JP2016188583A - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
JP2016188583A
JP2016188583A JP2015068305A JP2015068305A JP2016188583A JP 2016188583 A JP2016188583 A JP 2016188583A JP 2015068305 A JP2015068305 A JP 2015068305A JP 2015068305 A JP2015068305 A JP 2015068305A JP 2016188583 A JP2016188583 A JP 2016188583A
Authority
JP
Japan
Prior art keywords
adsorption amount
scr catalyst
nox
ammonia
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068305A
Other languages
English (en)
Other versions
JP6298003B2 (ja
Inventor
裕二 川端
Yuji Kawabata
裕二 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2015068305A priority Critical patent/JP6298003B2/ja
Publication of JP2016188583A publication Critical patent/JP2016188583A/ja
Application granted granted Critical
Publication of JP6298003B2 publication Critical patent/JP6298003B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Component Parts Of Construction Machinery (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】適切な量の尿素水を噴射するために、SCR触媒のアンモニア吸着量を精度良く検出するエンジンを提供する。
【解決手段】エンジンは、上流NOxセンサと、下流NOxセンサと、検出部と、推定部と、合算部と、を備える。上流NOxセンサは、SCR触媒より上流側の排気ガスに含まれるNOxを検出する。下流NOxセンサは、SCR触媒より下流側の排気ガスに含まれるNOxを検出する。検出部は、上流NOxセンサ及び下流NOxセンサの検出値に基づいてNOx浄化率を求め、当該NOx浄化率に基づいて、SCR触媒のアンモニア吸着量である吸着量演算値を求める。推定部は、少なくともSCR触媒の温度及び排気ガスの状態に基づいてNOx浄化率を推定し、当該NOx浄化率に基づいて、SCR触媒のアンモニア吸着量である吸着量推定値を求める。合算部は、吸着量演算値と吸着量推定値に基づいて、SCR触媒のアンモニア吸着量を算出する。
【選択図】図6

Description

本発明は、尿素水を噴射して排気ガスに含まれる窒素酸化物を除去するエンジンに関する。
従来から、選択触媒還元(Selective Catalytic Reduction、SCR)を用いて排気ガスに含まれるNOx(窒素酸化物)を除去するエンジンが知られている。この種のエンジンは、尿素水を噴射する尿素水噴射部と、SCR触媒と、を備える。尿素水噴射部は、排気ガスが通る経路に尿素水を噴射する。尿素水に含まれる尿素は、高温の排気ガスに触れることで、加水分解してアンモニアとなる。SCR触媒は、アンモニアを吸着するゼオライト又はセラミック等の素材で構成されている。排気ガスに含まれるNOxは、アンモニアを吸着したSCR触媒に触れることで還元され、窒素と水に変化する。これにより、NOxの排出量を低減することができる。特許文献1及び2は、この種の技術を開示する。
特許文献1のSCRシステムでは、SCR触媒の上流側と下流側にそれぞれNOxセンサが配置されている。このSCRシステムでは、上流側と下流側のNOxセンサの検出値に基づいて尿素水の噴射量を制御する。また、特許文献1では、NOxセンサが利用できない場合(エンジンの始動後等)においては、エンジン回転数、燃料噴射量、大気圧、外気温度、及び冷却水温度に基づいて尿素水の噴射量を決定する技術も開示されている。
特許文献2のSCRシステムは、排気ガスの状態等に基づいてSCR触媒のアンモニア吸着量を推定する。このSCRシステムでは、SCR触媒の温度に基づいてアンモニア吸着量の目標値を設定し、アンモニア吸着量がこの目標値に達するまで尿素水の添加(噴射)を行う。
特開2013−72391号公報 特開2013−155644号公報
しかし、特許文献1のようにNOxセンサに基づいて尿素水の噴射量を決定する構成では、NOxセンサの精度が低い場合、アンモニア吸着量を正確に求めることができず、適切な量の尿素水を噴射することができない。ここで、NOxセンサは、NOxだけでなくアンモニアを検出してしまうことがあるため(クロスセンシティビティ)、NOxの検出精度が低くなる可能性がある。従って、特許文献1の方法では、条件によっては、適切な量の尿素水を噴射できないことがあった。また、特許文献1では、アンモニア吸着量を求める構成が開示されていない。
