JP2016186475A - Position prediction device and position detection device - Google Patents

Position prediction device and position detection device Download PDF

Info

Publication number
JP2016186475A
JP2016186475A JP2015067498A JP2015067498A JP2016186475A JP 2016186475 A JP2016186475 A JP 2016186475A JP 2015067498 A JP2015067498 A JP 2015067498A JP 2015067498 A JP2015067498 A JP 2015067498A JP 2016186475 A JP2016186475 A JP 2016186475A
Authority
JP
Japan
Prior art keywords
operating body
rotation angle
prediction
predetermined time
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015067498A
Other languages
Japanese (ja)
Other versions
JP6194914B2 (en
Inventor
勇一郎 山地
Yuichiro Yamaji
勇一郎 山地
慎一郎 望月
Shinichiro Mochizuki
慎一郎 望月
啓 平林
Hiroshi Hirabayashi
啓 平林
剛 梅原
Takeshi Umehara
剛 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015067498A priority Critical patent/JP6194914B2/en
Priority to DE102016101245.9A priority patent/DE102016101245A1/en
Publication of JP2016186475A publication Critical patent/JP2016186475A/en
Application granted granted Critical
Publication of JP6194914B2 publication Critical patent/JP6194914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/64Digital differential analysers, i.e. computing devices for differentiation, integration or solving differential or integral equations, using pulses representing increments; Other incremental computing devices for solving difference equations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/032Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure affecting incoming signal, e.g. by averaging; gating undesired signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a position prediction device that can accurately predict a position of a continuously-operating operating body at a predetermined time, and a position detection device including the position prediction device.SOLUTION: A position prediction device comprises: an arithmetic processing part that calculates information on the position of an operating body 11 on the basis of a signal related to the position of the operating body 11 output from a detection part 3 that is provided on the operating body 11 to detect an external magnetic field of a magnetic field generation part 2; and a prediction part that predicts the position of the operating body 11 at a predetermined time on the basis of an N-order differential value obtained by differentiating N-times (N is an integer of 1 or more) the position information calculated by the arithmetic processing part by time.SELECTED DRAWING: Figure 1

Description

本発明は、動作体の作動による位置を予測する装置及び当該動作体の作動による位置を検出する装置に関する。   The present invention relates to an apparatus for predicting a position due to operation of an operating body and an apparatus for detecting a position due to operation of the operating body.

従来、工作機械等における機械可動部に取り付けられるサーボモータ等の動作体の回転動作等による物理量の変化を検出することで、当該動作体の位置を検出する位置検出装置が用いられている。この位置検出装置による出力を通じて動作体の回転動作等を連続的に追尾し、動作体にフィードバックすることで、当該動作体の動作制御が行われる。   2. Description of the Related Art Conventionally, a position detecting device that detects the position of an operating body by detecting a change in a physical quantity caused by a rotating operation of an operating body such as a servo motor attached to a machine moving part in a machine tool or the like is used. By continuously tracking the rotational motion of the operating body through the output from the position detecting device and feeding back to the operating body, the motion control of the operating body is performed.

このような位置検出装置としては、磁界を発生する磁界発生部と磁気検出装置とを備えるものが知られている。かかる磁気検出装置は、一般に、磁界発生部により発生する外部磁界を検知し、磁界発生部が相対的に移動した物理量を示すアナログ信号を出力する磁気検出素子と、上記アナログ信号をデジタル信号に変換し、当該デジタル信号に基づいて現在時刻における動作体の位置を算出することのできる演算回路とを備え、磁気検出素子と演算回路とが同一の半導体チップ上に集積されて一体化された集積回路として構成される。   As such a position detection device, a device including a magnetic field generation unit that generates a magnetic field and a magnetic detection device is known. In general, such a magnetic detection device detects an external magnetic field generated by a magnetic field generation unit and outputs an analog signal indicating a physical quantity to which the magnetic field generation unit has relatively moved, and converts the analog signal into a digital signal. And an arithmetic circuit capable of calculating the position of the operating body at the current time based on the digital signal, and an integrated circuit in which the magnetic detection element and the arithmetic circuit are integrated on the same semiconductor chip. Configured as

このような磁気検出装置の演算回路において算出された、現在時刻における動作体の位置情報に基づき、動作体の動作制御が行われる。しかし、磁気検出素子から出力されるアナログ信号をデジタル信号に変換する処理、当該デジタル信号に含まれるノイズを除去するフィルタリング処理、当該デジタル信号に基づいて現在時刻における動作体の位置を算出する処理等により、遅延が生じ得る。そのため、特に高速に作動する動作体を精確に動作制御するために、上記遅延を取り戻すべく、動作体の位置情報から将来時刻における動作体の位置を予測し、当該予測値に基づいて動作体を制御する方法が採用されている。   Based on the position information of the operating body at the current time calculated by the arithmetic circuit of such a magnetic detection device, motion control of the operating body is performed. However, processing for converting an analog signal output from the magnetic detection element into a digital signal, filtering processing for removing noise included in the digital signal, processing for calculating the position of the operating body at the current time based on the digital signal, etc. Can cause a delay. Therefore, in order to accurately control the operating body that operates particularly fast, in order to recover the delay, the position of the operating body at a future time is predicted from the position information of the operating body, and the operating body is determined based on the predicted value. The control method is adopted.

このような方法を実施可能な位置検出装置として、従来、回転体に設けられた磁石の磁界強度を計測する磁気センサ素子、磁気センサ素子の計測値から磁石の回転角度を演算する角度計算手段、角度計算手段の出力する回転角度のデータを記憶しておく記憶手段、記憶手段の記憶内容を統計処理することにより回転状態を推定する回転状態推定手段、回転状態推定手段で推定された回転状態から以降の回転角度を予測する外挿処理手段、及び外挿処理手段で予測した回転角度に基づいて回転角度を算出し出力する出力手段を備える回転検出装置が提案されている(特許文献1参照)。   Conventionally, as a position detection device capable of performing such a method, a magnetic sensor element that measures the magnetic field strength of a magnet provided on a rotating body, an angle calculation means that calculates the rotation angle of the magnet from the measurement value of the magnetic sensor element, Storage means for storing rotation angle data output by the angle calculation means, rotation state estimation means for estimating the rotation state by statistically processing the stored contents of the storage means, and the rotation state estimated by the rotation state estimation means A rotation detection device including an extrapolation processing unit that predicts a subsequent rotation angle and an output unit that calculates and outputs the rotation angle based on the rotation angle predicted by the extrapolation processing unit has been proposed (see Patent Document 1). .

特開2008−116292号公報JP 2008-116292 A

上記特許文献1に記載の回転検出装置において、磁気センサ素子により一定サンプリング周期で現在時刻の角度が出力され、記憶手段に記憶、蓄積される。そして、記憶手段に記憶、蓄積されている現在時刻の角度データに至る過去の角度データに、平均化フィルタ等の処理を行い、予測すべきサンプリング時刻における角度(予測角度)が求められる。   In the rotation detection device described in Patent Document 1, the angle of the current time is output at a constant sampling period by the magnetic sensor element, and is stored and accumulated in the storage means. Then, the past angle data that has been stored and stored in the storage means and reaches the angle data at the current time is processed by an averaging filter or the like, and the angle (predicted angle) at the sampling time to be predicted is obtained.

磁気センサ素子により一定サンプリング周期で出力される、現在時刻の角度データには所定のノイズが含まれる。このようなノイズを含む角度データを用いて、上記特許文献1のように線形外挿処理により予測角度を求めると、予測角度の精度が低下してしまうという問題がある。図9に示す予測モデルから明らかなように、現在時刻Tnの角度θnと過去の時刻Tn-1の角度θn-1とが、それぞれ所定のノイズ(図9中、矢印はノイズ幅を表す。)を含み、それらの角度データを用いて次回サンプリング時刻Tn+1における予測角度θn+1を線形外挿予測する場合、予測角度θn+1に含まれるノイズは角度θn,θn-1よりも増幅されてしまう。 The angle data at the current time that is output by the magnetic sensor element at a constant sampling cycle includes predetermined noise. When the angle data including such noise is used to obtain the predicted angle by linear extrapolation processing as in Patent Document 1, there is a problem that the accuracy of the predicted angle decreases. As is apparent from the predictive model shown in FIG. 9, the angle theta n the current time T n and the angle theta n-1 of the past time T n-1, respectively predetermined noise (in FIG. 9, the arrows noise width And the prediction angle θ n + 1 at the next sampling time T n + 1 is predicted by linear extrapolation using the angle data, the noise included in the prediction angle θ n + 1 is the angle θ n. , Θ n−1 is amplified.

また、上記角度データを用いた平均フィルタ処理等により予測角度を求めようとすると、それによる群遅延が生じてしまい、予測すべきサンプリング時刻を未来に設定する必要がある。予測すべきサンプリング時刻を未来に設定すると、ノイズの増幅を抑制することができず、予測角度の精度が低下してしまうという問題がある。   In addition, if an attempt is made to obtain a predicted angle by means of an average filter process using the angle data, a group delay is caused thereby, and it is necessary to set a sampling time to be predicted in the future. If the sampling time to be predicted is set in the future, there is a problem that noise amplification cannot be suppressed and the accuracy of the prediction angle is lowered.

