方向における座標をX2max(mm)、軸上光束の主光線と入射面との交点の光軸方向における座標をX10(mm)、軸上光束の主光線と出射面との交点の光軸方向における座標をX20(mm)、とするとき、
0.65<fθ/fs<1.00
0.30<(X1max−X10)/(X20−X10)<0.49
−0.24<(X2max−X20)/(X20−X10)<−0.06
なる条件式を満たすことを特徴とする。
Accordingly, an optical scanning device according to the present invention includes a deflector that deflects a light beam and optically scans the surface to be scanned in the main scanning direction, and imaging optics that guides the light beam deflected by the deflector onto the surface to be scanned. comprising a device, and the fθ coefficient of the imaging optical element f theta, the focal length of the imaging optics f s, when the point at which the deflector and the optical axis of the imaging optical element intersects with the origin, most The coordinate in the optical axis direction of the intersection of the principal ray of the off-axis light beam and the incident surface of the imaging optical element is X 1max (mm), and the light at the intersection of the principal ray of the most off-axis light beam and the exit surface of the imaging optical element The coordinate in the axial direction is X 2max (mm), the coordinate in the optical axis direction of the intersection of the principal ray of the axial light beam and the incident surface is X 10 (mm), and the light at the intersection of the principal ray of the axial light beam and the exit surface When the coordinate in the axial direction is X 20 (mm),
0.65 <f θ / f s <1.00
0.30 <(X 1max -X 10) / (X 20 -X 10) <0.49
−0.24 <(X 2max −X 20 ) / (X 20 −X 10 ) <− 0.06
The following conditional expression is satisfied.

本発明によれば、走査光学系を適切に設計された1枚のレンズで構成することによって、高精細化及び低コスト化を両立した光走査装置を提供することができる。   According to the present invention, it is possible to provide an optical scanning device that achieves both high definition and low cost by configuring the scanning optical system with a single lens that is appropriately designed.

第1実施形態に係る光走査装置の主走査断面模式図。FIG. 3 is a schematic diagram of a main scanning section of the optical scanning device according to the first embodiment. 第1実施形態に係る光走査装置の主走査断面拡大模式図。The main scanning cross-section enlarged schematic diagram of the optical scanning device concerning a 1st embodiment. (a)数値実施例1に係る光走査装置における主走査方向の像面湾曲と像高との関係、及び(b)数値実施例1に係る光走査装置における像高の主走査方向のずれと像高との関係を示した図。(A) Relationship between the curvature of field in the main scanning direction and the image height in the optical scanning device according to Numerical Example 1, and (b) Deviation in the main scanning direction of the image height in the optical scanning device according to Numerical Example 1. The figure which showed the relationship with image height. (a)数値実施例2に係る光走査装置における主走査方向の像面湾曲と像高との関係、及び(b)数値実施例2に係る光走査装置における像高の主走査方向のずれと像高との関係を示した図。(A) Relationship between the curvature of field in the main scanning direction and the image height in the optical scanning device according to Numerical Example 2, and (b) Deviation in the main scanning direction of the image height in the optical scanning device according to Numerical Example 2. The figure which showed the relationship with image height. 本発明に係る光走査装置が搭載された画像形成装置の要部断面図。1 is a cross-sectional view of a main part of an image forming apparatus equipped with an optical scanning device according to the present invention.

以下、本発明に係る光走査装置について図面に基づいて説明する。なお、以下に示す図面は、本発明を容易に理解できるようにするために、実際とは異なる縮尺で描かれている場合がある。   Hereinafter, an optical scanning device according to the present invention will be described with reference to the drawings. It should be noted that the drawings shown below may be drawn at a scale different from the actual scale so that the present invention can be easily understood.

なお、以下の説明において、主走査方向は、偏向器の回転軸及び光学系の光軸に垂直な方向に対応し、副走査方向は、偏向器の回転軸に平行な方向に対応する。また、主走査断面は、副走査方向に垂直な断面に対応し、副走査断面は、光学系の光軸及び副走査方向を含む断面に対応する。従って、主走査方向及び副走査断面は、光学系によって変わることに注意されたい。   In the following description, the main scanning direction corresponds to a direction perpendicular to the rotation axis of the deflector and the optical axis of the optical system, and the sub-scanning direction corresponds to a direction parallel to the rotation axis of the deflector. The main scanning section corresponds to a section perpendicular to the sub scanning direction, and the sub scanning section corresponds to a section including the optical axis of the optical system and the sub scanning direction. Therefore, it should be noted that the main scanning direction and the sub-scanning cross section vary depending on the optical system.

上述したように、光走査装置の製造コストを低減するために、走査レンズの枚数を最小限にする、すなわち、走査光学系(結像光学系)を1枚の走査レンズ(fθレンズ)で構成することが有効である。そして、その1枚の走査レンズを、プラスチック材料の射出成形によって製造されるトーリックレンズとし、レンズの長さ及び肉厚を低減し、一度の射出成形で取れるレンズの個数を多くする事が好ましい。   As described above, in order to reduce the manufacturing cost of the optical scanning device, the number of scanning lenses is minimized, that is, the scanning optical system (imaging optical system) is configured by one scanning lens (fθ lens). It is effective to do. The one scanning lens is preferably a toric lens manufactured by injection molding of a plastic material to reduce the length and thickness of the lens and increase the number of lenses that can be obtained by one injection molding.