また、特許文献2のようにSCR触媒のアンモニア吸着量を推定する構成では、推定方法によっては精度が低下することがある。特に、SCR触媒の温度が低い場合、アンモニア吸着量の推定精度が低下する可能性がある。また、触媒が劣化したり触媒が被毒した場合においても、アンモニア吸着量の推定精度が低下する可能性がある。
アンモニア吸着量の推定精度が低い場合、NOx又はアンモニアが外部に排出される可能性がある。
本発明は以上の事情に鑑みてされたものであり、その主要な目的は、適切な量の尿素水を噴射するために、SCR触媒のアンモニア吸着量を精度良く検出するエンジンを提供することにある。
課題を解決するための手段及び効果
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
本発明の観点によれば、以下の構成のエンジンが提供される。即ち、このエンジンは、尿素水噴射部と、SCR触媒と、上流NOxセンサと、下流NOxセンサと、検出部と、推定部と、合算部と、を備える。前記尿素水噴射部は、排気ガスが通過する経路に尿素水を噴射する。前記SCR触媒は、排気ガスが通過する経路に配置され、前記尿素水噴射部が噴射した尿素から得られるアンモニアを吸着することで、通過する排気ガスに含まれる窒素酸化物を除去する。前記上流NOxセンサは、前記SCR触媒より上流側の排気ガスに含まれるNOxを検出する。前記下流NOxセンサは、前記SCR触媒より下流側の排気ガスに含まれるNOxを検出する。前記検出部は、前記上流NOxセンサ及び前記下流NOxセンサの検出値に基づいてNOx浄化率を求め、当該NOx浄化率に基づいて、前記SCR触媒のアンモニア吸着量である吸着量演算値を求める。前記推定部は、少なくとも前記SCR触媒の温度及び排気ガスの状態に基づいてNOx浄化率を推定し、当該NOx浄化率に基づいて、前記SCR触媒のアンモニア吸着量である吸着量推定値を求める。前記合算部は、前記吸着量演算値と前記吸着量推定値に基づいて、前記SCR触媒のアンモニア吸着量を算出する。
これにより、アンモニア吸着量を2通りの方法(NOxセンサを使う方法とSCR触媒の温度等に基づいて推定する方法)で求めることができる。従って、一方の方法のみを用いてアンモニア吸着量を求めた場合と比較して、発生する誤差の影響を抑えることができるので、正確なアンモニア吸着量を求めることができる。
前記のエンジンにおいては、前記合算部は、前記吸着量演算値と前記吸着量推定値に重み付けを行うことで、前記SCR触媒のアンモニア吸着量を算出することが好ましい。
これにより、適切な重み係数を用いることで、所定の条件における誤差を一層小さくすることができる。
前記のエンジンにおいては、前記合算部は、前記SCR触媒の温度が低くなるに従って、前記吸着量推定値の重み係数を減少させることが好ましい。
これにより、SCR触媒の温度が低くなり、吸着量推定値の精度が低下した場合であっても、吸着量推定値の重み係数を減少させることで、アンモニア吸着量を精度良く求めることができる。
前記のエンジンにおいては、前記合算部は、前記下流NOxセンサが検出したNOx量が小さくなるに従って、前記吸着量演算値の重み係数を相対的に減少させることが好ましい。
これにより、排気ガスに含まれるNOx量が小さくなり、吸着量演算値の精度が低下した場合であっても、吸着量演算値の重み係数を減少させることで、アンモニア吸着量を精度良く求めることができる。
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、このエンジンは、高度を検出する高度センサを備える。前記合算部は、前記高度センサが検出した高度が高くなるに従って、前記吸着量推定値の重み係数を減少させる。
これにより、高地では吸気圧力の低下又は吸気に含まれる酸素の低下により吸着量推定値の精度が低下した場合であっても、吸着量推定値の重み係数を相対的に減少させることで、アンモニア吸着量を精度良く求めることができる。
本発明の一実施形態に係るエンジンの斜視図。 エンジンの吸気及び排気の流れを模式的に示す説明図。 エンジン制御に係るブロック図。 アンモニア吸着量を算出する際に用いる式。 SCR触媒温度等からNOx浄化率を推定する処理を示す図。 吸着量演算値と吸着量推定値とを求める処理を示す図。 吸着量推定値の重み係数を求める処理を示す図。 吸着量推定値と吸着量演算値からアンモニア吸着量を求める処理を示す図。 本実施形態のエンジンをトラクタに適用した様子を示す側面図。 本実施形態のエンジンをコンバインに適用した様子を示す側面図。 本実施形態のエンジンをスキッドステアローダに適用した様子を示す側面図。
次に、図面を参照して本発明の実施形態を説明する。初めに図1から図3を参照して、本実施形態のエンジン100の基本的な構成について説明する。エンジン100は、ディーゼルエンジンであり、トラクタ等の農業機械及びスキッドステアローダ等の建設機械等に搭載される。
図1及び図2に示すように、エンジン100は、吸気系の部材として、吸入部11と、過給機12と、吸気スロットル(吸気絞り装置)14と、吸気マニホールド15と、を備える。吸入部11から吸入された気体は、過給機12にて圧縮された後に、吸気スロットル14を介して、吸気マニホールド15へ供給される。吸気マニホールド15には、図2に示すように、吸気温度センサ84が取り付けられている。吸気温度センサ84は、吸気マニホールド15内の気体の温度を検出してECU(Engine Control Unit)80へ出力する。