予測角度の精度を高めるために、磁気センサ素子により出力される角度データについてフィルタ回路等による処理を行い、当該角度データに含まれるノイズを低減することが考えられる。フィルタ回路等による処理によって、角度データに含まれるノイズを低減することは可能である。しかし、フィルタ回路等による処理により、さらなる遅延が生じてしまうため、予測すべきサンプリング時刻をさらに未来に設定せざるを得ない。このように予測すべきサンプリング時刻をさらに未来に設定すると、フィルタ回路等により低減されたノイズが再び増幅して予測角度に含まれてしまうため、結果として予測角度の精度が低下してしまうという問題がある。   In order to increase the accuracy of the predicted angle, it is conceivable that the angle data output from the magnetic sensor element is processed by a filter circuit or the like to reduce noise included in the angle data. It is possible to reduce noise included in the angle data by processing using a filter circuit or the like. However, since further delay occurs due to processing by the filter circuit or the like, the sampling time to be predicted has to be set in the future. If the sampling time to be predicted is set in the future in this way, the noise reduced by the filter circuit or the like is amplified again and included in the prediction angle, resulting in a decrease in accuracy of the prediction angle as a result. There is.

上記課題に鑑み、本発明は、連続的に作動する動作体の所定時刻における位置を精確に予測することのできる位置予測装置及び当該位置予測装置を含む位置検出装置を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a position prediction device capable of accurately predicting a position at a predetermined time of an operating body that operates continuously, and a position detection device including the position prediction device. .

上記課題を解決するために、本発明は、連続的に作動する動作体の所定時刻における位置を予測する装置であって、前記動作体に設けられてなる磁界発生部の外部磁界を検出する検出部から出力される前記動作体の位置に関する信号に基づき、前記動作体の位置情報を算出する演算処理部と、前記演算処理部により算出された前記位置情報を時刻でN回(Nは1以上の整数である。)微分したN次微分値に基づき、前記動作体の前記所定時刻における位置を予測する予測部とを備えることを特徴とする位置予測装置を提供する(発明1)。   In order to solve the above problems, the present invention is an apparatus for predicting the position of a continuously operating operating body at a predetermined time, and detecting an external magnetic field of a magnetic field generating unit provided in the operating body. Based on a signal related to the position of the operating body output from the unit, and an arithmetic processing unit for calculating the position information of the operating body, and the position information calculated by the arithmetic processing unit N times (N is 1 or more) A position predicting device comprising: a predicting unit that predicts the position of the operating body at the predetermined time based on the differentiated Nth order differential value (Invention 1).

上記発明(発明1)によれば、連続的に作動する動作体の位置情報にノイズが含まれている場合であっても、当該位置情報のN次微分値に基づいて所定時刻における動作体の位置を予測することで、当該所定時刻における動作体の位置を精確に予測することができる。   According to the said invention (invention 1), even if it is a case where the noise is contained in the positional information on the action | operation body which operate | moves continuously, based on the Nth derivative value of the said position information, the action | operation body in predetermined time By predicting the position, it is possible to accurately predict the position of the operating body at the predetermined time.

上記発明(発明1)において、前記予測部は、前記N次微分値についてフィルタ処理を行うことで、前記所定時刻における前記N次微分値に相当する値を算出し、当該算出した前記N次微分値に相当する値に基づいて、前記動作体の前記所定時刻における位置を予測するのが好ましい(発明2)。   In the said invention (invention 1), the said prediction part calculates the value equivalent to the said Nth derivative value in the said predetermined time by performing a filter process about the said Nth derivative value, The said calculated Nth derivative It is preferable to predict the position of the operating body at the predetermined time based on a value corresponding to the value (Invention 2).

上記発明(発明1,2)において、前記予測部は、前記動作体の位置情報のうち、最新の位置情報を時刻でN回(Nは1以上の整数である。)微分したN次微分値を少なくとも用いて、前記動作体の前記所定時刻における位置を予測するのが好ましい(発明3)。   In the said invention (invention 1 and 2), the said prediction part differentiates the newest position information among the position information of the said operation body N times (N is an integer greater than or equal to 1) N times (N is an integer greater than or equal to 1). It is preferable to predict the position of the operating body at the predetermined time by using at least (Invention 3).

上記発明(発明1〜3)において、前記動作体の位置情報が、角度情報であるのが好ましく(発明4)、上記発明(発明1〜4)において、前記予測部は、前記位置情報としての角度情報を時刻で1回微分した角速度情報に基づき、前記動作体の前記所定時刻における位置を予測してもよいし(発明5)、前記位置情報としての角度情報を時刻で2回微分した角加速度情報に基づき、前記動作体の前記所定時刻における位置を予測してもよい(発明6)。   In the said invention (invention 1-3), it is preferable that the positional information on the said operation body is angle information (invention 4), In the said invention (invention 1-4), the said estimation part is as said positional information. Based on the angular velocity information obtained by differentiating the angle information once in time, the position of the operating body at the predetermined time may be predicted (invention 5), or the angle information obtained by differentiating the angle information as the position information twice in time. Based on the acceleration information, the position of the operating body at the predetermined time may be predicted (invention 6).

また、本発明は、上記発明(発明1〜6)に係る位置予測装置と、前記動作体に設けられてなる前記磁界発生部に対向して配置され、前記動作体の位置を検出可能な前記検出部とを備えることを特徴とする位置検出装置を提供する(発明7)。   Moreover, this invention is arrange | positioned facing the said magnetic field generation | occurrence | production part provided in the said operation body and the position prediction apparatus which concerns on the said invention (invention 1-6), The said position which can detect the said operation body Provided is a position detection device comprising a detection unit (Invention 7).

上記発明(発明7)において、前記検出部は、磁気抵抗効果素子を含むことができ(発明8)、かかる発明(発明7,8)において、前記動作体が、所定の回転軸を中心とし、前記検出部に対して相対的に回転する回転動作体であるのが好ましい(発明9)。   In the above invention (Invention 7), the detection unit may include a magnetoresistive effect element (Invention 8). In the invention (Inventions 7 and 8), the operating body is centered on a predetermined rotation axis. It is preferable that it is a rotary action body which rotates relatively with respect to the said detection part (invention 9).

本発明によれば、連続的に作動する動作体の所定時刻における位置を精確に予測することのできる位置予測装置及び当該位置予測装置を含む位置検出装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the position detection apparatus which can predict the position in the predetermined time of the operating body which act | operates continuously accurately can be provided, and the position detection apparatus containing the said position prediction apparatus can be provided.

図1は、本発明の一実施形態に係る回転角度検出装置の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a rotation angle detection device according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る回転角度検出装置の概略構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of the rotation angle detection device according to the embodiment of the present invention. 図3は、本発明の一実施形態における磁気検出装置の概略構成を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of a magnetic detection device according to an embodiment of the present invention. 図4は、本発明の一実施形態における検出部の回路構成を概略的に示す回路図である。FIG. 4 is a circuit diagram schematically showing a circuit configuration of the detection unit in one embodiment of the present invention. 図5は、本発明の一実施形態における磁気検出素子としてのMR素子の概略構成を示す斜視図である。FIG. 5 is a perspective view showing a schematic configuration of an MR element as a magnetic detection element in one embodiment of the present invention. 図6は、実施例1におけるシミュレーション結果を示すグラフである。FIG. 6 is a graph showing a simulation result in the first embodiment. 図7は、比較例1におけるシミュレーション結果を示すグラフである。FIG. 7 is a graph showing a simulation result in Comparative Example 1. 図8は、比較例2におけるシミュレーション結果を示すグラフである。FIG. 8 is a graph showing simulation results in Comparative Example 2. 図9は、ノイズを含む角度データを用いた線形予測モデルにおいて予測値に含まれるノイズが増幅することを説明するためのグラフである。FIG. 9 is a graph for explaining that noise included in a prediction value is amplified in a linear prediction model using angle data including noise.

本発明の実施の形態について、図面を参照しながら詳細に説明する。図1は、本実施形態に係る回転角度検出装置の概略構成を示す斜視図であり、図2は、本実施形態に係る回転角度検出装置の概略構成を示す側面図であり、図3は、本実施形態における磁気検出装置の概略構成を示すブロック図であり、図4は、本実施形態における検出部の回路構成を概略的に示す回路図であり、図5は、本実施形態における磁気検出素子としてのMR素子の概略構成を示す斜視図である。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view illustrating a schematic configuration of a rotation angle detection device according to the present embodiment, FIG. 2 is a side view illustrating a schematic configuration of the rotation angle detection device according to the present embodiment, and FIG. FIG. 4 is a block diagram illustrating a schematic configuration of a magnetic detection device according to the present embodiment, FIG. 4 is a circuit diagram schematically illustrating a circuit configuration of a detection unit according to the present embodiment, and FIG. 5 illustrates magnetic detection according to the present embodiment. It is a perspective view which shows schematic structure of the MR element as an element.