走査レンズの長さ及び肉厚は、走査レンズを偏向器になるべく近づける事によって、低減させることが可能となる。
一方で、走査光学系のバックフォーカスを短くすると、所定の印字領域を確保する為に、最大像高に到達するための偏向器の回転角は大きくなり、走査レンズの大型化につながる。従って、走査レンズのサイズを低減する為には、走査レンズを偏向器になるべく近づけ、且つ、走査レンズのfθ係数を大きくすることが好ましい。
ここで、fθ係数とは、走査像高hとポリゴン回転角θpmから、h/(2×θpm)という値で定義され、走査像高hとポリゴン回転角θpmとが比例関係にあることがわかる。偏向器によって偏向される光束が完全な平行光である場合には、fθ係数は走査光学系の焦点距離と一致する。偏向器によって偏向される光束の収束度を変化させることで、fθ係数は任意に変化させることができる。
The length and thickness of the scanning lens can be reduced by bringing the scanning lens as close as possible to the deflector.
On the other hand, if the back focus of the scanning optical system is shortened, the rotation angle of the deflector for reaching the maximum image height is increased in order to secure a predetermined printing area, leading to an increase in the size of the scanning lens. Therefore, in order to reduce the size of the scanning lens, it is preferable to bring the scanning lens as close as possible to the deflector and to increase the fθ coefficient of the scanning lens.
Here, the fθ coefficient is defined by a value of h / (2 × θpm) from the scanning image height h and the polygon rotation angle θpm, and it can be seen that the scanning image height h and the polygon rotation angle θpm are in a proportional relationship. . When the light beam deflected by the deflector is completely parallel light, the fθ coefficient coincides with the focal length of the scanning optical system. The fθ coefficient can be arbitrarily changed by changing the convergence of the light beam deflected by the deflector.

偏向器によって偏向される光束を屈折し、所定の像高に集光させるためには、走査レンズが凸の屈折力を有することが必要である。すなわち、高光学性能及び低コスト化を達成するためには、バックフォーカスの長い走査光学系において、走査レンズの凸屈折力を大きくする事が必要となる。
そこで、入射光学系による光束の収束度と走査光学系の焦点距離とのバランスを取り、更に走査レンズの非球面形状を、偏向点と、偏向される光束に対して同心円形状に近づけることによって、高光学性能及び低コスト化を両立することができる。
In order to refract the light beam deflected by the deflector and collect it at a predetermined image height, it is necessary that the scanning lens has a convex refractive power. That is, in order to achieve high optical performance and low cost, it is necessary to increase the convex refractive power of the scanning lens in a scanning optical system with a long back focus.
Therefore, by balancing the convergence of the light beam by the incident optical system and the focal length of the scanning optical system, and further bringing the aspherical shape of the scanning lens closer to a concentric shape with respect to the deflection point and the deflected light beam, Both high optical performance and low cost can be achieved.

上述のように、走査レンズを偏向器に近づけることによって、走査レンズを小型化することが可能となり、それに伴いコスト低減が可能となる。しかしながら、走査レンズを偏向器に近づけることによって、走査レンズの副走査断面内の倍率が増加する。従って、偏向器の製造誤差がある場合には、副走査断面内の印字位置ズレ(ピッチムラ)が大きくなる。このため、偏向器、走査光学系及び被走査面との間において、走査レンズの小型化と印字位置ズレとのバランスを取ることが必要となる。   As described above, by bringing the scanning lens closer to the deflector, the scanning lens can be reduced in size, and the cost can be reduced accordingly. However, by bringing the scanning lens closer to the deflector, the magnification in the sub-scan section of the scanning lens increases. Accordingly, when there is a manufacturing error of the deflector, the printing position deviation (pitch unevenness) in the sub-scanning section increases. For this reason, it is necessary to balance the downsizing of the scanning lens and the printing position deviation between the deflector, the scanning optical system, and the surface to be scanned.

さらに、走査レンズの中心肉厚についても、適切に設定する事によって、光学性能と製造コストとのバランスを取ることが必要である。   Furthermore, it is necessary to balance the optical performance and the manufacturing cost by appropriately setting the center thickness of the scanning lens.

入射光学系を構成するレンズとしては、一般的には、光源から射出される光束を主走査断面内において略平行に変換するコリメータレンズと、副走査断面内において、光束を偏向器の偏向面上に集光するために収束させるシリンダーレンズとが設けられる。これらの2つのレンズの作用は、1つのアナモフィックコリメータレンズによっても行うことが可能である。従って、コリメータレンズ及びシリンダーレンズを設ける代わりに、アナモフィックコリメータレンズを設けることによって、光走査装置のさらなる低コスト化が可能となる。さらに、アナモフィックコリメータレンズの一方の面を回折格子形状とする事で、温度変化によるピント位置のずれを補正することが可能となる。   In general, the lenses constituting the incident optical system include a collimator lens that converts a light beam emitted from a light source into a substantially parallel shape in the main scanning section, and a light beam on the deflecting surface of the deflector in the sub-scanning section. And a converging cylinder lens for focusing. The action of these two lenses can also be performed by one anamorphic collimator lens. Therefore, by providing an anamorphic collimator lens instead of providing a collimator lens and a cylinder lens, the cost of the optical scanning device can be further reduced. Furthermore, by making one surface of the anamorphic collimator lens into a diffraction grating shape, it is possible to correct a focus position shift due to a temperature change.

次に、本発明に係る光走査装置について、図面を用いて詳細に説明する。   Next, the optical scanning device according to the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1実施形態に係る光走査装置100の主走査断面模式図を示している。   FIG. 1 is a schematic diagram of a main scanning section of an optical scanning device 100 according to the first embodiment of the present invention.

光走査装置100は、光源1、アナモフィックコリメータレンズ2、開口絞り3、偏向器(ポリゴンミラー)4、走査レンズ(結像光学素子)5を備えている。   The optical scanning device 100 includes a light source 1, an anamorphic collimator lens 2, an aperture stop 3, a deflector (polygon mirror) 4, and a scanning lens (imaging optical element) 5.