図3に示すように、エンジン100は、ECU80を備える。ECU80は、CPU等から構成される演算部と、ROM及びRAM等から構成される記憶部と、を備える。演算部は、センサ群の様々なセンサからの情報に基づいて、アクチュエータ群の様々なアクチュエータに制御指令を送り、エンジン100の動作に関する値(例えば、燃料噴射量や、空気吸入量や、排気ガス還元量等)を制御する。記憶部は、各種プログラムを記憶するとともに、エンジン100の制御に関して予め設定された複数の制御情報を記憶している。ECU80は、図3に示すように、検出部80aと、推定部80bと、合算部80cと、を備える。なお、これらが行う処理について後述する。
図3に示すように、エンジン100は、冷却水の温度を検出してECU80へ出力する冷却水温度センサ81と、大気圧を検出してECU80へ出力する大気圧センサ82と、を備える。
吸気マニホールド15の下方には図略のコモンレールが配置されている。コモンレールは、燃料を高圧で蓄え、シリンダヘッドに配置されたインジェクタ23(燃料噴射装置、図2を参照)へ供給する。
インジェクタ23は、インジェクタ電磁弁24(図3を参照)を備える。インジェクタ電磁弁24は、ECU80の指示に応じたタイミングで開閉することにより、燃焼室に燃料を噴射する。
なお、エンジン100は、エンジン回転数(回転速度、所定時間あたりのクランクシャフトの回転数)を検出するエンジン回転数検出センサ83を備える。エンジン回転数検出センサ83は、検出したエンジン回転数をECU80へ出力する。
また、図1及び図2に示すように、エンジン100は、排気マニホールド31と、EGR装置32と、排気ガス浄化装置40と、を備える。
排気マニホールド31には、排気温度センサ85が取り付けられている。排気温度センサ85は、排気マニホールド31内の気体の温度を検出してECU80へ出力する。排気マニホールド31を通過した気体は、一部がEGR装置32へ供給されるとともに、残りが排気ガス浄化装置40へ供給される。
EGR装置32は、EGRクーラ33と、EGR管34と、EGRバルブ35と、を備えている。EGRバルブ35のバルブ開度は、ECU80によって制御される。
排気ガス浄化装置40は、DPF装置50と、SCR装置60と、を備える。エンジン100は、排気ガス浄化装置40の支持及び固定を行う部材として、支持台41と、ケース固定体42と、ケース締結バンド43と、を備える。
支持台41は、シリンダヘッドの上部に配置され、縁が下方に折り曲げられた矩形状の部材である。ケース固定体42は、支持台41の上部に配置され、DPF装置50及びSCR装置60の下方に接触する部材である。ケース締結バンド43は、ケース固定体42に取り付け可能に構成された可撓性を有する部材である。ケース固定体42及びケース締結バンド43でDPF装置50及びSCR装置60を挟み込むことで、DPF装置50及びSCR装置60が固定される。
DPF装置50は、排気ガスに含まれる粒子状物質(particulate matter、PM)を除去する。DPF装置50は、DPFケース51と、酸化触媒52と、フィルタ53と、を備える。
DPFケース51は、略円筒状の中空の部材であり、内部に酸化触媒52及びフィルタ53が配置される。酸化触媒52は、白金等で構成されており、排気ガスに含まれる未燃燃料、一酸化炭素、一酸化窒素等を酸化(燃焼)するための触媒である。フィルタ53は、例えばウォールフロー型のフィルタとして構成されており、酸化触媒52で処理された排気ガスに含まれる粒子状物質を捕集する。
また、DPFケース51には、酸化触媒温度センサ86と、フィルタ温度センサ87と、差圧センサ88と、が取り付けられている。酸化触媒温度センサ86は、DPFケース51の入口近傍(酸化触媒52の排気上流側)の温度を検出してECU80へ出力する。フィルタ温度センサ87は、酸化触媒52及びフィルタ53の間(フィルタ53の上流側)の温度を検出してECU80へ出力する。差圧センサ88は、フィルタ53の上流側(酸化触媒52の下流側)と、フィルタ53の下流側の圧力差を検出してECU80へ出力する。
DPF装置50を通過した排気ガスは、DPF出口管44、尿素混合管45、及びSCR入口管46を経由して、SCR装置60へ送られる。DPF出口管44は、DPF装置50の下流側の端部と接続されている。DPF出口管44には、排気ガスのNOx濃度を検出する上流NOxセンサ89が取り付けられている。上流NOxセンサ89は、検出したNOx濃度をECU80へ出力する。
尿素混合管45は、DPF出口管44と略直角をなすように接続されている。尿素混合管45の長手方向は、DPF装置50及びSCR装置60の長手方向と平行である。尿素混合管45の上流側の端部近傍には、尿素水噴射部47が取り付けられている。尿素水噴射部47は、尿素水を噴射する尿素水噴射ノズル47aと、尿素水噴射ノズル47aに尿素水を供給する尿素水噴射管47bと、を備える。尿素混合管45に尿素水を噴射することで、尿素が加水分解してアンモニアが発生する。
なお、尿素水噴射部47は、ECU80及びDCU(Dosing Control Unit)95によって、尿素水の噴射の有無及び噴射量が制御されている。DCU95は、例えば排気ガスの温度が、尿素がアンモニアに加水分解する温度を経過したときに、尿素水の噴射を開始する。
SCR装置60は、SCR入口管46を介して導入された排気ガスに含まれるNOxを除去する。SCR装置60は、SCRケース61と、SCR触媒62と、アンモニア酸化触媒63と、を備える。
