JP2016184999A - Connection phase determination method and connection phase determination device - Google Patents

Connection phase determination method and connection phase determination device Download PDF

Info

Publication number
JP2016184999A
JP2016184999A JP2015063372A JP2015063372A JP2016184999A JP 2016184999 A JP2016184999 A JP 2016184999A JP 2015063372 A JP2015063372 A JP 2015063372A JP 2015063372 A JP2015063372 A JP 2015063372A JP 2016184999 A JP2016184999 A JP 2016184999A
Authority
JP
Japan
Prior art keywords
phase
line
branch line
connection
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063372A
Other languages
Japanese (ja)
Other versions
JP6492857B2 (en
Inventor
浩一 八田
Koichi Hatta
浩一 八田
守 田部
Mamoru Tanabe
守 田部
昇 柴丸
Noboru Shibamaru
昇 柴丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2015063372A priority Critical patent/JP6492857B2/en
Publication of JP2016184999A publication Critical patent/JP2016184999A/en
Application granted granted Critical
Publication of JP6492857B2 publication Critical patent/JP6492857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform suppression of voltage unbalance appropriately.SOLUTION: A connection phase determination method for determining the connection phase of a trunk L, that is a three-phase distribution line supplied with a three-phase AC current from the upstream, and a branch line SL, that is a three-phase distribution line branched from the trunk L, has a first step of acquiring a plurality of pieces of the information about the trunk reverse-phase current value, i.e., the reverse-phase current value of the trunk L in the downstream of the connection part with the branch line SL, and the information about the branch line reverse-phase current value, i.e., the reverse-phase current value of the branch line SL at a part connected with the trunk L, for each connection phase of the trunk L and branch line SL, and a second step of determining the connection phase of the trunk L and branch line SL, so that the absolute value of the sum of the trunk reverse-phase current value acquired in the first step becomes minimum.SELECTED DRAWING: Figure 1

Description

本発明は、配電線の接続相決定方法及び接続相決定装置に関する。   The present invention relates to a connection phase determination method and a connection phase determination device for distribution lines.

発電所からの電力を家庭等に配電する配電線は、三相配電線である幹線に、幹線から分岐された三相配電線である分岐線が接続されている。そして、この幹線及び分岐線は、複数の柱上変圧器が接続されており、柱上変圧器を介して、家庭等の負荷に接続されている。   In a distribution line that distributes electric power from a power plant to a home or the like, a branch line that is a three-phase distribution line branched from the trunk line is connected to a trunk line that is a three-phase distribution line. The main line and the branch line are connected to a plurality of pole transformers, and are connected to a load such as a home via the pole transformer.

また、配電線における電圧不平衡を抑制するため、例えば特許文献1に示すように、柱上変圧器と配電線との接続相を調整する方向が考案されている。   Moreover, in order to suppress the voltage imbalance in a distribution line, as shown, for example in patent document 1, the direction which adjusts the connection phase of a pole transformer and a distribution line is devised.

特開2014−135805号公報JP 2014-135805 A

柱上変圧器は、一般的に配電線に多数設けられている。従って、柱上変圧器と配電線との接続相で電圧不平衡を調整するためには、数多くの柱上変圧器に対して、配電線の接続相を調整する処理を行う必要が生じる。そのため、多くの処理が必要となり、調整に時間がかかる等、電圧不平衡の抑制を適切に行うことができない恐れがある。   A number of pole transformers are generally provided on the distribution line. Accordingly, in order to adjust the voltage imbalance in the connection phase between the pole transformer and the distribution line, it is necessary to perform a process of adjusting the connection phase of the distribution line on many pole transformers. For this reason, a lot of processing is required, and adjustment may take time, and voltage imbalance may not be suppressed appropriately.

ここで、本発明は、上記課題を解決するために、電圧不平衡の抑制を適切に行うことができる配電線の接続相決定方法及び接続相決定装置を提供することを目的とする。   Here, in order to solve the above-described problem, an object of the present invention is to provide a connection phase determination method and a connection phase determination device for a distribution line that can appropriately suppress voltage imbalance.

上述した課題を解決し、目的を達成するために、本発明の接続相決定方法は、上流から三相交流電流が供給される三相配電線である幹線と、前記幹線から分岐される三相配電線である分岐線との接続相を決定する接続相決定方法であって、前記分岐線と接続される箇所よりも下流における前記幹線の逆相電流値である幹線逆相電流値の情報を取得し、前記幹線と接続される箇所における前記分岐線の逆相電流値である分岐線逆相電流値の情報を、幹線と分岐線との接続相毎に複数取得する第1ステップと、前記第1ステップにおいて取得した前記幹線逆相電流値と前記分岐線逆相電流値との和の絶対値が最小となるように、前記幹線と前記分岐線との接続相を決定する第2ステップと、を有する。   In order to solve the above-described problems and achieve the object, the connection phase determination method of the present invention includes a trunk line which is a three-phase distribution line to which a three-phase alternating current is supplied from upstream, and a three-phase distribution line branched from the trunk line. A connection phase determination method for determining a connection phase with a branch line, wherein information on a main line reverse phase current value that is a reverse phase current value of the main line downstream from a location connected to the branch line is acquired. A first step of obtaining a plurality of pieces of information on a branch line reverse phase current value, which is a reverse phase current value of the branch line at a location connected to the trunk line, for each connection phase between the trunk line and the branch line; A second step of determining a connection phase between the main line and the branch line so that the absolute value of the sum of the main line negative phase current value acquired in the step and the branch line negative phase current value is minimized; Have.