図1及び図2に示すように、本実施形態に係る回転角度検出装置1は、磁石2と、磁石2に対向して配置される磁気検出装置3とを備える。磁石2は、回転軸Cを中心として連続的に回転する軸部11(例えばサーボモータ等のモータ軸等)の軸方向の一端部に固定されており、軸部11の回転に連動して、回転軸Cを中心として回転する。   As shown in FIG. 1 and FIG. 2, the rotation angle detection device 1 according to the present embodiment includes a magnet 2 and a magnetic detection device 3 disposed to face the magnet 2. The magnet 2 is fixed to one end in the axial direction of a shaft portion 11 (for example, a motor shaft such as a servomotor) that rotates continuously around the rotation axis C, and in conjunction with the rotation of the shaft portion 11, It rotates around the rotation axis C.

磁石2は、回転軸Cに直交する端面21と、回転軸Cを含む仮想平面を中心として対称に配置されたN極22及びS極23とを有し、回転軸Cに直交する方向(S極23からN極22に向かう方向であって、N極22とS極23との境界に直交する方向)に磁化されている。磁石2は、それが有する磁化に基づいて磁界を発生する。   The magnet 2 has an end face 21 orthogonal to the rotation axis C, and N poles 22 and S poles 23 arranged symmetrically about a virtual plane including the rotation axis C, and a direction orthogonal to the rotation axis C (S It is magnetized in a direction from the pole 23 toward the N pole 22 and in a direction perpendicular to the boundary between the N pole 22 and the S pole 23. The magnet 2 generates a magnetic field based on the magnetization it has.

磁気検出装置3は、磁石2の端面21に対向するように配置されており、磁石2による磁界を検出する。本実施形態に係る回転角度検出装置1は、磁気検出装置3の出力に基づいて磁石2の回転角度、すなわち回転移動する軸部11の回転角度を検出することができる。   The magnetic detection device 3 is disposed so as to face the end face 21 of the magnet 2 and detects a magnetic field generated by the magnet 2. The rotation angle detection device 1 according to the present embodiment can detect the rotation angle of the magnet 2, that is, the rotation angle of the shaft portion 11 that rotates and moves based on the output of the magnetic detection device 3.

図3に示すように、磁気検出装置3は、磁石2(図1、図2参照)の磁界を検出する検出部31と、検出部31から出力されるアナログ信号をデジタル信号に変換するA/D(アナログ−デジタル)変換部32、A/D変換部32によりデジタル変換されたデジタル信号を演算処理し、回転角度θを算出する演算処理部33、及び演算処理部33により算出された回転角度θを1回微分するとともに、当該微分値、すなわち角速度ωに基づいて次回サンプリング時刻Tn+1における回転角度θn+1を予測する予測部34を有する。本実施形態においては、少なくとも演算処理部33及び予測部34により、連続的に作動する動作体(例えば連続的に回転するサーボモータのモータ軸等)の位置(回転位置)を予測可能な位置予測装置が構成される。 As shown in FIG. 3, the magnetic detection device 3 includes a detection unit 31 that detects a magnetic field of the magnet 2 (see FIGS. 1 and 2), and an A / A that converts an analog signal output from the detection unit 31 into a digital signal. An arithmetic processing unit 33 for calculating a rotation angle θ by performing arithmetic processing on the digital signal digitally converted by the D (analog-digital) conversion unit 32 and the A / D conversion unit 32, and a rotation angle calculated by the arithmetic processing unit 33 It has a prediction unit 34 that differentiates θ once and predicts the rotation angle θ n + 1 at the next sampling time T n + 1 based on the differential value, that is, the angular velocity ω. In the present embodiment, position prediction that can predict the position (rotational position) of a continuously operating operating body (for example, a motor shaft of a servo motor that rotates continuously) by at least the arithmetic processing unit 33 and the prediction unit 34. The device is configured.

図4に示すように、検出部31は、第1の検出部31A及び第2の検出部31Bを含み、第1及び第2の検出部31A,31Bのそれぞれは、少なくとも1つの磁気検出素子を含む。検出部31は、所定のサンプリング周期(例えば、50〜100μsec程度)で、磁石2の磁界の方向が所定の方向に対するなす角度(回転角度)に関する検出信号(アナログ信号)を生成し、出力する。   As shown in FIG. 4, the detection unit 31 includes a first detection unit 31A and a second detection unit 31B, and each of the first and second detection units 31A and 31B includes at least one magnetic detection element. Including. The detection unit 31 generates and outputs a detection signal (analog signal) regarding an angle (rotation angle) formed by the direction of the magnetic field of the magnet 2 with respect to the predetermined direction at a predetermined sampling period (for example, about 50 to 100 μsec).

第1及び第2の検出部31A,31Bのそれぞれは、少なくとも1つの磁気検出素子として、直列に接続された一対の磁気検出素子を含んでいてもよい。この場合において、第1及び第2の検出部31A,31Bのそれぞれは、直列に接続された第1の一対の磁気検出素子と、直列に接続された第2の一対の磁気検出素子とを含むホイートストンブリッジ回路を有する。   Each of the first and second detection units 31A and 31B may include a pair of magnetic detection elements connected in series as at least one magnetic detection element. In this case, each of the first and second detection units 31A and 31B includes a first pair of magnetic detection elements connected in series and a second pair of magnetic detection elements connected in series. It has a Wheatstone bridge circuit.

第1の検出部31Aが有するホイートストンブリッジ回路311は、電源ポートV1と、グランドポートG1と、2つの出力ポートE11,E12と、直列に接続された第1の一対の磁気検出素子R11,R12と、直列に接続された第2の一対の磁気検出素子R13,R14とを含む。磁気検出素子R11,R13の各一端は、電源ポートV1に接続されている。磁気検出素子R11の他端は、磁気検出素子R12の一端と出力ポートE11とに接続されている。磁気検出素子R13の他端は、磁気検出素子R14の一端と出力ポートE12とに接続されている。磁気検出素子R12,R14の各他端は、グランドポートG1に接続されている。電源ポートV1には、所定の大きさの電源電圧が印加され、グランドポートG1はグランドに接続される。   The Wheatstone bridge circuit 311 included in the first detection unit 31A includes a power supply port V1, a ground port G1, two output ports E11 and E12, and a first pair of magnetic detection elements R11 and R12 connected in series. , And a second pair of magnetic detection elements R13 and R14 connected in series. One end of each of the magnetic detection elements R11 and R13 is connected to the power supply port V1. The other end of the magnetic detection element R11 is connected to one end of the magnetic detection element R12 and the output port E11. The other end of the magnetic detection element R13 is connected to one end of the magnetic detection element R14 and the output port E12. The other ends of the magnetic detection elements R12 and R14 are connected to the ground port G1. A power supply voltage having a predetermined magnitude is applied to the power supply port V1, and the ground port G1 is connected to the ground.

第2の検出部31Bが有するホイートストンブリッジ回路312は、第1の検出部31Aのホイートストンブリッジ回路311と同様の構成を有し、電源ポートV2と、グランドポートG2と、2つの出力ポートE21,E22と、直列に接続された第1の一対の磁気検出素子R21,R22と、直列に接続された第2の一対の磁気検出素子R23,R24とを含む。磁気検出素子R21,R23の各一端は、電源ポートV2に接続されている。磁気検出素子R21の他端は、磁気検出素子R22の一端と出力ポートE21とに接続されている。磁気検出素子R23の他端は、磁気検出素子R24の一端と出力ポートE22とに接続されている。磁気検出素子R22,R24の各他端は、グランドポートG2に接続されている。電源ポートV2には、所定の大きさの電源電圧が印加され、グランドポートG2はグランドに接続される。   The Wheatstone bridge circuit 312 included in the second detection unit 31B has the same configuration as the Wheatstone bridge circuit 311 of the first detection unit 31A, and includes a power supply port V2, a ground port G2, and two output ports E21 and E22. And a first pair of magnetic detection elements R21, R22 connected in series, and a second pair of magnetic detection elements R23, R24 connected in series. One end of each of the magnetic detection elements R21 and R23 is connected to the power supply port V2. The other end of the magnetic detection element R21 is connected to one end of the magnetic detection element R22 and the output port E21. The other end of the magnetic detection element R23 is connected to one end of the magnetic detection element R24 and the output port E22. The other ends of the magnetic detection elements R22 and R24 are connected to the ground port G2. A power supply voltage having a predetermined magnitude is applied to the power supply port V2, and the ground port G2 is connected to the ground.