SCRケース61は、略円筒状の中空の部材であり、内部にSCR触媒62及びアンモニア酸化触媒63が配置される。SCR触媒62は、アンモニアを吸着するゼオライト又はセラミック等の素材で構成されている。尿素水噴射部47が尿素水を噴射することで生成されたアンモニアはSCR触媒62に吸着する。排気ガスに含まれるNOxは、アンモニアを吸着したSCR触媒62に触れることで還元され、窒素と水に変化する。
アンモニア酸化触媒63は、SCR触媒62から脱離したりSCR触媒62に吸着されなかったアンモニアが外部に放出されることを防止する触媒である。アンモニア酸化触媒63は、アンモニアを酸化させる白金等の酸化触媒であり、アンモニアを酸化させて窒素、一酸化酸素、水等に変化させる。この酸化反応は比較的高温(例えば180℃以上)でないと生じにくい。排気ガスは、アンモニア酸化触媒63を通過した後に所定の排気管を通った後に外部へ放出される。以上のように尿素水噴射部47及びSCR触媒62を備えることで、排気ガスに含まれるNOxを除去することができる。
また、SCR触媒62の上流側には、SCR触媒入口温度センサ90が取り付けられている。SCR触媒入口温度センサ90は、SCR触媒62の直ぐ上流の温度を検出してECU80へ出力する。
また、アンモニア酸化触媒63の下流側には、下流NOxセンサ91が取り付けられている。下流NOxセンサ91は、検出したNOx濃度をECU80へ出力する。
次に、図4から図8を参照して、尿素水の噴射量を決定するためにSCR触媒62のアンモニア吸着量を算出する制御について説明する。なお、以下では、SCR触媒62のアンモニア吸着量を単に「アンモニア吸着量」と称する。
初めに、図4を参照してアンモニア吸着量の算出方法について説明する。図4の式(1)の左辺は、SCR装置60に供給されるアンモニアを示し、右辺は、SCR装置60で消費又は排出されるアンモニアを示している。式(1)の左辺は、「尿素水によって供給されるアンモニア」を示している。式(1)の右辺は、左から順に、「NOxを除去するために用いられたアンモニア」、「窒素に変化したアンモニア」、「二酸化窒素に変化したアンモニア」、「SCR触媒62に吸着したアンモニア」、「SCR装置60から排出されたアンモニア」を示している。
ここで、「窒素に変化したアンモニア」及び「二酸化窒素に変化したアンモニア」は0と近似することができる。また、ECU80及びDCU95は、SCR装置60からアンモニアが排出されないように制御するため、「SCR装置60から排出されたアンモニア」も0と近似することができる。従って、式(1)は、式(2)のように近似することができる。
従って、式(3)に示すように、「SCR触媒62に吸着したアンモニア」は、「尿素水によって供給されるアンモニア」から「NOxを除去するために用いられたアンモニア」を減算することで求められる。
ここで、「NOxを除去するために用いられたアンモニア」は、式(4)のように求めることができる。具体的には、「SCR装置60の上流と下流のNOx濃度の差」に「反応式に応じた等量比」を積算し、更に「NOxに対するアンモニアの分子量の比」を積算することで、求めることができる。なお、「SCR装置60の上流と下流のNOx濃度の差」は、式(5)に示すようにNOx浄化率(NOxη)から求めることができる。
以上により、アンモニア吸着量は、尿素水の噴射量とNOx浄化率に基づいて求めることができる。本実施形態では、2通りの方法でNOx浄化率を求める。1つ目の方法は、上流NOxセンサ89及び下流NOxセンサ91の検出値を図4の式(5)に代入する等して求める方法である。この処理は、ECU80(詳細には検出部80a)によって行われる。2つ目の方法は、排気ガスの状態等に基づいてNOx浄化率を推定する方法である。この処理は、ECU80(詳細には推定部80b)によって行われる。
次に、図5を参照してNOx浄化率を推定する方法について詳細に説明する。図5に示すように、NOx浄化率は、SCR触媒温度と、排気ガスの質量流量と、DPF温度等に基づくNOx量(濃度)と、に基づいて推定される。
SCR触媒温度は、SCR触媒入口温度、SCR触媒62の触媒容積、及び排気ガスの質量流量等に基づいて推定される。なお、SCR触媒温度の推定方法は任意であり、SCR触媒62の下流に温度センサを設け、SCR触媒入口温度だけでなくSCR触媒出口温度を用いてSCR触媒温度を推定しても良い。SCR触媒62は、温度に応じてアンモニアの吸着可能量が変化するため、NOx浄化率と関連性がある。また、排気ガスの質量流量は、エンジンの運転状態等に基づいて演算によって求められる。
DPF温度は、酸化触媒温度センサ86が検出した温度等に基づいて求められる。DPF装置50では、温度が高い場合はNO2が生成しにくくなる。従って、DPF温度はNOx浄化率と関連性がある。
次に、図6から図8を参照して、2通りの方法で求めたNOx浄化率を用いてアンモニア吸着量を求める処理について説明する。
図6には、2通りの方法で求めたNOx浄化率に基づいて、それぞれアンモニア吸着量を求める処理が示されている。ECU80は、上流NOxセンサ89及び下流NOxセンサ91の検出値より求めたNOx浄化率を、図4の式(4)及び(5)に適用して、NOxを除去するために用いられたアンモニア流量を求める。そして、尿素水の噴射量から算出されるアンモニア噴射流量から、NOxを除去するために用いられたアンモニア流量を減算することで(図6の処理P1、図4の式(3))、NOxセンサの検出値に基づくアンモニア吸着量(吸着量演算値)を求める。