前記接続相決定方法において、前記分岐線は、前記幹線の前記交流電流が流れる方向に沿って複数設けられており、前記第1ステップ及び前記第2ステップは、前記幹線の下流における前記分岐線から前記幹線の上流における前記分岐線に向かって行われ、前記幹線の最も上流側の分岐線についての前記第1ステップ及び前記第2ステップの処理が終了することにより、処理を終了することが好ましい。   In the connection phase determination method, a plurality of the branch lines are provided along a direction in which the AC current flows through the trunk line, and the first step and the second step are performed from the branch line downstream of the trunk line. It is preferable that the processing is terminated when the processing of the first step and the second step for the branch line on the most upstream side of the trunk line is completed, which is performed toward the branch line upstream of the trunk line.

前記接続相決定方法は、前記第2ステップにおいて、さらに、前記幹線の相回転方向を維持するように、前記幹線と前記分岐線との接続相を決定することが好ましい。   In the second step, the connection phase determination method preferably further determines a connection phase between the main line and the branch line so as to maintain the phase rotation direction of the main line.

前記接続相決定方法において、前記幹線は、第1相の交流電流が流れる第1幹線、第2相の交流電流が流れる第2幹線及び第3相の交流電流が流れる第3幹線を有し、前記分岐線は、第1分岐線、第2分岐線及び第3分岐線を有し、前記第2ステップは、前記第1幹線と前記第1分岐線とを接続し、前記第2幹線と前記第2分岐線とを接続し、前記第3幹線と前記第3分岐線とを接続した接続相における、前記幹線逆相電流値と前記分岐線逆相電流値との和である第1接続相逆相電流和と、前記第1幹線と前記第2分岐線とを接続し、前記第2幹線と前記第3分岐線とを接続し、前記第3幹線と前記第1分岐線とを接続した接続相における、前記幹線逆相電流値と前記分岐線逆相電流値との和である第2接続相逆相電流和と、前記第1幹線と前記第3分岐線とを接続し、前記第2幹線と前記第1分岐線とを接続し、前記第3幹線と前記第2分岐線とを接続した接続相における、前記幹線逆相電流値と前記分岐線逆相電流値との和である第3接続相逆相電流和と、を算出し、前記第1接続相逆相電流和、前記第2接続相逆相電流和及び前記第3接続相逆相電流和のうち、絶対値が最小である場合における接続相を、前記幹線と前記分岐線との接続相として決定することが好ましい。   In the connection phase determination method, the trunk line includes a first trunk line through which a first-phase alternating current flows, a second trunk line through which a second-phase alternating current flows, and a third trunk line through which a third-phase alternating current flows; The branch line includes a first branch line, a second branch line, and a third branch line, and the second step connects the first trunk line and the first branch line, and the second trunk line and the second branch line A first connection phase that is a sum of the main line negative phase current value and the branch line negative phase current value in a connection phase connecting the second branch line and connecting the third main line and the third branch line. A negative phase current sum, the first trunk line and the second branch line are connected, the second trunk line and the third branch line are connected, and the third trunk line and the first branch line are connected A second connection phase negative phase current sum that is a sum of the main line negative phase current value and the branch line negative phase current value in the connection phase; and the first main line; Connecting the third branch line, connecting the second trunk line and the first branch line, and connecting the third trunk line and the second branch line, and the main line reverse phase current value in the connection phase A third connection phase negative phase current sum that is the sum of the branch line negative phase current values, and calculates the first connection phase negative phase current sum, the second connection phase negative phase current sum, and the third connection. It is preferable to determine the connection phase in the case where the absolute value is the smallest among the phase-reverse phase current sums as the connection phase between the trunk line and the branch line.

前記接続相決定方法において、前記幹線及び前記分岐線は、あらかじめ容量が定められている柱上変圧器が接続されており、前記第1ステップにおいて、前記幹線逆相電流値と前記分岐線逆相電流値とを、前記柱上変圧器の容量に基づいて算出することが好ましい。   In the connection phase determination method, the trunk line and the branch line are connected to a pole transformer whose capacity is determined in advance, and in the first step, the main line negative phase current value and the branch line negative phase are connected. It is preferable to calculate the current value based on the capacity of the pole transformer.

前記接続相決定方法において、前記第1ステップにおいて、前記幹線逆相電流値を、前記分岐線と接続される箇所よりも下流における前記幹線の電流値を測定することにより取得し、前記分岐線逆相電流値を、前記幹線と接続される箇所における前記分岐線の電流値を測定することにより取得することが好ましい。   In the connection phase determination method, in the first step, the main line reverse phase current value is obtained by measuring a current value of the main line downstream from a location connected to the branch line, and the branch line reverse Preferably, the phase current value is obtained by measuring the current value of the branch line at a location connected to the main line.