光源1は、例えば半導体レーザーから構成される。
アナモフィックコリメータレンズ2は、光源1から出射した光束を、主走査断面内において略平行光束に変換し、副走査断面内において偏向器4の偏向面上に集光する。なおここで、略平行光束とは、弱発散光束、弱収束光束及び平行光束を含むものとする。
開口絞り3は、入射光束の主走査方向及び副走査方向の光束幅を調整している。
なお、光源1、アナモフィックコリメータレンズ2及び開口絞り3によって、光走査装置100の入射光学系が構成される。
The light source 1 is composed of, for example, a semiconductor laser.
The anamorphic collimator lens 2 converts the light beam emitted from the light source 1 into a substantially parallel light beam in the main scanning section, and condenses it on the deflecting surface of the deflector 4 in the sub-scanning section. Here, the substantially parallel light beam includes a weak divergent light beam, a weakly convergent light beam, and a parallel light beam.
The aperture stop 3 adjusts the beam width of the incident beam in the main scanning direction and the sub-scanning direction.
The light source 1, the anamorphic collimator lens 2 and the aperture stop 3 constitute an incident optical system of the optical scanning device 100.

偏向器4は、モータ等の不図示の駆動手段により図中の矢印A方向に一定速度で回転する回転多面鏡であり、入射光学系から入射した光束を偏向反射する。
走査レンズ5は、fθ特性を有するfθレンズであり、偏向器4により偏向反射された光束を被走査面6上に集光(導光)する。なお、走査レンズ5によって、光走査装置100の結像光学系(走査光学系)が構成される。
The deflector 4 is a rotating polygon mirror that is rotated at a constant speed in the direction of arrow A in the figure by a driving unit (not shown) such as a motor, and deflects and reflects the light beam incident from the incident optical system.
The scanning lens 5 is an fθ lens having fθ characteristics, and condenses (guides) the light beam deflected and reflected by the deflector 4 on the surface to be scanned 6. The scanning lens 5 constitutes an imaging optical system (scanning optical system) of the optical scanning device 100.

本発明に係る光走査装置100では、以下の条件式(1)、(2)及び(3)を満足することによって、小型化及び高光学性能双方を実現させることができる。
0.65<fθ/fs<1.00 ・・・(1)
0.30<(X1max−X10)/(X20−X10)<0.49 ・・・(2)
−0.24<(X2max−X20)/(X20−X10)<−0.06 ・・・(3)
In the optical scanning device 100 according to the present invention, both the miniaturization and the high optical performance can be realized by satisfying the following conditional expressions (1), (2), and (3).
0.65 <f θ / f s <1.00 (1)
0.30 <(X 1max −X 10 ) / (X 20 −X 10 ) <0.49 (2)
−0.24 <(X 2max −X 20 ) / (X 20 −X 10 ) <− 0.06 (3)

θは、光走査装置100の走査光学系のfθ係数、fsは、光走査装置100の走査光学系の焦点距離である。
1max、X2max、X10及びX20は、図2に示されている座標である。すなわち、X1max(mm)は、主走査方向における最軸外像高(走査最軸外像高)における主光線が、走査レンズ5の偏向器4側の光学面(入射面)を通過する光軸方向の座標である。X2max(mm)は、走査方向における最軸外像高における光束(最軸外光束)の主光線が、走査レンズ5の被走査面6側の光学面(出射面)を通過する光軸方向の座標である。X10(mm)は、走査方向における軸上像高(走査軸上像高)における光束(軸上光束)の主光線が、走査レンズ5の偏向器4側の光学面を通過する光軸方向の座標である。X20(mm)は、走査方向における軸上像高における主光線が、走査レンズ5の被走査面6側の光学面を通過する光軸方向の座標である。なお、ここで原点は、偏向器4と軸上光束の光軸とが交わる点である。
f θ is the fθ coefficient of the scanning optical system of the optical scanning device 100, and f s is the focal length of the scanning optical system of the optical scanning device 100.
X 1max , X 2max , X 10 and X 20 are the coordinates shown in FIG. That is, X 1max (mm) is the light that the principal ray at the most off-axis image height (scanning off-axis image height) in the main scanning direction passes through the optical surface (incident surface) on the deflector 4 side of the scanning lens 5. Axial coordinates. X 2max (mm) is the optical axis direction in which the principal ray of the light beam at the most off-axis image height in the scanning direction (the most off-axis light beam) passes through the optical surface (exit surface) of the scanning lens 5 on the scanned surface 6 side. Coordinates. X 10 (mm) is the optical axis direction in which the principal ray of the light beam (axial light beam) at the axial image height (scanning axis image height) in the scanning direction passes through the optical surface of the scanning lens 5 on the deflector 4 side. Coordinates. X 20 (mm) is the coordinate in the optical axis direction in which the principal ray at the on-axis image height in the scanning direction passes through the optical surface on the scanned surface 6 side of the scanning lens 5. Here, the origin is the point where the deflector 4 and the optical axis of the axial light beam intersect.

条件式(1)は、光走査装置100における走査光学系のfθ係数と焦点距離との比を表している。条件式(1)の上限を超えるほど走査光学系に入射する光束が発散傾向になると、走査光学系の屈折力が強くなり、像面湾曲、fθ特性の光学性能が悪化する。一方で、条件式(1)の下限を超えるほど走査光学系に入射する光束が収束傾向になると、走査光学系の屈折力が弱くなり、光走査装置100の大型化につながる。   Conditional expression (1) represents the ratio between the fθ coefficient of the scanning optical system in the optical scanning apparatus 100 and the focal length. If the light beam incident on the scanning optical system tends to diverge as the upper limit of conditional expression (1) is exceeded, the refractive power of the scanning optical system increases, and the optical performance of the field curvature and fθ characteristics deteriorates. On the other hand, when the light beam incident on the scanning optical system tends to converge as the lower limit of conditional expression (1) is exceeded, the refractive power of the scanning optical system becomes weak, leading to an increase in the size of the optical scanning device 100.