同様に、ECU80は、排気ガスの状態等に基づいて推定されたNOx浄化率を、図4の式(5)に適用して、NOxを除去するために用いられたアンモニア流量を求める。そして、アンモニア噴射流量から、NOxを除去するために用いられたアンモニア流量を減算することで(図6の処理P2、図4の式(3))、NOx浄化率の推定値に基づくアンモニア吸着量(吸着量推定値)を求める。
本実施形態では、吸着量演算値及び吸着量推定値に重み付けを行うことで、アンモニア吸着量を求める。図7には、この重み付けを行う際の重み係数を求める処理が示されている。
ここで、上述したように、SCR触媒温度が低い場合、NO2やNOxの感度が高くなるため、NOx浄化率の推定精度が低下し、吸着量推定値の誤差が大きくなる。従って、SCR触媒温度が低い場合は、吸着量推定値の重み係数を減少させることが好ましい。
また、SCR触媒62の下流の排気ガスにはアンモニアが含まれる可能性がある。下流NOxセンサ91は、NOxだけでなくアンモニアを検出する可能性もあるため、NOx濃度が低い場合、NOx濃度の検出精度が低下し、吸着量演算値の誤差が大きくなる。従って、下流NOxセンサ91の検出値が低い場合、吸着量演算値の重み係数を減少させることが好ましい。なお、SCR触媒温度に代えて、他の温度(例えば排気ガス温度)を用いても良い。
また、エンジン100が高山等の高地で使用される場合、吸気条件の変化等により、吸着量推定値の精度が低下する可能性がある。また、高度は、大気圧センサ82の検出値に基づいて把握することができる。従って、大気圧センサ82が検出する大気圧が低い場合、吸着量推定値の重み係数を減少させることが好ましい。
図7は、上記の事情を考慮して吸着量検出値の重み係数(0≦s≦1)を求める処理を示す。なお、図7及び図8の処理は、ECU80の合算部80cが行う。
また、重み係数の合計は1であるため、1から吸着量検出値の重み係数を減算することで、吸着量推定値の重み係数(0≦t≦1)を求めることができる。図7に示すように、ECU80は、SCR触媒温度と下流NOxセンサ91の検出値に基づいて重み係数を算出する処理を行う(処理P3)。上記のように、SCR触媒温度が低いほど吸着量検出値の重み係数は減少し、下流NOxセンサ91の検出結果が低いほど吸着量検出値の重み係数が増加する。
また、ECU80は、大気圧センサ82の検出値に基づいて重み係数の補正値を算出し(処理P4)、処理P3で求めた補正係数に加算することで(処理P5)、吸着量検出値の重み係数を求める。なお、SCR触媒温度、下流NOxセンサ91の検出値、及び高度に基づいて重み係数を求める方法は任意である。また、上記以外のパラメータを用いて重み係数を算出しても良い。
図8は、重み係数を用いてアンモニア吸着量を求める処理を示す図である。ECU80は、図7で求めた重み係数に吸着量検出値を積算する(処理P6)。また、ECU80は、1から吸着量検出値の重み係数を減算することで、吸着量推定値の重み係数を求める(処理P7)。ECU80は、この重み係数に吸着量推定値を積算する(処理P8)。また、ECU80は、処理P6の結果と処理P8の結果を足し合わせることで(処理P9)、アンモニア吸着量を求める。
ECU80は、以上のようにして求めたアンモニア吸着量を用いて、尿素水の噴射量を決定する等の制御を行う。具体的には、SCR触媒温度に応じてSCR触媒62に吸着可能なアンモニア量が変わるので、SCR触媒の温度に基づいて目標アンモニア吸着量を算出する。なお、排気ガスに含まれるNOx濃度を考慮して目標アンモニア吸着量を算出することもできる。ECU80は、目標アンモニア吸着量と、図8で求めたアンモニア吸着量と、の差(偏差)が0に近づくようにPID制御等を行って尿素水の噴射量を決定する。
次に、上記で説明したエンジン100を農業機械及び建設機械に適用した例について説明する。なお、以下の説明では、単に「左側」「右側」等というときは、車両が前進する方向に向かって左側及び右側を意味するものとする。
初めに、図9を参照して、上記のエンジン100を備えるトラクタ110について説明する。トラクタ110は、農業作業用の作業車両であり、ロータリ、ローダ、プラウ、ボックススクレーパー等の各種の作業機(アタッチメント)を必要に応じて装着し、作業機を用いた各種の作業を行うことができる。
トラクタ110は、車体111と、左右一対の前輪112と、左右一対の後輪113と、を備える。車体111の前部にはボンネット114が配置されており、当該ボンネット114の内部にはエンジン100が配置されている。
ボンネット114の内部であって、冷却ファン4の向かいにはラジエータ5が配置されている。また、ボンネット114の内部には、エアクリーナ122が配置されている。エアクリーナ122は、吸入された外気に含まれる塵等を除去する。
左右一対の後輪113の間には、ミッションケース115が配置されている。エンジン100の出力は、このミッションケース115内の変速装置によって変速されて、後輪113及び作業機へ伝達される。
ミッションケース115の後部には、ロワーリンク116、トップリンク117、及びPTO軸118が配置されている。また、ミッションケース115の上部には、作業機は、ロワーリンク116及びトップリンク117に連結され、PTO軸118によって駆動される。
ミッションケース115の上方であってボンネット114の後方には、オペレータが搭乗するためのキャビン119が配置されている。キャビン119の内部には、運転座席が設けられており、運転座席の近傍にはオペレータが操作するための多数の操作具が設けられている。
キャビン119の下方には、尿素水タンク120及び燃料タンク121が配置されている。尿素水タンク120は、尿素水噴射管47bによって尿素水噴射ノズル47aに接続されている。