上述した課題を解決し、目的を達成するために、本発明の接続相決定装置は、上流から交流電流が供給される三相配電線である幹線と、前記幹線から分岐される三相配電線である分岐線との接続相を決定する接続相決定装置であって、前記分岐線と接続される箇所よりも下流における前記幹線の逆相電流値である幹線逆相電流値の情報を取得し、前記幹線と接続される箇所における前記分岐線の逆相電流値である分岐線逆相電流値の情報を、幹線と分岐線との接続相毎に複数取得する逆相電流値取得部と、逆相電流値取得部が取得した前記幹線逆相電流値と前記分岐線逆相電流値との和の絶対値が最小となるように、前記幹線と前記分岐線との接続相を決定する接続相決定部と、を有する。   In order to solve the above-described problems and achieve the object, the connection phase determination device of the present invention is a trunk line that is a three-phase distribution line to which an alternating current is supplied from upstream, and a three-phase distribution line that is branched from the trunk line. A connection phase determination device that determines a connection phase with a branch line, and obtains information on a main line reverse phase current value that is a reverse phase current value of the main line downstream from a location connected to the branch line, A reverse phase current value acquisition unit that acquires a plurality of information on the branch line reverse phase current value, which is a reverse phase current value of the branch line at a location connected to the main line, for each connection phase between the main line and the branch line; Connection phase determination for determining the connection phase between the trunk line and the branch line so that the absolute value of the sum of the trunk line reverse phase current value acquired by the current value acquisition unit and the branch line reverse phase current value is minimized. Part.

前記接続相決定装置において、前記分岐線は、前記幹線の前記交流電流が流れる方向に沿って、複数設けられており、前記接続相決定部が決定した前記分岐線の位置情報を有する分岐線情報部を更に有し、前記逆相電流値取得部は、前記分岐線情報部からの前記分岐線の位置情報に基づき、前記分岐線よりも前記幹線の上流側の前記分岐線に対応する前記幹線逆相電流値及び前記分岐線逆相電流値との情報を取得し、前記接続相決定部は、前記上流側の分岐線に対応する前記幹線逆相電流値と前記分岐線逆相電流値との和の絶対値が最小となるように、前記幹線と前記上流側の分岐線との接続相を決定することが好ましい。   In the connection phase determination device, a plurality of the branch lines are provided along a direction in which the AC current flows through the trunk line, and branch line information including position information of the branch lines determined by the connection phase determination unit. The reverse phase current value acquisition unit is based on the position information of the branch line from the branch line information unit, the trunk line corresponding to the branch line upstream of the branch line from the branch line Obtaining information on the negative phase current value and the branch line negative phase current value, the connection phase determination unit, the main line negative phase current value and the branch line negative phase current value corresponding to the upstream branch line, It is preferable to determine the connection phase between the trunk line and the upstream branch line so that the absolute value of the sum of the two is minimized.

本発明によれば、電圧不平衡の抑制を適切に行うことができる。   According to the present invention, voltage imbalance can be appropriately suppressed.

図1は、本実施形態における配電系統を示す模式図である。FIG. 1 is a schematic diagram showing a power distribution system in the present embodiment. 図2は、三相交流電流のベクトル値の例を示した図である。FIG. 2 is a diagram illustrating an example of a vector value of a three-phase alternating current. 図3は、三相交流電流における逆相電流のベクトル値の例を示した図である。FIG. 3 is a diagram illustrating an example of the vector value of the reverse phase current in the three-phase alternating current. 図4は、接続相決定装置の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the connection phase determination device. 図5は、接続相を決定するための配電系統の説明図である。FIG. 5 is an explanatory diagram of a power distribution system for determining a connection phase. 図6Aは、第1接続相における分岐線と幹線との接続状態を示す模式図である。FIG. 6A is a schematic diagram illustrating a connection state between the branch line and the trunk line in the first connection phase. 図6Bは、第1接続相における分岐線電流の一例を説明したベクトル図である。FIG. 6B is a vector diagram illustrating an example of the branch line current in the first connection phase. 図6Cは、第1接続相における逆相電流の一例を説明したベクトル図である。FIG. 6C is a vector diagram illustrating an example of the reverse phase current in the first connection phase. 図7Aは、第2接続相における分岐線と幹線との接続状態を示す模式図である。FIG. 7A is a schematic diagram illustrating a connection state between the branch line and the trunk line in the second connection phase. 図7Bは、第2接続相における分岐線電流の一例を説明したベクトル図である。FIG. 7B is a vector diagram illustrating an example of a branch line current in the second connection phase. 図7Cは、第2接続相における逆相電流の一例を説明したベクトル図である。FIG. 7C is a vector diagram illustrating an example of the reverse phase current in the second connection phase. 図8Aは、第3接続相における分岐線と幹線との接続状態を示す模式図である。FIG. 8A is a schematic diagram illustrating a connection state between the branch line and the trunk line in the third connection phase. 図8Bは、第3接続相における分岐線電流の一例を説明したベクトル図である。FIG. 8B is a vector diagram illustrating an example of the branch line current in the third connection phase. 図8Cは、第3接続相における逆相電流の一例を説明したベクトル図である。FIG. 8C is a vector diagram illustrating an example of the reverse phase current in the third connection phase. 図9は、逆相電流和の一例を示すグラフである。FIG. 9 is a graph showing an example of the reverse-phase current sum. 図10は、幹線と分岐線との接続相決定処理を説明するフローチャートである。FIG. 10 is a flowchart for explaining the connection phase determination process between the main line and the branch line.

以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, Moreover, when there are two or more embodiments, what comprises a combination of each Example is also included.