条件式(2)及び(3)は、走査光学系を構成する走査レンズ5において、走査最軸外像高及び走査軸上像高それぞれを走査光が通過する各光学面の位置の間の、光軸方向における差を示しており、各光学面の非球面形状を表している。
条件式(2)及び(3)を同時に満たすことによって、走査レンズ5の非球面形状が走査光に対して同心円方向に近づき、収差の発生を抑えて光線を走査像高に導くことが可能となる。
条件式(2)の上限及び条件式(3)の下限を超えると、主走査断面内において、走査レンズ5が両凸形状に近づく。この場合、正の屈折力が強くなり、像面湾曲、fθ特性等の光学性能に悪影響を与えることになる。
条件式(2)の下限及び条件式(3)の上限を超えると、主走査断面内において、走査レンズ5が両凹形状に近づく。この場合においても、像面湾曲、fθ特性等の光学性能に悪影響を与えることになる。
条件式(2)の上限及び条件式(3)の上限を超えると、走査レンズ5の負の屈折力が増大し、像面湾曲、fθ特性が悪化する。
条件式(2)の下限及び条件式(3)の下限を超えると、走査レンズ5の正の屈折力が増大し、像面湾曲、fθ特性が悪化する。
Conditional expressions (2) and (3) are expressed in the scanning lens 5 constituting the scanning optical system between the position of each optical surface through which the scanning light passes through the scanning most off-axis image height and the scanning axis image height. The difference in the optical axis direction is shown and represents the aspherical shape of each optical surface.
By satisfying the conditional expressions (2) and (3) simultaneously, the aspherical shape of the scanning lens 5 approaches the scanning light in the concentric direction, and the generation of aberration can be suppressed and the light beam can be guided to the scanning image height. Become.
When the upper limit of conditional expression (2) and the lower limit of conditional expression (3) are exceeded, the scanning lens 5 approaches a biconvex shape in the main scanning section. In this case, the positive refracting power becomes strong and adversely affects optical performance such as field curvature and fθ characteristics.
If the lower limit of conditional expression (2) and the upper limit of conditional expression (3) are exceeded, the scanning lens 5 approaches a biconcave shape in the main scanning section. Even in this case, the optical performance such as field curvature and fθ characteristics is adversely affected.
If the upper limit of conditional expression (2) and the upper limit of conditional expression (3) are exceeded, the negative refractive power of the scanning lens 5 increases, and the field curvature and fθ characteristics deteriorate.
If the lower limit of conditional expression (2) and the lower limit of conditional expression (3) are exceeded, the positive refractive power of the scanning lens 5 increases, and the field curvature and fθ characteristics deteriorate.

また、本発明に係る光走査装置100は、以下の条件式(1)’、(2)’及び(3)’を満足することがより好ましい。
0.75<fθ/fs<0.95 ・・・(1)’
0.30<(X1max−X10)/(X20−X10)<0.47 ・・・(2)’
−0.22<(X2max―X20)/(X20−X10)<−0.07 ・・・(3)’
In addition, the optical scanning device 100 according to the present invention more preferably satisfies the following conditional expressions (1) ′, (2) ′, and (3) ′.
0.75 <f θ / f s <0.95 (1) ′
0.30 <(X 1max -X 10) / (X 20 -X 10) <0.47 ··· (2) '
−0.22 <(X 2max −X 20 ) / (X 20 −X 10 ) <− 0.07 (3) ′

本発明に係る光走査装置100は、条件式(1)、(2)及び(3)を満たすことに加えて、更に以下の条件式(4)、(5)及び(6)を満たすことが好ましい。
0.20≦T2/Sk≦0.30 ・・・(4)
0.05≦d/fθ≦0.08 ・・・(5)
3.0<|βs|<4.0 ・・・(6)
In addition to satisfying conditional expressions (1), (2), and (3), the optical scanning device 100 according to the present invention further satisfies the following conditional expressions (4), (5), and (6). preferable.
0.20 ≦ T2 / Sk ≦ 0.30 (4)
0.05 ≦ d / f θ ≦ 0.08 (5)
3.0 <| βs | <4.0 (6)

T2は、偏向器4の偏向面から、走査レンズ5の被走査面6側の光学面までの距離である。Skは、走査レンズ5の被走査面6側の光学面から、被走査面6までの距離である。dは、走査レンズ5の肉厚である。βsは、走査光学系の副走査断面内における近軸横倍率である。   T2 is the distance from the deflecting surface of the deflector 4 to the optical surface of the scanning lens 5 on the scanned surface 6 side. Sk is a distance from the optical surface on the scanning surface 6 side of the scanning lens 5 to the scanning surface 6. d is the thickness of the scanning lens 5. βs is a paraxial lateral magnification in the sub-scan section of the scanning optical system.

条件式(4)は、走査レンズ5の位置に関する条件式を表している。条件式(4)の上限を超えるほど走査レンズ5が被走査面6に近くなると、走査レンズ5の長さが大きくなり、一度の射出成形で取れるレンズの個数が少なくなり、低コスト化の弊害となる。一方で、条件式(4)の下限を超えるほど走査レンズ5が偏向器4に近くなると、副走査倍率の増加に伴う印字位置ずれの敏感度が大きくなる。   Conditional expression (4) represents a conditional expression regarding the position of the scanning lens 5. If the scanning lens 5 becomes closer to the surface 6 to be scanned as the upper limit of the conditional expression (4) is exceeded, the length of the scanning lens 5 increases, and the number of lenses that can be obtained by one injection molding decreases, resulting in the cost reduction. It becomes. On the other hand, when the scanning lens 5 becomes closer to the deflector 4 as the lower limit of the conditional expression (4) is exceeded, the sensitivity of the printing position deviation with the increase of the sub-scanning magnification increases.