次に、図10を参照して、上記のエンジン100を備えるコンバイン130について説明する。コンバイン130は、いわゆる自脱型コンバインとして構成されている。コンバイン130の機体131の下部には、機体131を走行させるためのクローラ部132が設けられている。また、コンバイン130は、稲、麦等の穀稈の株元を刈り取るための刈取部133を機体131の前方に備えている。
刈取部133は、複数の分草体と刈取刃を備えている。複数の分草体は、穀稈を刈り取るべき幅を規定したり、倒れた状態の穀稈をすくい上げたりするものである。分草体の間に差し込まれた穀稈は、その根元付近を刈取刃によって切断され、刈り取られる。
また、刈取部133は、図略の昇降機構を介して、コンバイン130の機体131に連結されている。この昇降機構は、刈取部133を上下に昇降駆動することが可能に構成されている。これにより、圃場の傾斜等に応じて刈取部133の高さを適切な高さに調整し、刈取りを適切に行うことができる。
刈取部133の後方であってコンバイン130の左側には、脱穀装置134が設けられている。脱穀装置134は、刈取部133で刈り取った穀稈を脱穀する。脱穀装置134の下方には選別装置135が設けられている。選別装置135は、脱穀装置134で脱穀された穀粒を選別して取り出す。
刈取部133の後方であってコンバイン130の右側には、グレンタンク136が設けられている。グレンタンク136は、選別装置135で選別された穀粒を貯留する。グレンタンク136に貯留された穀粒は、排出オーガ137によって外部に排出される。
グレンタンク136の前方には、オペレータが搭乗するためのキャビン138が配置されている。このキャビン138の内部には、運転座席が設けられており、運転座席の近傍にはオペレータが操作するための多数の操作具が設けられている。
キャビン138の下方には、エンジン100が配置されている。エンジン100の冷却ファン4の向かいには図略のラジエータが配置されている。また、キャビン138の後方には、プリクリーナ139が配置されている。プリクリーナ139から吸入された外気は、図略のエアクリーナを経由することで塵等が除去される。なお、エンジン100の近傍には、尿素水タンク140が配置される。
穀稈から穀粒が取り除かれた藁屑は、後方へ搬送され、図略の排藁カッタ装置によって適宜の長さに切り刻まれ、機外へ排出される。
次に、図11を参照して、上記のエンジン100を備えるスキッドステアローダ150について説明する。スキッドステアローダ150は、後述するローダ装置151を装着し、ローダ作業を行うように構成されている。スキッドステアローダ150には、左右一対のクローラ部152が装着されている。クローラ部152の上方には、ボンネット153が配置されている。
ボンネット153の内部には、エンジン100が配置されている。また、ボンネット153の内部であって、エンジン100の冷却ファン4の向かいにはラジエータ5が配置されている。また、ボンネット153の内部であってエンジン100の前方には、尿素水タンク154が配置されている。
エンジン100の前方には、油圧ポンプ155と、トランスミッション装置156と、が配置されている。エンジン100の動力は、トランスミッション装置156を介して、クローラ部152に伝達される。
ボンネット153の前方には、オペレータが搭乗するキャビン157が配置されている。キャビン157の内部には運転座席が設けられており、運転座席の近傍にはオペレータが操作するための多数の操作具が設けられている。
また、ローダ装置151は、左右両側に配置されたローダポスト158と、各ローダポスト158の上部に回動可能に連結された左右一対のリフトアーム159と、リフトアーム159の先端部に回動可能に連結されたバケット160とを有している。
各ローダポスト158とリフトアーム159との間には、リフトアーム159を上下に回動させるためのリフトシリンダ161がそれぞれ設けられている。リフトアーム159とバケット160との間には、バケット160を上下に回動させるためのバケットシリンダ162が設けられている。オペレータが図略の操作具を操作することにより、油圧ポンプ155の油圧力が制御される。これにより、リフトシリンダ161又はバケットシリンダ162が伸縮して、リフトアーム159又はバケット160が回動する。オペレータは、このようにして土砂等の運搬作業を行うことができる。
以上に説明したように、本実施形態のエンジン100は、尿素水噴射部47と、SCR触媒62と、上流NOxセンサ89と、下流NOxセンサ91と、検出部80aと、推定部80bと、合算部80cと、を備える。尿素水噴射部47は、排気ガスが通過する経路に尿素水を噴射する。SCR触媒62は、排気ガスが通過する経路に配置され、尿素水噴射部47が噴射した尿素から得られるアンモニアを吸着することで、通過する排気ガスに含まれる窒素酸化物を除去する。上流NOxセンサ89は、SCR触媒62より上流側の排気ガスに含まれるNOxを検出する。下流NOxセンサ91は、SCR触媒62より下流側の排気ガスに含まれるNOxを検出する。検出部80aは、上流NOxセンサ89及び下流NOxセンサ91の検出値に基づいてNOx浄化率を求め、当該NOx浄化率に基づいて、SCR触媒62のアンモニア吸着量である吸着量演算値を求める。推定部80bは、少なくともSCR触媒62の温度及び排気ガスの状態に基づいてNOx浄化率を推定し、当該NOx浄化率に基づいて、SCR触媒62のアンモニア吸着量である吸着量推定値を求める。合算部80cは、吸着量演算値と吸着量推定値に基づいて、SCR触媒62のアンモニア吸着量を算出する。