(配電系統の構成について)
図1は、本実施形態における配電系統を示す模式図である。図1に示すように、配電系統10は、送電線2、変圧器4、幹線L、複数の分岐線SL及び複数の柱上変圧器Trを有する。配電系統10は、発電所より送電される電力を変圧器4により降圧し、幹線L及び分岐線SLにより配電し、柱上変圧器Trを介して家庭等の負荷に配電する。
(About the configuration of the power distribution system)
FIG. 1 is a schematic diagram showing a power distribution system in the present embodiment. As shown in FIG. 1, the power distribution system 10 includes a power transmission line 2, a transformer 4, a trunk line L, a plurality of branch lines SL, and a plurality of pole transformers Tr. The distribution system 10 steps down the power transmitted from the power plant by the transformer 4, distributes the power by the trunk line L and the branch line SL, and distributes the power to a load such as a home via the pole transformer Tr.

送電線2は、発電所から三相交流電力が送電される。送電線2は、例えば66kV(キロボルト)の電圧振幅を有する送電用の三相交流電力が送電される。変圧器4は、送電線2と電気的に接続される変圧器である。変圧器4は、送電線2に送電された66kVの送電用の三相交流電力を、6.6kVの電圧振幅を有する配電用の三相交流電力に降圧する。以下、6.6kVの配電用の三相交流電力により流れる三相交流電流を、適宜配電電流と記載する。配電電流は、三相交流電流のうちの第1相であるA相電流と、第2相であるB相電流と、第3相であるC相電流とを有する。A相電流、B相電流、C相電流とは、それぞれ電流値の振幅が等しい。また、B相電流は、A相電流よりも120°位相が遅れている。C相電流は、B相電流よりも、120°位相が遅れている。   The transmission line 2 receives three-phase AC power from the power plant. The transmission line 2 is transmitted with three-phase AC power for transmission having a voltage amplitude of 66 kV (kilovolts), for example. The transformer 4 is a transformer that is electrically connected to the power transmission line 2. The transformer 4 steps down the 66 kV transmission three-phase AC power transmitted to the transmission line 2 to a distribution three-phase AC power having a voltage amplitude of 6.6 kV. Hereinafter, the three-phase alternating current that flows due to the three-phase alternating current power for 6.6 kV distribution is referred to as distribution current as appropriate. The distribution current includes an A-phase current that is the first phase of the three-phase AC current, a B-phase current that is the second phase, and a C-phase current that is the third phase. The A-phase current, B-phase current, and C-phase current have the same current value amplitude. The B phase current is delayed by 120 ° from the A phase current. The C-phase current is delayed by 120 ° from the B-phase current.

幹線Lは、三相交流電流が配電される配電線である。幹線Lは、一方の端部である上流端12が変圧器4と電気的に接続される。幹線Lは、変圧器4から、配電電流が配電される。幹線Lは、他方の端部である末端14が開放されている。幹線Lは、A相電流が配電される第1幹線である幹線LAと、B相電流が配電される第2幹線である幹線LBと、C相電流が配電される第3幹線である幹線LCとを有する。   The trunk line L is a distribution line through which a three-phase alternating current is distributed. The trunk line L is electrically connected to the transformer 4 at the upstream end 12 as one end. A distribution current is distributed from the transformer 4 to the trunk line L. The trunk line L has an open end 14 which is the other end. The trunk line L includes a trunk line LA that is a first trunk line that distributes phase A current, a trunk line LB that is a second trunk line that distributes phase B current, and a trunk line LC that is a third trunk line that distributes phase C current. And have.

分岐線SLは、幹線Lから分岐されて三相交流電流が配電される配電線である。分岐線SLは、幹線Lの配電電流が流れる方向に沿って、複数設けられている。本実施形態に係る配電系統10は、n個の分岐線SL(分岐線SL、分岐線SL、分岐線SL、・・・、分岐線SL)が設けられている。ここで、nは2以上の整数である。分岐線SLは、ポイントPで幹線Lから分岐されている。分岐線SLは、ポイントPよりも上流端12側のポイントPで幹線Lから分岐されている。分岐線SLは、ポイントPよりも上流端12側のポイントPで幹線Lから分岐されている。分岐線SLは、ポイントPn−1(図示省略)よりも上流端12側のポイントPで幹線Lから分岐されている。すなわち、分岐線SLは、分岐線SL、SL、SL、・・・、SLの順で、幹線Lの末端14から上流端12に向かって配置されている。 The branch line SL is a distribution line that is branched from the main line L and to which a three-phase alternating current is distributed. A plurality of branch lines SL are provided along the direction in which the distribution current of the trunk line L flows. The distribution system 10 according to the present embodiment is provided with n branch lines SL (branch lines SL 1 , branch lines SL 2 , branch lines SL 3 ,..., Branch lines SL n ). Here, n is an integer of 2 or more. The branch line SL 1 is branched from the trunk line L at a point P 1 . Branch line SL 2 is branched from the main line L at point P 2 at the upstream end 12 than point P 1. Branch line SL 3 is branched from the main line L at point P 3 of the upstream end 12 than point P 2. The branch line SL n is branched from the main line L at a point P n on the upstream end 12 side with respect to the point P n−1 (not shown). That is, the branch line SL, branch line SL 1, SL 2, SL 3, · · ·, in the order of SL n, are arranged from the end 14 of the main line L toward the upstream end 12.