条件式(5)は、走査レンズ5の肉厚に関する条件式である。条件式(5)の上限を超えるほど走査レンズ5の肉厚が大きくなると、一度の射出成形で取れるレンズの個数が少なくなり、低コスト化の弊害となる。一方で、条件式(5)の下限を超えるほど走査レンズ5の肉厚が小さくなると、走査レンズ5の屈折力分担が大きくなり、像面湾曲、fθ特性等の光学性能を良好に保つことが困難となる。   Conditional expression (5) is a conditional expression regarding the thickness of the scanning lens 5. If the thickness of the scanning lens 5 increases as it exceeds the upper limit of the conditional expression (5), the number of lenses that can be obtained by one injection molding is reduced, which is an adverse effect of cost reduction. On the other hand, when the thickness of the scanning lens 5 becomes smaller as the lower limit of the conditional expression (5) is exceeded, the refractive power sharing of the scanning lens 5 becomes larger, and optical performance such as field curvature and fθ characteristics can be kept good. It becomes difficult.

条件式(6)は、走査光学系の副走査断面内における近軸横倍率、所謂副走査倍率に関する条件式である。条件式(6)の上限を超えるほど副走査倍率が大きくなると、印字位置ずれの敏感度が高くなる。一方で、条件式(6)の下限を超えるほど副走査倍率が小さくなると、走査レンズ5が大きくなり、一度の射出成形で取れるレンズの個数が少なくなり、低コスト化の弊害となる。   Conditional expression (6) is a conditional expression regarding the paraxial lateral magnification in the sub-scanning section of the scanning optical system, so-called sub-scanning magnification. If the sub-scanning magnification increases as the upper limit of conditional expression (6) is exceeded, the sensitivity of print position deviation increases. On the other hand, if the sub-scanning magnification becomes smaller as the lower limit of conditional expression (6) is exceeded, the scanning lens 5 becomes larger, and the number of lenses that can be obtained by one injection molding is reduced, which is an adverse effect of cost reduction.

また、本発明に係る光走査装置100は、以下の条件式(4)’、(5)’及び(6)’を満足することがより好ましい。
0.23≦T2/Sk≦0.28 ・・・(4)’
0.06≦d/fθ≦0.07 ・・・(5)’
3.2<|βs|<3.8 ・・・(6)’
Further, it is more preferable that the optical scanning device 100 according to the present invention satisfies the following conditional expressions (4) ′, (5) ′, and (6) ′.
0.23 ≦ T2 / Sk ≦ 0.28 (4) ′
0.06 ≦ d / f θ ≦ 0.07 (5) ′
3.2 <| βs | <3.8 (6) ′

表1は、光走査装置100を構成する各光学部材に関する数値を示している。以下、表1に記載の数値に基づく光走査装置100を数値実施例1と称する。   Table 1 shows numerical values relating to the optical members constituting the optical scanning device 100. Hereinafter, the optical scanning device 100 based on the numerical values shown in Table 1 will be referred to as Numerical Example 1.

Figure 2016194675
Figure 2016194675

また、表2は、光走査装置100を構成する、数値実施例1とは異なる構造を有する各光学部材に関する数値を示している。以下、表2に記載の数値に基づく光走査装置100を数値実施例2と称する。   Table 2 shows numerical values relating to each optical member having a structure different from that of the numerical value example 1 constituting the optical scanning device 100. Hereinafter, the optical scanning device 100 based on the numerical values shown in Table 2 will be referred to as Numerical Example 2.

Figure 2016194675
Figure 2016194675

なお、表1及び表2において、回転中心座標は、偏向器と像高0の軸上主光線との交点を原点として示されている。また、「E−N」は、10―Nを示している。 In Tables 1 and 2, the rotation center coordinates are shown with the intersection point between the deflector and the axial principal ray having an image height of 0 as the origin. Further, “E-N” indicates 10 −N .

また、光軸方向をX軸、主走査方向をY軸、副走査方向をZ軸としたときの走査レンズ5の母線方向の非球面形状は、以下の式(7)で表される。数値実施例1及び数値実施例2に係る走査レンズ5の曲率半径R、離心率K、及び非球面係数B4乃至B16はそれぞれ、表1及び表2に記載されている。   The aspherical shape in the generatrix direction of the scanning lens 5 when the optical axis direction is the X axis, the main scanning direction is the Y axis, and the sub scanning direction is the Z axis is expressed by the following equation (7). The curvature radius R, the eccentricity K, and the aspherical coefficients B4 to B16 of the scanning lens 5 according to Numerical Example 1 and Numerical Example 2 are shown in Tables 1 and 2, respectively.

Figure 2016194675
Figure 2016194675

また、走査レンズ5の子線方向の非球面形状は、以下の式(8)で表される。数値実施例1及び数値実施例2に係る走査レンズ5の曲率半径r、及び非球面係数E2乃至E16はそれぞれ、表1及び表2に記載されている。   The aspherical shape of the scanning lens 5 in the direction of the child line is expressed by the following formula (8). The curvature radius r and the aspherical coefficients E2 to E16 of the scanning lens 5 according to Numerical Example 1 and Numerical Example 2 are shown in Tables 1 and 2, respectively.

Figure 2016194675
Figure 2016194675

数値実施例1及び数値実施例2に係る光走査装置100では、走査レンズ5は正の屈折力を有しており、プラスチックで構成されている。
また、数値実施例1及び数値実施例2の走査レンズ5は、副走査断面内の曲率が、主走査断面内の曲率とは異なる、所謂トーリックレンズで構成されている。数値実施例1及び数値実施例2の走査レンズ5の副走査倍率はそれぞれ、−3.4及び−3.7となっている。
In the optical scanning device 100 according to Numerical Example 1 and Numerical Example 2, the scanning lens 5 has a positive refractive power and is made of plastic.
Further, the scanning lens 5 of Numerical Example 1 and Numerical Example 2 is configured by a so-called toric lens in which the curvature in the sub-scanning section is different from the curvature in the main scanning section. The sub-scanning magnifications of the scanning lens 5 of Numerical Example 1 and Numerical Example 2 are −3.4 and −3.7, respectively.