本実施形態において、ホイートストンブリッジ回路311,312に含まれるすべての磁気検出素子R11〜R14,R21〜R24として、TMR素子、GMR素子等のMR素子を用いることができ、特にTMR素子を用いるのが好ましい。TMR素子、GMR素子は、磁化方向が固定された磁化固定層と、印加される磁界の方向に応じて磁化方向が変化する自由層と、磁化固定層及び自由層の間に配置される非磁性層とを有する。   In the present embodiment, MR elements such as TMR elements and GMR elements can be used as all the magnetic detection elements R11 to R14 and R21 to R24 included in the Wheatstone bridge circuits 311 and 312, and in particular, TMR elements are used. preferable. The TMR element and the GMR element are a magnetization fixed layer whose magnetization direction is fixed, a free layer whose magnetization direction changes according to the direction of an applied magnetic field, and a nonmagnetic layer disposed between the magnetization fixed layer and the free layer. And having a layer.

具体的には、図5に示すように、MR素子は、複数の下部電極41と、複数のMR膜50と、複数の上部電極42とを有する。複数の下部電極41は、基板(図示せず)上に設けられている。各下部電極41は細長い形状を有する。下部電極41の長手方向に隣接する2つの下部電極41の間には、間隙が形成されている。下部電極41の上面における、長手方向の両端近傍にそれぞれMR膜50が設けられている。MR膜50は、下部電極41側から順に積層された自由層51、非磁性層52、磁化固定層53及び反強磁性層54を含む。自由層51は、下部電極41に電気的に接続されている。反強磁性層54は、反強磁性材料により構成され、磁化固定層53との間で交換結合を生じさせることで、磁化固定層53の磁化の方向を固定する役割を果たす。複数の上部電極42は、複数のMR膜50上に設けられている。各上部電極42は細長い形状を有し、下部電極41の長手方向に隣接する2つの下部電極41上に配置され、隣接する2つのMR膜50の反強磁性層54同士を電気的に接続する。なお、MR膜50は、上部電極42側から順に自由層51、非磁性層52、磁化固定層53及び反強磁性層54が積層されてなる構成を有していてもよい。   Specifically, as shown in FIG. 5, the MR element has a plurality of lower electrodes 41, a plurality of MR films 50, and a plurality of upper electrodes 42. The plurality of lower electrodes 41 are provided on a substrate (not shown). Each lower electrode 41 has an elongated shape. A gap is formed between two lower electrodes 41 adjacent to each other in the longitudinal direction of the lower electrode 41. MR films 50 are provided in the vicinity of both ends in the longitudinal direction on the upper surface of the lower electrode 41. The MR film 50 includes a free layer 51, a nonmagnetic layer 52, a magnetization fixed layer 53, and an antiferromagnetic layer 54, which are sequentially stacked from the lower electrode 41 side. The free layer 51 is electrically connected to the lower electrode 41. The antiferromagnetic layer 54 is made of an antiferromagnetic material and plays a role of fixing the magnetization direction of the magnetization fixed layer 53 by generating exchange coupling with the magnetization fixed layer 53. The plurality of upper electrodes 42 are provided on the plurality of MR films 50. Each upper electrode 42 has an elongated shape, is disposed on two lower electrodes 41 adjacent to each other in the longitudinal direction of the lower electrode 41, and electrically connects the antiferromagnetic layers 54 of the two adjacent MR films 50 to each other. . The MR film 50 may have a configuration in which a free layer 51, a nonmagnetic layer 52, a magnetization fixed layer 53, and an antiferromagnetic layer 54 are stacked in this order from the upper electrode 42 side.

TMR素子においては、非磁性層52はトンネルバリア層である。GMR素子においては、非磁性層52は非磁性導電層である。TMR素子、GMR素子において、自由層51の磁化の方向が磁化固定層53の磁化の方向に対してなす角度に応じて抵抗値が変化し、この角度が0°(互いの磁化方向が平行)のときに抵抗値が最小となり、180°(互いの磁化方向が反平行)のときに抵抗値が最大となる。   In the TMR element, the nonmagnetic layer 52 is a tunnel barrier layer. In the GMR element, the nonmagnetic layer 52 is a nonmagnetic conductive layer. In the TMR element and the GMR element, the resistance value changes according to the angle formed by the magnetization direction of the free layer 51 with respect to the magnetization direction of the magnetization fixed layer 53, and this angle is 0 ° (the magnetization directions of each other are parallel). The resistance value is minimized at 180 °, and the resistance value is maximized at 180 ° (mutual magnetization directions are antiparallel).

図4において、磁気検出素子R11〜R14,R21〜R24の磁化固定層の磁化の方向を塗りつぶした矢印で表し、自由層の磁化の方向を白抜きの矢印で表す。第1の検出部31Aにおいて、磁気検出素子R11,R14の磁化固定層の磁化の方向は第1の方向D1に平行な方向であり、磁気検出素子R12,R13の磁化固定層の磁化の方向は、磁気検出素子R11,R14の磁化固定層の磁化の方向と反平行方向である。第1の検出部31Aにおいて、磁石2の磁界の第1の方向D1の成分の強度に応じて、出力ポートE11,E12の電位差が変化し、磁石2の磁界の第1の方向D1の強度を表す信号が出力される。   In FIG. 4, the magnetization directions of the magnetization fixed layers of the magnetic detection elements R11 to R14 and R21 to R24 are represented by solid arrows, and the magnetization directions of the free layers are represented by white arrows. In the first detection unit 31A, the magnetization direction of the magnetization fixed layer of the magnetic detection elements R11 and R14 is a direction parallel to the first direction D1, and the magnetization direction of the magnetization fixed layer of the magnetic detection elements R12 and R13 is The magnetization direction of the magnetization fixed layer of the magnetic detection elements R11 and R14 is antiparallel to the magnetization direction. In the first detection unit 31A, the potential difference between the output ports E11 and E12 changes according to the strength of the component in the first direction D1 of the magnetic field of the magnet 2, and the strength of the magnetic field of the magnet 2 in the first direction D1 is changed. A representative signal is output.

第2の検出部31Bにおいて、磁気検出素子R21,R24の磁化固定層の磁化の方向は第2の方向D2(第1の方向D1に直交する方向)であり、磁気検出素子R22,R23の磁化固定層の磁化の方向は、磁気検出素子R21,R24の磁化固定層の磁化の方向と反平行方向である。第2の検出部31Bにおいて、磁石2の磁界の第2の方向D2の成分の強度に応じて、出力ポートE21,E22の電位差が変化し、磁石2の磁界の第2の方向D2の強度を表す信号が出力される。   In the second detection unit 31B, the magnetization direction of the magnetization fixed layers of the magnetic detection elements R21 and R24 is the second direction D2 (the direction orthogonal to the first direction D1), and the magnetizations of the magnetic detection elements R22 and R23 The magnetization direction of the fixed layer is antiparallel to the magnetization direction of the magnetization fixed layers of the magnetic detection elements R21 and R24. In the second detection unit 31B, the potential difference between the output ports E21 and E22 changes according to the strength of the component in the second direction D2 of the magnetic field of the magnet 2, and the strength of the magnetic field of the magnet 2 in the second direction D2 is changed. A representative signal is output.

差分検出器35は、出力ポートE11,E12の電位差に対応する信号を第1の信号S1としてA/D変換部32に出力する。差分検出器36は、出力ポートE21,E22の電位差に対応する信号を第2の信号S2としてA/D変換部32に出力する。   The difference detector 35 outputs a signal corresponding to the potential difference between the output ports E11 and E12 to the A / D converter 32 as the first signal S1. The difference detector 36 outputs a signal corresponding to the potential difference between the output ports E21 and E22 to the A / D converter 32 as the second signal S2.

図4に示すように、第1の検出部31Aにおける磁気検出素子R11〜R14の磁化固定層の磁化方向と、第2の検出部31Bにおける磁気検出素子R21〜R24の磁化固定層の磁化方向とは、互いに直交する。この場合、第1の信号S1の波形は、回転角度θに依存したコサイン(Cosine)波形になり、第2の信号S2の波形は、回転角度θに依存したサイン(Sine)波形になる。本実施形態において、第2の信号S2の位相は、第1の信号S1の位相に対して信号周期の1/4、すなわちπ/2(90°)異なっている。   As shown in FIG. 4, the magnetization direction of the magnetization fixed layer of the magnetic detection elements R11 to R14 in the first detection unit 31A, and the magnetization direction of the magnetization fixed layer of the magnetic detection elements R21 to R24 in the second detection unit 31B Are orthogonal to each other. In this case, the waveform of the first signal S1 is a cosine waveform depending on the rotation angle θ, and the waveform of the second signal S2 is a sine waveform depending on the rotation angle θ. In the present embodiment, the phase of the second signal S2 differs from the phase of the first signal S1 by ¼ of the signal period, that is, π / 2 (90 °).

A/D変換部32は、検出部31から所定のサンプリング周期で出力される、第1及び第2の信号(回転角度θに関するアナログ信号)S1,S2をデジタル信号に変換し、当該デジタル信号が演算処理部33に入力される。   The A / D conversion unit 32 converts the first and second signals (analog signals related to the rotation angle θ) S1 and S2 output from the detection unit 31 at a predetermined sampling period into digital signals, and the digital signals are Input to the arithmetic processing unit 33.