分岐線SLは、第1分岐線としての分岐線SLX、第2分岐線としての分岐線SLY、第3分岐線としての分岐線SLZを有する。したがって、分岐線SLは、分岐線SLX、分岐線SLY及び分岐線SLZを有する。分岐線SLは、分岐線SLX、分岐線SLY及び分岐線SLZを有する。分岐線SLは、分岐線SLX、分岐線SLY及び分岐線SLZを有する。分岐線SLは、分岐線SLX、分岐線SLY及び分岐線SLZを有する。本実施形態において、分岐線SLXは、幹線LAと接続される。分岐線SLYは、幹線LBと接続される。分岐線SLZは、幹線LCと接続されている。 The branch line SL has a branch line SLX as a first branch line, a branch line SLY as a second branch line, and a branch line SLZ as a third branch line. Therefore, the branch line SL 1 includes the branch line SLX 1 , the branch line SLY 1, and the branch line SLZ 1 . Branch line SL 2 has a branch line SLX 2, branch lines SLY 2 and the branch line SLZ 2. The branch line SL 3 includes a branch line SLX 3 , a branch line SLY 3, and a branch line SLZ 3 . The branch line SL n includes a branch line SLX n , a branch line SLY n, and a branch line SLZ n . In the present embodiment, the branch line SLX is connected to the trunk line LA. Branch line SLY is connected to trunk line LB. The branch line SLZ is connected to the trunk line LC.

複数の柱上変圧器Trは、それぞれ、ポイントPTrを介して、幹線Lまたは分岐線SLに接続されている。それぞれの柱上変圧器Trは、幹線Lまたは分岐線SLの任意の位置に、配置されている。柱上変圧器Trは、例えば配電電流に対応する配電用の三相交流電力の電圧振幅(6.6kV)を、100V又は200Vの電圧振幅を有する負荷用電力に降圧する。柱上変圧器Trは、負荷Rに接続されている。負荷Rは、例えば家庭の電気機器である。柱上変圧器Trは、負荷Rに降圧した電力により発生する電流を配電する。なお、柱上変圧器Trは、定格容量(kVA)が定められている。柱上変圧器Trは、定格容量で定めた電力量の範囲内で電力(電流)を配電する。なお、柱上変圧器Trの配置は、幹線L及び分岐線SLに接続されるものであれば、その配置は任意である。 Each of the plurality of pole transformers Tr is connected to the trunk line L or the branch line SL via the point PTr . Each of the pole transformers Tr is disposed at an arbitrary position on the trunk line L or the branch line SL. The pole transformer Tr steps down the voltage amplitude (6.6 kV) of the three-phase AC power for distribution corresponding to the distribution current, for example, to the load power having a voltage amplitude of 100V or 200V. The pole transformer Tr is connected to the load R. The load R is, for example, a household electric device. The pole transformer Tr distributes a current generated by the power stepped down to the load R. The pole transformer Tr has a rated capacity (kVA). The pole transformer Tr distributes electric power (current) within a range of electric power determined by the rated capacity. The arrangement of the pole transformer Tr is arbitrary as long as it is connected to the main line L and the branch line SL.

また、配電系統10は、営業所20が設けられている。営業所20は、配電系統10の制御を行う作業員が待機している場所である。営業所20は、接続相決定装置30が設けられている。接続相決定装置30は、幹線Lと分岐線SLとの接続相を決定する。作業員は、接続相決定装置30が決定した幹線Lと分岐線SLとの接続相に基づいて、幹線Lと分岐線SLとの接続相を変更する。接続相決定装置30は、営業所20に設けられていなくてもよい。接続相決定装置30は、例えば発電所や変電所等に設けられていてもよい。接続相決定装置30については、後述する。   In addition, the power distribution system 10 is provided with a sales office 20. The sales office 20 is a place where a worker who controls the power distribution system 10 is waiting. The sales office 20 is provided with a connection phase determination device 30. The connection phase determination device 30 determines the connection phase between the main line L and the branch line SL. The worker changes the connection phase between the trunk line L and the branch line SL based on the connection phase between the trunk line L and the branch line SL determined by the connection phase determination device 30. The connection phase determination device 30 may not be provided in the sales office 20. The connection phase determination device 30 may be provided in, for example, a power plant or a substation. The connection phase determination device 30 will be described later.

(電圧不平衡について)
次に、電圧不平衡について説明する。電圧不平衡とは、各線間電圧の振幅が等しく、且つ、線間電圧の位相が120°異なる三相交流電圧において、各線間電圧の振幅が異なったり、線間電圧の位相がずれたりすることである。各線間電圧の振幅が異なるとは、例えばA相電流における電圧振幅と、B相電流における電圧振幅と、C相電流における電圧振幅とが互いに異なることをいう。また、線間電圧の位相がずれるとは、例えば、A相電流とB相電流との位相差、B相電流とC相電流との位相差、C相電流とA相電流との位相差の少なくとも1つの位相差が120°とならないことをいう。
(About voltage imbalance)
Next, voltage imbalance will be described. Voltage imbalance means that the amplitude of each line voltage is different or the phase of the line voltage is out of phase in a three-phase AC voltage in which the amplitude of each line voltage is equal and the phase of the line voltage is 120 ° different. It is. The difference between the amplitudes of the line voltages means that, for example, the voltage amplitude in the A-phase current, the voltage amplitude in the B-phase current, and the voltage amplitude in the C-phase current are different from each other. Also, the phase of the line voltage is deviated from, for example, the phase difference between the A phase current and the B phase current, the phase difference between the B phase current and the C phase current, and the phase difference between the C phase current and the A phase current. It means that at least one phase difference does not become 120 °.