表3は、本発明の数値実施例1及び数値実施例2に係る光走査装置100、及び特許文献1の実施例1に係る光走査装置における上述した条件式(1)乃至(6)との対応を示している。   Table 3 shows the conditional expressions (1) to (6) in the optical scanning device 100 according to Numerical Example 1 and Numerical Example 2 of the present invention and the optical scanning device according to Example 1 of Patent Document 1. The correspondence is shown.

Figure 2016194675
Figure 2016194675

表3に示されるように、特許文献1の実施例1に係る光走査装置とは異なり、本発明の数値実施例1及び数値実施例2に係る光走査装置100は、条件式(1)乃至(6)全てを満たしていることがわかる。
特に、特許文献1の実施例1に係る光走査装置における条件式(4)の値は0.41であり、これは、走査光学系が被走査面側にあることを意味している。すなわち、本発明の数値実施例1及び数値実施例2に係る光走査装置100の走査光学系が、従来の光走査装置よりも偏向器側に位置しており、十分に小型化が図られている事を意味している。
As shown in Table 3, unlike the optical scanning device according to Example 1 of Patent Document 1, the optical scanning device 100 according to Numerical Example 1 and Numerical Example 2 of the present invention includes conditional expressions (1) to (1) to (3). (6) It turns out that all are satisfied.
In particular, the value of conditional expression (4) in the optical scanning device according to Example 1 of Patent Document 1 is 0.41, which means that the scanning optical system is on the surface to be scanned. In other words, the scanning optical system of the optical scanning device 100 according to Numerical Example 1 and Numerical Example 2 of the present invention is located closer to the deflector than the conventional optical scanning device, and is sufficiently downsized. It means that

図3(a)及び(b)はそれぞれ、数値実施例1に係る光走査装置100における主走査方向の像面湾曲と像高との関係、及び像高の主走査方向のずれと像高との関係(fθ特性)を示している。
同様に、図4(a)及び(b)はそれぞれ、数値実施例2に係る光走査装置100における主走査方向の像面湾曲と像高との関係、及び像高の主走査方向のずれと像高との関係(fθ特性)を示している。
図3(a)、図3(b)、図4(a)及び図4(b)に示されるように、数値実施例1及び数値実施例2に係る光走査装置100いずれにおいても、良好な収差、特性となっていることがわかる。
3A and 3B respectively show the relationship between the field curvature in the main scanning direction and the image height, and the deviation in the main scanning direction and the image height in the optical scanning apparatus 100 according to Numerical Example 1. (Fθ characteristic).
Similarly, FIGS. 4A and 4B respectively show the relationship between the curvature of field in the main scanning direction and the image height and the deviation of the image height in the main scanning direction in the optical scanning device 100 according to Numerical Example 2. The relationship with image height (fθ characteristic) is shown.
As shown in FIG. 3A, FIG. 3B, FIG. 4A, and FIG. 4B, both the optical scanning devices 100 according to Numerical Example 1 and Numerical Example 2 are good. It can be seen that aberrations and characteristics are obtained.

図5は、本発明に係る光走査装置(光走査ユニット)100が搭載された画像形成装置104の要部断面図を示している。   FIG. 5 is a cross-sectional view of a main part of an image forming apparatus 104 on which an optical scanning device (optical scanning unit) 100 according to the present invention is mounted.

画像形成装置104には、パーソナルコンピュータ等の外部機器117から出力されたコードデータDcが入力される。コードデータDcは、装置内のプリンタコントローラ111によって、画像データ(ドットデータ)Diに変換される。画像データ(画像信号)Diは、光走査ユニット100に入力される。
光走査ユニット100からは、画像データDiに応じて変調された光ビーム103が射出され、この光ビーム103によって感光ドラム101の感光面が主走査方向に走査される。
静電潜像担持体(感光体)たる感光ドラム101は、モータ115によって時計廻りに回転させられる。そして、この回転に伴って、感光ドラム101の感光面が光ビーム103に対して、主走査方向と直交する副走査方向に移動する。感光ドラム101の上方には、感光ドラム101の表面を一様に帯電せしめる帯電ローラ102が表面に当接するように設けられている。そして、帯電ローラ102によって帯電された感光ドラム101の表面に、光走査ユニット100によって走査される光ビーム103が照射されるようになっている。感光ドラム101は、上述の被走査面6の位置に配置されていると考えることができる。
The code data Dc output from the external device 117 such as a personal computer is input to the image forming apparatus 104. The code data Dc is converted into image data (dot data) Di by a printer controller 111 in the apparatus. Image data (image signal) Di is input to the optical scanning unit 100.
From the optical scanning unit 100, a light beam 103 modulated in accordance with the image data Di is emitted, and the photosensitive surface of the photosensitive drum 101 is scanned in the main scanning direction by the light beam 103.
The photosensitive drum 101 serving as an electrostatic latent image carrier (photoconductor) is rotated clockwise by a motor 115. With this rotation, the photosensitive surface of the photosensitive drum 101 moves in the sub-scanning direction perpendicular to the main scanning direction with respect to the light beam 103. Above the photosensitive drum 101, a charging roller 102 for uniformly charging the surface of the photosensitive drum 101 is provided so as to contact the surface. The surface of the photosensitive drum 101 charged by the charging roller 102 is irradiated with a light beam 103 scanned by the optical scanning unit 100. It can be considered that the photosensitive drum 101 is disposed at the position of the scanned surface 6 described above.