演算処理部33は、A/D変換部32によりアナログ信号から変換されたデジタル信号についての演算処理を行い、磁石2の回転角度θを算出する。この演算処理部33は、例えば、マイクロコンピュータ等により構成される。演算処理部33により算出された磁石2の回転角度θは、演算処理部33に含まれる記憶部(図示せず)に記憶される。   The arithmetic processing unit 33 performs arithmetic processing on the digital signal converted from the analog signal by the A / D conversion unit 32 and calculates the rotation angle θ of the magnet 2. The arithmetic processing unit 33 is configured by, for example, a microcomputer. The rotation angle θ of the magnet 2 calculated by the arithmetic processing unit 33 is stored in a storage unit (not shown) included in the arithmetic processing unit 33.

磁石2の回転角度θは、例えば下記式で示すアークタンジェント計算によって算出され得る。
θ=atan(S1/S2)
The rotation angle θ of the magnet 2 can be calculated by, for example, arc tangent calculation represented by the following formula.
θ = atan (S1 / S2)

なお、360°の範囲内で、上記式における回転角度θの解には、180°異なる2つの値がある。しかし、第1の信号S1及び第2の信号S2の正負の組み合わせにより、回転角度θの真の値が、上記式における2つの解のいずれかであるかを判別することができる。すなわち、第1の信号S1が正の値のときは、回転角度θは0°よりも大きく180°よりも小さい。第1の信号S1が負の値のときは、回転角度θは180°よりも大きく360°よりも小さい。第2の信号S2が正の値のときは、回転角度θは0°以上90°未満及び270°より大きく360°以下の範囲内である。第2の信号S2が負の値のときは、回転角度θは90°よりも大きく270°よりも小さい。演算処理部33は、上記式と、第1の信号S1及び第2の信号S2の正負の組み合わせの判定とにより、360°の範囲内で回転角度θを算出する。   Note that, within the range of 360 °, the solution of the rotation angle θ in the above formula has two values that differ by 180 °. However, it is possible to determine whether the true value of the rotation angle θ is one of the two solutions in the above expression, by the positive / negative combination of the first signal S1 and the second signal S2. That is, when the first signal S1 is a positive value, the rotation angle θ is greater than 0 ° and smaller than 180 °. When the first signal S1 is a negative value, the rotation angle θ is greater than 180 ° and smaller than 360 °. When the second signal S2 is a positive value, the rotation angle θ is in the range of 0 ° to less than 90 ° and greater than 270 ° to 360 °. When the second signal S2 has a negative value, the rotation angle θ is greater than 90 ° and smaller than 270 °. The arithmetic processing unit 33 calculates the rotation angle θ within the range of 360 ° based on the above formula and the determination of the positive / negative combination of the first signal S1 and the second signal S2.

予測部34は、演算処理部33により算出され、記憶部に記憶された磁石2の回転角度θを1回微分した1次微分値に基づいて、次回サンプリング時刻Tn+1における磁石2の回転角度θn+1を予測する。具体的には、予測部34は、記憶部に記憶された磁石2の回転角度θを1回微分した角速度ωを算出し、当該角速度ωについて、例えば移動平均フィルタ処理等のフィルタ処理を行うことで、次回サンプリング時刻Tn+1における角速度ωn+1の予測値を算出する。そして、当該角速度ωn+1の予測値を積分して、次回サンプリング時刻Tn+1における磁石2の回転角度θn+1の予測値を算出する。 The prediction unit 34 calculates the rotation of the magnet 2 at the next sampling time T n + 1 based on the primary differential value obtained by differentiating the rotation angle θ of the magnet 2 once calculated by the arithmetic processing unit 33 and stored in the storage unit. Predict the angle θ n + 1 . Specifically, the prediction unit 34 calculates an angular velocity ω obtained by differentiating the rotation angle θ of the magnet 2 stored in the storage unit once, and performs a filtering process such as a moving average filter process on the angular velocity ω. Thus, the predicted value of the angular velocity ω n + 1 at the next sampling time T n + 1 is calculated. Then, the predicted value of the angular velocity ω n + 1 is integrated to calculate the predicted value of the rotation angle θ n + 1 of the magnet 2 at the next sampling time T n + 1 .

上記構成を有する回転角度検出装置1において、軸部11の回転に伴い磁石2が回転すると、磁石2の磁界が変化する。その磁界の変化に応じ、検出部31の磁気検出素子R11〜R14,R21〜R24の抵抗値が変化し、第1の検出部31A及び第2の検出部31Bのそれぞれの出力ポートE11,E12,E21,E22の電位差に応じ、所定のサンプリング周期で第1の方向D1及び第2の方向D2における磁石2の磁界強度を表す信号S1,S2が差分検出器35,36から出力される。そして、差分検出器35,36から出力された第1の信号S1及び第2の信号S2が出力され、A/D変換部32によりデジタル信号に変換される。その後、演算処理部33により、磁石2の回転角度θ(現在時刻nにおける回転角度θn)が算出される。 In the rotation angle detection apparatus 1 having the above configuration, when the magnet 2 rotates with the rotation of the shaft portion 11, the magnetic field of the magnet 2 changes. In accordance with the change in the magnetic field, the resistance values of the magnetic detection elements R11 to R14 and R21 to R24 of the detection unit 31 change, and the output ports E11, E12, and the second detection unit 31B of the first detection unit 31A and the second detection unit 31B, respectively. In accordance with the potential difference between E21 and E22, signals S1 and S2 representing the magnetic field strength of the magnet 2 in the first direction D1 and the second direction D2 are output from the difference detectors 35 and 36 at a predetermined sampling period. Then, the first signal S1 and the second signal S2 output from the difference detectors 35 and 36 are output, and are converted into digital signals by the A / D converter 32. Thereafter, the calculation processing unit 33 calculates the rotation angle θ of the magnet 2 (the rotation angle θ n at the current time n ).

本実施形態に係る回転角度検出装置1において、検出部31からの出力をアナログ信号として読み出す処理(すなわち、第1及び第2の検出部31A,31Bの出力ポートE11,E12,E21,E22の電位差に対応して差分検出器35,36から第1及び第2の信号S1,S2を出力する処理)、A/D変換部32にて当該第1及び第2の信号S1,S2をデジタル信号に変換する処理等により遅延が生じる。この遅延を取り戻すために、予測部34による回転角度の予測が重要となる。   In the rotation angle detection device 1 according to the present embodiment, a process of reading the output from the detection unit 31 as an analog signal (that is, the potential difference between the output ports E11, E12, E21, and E22 of the first and second detection units 31A and 31B) Corresponding to the processing of outputting the first and second signals S1, S2 from the difference detectors 35, 36), the A / D converter 32 converts the first and second signals S1, S2 into digital signals. A delay occurs due to the conversion process or the like. In order to recover this delay, the prediction of the rotation angle by the prediction unit 34 is important.

ここで、演算処理部33により算出される磁石の回転角度θには、所定のノイズが含まれる。このノイズを含む回転角度θに基づいて次回サンプリング時刻Tn+1における回転角度θn+1を予測すると、回転角度θn+1の予測値に含まれるノイズが増幅してしまい、正確な予測が困難となる。 Here, the magnet rotation angle θ calculated by the arithmetic processing unit 33 includes predetermined noise. If the rotation angle θ n + 1 at the next sampling time T n + 1 is predicted based on the rotation angle θ including this noise, the noise included in the predicted value of the rotation angle θ n + 1 is amplified, and accurate prediction is performed. It becomes difficult.

この点、上記サンプリング周期のうちの極めて短時間(例えば、現在サンプリング時刻Tnから遡って3サンプリング周期以下程度)においては、磁石2の回転運動を、等速回転運動であると仮定することができる。すなわち、次回サンプリング時刻Tn+1における角速度ωn+1は、現在サンプリング時刻Tnにおける角速度ωnと実質的に同一であるとの仮定が成立する。そのため、本実施形態において、予測部34は、極めて短時間において算出された回転角度θ(例えば、現在サンプリング時刻Tnから遡って3サンプリング周期以下程度に算出された回転角度θn〜θn-3)を1回微分した1次微分値である角速度ωn〜ωn-3を算出し、当該角速度ωn〜ωn-3に基づいて次回サンプリング時刻Tn+1の角速度ωn+1を予測する。そして、予測部34は、当該角速度ωn+1の予測値から回転角度θn+1を算出する。これにより、後述する実施例からも明らかなように、回転角度θに含まれるノイズが増幅されることなく、次回サンプリング時刻Tn+1における回転角度θn+1の正確な予測が可能となる。 In this regard, it is assumed that the rotational motion of the magnet 2 is a constant-speed rotational motion in a very short time (for example, about 3 sampling cycles or less retroactively from the current sampling time T n ) in the sampling cycle. it can. That is, it is assumed that the angular velocity ω n + 1 at the next sampling time T n + 1 is substantially the same as the angular velocity ω n at the current sampling time T n . Therefore, in the present embodiment, the prediction unit 34, the rotation angle calculated in a very short time theta (e.g., the rotation angle theta n the currently calculated degree 3 sampling periods below retroactively from the sampling time T n through? N- 3) calculate the angular velocity ω n n-3 is a first-order differential value obtained by differentiating once the angular velocity omega n + 1 of the next on the basis of the angular velocity ω n n-3 sampling time T n + 1 Predict. Then, the prediction unit 34 calculates the rotation angle θ n + 1 from the predicted value of the angular velocity ω n + 1 . Thus, as is clear from the examples described below, without noise included in the rotation angle theta is amplified, it is possible to accurately predict the rotation angle theta n + 1 at the next sampling time T n + 1 .