配電系統10は、幹線Lで電圧不平衡が発生すると柱上変圧器Trに供給される電圧が目標の電圧に対してずれてしまう。このように、柱上変圧器Trに供給される電圧のずれが大きくなると、柱上変圧器Trに接続される負荷Rの誤動作が発生する恐れがある。従って、配電系統10は、幹線Lにおける電圧不平衡の値を小さくすることが望ましい。   In the power distribution system 10, when voltage imbalance occurs in the trunk line L, the voltage supplied to the pole transformer Tr is shifted from the target voltage. As described above, when the deviation of the voltage supplied to the pole transformer Tr becomes large, a malfunction of the load R connected to the pole transformer Tr may occur. Therefore, it is desirable for the power distribution system 10 to reduce the voltage imbalance value in the trunk line L.

電圧不平衡率は、正相電圧に対する逆相電圧の割合で示される。ここで、電圧不平衡率をεとし、正相電圧をVとし、逆相電圧をVとしたとき、電圧不平衡率εは、次の式(1)で表される。 The voltage imbalance rate is expressed as a ratio of the negative phase voltage to the positive phase voltage. Here, when the voltage unbalance rate is ε, the positive phase voltage is VP , and the reverse phase voltage is V N , the voltage unbalance rate ε is expressed by the following equation (1).

ε(%)=|V|/|V|・100 ・・・(1) ε (%) = | V N | / | V P | · 100 (1)

正相電圧V、逆相電圧Vは、例えば対称座標法により算出することができる。 The normal phase voltage V P and the reverse phase voltage V N can be calculated by, for example, a symmetric coordinate method.

(逆相電流について)
次に、逆相電流について説明する。図2は、三相交流電流のベクトル値の例を示した図である。図2は、電圧不平衡が起きている場合におけるA相電流、B相電流、C相電流のベクトル値の例を示している。図2の横軸は実軸であり、縦軸は虚軸である。ここで、A相電流をIとし、B相電流をIとし、C相電流をIとする。図2の例においては、A相電流I、B相電流I及びC相電流Iは、互いに絶対値(スカラー値)が異なっている。また、B相電流Iは、A相電流Iから位相が遅れており、C相電流Iは、B相電流Iから位相が遅れており、角度は等間隔になっていない。
(Reverse phase current)
Next, the reverse phase current will be described. FIG. 2 is a diagram illustrating an example of a vector value of a three-phase alternating current. FIG. 2 shows an example of vector values of A-phase current, B-phase current, and C-phase current when voltage imbalance occurs. The horizontal axis in FIG. 2 is a real axis, and the vertical axis is an imaginary axis. Here, the A-phase current and I A, a B-phase current and I B, and C phase current and I C. In the example of FIG. 2, A-phase current I A, B phase current I B and C phase current I C is the absolute value (scalar value) are different from each other. Furthermore, B-phase current I B is A phase current and the I A and phase lag, C phase current I C is phase delayed B-phase current I B, the angle is not equally spaced.

図3は、三相交流電流における逆相電流のベクトル値の例を示した図である。図3の横軸は実軸であり、縦軸は虚軸である。逆相電流Iは、配電電流に電流不平衡が発生している場合に発生する。逆相電流値Iは、配電電流の電流値に基づいて例えば対称座標法により算出される。ここで、A相電流I、B相電流I、C相電流Iが与えられた場合、A相電流I,B相電流I,C相電流Iの各成分うち、電流の絶対値が等しく、位相の等間隔な逆回転方向の三相電流の成分が逆相電流となる。図2に示された電流による逆相電流は、図3のようにA相逆相電流IN、B相逆相電流IN、C相逆相電流INの3つの電流成分で構成される。ここで、逆相電流は、3相の逆相電流の電流成分のうち1つの電流成分が与えられれば、他の2つの電流成分は一意に決まる。従って、以下、逆相電流のうち、A相逆相電流INを代表電流成分とし、以降では逆相電流を適宜Iと表記することにする。なお、この逆相電流Iの値は一例であり、配電系統10に流れる電流の状態によって異なるものとなる。 FIG. 3 is a diagram illustrating an example of the vector value of the reverse phase current in the three-phase alternating current. The horizontal axis in FIG. 3 is a real axis, and the vertical axis is an imaginary axis. Negative sequence current I N is effected when the current unbalance occurs in the power distribution current. The reverse phase current value IN is calculated by, for example, a symmetric coordinate method based on the current value of the distribution current. Here, when the A-phase current I A , the B-phase current I B , and the C-phase current I C are given, among the components of the A-phase current I A , the B-phase current I B , and the C-phase current I C , The components of the three-phase current in the reverse rotation direction having the same absolute value and equal phase intervals are the reverse-phase current. Negative sequence current caused by the indicated current in FIG. 2 includes A-phase negative sequence current IN A, B-phase negative sequence current IN B, the three current components of the C-phase negative sequence current IN C as in FIG. 3 . Here, if one current component is given among the current components of the three-phase reverse-phase current, the other two current components are uniquely determined. Thus, the following, among the reverse-phase current, the A-phase negative sequence current IN A as a representative current component, hereinafter will be referred to as appropriate I N reverse phase currents. The value of the negative sequence current I N is one example, and be different depending on the state of the current flowing through the distribution system 10.

逆相電圧Vを、ポイントPとポイントPN−1との間の電位差(電圧)の逆相電圧とすると、ポイントPとポイントPN−1との間に流れる電流の逆相電流I及びポイントPとポイントPN−1との間の線路インピーダンスZを用いて、次の式(2)で算出できる。 Reverse-phase voltages V N, the point P N and the point when the negative-phase voltage of the potential difference (voltage) between the P N-1, negative sequence current of the current flowing between the point P N and the point P N-1 Using the line impedance Z N between I N and the point P N and the point P N−1, it can be calculated by the following equation (2).