先に説明したように、光ビーム103は、画像データDiに基づいて変調されており、この光ビーム103を照射することによって、感光ドラム101の表面に静電潜像が形成される。静電潜像は、光ビーム103の照射位置よりもさらに感光ドラム101の回転方向の下流側で感光ドラム101に当接するように配設された現像器107によってトナー像として現像される。
現像器107によって現像されたトナー像は、感光ドラム101の下方で、感光ドラム101に対向するように配設された転写ローラ(転写器)108によって被転写材たる用紙112上に転写される。用紙112は感光ドラム101の前方(図5において右側)の用紙カセット109内に収納されているが、手差しでも給紙が可能である。用紙カセット109の端部には、給紙ローラ110が配設されており、用紙カセット109内の用紙112を搬送路へ送り込む。
As described above, the light beam 103 is modulated based on the image data Di, and an electrostatic latent image is formed on the surface of the photosensitive drum 101 by irradiating the light beam 103. The electrostatic latent image is developed as a toner image by a developing device 107 disposed so as to be in contact with the photosensitive drum 101 further downstream in the rotation direction of the photosensitive drum 101 than the irradiation position of the light beam 103.
The toner image developed by the developing unit 107 is transferred onto a sheet 112 as a transfer material by a transfer roller (transfer unit) 108 disposed below the photosensitive drum 101 so as to face the photosensitive drum 101. The paper 112 is stored in the paper cassette 109 in front of the photosensitive drum 101 (on the right side in FIG. 5), but can be fed manually. A paper feed roller 110 is disposed at the end of the paper cassette 109 and feeds the paper 112 in the paper cassette 109 into the transport path.

以上のようにして、未定着トナー像を転写された用紙112は、さらに感光ドラム101の後方(図5において左側)の定着器118へと搬送される。定着器118は内部に定着ヒータ(不図示)を有する定着ローラ113と、定着ローラ113に圧接するように配設された加圧ローラ114とで構成されている。転写部から搬送されてきた用紙112が定着ローラ113と加圧ローラ114の圧接部にて加圧されながら加熱されることにより、用紙112上の未定着トナー像は定着される。更に定着ローラ113の後方には排紙ローラ116が配設されており、定着された用紙112を画像形成装置104の外に排出せしめる。   As described above, the sheet 112 on which the unfixed toner image is transferred is further conveyed to the fixing device 118 behind the photosensitive drum 101 (left side in FIG. 5). The fixing device 118 includes a fixing roller 113 having a fixing heater (not shown) therein, and a pressure roller 114 disposed so as to be in pressure contact with the fixing roller 113. The sheet 112 conveyed from the transfer unit is heated while being pressed by the pressure contact portion between the fixing roller 113 and the pressure roller 114, whereby the unfixed toner image on the sheet 112 is fixed. Further, a paper discharge roller 116 is disposed behind the fixing roller 113, and the fixed paper 112 is discharged out of the image forming apparatus 104.

なお、プリンタコントローラ111は、画像データの変換だけでなく、モータ115をはじめ画像形成装置104内の各部や、光走査ユニット100内のポリゴンモータなどの制御を行う。   The printer controller 111 not only converts image data, but also controls each part in the image forming apparatus 104 including the motor 115 and a polygon motor in the optical scanning unit 100.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、本発明の要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary of this invention.

4 偏向器
5 走査レンズ(結像光学素子)
6 被走査面
100 光走査装置
4 Deflector 5 Scanning lens (imaging optical element)
6 Scanned surface 100 Optical scanning device

Claims (6)