これにより、アンモニア吸着量を2通りの方法(NOxセンサを使う方法とSCR触媒の温度等に基づいて推定する方法)で求めることができる。従って、一方の方法のみを用いてアンモニア吸着量を求めた場合と比較して、発生する誤差の影響を抑えることができるので、正確なアンモニア吸着量を求めることができる。従って、NOx及びアンモニアが外部に排出されないように正確に制御を行うことができる。
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
上記実施形態でECU80が行うと説明した処理の一部をDCU95が行っても良い。また、ECU80及びDCU95を1つの制御装置で構成しても良い。
上記実施形態では、吸着量演算値と吸着量推定値に重み付けを行ってアンモニア吸着量を求めたが、SCR触媒温度や下流NOxセンサ91の検出値等に応じて、吸着量演算値及び吸着量推定値から何れか一方を選択し、選択した値をアンモニア吸着量として用いても良い。この場合であっても、「吸着量演算値と吸着量推定値に基づいてアンモニア吸着量を算出する」処理に該当するものとする。
上記実施形態では、DPF装置50及びSCR装置60がエンジン100の上部に位置しているが、DPF装置50及びSCR装置60の配置は任意であり、例えばシリンダブロックから比較的離れた位置に配置されていても良い。また、本明細書では、仮にDPF装置50及びSCR装置60がシリンダブロックから離れていても、それらを含めて「エンジン」に該当するものとする。
上記では、過給機を備えるディーゼルエンジンに本発明を適用する例を示したが、本発明は、自然吸気式のディーゼルエンジンにも適用することができる。
47 尿素水噴射部
50 DPF装置
60 SCR装置
61 SCRケース
62 SCR触媒
63 アンモニア酸化触媒
80 ECU
82 大気圧センサ(高度センサ)
95 DCU
100 エンジン

Claims (5)

  1. 排気ガスが通過する経路に尿素水を噴射する尿素水噴射部と、
    排気ガスが通過する経路に配置され、前記尿素水噴射部が噴射した尿素から得られるアンモニアを吸着することで、通過する排気ガスに含まれる窒素酸化物を除去するSCR触媒と、
    前記SCR触媒より上流側の排気ガスに含まれるNOxを検出する上流NOxセンサと、
    前記SCR触媒より下流側の排気ガスに含まれるNOxを検出する下流NOxセンサと、
    前記上流NOxセンサ及び前記下流NOxセンサの検出値に基づいてNOx浄化率を求め、当該NOx浄化率に基づいて、前記SCR触媒のアンモニア吸着量である吸着量演算値を求める検出部と、
    少なくとも前記SCR触媒の温度及び排気ガスの状態に基づいてNOx浄化率を推定し、当該NOx浄化率に基づいて、前記SCR触媒のアンモニア吸着量である吸着量推定値を求める推定部と、
    前記吸着量演算値と前記吸着量推定値に基づいて、前記SCR触媒のアンモニア吸着量を算出する合算部と、
    を備えることを特徴とするエンジン。
  2. 請求項1に記載のエンジンであって、
    前記合算部は、前記吸着量演算値と前記吸着量推定値に重み付けを行うことで、前記SCR触媒のアンモニア吸着量を算出することを特徴とするエンジン。
  3. 請求項2に記載のエンジンであって、
    前記合算部は、前記SCR触媒の温度が低くなるに従って、前記吸着量推定値の重み係数を減少させることを特徴とするエンジン。
  4. 請求項2又は3に記載のエンジンであって、
    前記合算部は、前記下流NOxセンサが検出したNOx量が小さくなるに従って、前記吸着量演算値の重み係数を相対的に減少させることを特徴とするエンジン。
  5. 請求項2から4までの何れか一項に記載のエンジンであって、
    高度を検出する高度センサを備え、
    前記合算部は、前記高度センサが検出した高度が高くなるに従って、前記吸着量推定値の重み係数を減少させることを特徴とするエンジン。
JP2015068305A 2015-03-30 2015-03-30 エンジン Active JP6298003B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068305A JP6298003B2 (ja) 2015-03-30 2015-03-30 エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068305A JP6298003B2 (ja) 2015-03-30 2015-03-30 エンジン

Publications (2)

Publication Number Publication Date
JP2016188583A true JP2016188583A (ja) 2016-11-04
JP6298003B2 JP6298003B2 (ja) 2018-03-20

Family

ID=57240191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068305A Active JP6298003B2 (ja) 2015-03-30 2015-03-30 エンジン

Country Status (1)

Country Link