予測部34は、例えば、現在サンプリング時刻Tnから遡って3サンプリング周期以下の回転角度θn〜θn-3をそれぞれ1回微分した角速度ωn〜ωn-3を用いた移動平均フィルタ処理により、次回サンプリング時刻Tn+1の角速度ωn+1を予測し、当該角速度ωn+1の予測値から、次回サンプリング時刻Tn+1の回転角度θn+1を算出する。このようにして算出された回転角度θn+1は、軸部11を含む動作体(例えばモータ軸を含むサーボモータ等)の駆動回路等(図示せず)に入力され、当該動作体の動作制御が行われる。 The prediction unit 34, for example, uses moving average filter processing using angular velocities ω n to ω n-3 obtained by differentiating rotation angles θ n to θ n-3 that are three sampling periods or less from the current sampling time T n. by predicts an angular velocity omega n + 1 of the next sampling time T n + 1, from the prediction value of the angular velocity omega n + 1, to calculate the rotation angle theta n + 1 of the next sampling time T n + 1. The rotation angle θ n + 1 calculated in this way is input to a drive circuit or the like (not shown) of an operating body including the shaft portion 11 (for example, a servo motor including a motor shaft) and the operation of the operating body Control is performed.

上述したように、本実施形態に係る回転角度検出装置1によれば、磁石2の回転に伴い算出される、所定のノイズを含む回転角度θを1回微分した角速度ωに基づいて次回サンプリング時刻Tn+1の角速度ωn+1及びそれから算出される回転角度θn+1を予測するため、次回サンプリング時刻Tn+1における回転角度θn+1を精確に予測することができる。 As described above, according to the rotation angle detection device 1 according to the present embodiment, the next sampling time is calculated based on the angular velocity ω obtained by differentiating the rotation angle θ including the predetermined noise calculated once with the rotation of the magnet 2. to predict the rotation angle theta n + 1 calculated T n + 1 of the angular velocity omega n + 1 and from, it is possible to accurately predict the rotation angle theta n + 1 at the next sampling time T n + 1.

また、本実施形態に係る回転角度検出装置1によれば、回転角度θに含まれるノイズを除去することなくそのまま1回微分した角速度ωに基づいて次回サンプリング時刻Tn+1の回転角度θn+1を予測することで、回転角度θのフィルタリング処理によるさらなる遅延が生じることがない。そのため、当該遅延による次回サンプリング時刻Tn+1の回転角度θn+1に含まれるノイズが増幅するのを抑制することができ、次回サンプリング時刻Tn+1の回転角度θn+1を精確に予測することができる。 Further, according to the rotation angle detection device 1 according to the present embodiment, the rotation angle of the next sampling time T n + 1 on the basis of the angular velocity ω obtained by differentiating it once without removing the noise included in the rotational angle theta theta n By predicting +1 , there is no further delay due to the filtering process of the rotation angle θ. Therefore, it is possible to noise included in the rotational angle theta n + 1 of the next by the delay sampling time T n + 1 can be inhibited from amplifying, precise rotation angle theta n + 1 of the next sampling time T n + 1 Can be predicted.

さらに、本実施形態に係る回転角度検出装置1によれば、次回サンプリング時刻Tn+1における回転角度θn+1を精確に予測するために、現在サンプリング時刻Tnの回転角度θnと、当該現在サンプリング時刻Tnから遡って、例えば3サンプリング時刻(Tn-1,Tn-2,Tn-3)に演算処理部33にて算出された回転角度θn〜θn-3とを用いればよいため、当該回転角度θn+1の予測のために必要な情報量(サンプル数)を少なくすることができるという効果も奏し得る。 Furthermore, according to the rotation angle detection device 1 according to the present embodiment, in order to accurately predict the rotation angle theta n + 1 at the next sampling time T n + 1, the rotation angle theta n of the current sampling time T n, From the current sampling time T n , for example, rotation angles θ n to θ n-3 calculated by the arithmetic processing unit 33 at three sampling times (T n−1 , T n−2 , T n−3 ) Therefore, the amount of information (number of samples) required for predicting the rotation angle θ n + 1 can be reduced.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

上記実施形態において、予測部34は、回転角度θを1回微分した角速度ωに基づいて、次回サンプリング時刻Tn+1における角速度ωn+1の予測値を算出し、当該角速度ωn+1の予測値から回転角度θn+1の予測値を算出しているが、本発明はこのような態様に限定されるものではない。例えば、予測部34は、回転角度θを2回微分した角加速度αに基づいて、次回サンプリング時刻Tn+1における角加速度αn+1の予測値を算出し、当該角加速度αn+1の予測値から回転角度θn+1の予測値を算出してもよい。すなわち、予測部34は、回転角度θをN回(Nは1以上の整数である。)微分したN次微分値に基づいて、次回サンプリング時刻Tn+1における回転角度θn+1の予測値を算出してもよい。 In the above embodiment, the prediction unit 34 calculates a predicted value of the angular velocity ω n + 1 at the next sampling time T n + 1 based on the angular velocity ω obtained by differentiating the rotation angle θ once, and the angular velocity ω n + 1. Although the predicted value of the rotation angle θ n + 1 is calculated from the predicted value, the present invention is not limited to such a mode. For example, the prediction unit 34 calculates a predicted value of the angular acceleration α n + 1 at the next sampling time T n + 1 based on the angular acceleration α obtained by differentiating the rotation angle θ twice, and the angular acceleration α n + 1. The predicted value of the rotation angle θ n + 1 may be calculated from the predicted value. That is, the prediction unit 34 predicts the rotation angle θ n + 1 at the next sampling time T n + 1 based on the N-th order differential value obtained by differentiating the rotation angle θ N times (N is an integer equal to or greater than 1). A value may be calculated.

上記実施形態において、磁界発生部として軸部11に固定された磁石2を用いているが、本発明はこのような態様に限定されるものではなく、例えば、少なくとも1組のN極及びS極が交互にリング状に配置された磁石を磁界発生部として用い、当該磁石の外周部に磁気検出装置を対向配置させてなるものであってもよいし、直線状スケールを磁界発生部として用いてもよい。   In the above embodiment, the magnet 2 fixed to the shaft portion 11 is used as the magnetic field generating portion. However, the present invention is not limited to such a mode, and for example, at least one set of N pole and S pole. May be configured such that magnets alternately arranged in a ring shape are used as a magnetic field generation unit, and a magnetic detection device is disposed opposite to the outer periphery of the magnet, or a linear scale is used as a magnetic field generation unit. Also good.

上記実施形態において、磁石2が固定された軸部11が回転軸Cを中心に回転することにより磁石2が磁気検出装置3に対して相対的に回転移動するが、本発明はこのような態様に限定されるものではない。例えば、磁石2(軸部11)と磁気検出装置3とが、互いに反対方向に回転するものであってもよいし、磁石2(軸部11)が回転せずに磁気検出装置3が回転するものであってもよい。   In the above-described embodiment, the shaft 2 to which the magnet 2 is fixed rotates around the rotation axis C, so that the magnet 2 rotates relative to the magnetic detection device 3. It is not limited to. For example, the magnet 2 (shaft portion 11) and the magnetic detection device 3 may rotate in opposite directions, or the magnetism 2 (shaft portion 11) does not rotate and the magnetic detection device 3 rotates. It may be a thing.

以下、実施例等を挙げて本発明をさらに詳細に説明するが、本発明は下記の実施例等に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. are given and this invention is demonstrated further in detail, this invention is not limited to the following Example etc. at all.

〔実施例1〕
図3及び図4に示す構成を有する磁気検出装置3における、予測部34による次回サンプリング時刻Tn+1の回転角度θn+1の予測について、MATLABを用いてシミュレーションを行い、回転角度θn+1の予測値に含まれるノイズを求めた。かかるシミュレーションにおいて、磁石2が90000deg/secで等速回転運動し、検出部31によるサンプリング周期が50μsecであり、演算処理部33により算出される回転角度θに含まれるノイズが±0.01°であるとした。また、4サンプルの当該回転角度θn〜θn-3をそれぞれ1回微分した角速度ωn〜ωn-3を用いた移動平均フィルタ処理を行うことを通じて、予測部34にて回転角度θn+1を予測するものとした。シミュレーション結果を図6に示す。
[Example 1]
The prediction of the rotation angle θ n + 1 at the next sampling time T n + 1 by the prediction unit 34 in the magnetic detection device 3 having the configuration shown in FIGS. 3 and 4 is simulated using MATLAB and the rotation angle θ n. The noise included in the predicted value of +1 was obtained. In this simulation, the magnet 2 rotates at a constant speed of 90000 deg / sec, the sampling period by the detection unit 31 is 50 μsec, and the noise included in the rotation angle θ calculated by the arithmetic processing unit 33 is ± 0.01 °. It was supposed to be. Further, by performing moving average filter processing using angular velocities ω n to ω n-3 obtained by differentiating the rotation angles θ n to θ n -3 of the four samples once, the rotation angle θ n is predicted by the prediction unit 34. +1 was predicted. The simulation result is shown in FIG.