=I・Z ・・・(2) V N = I N · Z N (2)

従って、電圧不平衡率の増加を小さくするには、逆相電流Iの値を小さくすればよい。そして、逆相電流Iの値は、A相電流I、B相電流I及びC相電流Iの値により決定されるため、幹線LA、LB、LCに接続される負荷Rによって異なる。さらに言えば、幹線LA、LB、LCは、分岐線SLX、SLY、SLZと接続されている。分岐線SLX、SLY、SLZは、複数の負荷Rに接続されているため、幹線LA、LB、LCと、分岐線SLX、SLY、SLZとの接続(接続相)を調整することにより、逆相電流Iの値を小さくすることが可能となる。 Therefore, in order to reduce the increase in the voltage unbalance rate may be decreasing the value of the negative sequence current I N. Since the value of the reverse phase current I N is determined by the values of the A phase current I A , the B phase current I B and the C phase current I C , it differs depending on the load R connected to the trunk lines LA, LB, LC. . Furthermore, the trunk lines LA, LB, and LC are connected to the branch lines SLX, SLY, and SLZ. Since the branch lines SLX, SLY, and SLZ are connected to a plurality of loads R, by adjusting the connection (connection phase) between the trunk lines LA, LB, and LC and the branch lines SLX, SLY, and SLZ, the reverse phase The value of the current I N can be reduced.

(接続相決定装置について)
次に、接続相決定装置30について説明する。図4は、接続相決定装置の構成を示すブロック図である。図5は、接続相を決定するための配電系統の説明図である。接続相決定装置30は、逆相電流Iの値を小さくするような幹線Lと分岐線SLとの接続相を決定する。図4に示すように、接続相決定装置30は、電流値取得部32と、分岐線情報部31と、幹線逆相電流値算出部34と、分岐線逆相電流値算出部35と、逆相電流和算出部36と、逆相電流和比較部38と、接続相決定部40と、を有する。
(About connected phase determination device)
Next, the connection phase determination device 30 will be described. FIG. 4 is a block diagram illustrating a configuration of the connection phase determination device. FIG. 5 is an explanatory diagram of a power distribution system for determining a connection phase. Connecting phase determination unit 30 determines the connection phase between the main line L and the branch line SL so as to reduce the value of the reverse-phase current I N. As illustrated in FIG. 4, the connection phase determination device 30 includes a current value acquisition unit 32, a branch line information unit 31, a main line negative phase current value calculation unit 34, a branch line negative phase current value calculation unit 35, and a reverse The phase current sum calculation unit 36, the reverse phase current sum comparison unit 38, and the connection phase determination unit 40 are included.

図5に示す幹線Lと分岐線SLとの接続相決定を例にして、接続相決定装置30による幹線Lと分岐線SLとの接続相決定方法を説明する。接続相決定装置30は、幹線Lと分岐線SLが接続される箇所の上流における幹線Lの電圧不平衡を抑制するように、幹線Lと分岐線SLとの接続相を決定する。幹線Lと分岐線SLとの接続相の決定とは、ポイントPにおいて、幹線LA、LB、LCのそれぞれに、分岐線SLX、SLY、SLZのうちいずれを接続するかを決定することをいう。なお、本実施形態に係る配電系統10は、初期状態として、幹線LAと分岐線SLXとが接続され、幹線LBと分岐線SLYとが接続され、幹線LCと分岐線SLZとが接続されている。 The connection phase determination method between the trunk line L and the branch line SL by the connection phase determination device 30 will be described by taking the connection phase determination between the trunk line L and the branch line SL i shown in FIG. 5 as an example. The connection phase determination device 30 determines the connection phase between the main line L and the branch line SL i so as to suppress the voltage imbalance of the main line L upstream of the location where the main line L and the branch line SL i are connected. The determination of the connection phase between the trunk line L and the branch line SL i determines which of the branch lines SLX i , SLY i , and SLZ i is connected to each of the trunk lines LA, LB, and LC at the point P i . To do. In the distribution system 10 according to the present embodiment, as an initial state, the trunk line LA and the branch line SLX i are connected, the trunk line LB and the branch line SLY i are connected, and the trunk line LC and the branch line SLZ i are connected. Has been.

分岐線情報部31は、作業者から、接続相を決定すべき分岐線SLの情報が入力される。すなわち、分岐線情報部31は、複数の分岐線SLのうちから、分岐線SLについて接続相を決定すべき分岐線SLとする旨の情報が入力される。言い換えれば、分岐線情報部31は、接続相を決定すべき分岐線SLの、複数の分岐線SLにおける位置情報が入力される。分岐線情報部31は、分岐線SLに対応する電流値を取得する旨の情報を、電流値取得部32に出力する。 The branch line information unit 31 receives information on the branch line SL for determining the connection phase from the operator. That is, the branch line information unit 31 receives information indicating that the branch line SL is to be determined as the connection phase for the branch line SL i from among the plurality of branch lines SL. In other words, the branch line information unit 31 receives position information of the branch line SL i for determining the connection phase in the plurality of branch lines SL. The branch line information unit 31 outputs information indicating that a current value corresponding to the branch line SL i is acquired to the current value acquisition unit 32.