JP (1) JP6298003B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039401A (ja) * 2017-08-28 2019-03-14 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP2019039399A (ja) * 2017-08-28 2019-03-14 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP2020118079A (ja) * 2019-01-23 2020-08-06 いすゞ自動車株式会社 内燃機関の排気浄化装置、及び車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142028A1 (ja) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2011241686A (ja) * 2010-05-14 2011-12-01 Toyota Motor Corp 内燃機関の排気浄化装置
JP2014208980A (ja) * 2013-04-16 2014-11-06 トヨタ自動車株式会社 排気浄化装置の異常判定システム
WO2014192863A1 (ja) * 2013-05-30 2014-12-04 トヨタ自動車株式会社 排気浄化装置の異常診断装置
WO2014199777A1 (ja) * 2013-06-10 2014-12-18 ボッシュ株式会社 制御装置、内燃機関の排気浄化装置及び排気浄化装置の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142028A1 (ja) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2011241686A (ja) * 2010-05-14 2011-12-01 Toyota Motor Corp 内燃機関の排気浄化装置
JP2014208980A (ja) * 2013-04-16 2014-11-06 トヨタ自動車株式会社 排気浄化装置の異常判定システム
WO2014192863A1 (ja) * 2013-05-30 2014-12-04 トヨタ自動車株式会社 排気浄化装置の異常診断装置
WO2014199777A1 (ja) * 2013-06-10 2014-12-18 ボッシュ株式会社 制御装置、内燃機関の排気浄化装置及び排気浄化装置の制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039401A (ja) * 2017-08-28 2019-03-14 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP2019039399A (ja) * 2017-08-28 2019-03-14 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP2020118079A (ja) * 2019-01-23 2020-08-06 いすゞ自動車株式会社 内燃機関の排気浄化装置、及び車両
JP7192522B2 (ja) 2019-01-23 2022-12-20 いすゞ自動車株式会社 内燃機関の排気浄化装置、及び車両

Also Published As

Publication number Publication date
JP6298003B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
CN101463770B (zh) 发动机的排气净化装置
JP5443027B2 (ja) エンジン装置
JP6489638B2 (ja) コンバイン
WO2014142222A1 (ja) 作業車両のエンジン装置
WO2014142223A1 (ja) 作業車両のエンジン装置
JP6298003B2 (ja) エンジン
JP2010063417A (ja) コンバイン
JP2010229959A (ja) ディーゼルエンジン
JP5806711B2 (ja) コンバイン搭載用のエンジン装置
JP2010051239A (ja) コンバイン
JP5834906B2 (ja) 内燃機関の排気浄化装置
JP2016089730A (ja) エンジン
JP2016188584A (ja) エンジン
JP5828601B2 (ja) コンバイン
JP6120939B2 (ja) コンバイン
JP6301233B2 (ja) エンジン
JP2010216336A (ja) エンジン装置
JP5806710B2 (ja) コンバイン搭載用のエンジン装置
JP5806709B2 (ja) コンバイン搭載用のエンジン装置
JP2016089727A (ja) エンジン
JP5699922B2 (ja) 内燃機関の排気浄化装置
JP6297996B2 (ja) エンジン
JP6317234B2 (ja) エンジン
JP6280067B2 (ja) エンジン
JP5328022B2 (ja) 作業車両搭載用のエンジン装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180222

R150 Certificate of patent or registration of utility model

Ref document number: 6298003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350