上記シミュレーションの結果、回転角度θを1回微分した角速度ωを用いて次回サンプリング時刻Tn+1における回転角度θn+1を予測すると、当該回転角度の予測値に含まれるノイズを±0.009°に抑えることができることが確認された。 As a result of the simulation, when the rotation angle θ n + 1 at the next sampling time T n + 1 is predicted using the angular velocity ω obtained by differentiating the rotation angle θ once, noise included in the predicted value of the rotation angle is ± 0. It was confirmed that it can be suppressed to 009 °.

〔比較例1〕
演算処理部33により算出された1サンプルの回転角度θnを1回微分したωn用いて線形外挿処理を行うことでωn+1を求め、当該ωn+1を積分することにより回転角度θn+1の予測をすることとした以外は、実施例1と同様にして回転角度θn+1の予測値に含まれるノイズを求めた。シミュレーション結果を図7に示す。
[Comparative Example 1]
Ω n + 1 is obtained by performing linear extrapolation processing using ω n obtained by differentiating the rotation angle θ n of one sample calculated by the arithmetic processing unit 33 once, and rotation is performed by integrating the ω n + 1. except that the that the angle theta n + 1 predictive was determined noise contained in the prediction value of the rotation angle theta n + 1 in the same manner as in example 1. The simulation result is shown in FIG.

上記シミュレーションの結果、回転角度θnを用いて次回サンプリング時刻Tn+1における回転角度θn+1を予測すると、当該回転角度の予測値に含まれるノイズが±0.03°に増幅することが確認された。 As a result of the simulation, when the rotation angle θ n + 1 at the next sampling time T n + 1 is predicted using the rotation angle θ n , noise included in the predicted value of the rotation angle is amplified to ± 0.03 °. Was confirmed.

〔比較例2〕
A/D変換部32にて変換されたデジタル信号について、FIRフィルタ処理を行うことで、回転角度θnに含まれるノイズを±0.0027°まで低減させるとともに、FIRフィルタ処理による群遅延の増加に伴う予測すべきサンプリング時刻を5サンプリング周期分将来に設定した以外は、比較例1と同様にして予測すべきサンプリング時刻Tn+5における回転角度θn+5の予測値に含まれるノイズを求めた。シミュレーション結果を図8に示す。
[Comparative Example 2]
By performing FIR filter processing on the digital signal converted by the A / D converter 32, the noise included in the rotation angle θ n is reduced to ± 0.0027 ° and the group delay is increased by the FIR filter processing. The noise included in the predicted value of the rotation angle θ n + 5 at the sampling time T n + 5 to be predicted is the same as in Comparative Example 1 except that the sampling time to be predicted accompanying the sampling time is set in the future for five sampling periods. Asked. The simulation result is shown in FIG.

上記シミュレーションの結果、回転角度θnを用いて予測すべきサンプリング時刻Tn+5における回転角度θn+5を予測すると、当該回転角度の予測値に含まれるノイズが±0.0324°に増大することが確認された。 As a result of the simulation, when the rotation angle θ n + 5 at the sampling time T n + 5 to be predicted is predicted using the rotation angle θ n , the noise included in the predicted value of the rotation angle increases to ± 0.0324 °. Confirmed to do.

実施例1、比較例1及び比較例2の結果から明らかなように、回転角度θを1回微分した角速度ωを用いた予測により、回転角度θにノイズが含まれていたとしても、そのノイズを増幅させることなく、次回サンプリング時刻Tn+1の回転角度θn+1を予測することができた。また、比較例2の結果から、検出部31からの出力をアナログ信号として読み取り、当該アナログ信号がA/D変換部32にて変換されたデジタル信号にフィルタ処理を行い、回転角度θに含まれるノイズを低減させたとしても、当該フィルタ処理による群遅延の増大に起因して、予測時刻をさらに未来に設定せざるを得なくなるため、結果として、回転角度の予測値に含まれるノイズが増大してしまうことが確認された。 As is clear from the results of Example 1, Comparative Example 1 and Comparative Example 2, even if the rotation angle θ includes noise by prediction using the angular velocity ω obtained by differentiating the rotation angle θ once, the noise is included. The rotation angle θ n + 1 at the next sampling time T n + 1 could be predicted without amplifying the signal. Further, from the result of Comparative Example 2, the output from the detection unit 31 is read as an analog signal, and the analog signal is filtered by the A / D conversion unit 32, and is included in the rotation angle θ. Even if the noise is reduced, the predicted time must be set in the future due to the increase in the group delay due to the filter processing. As a result, the noise included in the predicted value of the rotation angle increases. It was confirmed that.

〔実施例2〕
磁石2が−1800000deg/sec2で等加速回転運動しているものとし、演算処理部33により算出された回転角度θを2回微分した角加速度αを用いるとともに、8サンプル(角加速度αn〜αn-7)を用いて移動平均フィルタ処理を行うことで予測部34にて回転角度θn+1を予測した以外は、実施例1と同様にして回転角度θn+1の予測値に含まれるノイズを求めた。
[Example 2]
It is assumed that the magnet 2 is rotating at an equal acceleration speed of -1800000 deg / sec 2 , and the angular acceleration α obtained by differentiating the rotational angle θ calculated by the arithmetic processing unit 33 twice is used, and 8 samples (angular acceleration α n ˜ The predicted value of the rotation angle θ n + 1 is obtained in the same manner as in the first embodiment except that the prediction unit 34 predicts the rotation angle θ n + 1 by performing the moving average filter process using α n-7 ). The included noise was determined.

上記シミュレーションの結果、角加速度αを用いて次回サンプリング時刻Tn+1における回転角度θn+1を予測すると、当該回転角度の予測値に含まれるノイズが±0.029°であった。比較のために、演算処理部33により算出された回転角度θを用いた移動平均フィルタ処理を行うことで予測部34による回転角度の予測を同様にシミュレートした結果、当該回転角度の予測値に含まれるノイズが±0.047°であった。この結果から、角加速度αを用いた予測であっても、当該回転角度θn+1の予測値に含まれるノイズを増大させることなく、精確な予測が可能であることが確認された。 Results of the simulation, when predicting the rotation angle theta n + 1 at the next sampling time T n + 1 by using the angular acceleration alpha, noise contained in the predicted value of the rotational angle was ± 0.029 °. For comparison, as a result of similarly simulating the prediction of the rotation angle by the prediction unit 34 by performing the moving average filter process using the rotation angle θ calculated by the arithmetic processing unit 33, the predicted value of the rotation angle is obtained. The included noise was ± 0.047 °. From this result, it was confirmed that accurate prediction is possible without increasing the noise included in the predicted value of the rotation angle θ n + 1 even when the prediction is performed using the angular acceleration α.

実施例2の結果から、アプリケーションに応じ予測モデルが複雑になる場合であっても、最高次数の係数にフィルタリングすることで、ノイズを増大させることなく、精確な予測が可能であると推認することができる。   From the results of Example 2, it is inferred that accurate prediction is possible without increasing noise by filtering to the highest order coefficient even when the prediction model becomes complicated depending on the application. Can do.