光束を偏向して被走査面を主走査方向に光走査する偏向器と、該偏向器によって偏向された光束を前記被走査面上に導光する結像光学素子と、を備える光走査装置であって、
前記結像光学素子のfθ係数をfθ、前記結像光学素子の焦点距離をfs、前記偏向器と前記結像光学素子の光軸とが交わる点を原点としたときの、最軸外光束の主光線と前記結像光学素子の入射面との交点の光軸方向における座標をX1max(mm)、最軸外光束の主光線と前記結像光学素子の出射面との交点の光軸方向における座標をX2max(mm)、軸上光束の主光線と前記入射面との交点の光軸方向における座標をX10(mm)、軸上光束の主光線と前記出射面との交点の光軸方向における座標をX20(mm)、とするとき、
0.65<fθ/fs<1.00
0.30<(X1max−X10)/(X20−X10)<0.49
−0.24<(X2max−X20)/(X20−X10)<−0.06
なる条件式を満たすことを特徴とする光走査装置。
An optical scanning device comprising: a deflector that deflects a light beam and optically scans a scanned surface in a main scanning direction; and an imaging optical element that guides the light beam deflected by the deflector onto the scanned surface. There,
The most off-axis when the fθ coefficient of the imaging optical element is f θ , the focal length of the imaging optical element is f s , and the point where the deflector and the optical axis of the imaging optical element intersect is the origin. The coordinate in the optical axis direction of the intersection between the principal ray of the luminous flux and the incident surface of the imaging optical element is X 1max (mm), and the light at the intersection of the principal ray of the most off-axis luminous flux and the exit surface of the imaging optical element. The coordinate in the axial direction is X 2max (mm), the coordinate in the optical axis direction of the intersection of the principal ray of the axial light beam and the incident surface is X 10 (mm), and the intersection of the principal ray of the axial light beam and the exit surface When the coordinate in the optical axis direction is X 20 (mm),
0.65 <f θ / f s <1.00
0.30 <(X 1max -X 10) / (X 20 -X 10) <0.49
−0.24 <(X 2max −X 20 ) / (X 20 −X 10 ) <− 0.06
An optical scanning device characterized by satisfying the following conditional expression:
前記偏向器の偏向面から前記出射面までの距離をT2、前記出射面から前記被走査面までの距離をSk、とするとき、
0.20≦T2/Sk≦0.30
なる条件式を満たすことを特徴とする請求項1に記載の光走査装置。
When the distance from the deflection surface of the deflector to the exit surface is T2, and the distance from the exit surface to the scanned surface is Sk,
0.20 ≦ T2 / Sk ≦ 0.30
The optical scanning device according to claim 1, wherein the following conditional expression is satisfied.
前記結像光学素子の肉厚をdとするとき、
0.05≦d/fθ≦0.08
なる条件式を満たすことを特徴とする請求項1又は2に記載の光走査装置。
When the thickness of the imaging optical element is d,
0.05 ≦ d / f θ ≦ 0.08
The optical scanning device according to claim 1, wherein the following conditional expression is satisfied.
前記結像光学素子の副走査断面内における近軸横倍率をβsとするとき、
3.0<|βs|<4.0
なる条件式を満たすことを特徴とする請求項1乃至3のいずれか一項に記載の光走査装置。
When the paraxial lateral magnification in the sub-scan section of the imaging optical element is βs,
3.0 <| βs | <4.0
The optical scanning device according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至4のいずれか一項に記載の光走査装置と、
該光走査装置によって前記被走査面に形成される静電潜像をトナー像として現像する現像器と、
現像された前記トナー像を被転写材に転写する転写器と、
転写された前記トナー像を前記被転写材に定着させる定着器と、
を備えることを特徴とする画像形成装置。
An optical scanning device according to any one of claims 1 to 4,
A developing unit that develops, as a toner image, an electrostatic latent image formed on the surface to be scanned by the optical scanning device;
A transfer device for transferring the developed toner image to a transfer material;
A fixing device for fixing the transferred toner image to the transfer material;
An image forming apparatus comprising:
請求項1乃至4のいずれか一項に記載の光走査装置と、
外部機器から出力されたコードデータを画像信号に変換して前記光走査装置に入力するプリンタコントローラをさらに備えることを特徴とする画像形成装置。
An optical scanning device according to any one of claims 1 to 4,
An image forming apparatus, further comprising: a printer controller that converts code data output from an external device into an image signal and inputs the image signal to the optical scanning device.
JP2016030654A 2015-03-31 2016-02-22 Optical scanning device Active JP6700842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/077,465 US9645522B2 (en) 2015-03-31 2016-03-22 Optical scanning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072378 2015-03-31
JP2015072378 2015-03-31

Publications (3)

Publication Number Publication Date
JP2016194675A true JP2016194675A (en) 2016-11-17
JP2016194675A5 JP2016194675A5 (en) 2019-02-28
JP6700842B2 JP6700842B2 (en) 2020-05-27

Family

ID=57323940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030654A Active JP6700842B2 (en) 2015-03-31 2016-02-22 Optical scanning device

Country Status (1)

Country Link
JP (1) JP6700842B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429944B1 (en) * 2017-05-30 2018-11-28 キヤノン株式会社 Optical scanning device and image forming apparatus having the same
WO2020183707A1 (en) * 2019-03-14 2020-09-17 ナルックス株式会社 Scanning optical system and scanning lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429944B1 (en) * 2017-05-30 2018-11-28 キヤノン株式会社 Optical scanning device and image forming apparatus having the same
WO2020183707A1 (en) * 2019-03-14 2020-09-17 ナルックス株式会社 Scanning optical system and scanning lens
KR20210005181A (en) 2019-03-14 2021-01-13 나럭스 컴퍼니 리미티드 Scanning optical system and scanning lens
CN112236707A (en) * 2019-03-14 2021-01-15 纳卢克斯株式会社 Scanning optical system and scanning lens
CN112236707B (en) * 2019-03-14 2022-06-21 纳卢克斯株式会社 Scanning optical system and scanning lens
KR102534548B1 (en) 2019-03-14 2023-05-18 나럭스 컴퍼니 리미티드 scanning optics and scanning lenses

Also Published As

Publication number Publication date
JP6700842B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
KR100485315B1 (en) Scanning optical device and image forming apparatus using the same
KR101670121B1 (en) Light scanning apparatus and image forming apparatus using the same
US7557974B2 (en) Optical scanning apparatus and image forming apparatus using the same including relationship between interval between deflector and scanned surface and a natural convergent point
US8400699B2 (en) Optical scanning device and image forming apparatus using the same
JP5896651B2 (en) Optical scanning device and image forming apparatus using the same
US9645522B2 (en) Optical scanning apparatus
US9874831B2 (en) Optical scanning apparatus and image forming apparatus including the same
JP6351257B2 (en) Optical scanning device and image forming apparatus having the same
JP2007156174A (en) Optical scanner and image forming apparatus using the same
JP2015125210A5 (en)
JP5173879B2 (en) Optical scanning device and image forming apparatus using the same
JP6700842B2 (en) Optical scanning device
JP6188899B2 (en) Optical scanning device and image forming apparatus using the same
JP2019095647A (en) Optical scanner and image forming apparatus including the same
JP6429944B1 (en) Optical scanning device and image forming apparatus having the same
JP2018151423A (en) Optical scanner and image forming apparatus including the same
JP4989290B2 (en) Optical scanning device, image forming device
JP2020106579A (en) Optical scanning device and image forming apparatus
JP2023012296A (en) Optical scanner and image forming apparatus including the same
JP2022138795A (en) optical element
JP2019086620A (en) Optical scanner and image forming apparatus including the same
JP5318187B2 (en) Optical scanning device and image forming apparatus using the same
JP2010049060A (en) Scanning optical apparatus and image forming apparatus using the same
JP2017167536A (en) Optical scanner, image forming apparatus, and appearance inspection device
JP2016173505A (en) Optical scanner and image forming apparatus including the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R151 Written notification of patent or utility model registration

Ref document number: 6700842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151