1…回転角度検出装置(位置検出装置)
2…磁石(磁界発生部)
3…磁気検出装置
31…検出部
33…演算処理部
34…予測部
1 ... Rotation angle detection device (position detection device)
2 ... Magnet (magnetic field generator)
DESCRIPTION OF SYMBOLS 3 ... Magnetic detection apparatus 31 ... Detection part 33 ... Operation processing part 34 ... Prediction part

Claims (9)

連続的に作動する動作体の所定時刻における位置を予測する装置であって、
前記動作体に設けられてなる磁界発生部の外部磁界を検出する検出部から出力される前記動作体の位置に関する信号に基づき、前記動作体の位置情報を算出する演算処理部と、
前記演算処理部により算出された前記位置情報を時刻でN回(Nは1以上の整数である。)微分したN次微分値に基づき、前記動作体の前記所定時刻における位置を予測する予測部と
を備えることを特徴とする位置予測装置。
An apparatus for predicting a position at a predetermined time of an operating body that operates continuously,
An arithmetic processing unit that calculates position information of the operating body based on a signal related to the position of the operating body that is output from a detection unit that detects an external magnetic field of a magnetic field generation unit provided in the operating body;
A prediction unit that predicts the position of the operating body at the predetermined time based on an Nth-order differential value obtained by differentiating the position information calculated by the arithmetic processing unit N times (N is an integer of 1 or more). A position prediction apparatus comprising:
前記予測部は、前記N次微分値についてフィルタ処理を行うことで、前記所定時刻における前記N次微分値に相当する値を算出し、当該算出した前記N次微分値に相当する値に基づいて、前記動作体の前記所定時刻における位置を予測することを特徴とする請求項1に記載の位置予測装置。   The predicting unit calculates a value corresponding to the Nth order differential value at the predetermined time by performing a filtering process on the Nth order differential value, and based on the calculated value corresponding to the Nth order differential value. The position prediction apparatus according to claim 1, wherein the position of the operating body at the predetermined time is predicted. 前記予測部は、前記動作体の位置情報のうち、最新の位置情報を時刻でN回(Nは1以上の整数である。)微分したN次微分値を少なくとも用いて、前記動作体の前記所定時刻における位置を予測することを特徴とする請求項1又は2に記載の位置予測装置。   The prediction unit uses at least an N-order differential value obtained by differentiating the latest position information among the position information of the action body N times (N is an integer equal to or greater than 1) with respect to time. The position prediction apparatus according to claim 1, wherein a position at a predetermined time is predicted. 前記動作体の位置情報が、角度情報であることを特徴とする請求項1〜3のいずれかに記載の位置予測装置。   The position prediction apparatus according to claim 1, wherein the position information of the operating body is angle information. 前記予測部は、前記位置情報としての角度情報を時刻で1回微分した角速度情報に基づき、前記動作体の前記所定時刻における位置を予測することを特徴とする請求項1〜4のいずれかに記載の位置予測装置。   The said prediction part predicts the position in the said predetermined time of the said operation body based on the angular velocity information which differentiated the angle information as said position information once with time. The position prediction apparatus described. 前記予測部は、前記位置情報としての角度情報を時刻で2回微分した角加速度情報に基づき、前記動作体の前記所定時刻における位置を予測することを特徴とする請求項1〜4のいずれかに記載の位置予測装置。   The said prediction part predicts the position in the said predetermined time of the said action body based on the angular acceleration information which differentiated the angle information as said position information twice with respect to time. The position prediction apparatus described in 1. 請求項1〜6のいずれかに記載の位置予測装置と、
前記動作体に設けられてなる前記磁界発生部に対向して配置され、前記動作体の位置を検出可能な前記検出部と
を備えることを特徴とする位置検出装置。
The position prediction apparatus according to any one of claims 1 to 6,
A position detection apparatus comprising: the detection unit arranged to face the magnetic field generation unit provided in the operation body and capable of detecting the position of the operation body.
前記検出部は、磁気抵抗効果素子を含むことを特徴とする請求項7に記載の位置検出装置。   The position detection apparatus according to claim 7, wherein the detection unit includes a magnetoresistive effect element. 前記動作体が、所定の回転軸を中心とし、前記検出部に対して相対的に回転する回転動作体であることを特徴とする請求項7又は8に記載の位置検出装置。   The position detecting device according to claim 7 or 8, wherein the operating body is a rotary operating body that rotates around a predetermined rotation axis relative to the detection unit.
JP2015067498A 2015-03-27 2015-03-27 Position prediction apparatus and position detection apparatus Active JP6194914B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015067498A JP6194914B2 (en) 2015-03-27 2015-03-27 Position prediction apparatus and position detection apparatus
DE102016101245.9A DE102016101245A1 (en) 2015-03-27 2016-01-25 Position prediction device and position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067498A JP6194914B2 (en) 2015-03-27 2015-03-27 Position prediction apparatus and position detection apparatus

Publications (2)

Publication Number Publication Date
JP2016186475A true JP2016186475A (en) 2016-10-27
JP6194914B2 JP6194914B2 (en) 2017-09-13

Family

ID=56889645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067498A Active JP6194914B2 (en) 2015-03-27 2015-03-27 Position prediction apparatus and position detection apparatus

Country Status (2)

Country Link
JP (1) JP6194914B2 (en)
DE (1) DE102016101245A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361769B1 (en) * 2017-03-28 2018-07-25 Tdk株式会社 Position prediction apparatus and position detection apparatus
JP2019082414A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Position detector
CN111207778A (en) * 2018-11-22 2020-05-29 Tdk株式会社 Angle sensor and angle sensor system
JP2020109394A (en) * 2019-01-04 2020-07-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Method and system for immediately correcting encoder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162282A (en) * 1996-11-27 1998-06-19 Honda Motor Co Ltd Vehicle group traveling control system
JP2003222518A (en) * 2002-01-29 2003-08-08 Honda Motor Co Ltd Rotation angle detection device, detection method and noise removal device
JP2004031592A (en) * 2002-06-25 2004-01-29 Canon Inc Positioning device and its control method, aligner, manufacturing method of device, semiconductor manufacture plant, maintenance procedure of aligner
JP2008116292A (en) * 2006-11-02 2008-05-22 Ntn Corp Rotation detector and bearing with the rotation detector
WO2013076839A1 (en) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 Rotational-angle detection device and electric power-steering device provided with rotational-angle detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162282A (en) * 1996-11-27 1998-06-19 Honda Motor Co Ltd Vehicle group traveling control system
JP2003222518A (en) * 2002-01-29 2003-08-08 Honda Motor Co Ltd Rotation angle detection device, detection method and noise removal device
JP2004031592A (en) * 2002-06-25 2004-01-29 Canon Inc Positioning device and its control method, aligner, manufacturing method of device, semiconductor manufacture plant, maintenance procedure of aligner
JP2008116292A (en) * 2006-11-02 2008-05-22 Ntn Corp Rotation detector and bearing with the rotation detector
WO2013076839A1 (en) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 Rotational-angle detection device and electric power-steering device provided with rotational-angle detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662969B (en) * 2017-03-28 2020-06-23 Tdk株式会社 Position prediction device and position detection device
CN108662969A (en) * 2017-03-28 2018-10-16 Tdk株式会社 Predicted position device and position detecting device
JP2018165619A (en) * 2017-03-28 2018-10-25 Tdk株式会社 Position prediction device and position detection device
US10352727B2 (en) 2017-03-28 2019-07-16 Tdk Corporation Position forecasting apparatus and position detection apparatus
US10697798B2 (en) 2017-03-28 2020-06-30 Tdk Corporation Position forecasting apparatus and position detection apparatus
JP6361769B1 (en) * 2017-03-28 2018-07-25 Tdk株式会社 Position prediction apparatus and position detection apparatus
JP2019082414A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Position detector
JP2020085614A (en) * 2018-11-22 2020-06-04 Tdk株式会社 Angle sensor and angle sensor system
CN111207778A (en) * 2018-11-22 2020-05-29 Tdk株式会社 Angle sensor and angle sensor system
CN111207778B (en) * 2018-11-22 2022-01-14 Tdk株式会社 Angle sensor and angle sensor system
US11255702B2 (en) 2018-11-22 2022-02-22 Tdk Corporation Angle sensor and angle sensor system
US11656104B2 (en) 2018-11-22 2023-05-23 Tdk Corporation Angle sensor and angle sensor system
JP2020109394A (en) * 2019-01-04 2020-07-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Method and system for immediately correcting encoder

Also Published As

Publication number Publication date
DE102016101245A1 (en) 2016-09-29
JP6194914B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
US10495485B2 (en) Magnetic field sensors and output signal formats for a magnetic field sensor
US9664748B2 (en) Systems and methods for providing signal encoding representative of a signature region in a target
JP5245114B2 (en) Position detection device
EP2932286B1 (en) Circuits and methods for processing signals generated by a circular vertical hall (cvh) sensing element in the presence of a multi-pole magnet
JP6197839B2 (en) Rotation detector
JP6194914B2 (en) Position prediction apparatus and position detection apparatus
JP2017138143A (en) Displacement detection device and angular speed detection device
CN114216486A (en) Magnetic encoder and detection method thereof
EP3151017A2 (en) Amr speed and direction sensor for use with magnetic targets
US10697798B2 (en) Position forecasting apparatus and position detection apparatus
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
US20170276516A1 (en) Magnetic sensor
JP2018115929A (en) Electric current sensor signal correction method, and electric current sensor
CN110749276A (en) Angle sensor correction device and angle sensor
JP2021076480A (en) Position detection device
KR101271828B1 (en) Computing Method of Absolute Steering Angle Using Steering Angle Sensing System
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
CN110749277B (en) Angle sensor correction device and angle sensor
US9612135B2 (en) Device for determining motion parameters
JP2020153980A (en) System for determining at least one rotation parameter of rotating member
JP2020153981A (en) System for determining at least one rotation parameter of rotating member
US11639860B2 (en) Absolute position detection device and detection method of rotating body using magnetic material
JP2010223595A (en) Position detection device
KR101885299B1 (en) High resolution bearing sensor and ic chip for multi pole pair magnetic pulse ring
TW201527719A (en) Data detecting method of detection device and detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6194914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150