電流値取得部32は、図5に示すポイントPの下流において幹線LAに流れるA相電流IAiと、ポイントPの下流において幹線LBに流れるB相電流IBiと、ポイントPの下流において幹線LCに流れるC相電流ICiとの電流値を取得する。ここで、ポイントPの下流において幹線LAに流れるA相電流IAi、B相電流IBi、C相電流ICiは、各幹線Lに分岐線SLX、SLY、SLZが接続された箇所の末端14側における電流値である。言い換えれば、A相電流IAi、B相電流IBi、C相電流ICiは、ポイントPの末端14側に隣接する柱上変圧器Trと、ポイントPとの間における電流値である。以下、A相電流IAi、B相電流IBi、C相電流ICiを、適宜ポイントPにおける幹線下流電流値と記載する。 Current value acquiring unit 32, an A-phase current I Ai flowing through the main line LA downstream of the point P i shown in FIG. 5, a B-phase current I Bi flowing through the main line LB downstream of the point P i, downstream of the point P i To obtain the current value of the C-phase current I Ci flowing in the main line LC. Here, flowing through the main line LA A phase current I Ai, B-phase current I Bi, C-phase current I Ci is downstream of the point P i, the branch line SLX i, SLY i, SLZ i is connected to each trunk line L It is the electric current value in the terminal 14 side of a location. In other words, A-phase current I Ai, B-phase current I Bi, C-phase current I Ci is the current value in between the pole transformer Tr which is adjacent to the distal end 14 side of the point P i, the point P i . Hereinafter, the A-phase current I Ai , the B-phase current I Bi , and the C-phase current I Ci are referred to as a main line downstream current value at the point P i as appropriate.

また、電流値取得部32は、ポイントPにおいて分岐線SLXに流れる電流IXi(ここではA相電流)と、ポイントPにおいて分岐線SLYに流れる電流IYi(ここではB相電流)と、ポイントPにおいて分岐線SLZに流れる電流IZi(ここではC相電流)との電流値を取得する。ここで、電流IXi、IYi、IZiは、分岐線SLX、SLY、SLZの幹線L側の端部における電流値である。以下、電流IXi、IYi、IZiを、適宜ポイントPにおける分岐線電流と記載する。 The current value acquiring unit 32, the point P and (A-phase current in this case) current I Xi flowing through the branch line SLX i in i, the current I Yi (where B-phase current flowing through the branch line SLY i at point P i ) And a current I Zi (here, a C-phase current) flowing through the branch line SLZ i at the point P i is acquired. Here, the currents I Xi , I Yi , and I Zi are current values at the ends of the branch lines SLX i , SLY i , and SLZ i on the main line L side. Hereinafter, the currents I Xi , I Yi , and I Zi are appropriately referred to as branch line currents at the point P i .

電流値取得部32は、A相電流IAi、B相電流IBi、C相電流ICi及び分岐線電流IXi、IYi、IZiの電流値を算出する。幹線L及び分岐線SLの各部における電流値は、幹線Lの上流端における配電電流に対応する電圧と、幹線L及び複数の分岐線SLと柱上変圧器Trとの接続関係と柱上変圧器Trの定格容量とから算出することができる。電流値取得部32は、この関係を用いて、柱上変圧器Trの定格容量に基づき、A相電流IAi、B相電流IBi、C相電流ICi及び分岐線電流IXi、IYi、IZiの電流値を算出する。電流値取得部32は、A相電流IAi、B相電流IBi、C相電流ICiの電流値の情報を、幹線逆相電流値算出部34に出力する。電流値取得部32は、分岐線電流IXi、IYi、IZiの電流値の情報を、分岐線逆相電流値算出部35に出力する。 The current value acquisition unit 32 calculates the current values of the A-phase current I Ai , the B-phase current I Bi , the C-phase current I Ci and the branch line currents I Xi , I Yi , I Zi . The current value in each part of the trunk line L and the branch line SL includes the voltage corresponding to the distribution current at the upstream end of the trunk line L, the connection relationship between the trunk line L and the plurality of branch lines SL, and the pole transformer Tr, and the pole transformer. It can be calculated from the rated capacity of Tr. Using this relationship, the current value acquisition unit 32 uses the A-phase current I Ai , B-phase current I Bi , C-phase current I Ci, and branch line currents I Xi , I Yi based on the rated capacity of the pole transformer Tr. , I Zi current value is calculated. The current value acquisition unit 32 outputs information on the current values of the A phase current I Ai , the B phase current I Bi , and the C phase current I Ci to the main line reverse phase current value calculation unit 34. The current value acquisition unit 32 outputs information on the current values of the branch line currents I Xi , I Yi , and I Zi to the branch line reverse phase current value calculation unit 35.

幹線逆相電流値算出部34は、電流値取得部32から、幹線下流電流値(ここではA相電流IAi、B相電流IBi、C相電流ICiの電流値)の情報を取得する。幹線逆相電流値算出部34は、A相電流IAi、B相電流IBi、C相電流ICiの電流値から、ポイントPの下流において幹線Lに流れる逆相電流値である幹線下流逆相電流IN0iの電流値を算出する。幹線逆相電流値算出部34は、A相電流IAi、B相電流IBi、C相電流ICiの電流値から、対称座標法により、幹線下流逆相電流IN0iを算出する。幹線逆相電流値算出部34は、算出した幹線下流逆相電流IN0iの電流値の情報を、逆相電流和算出部36に出力する。 The main line reverse phase current value calculation unit 34 acquires information on the main line downstream current values (here, the current values of the A phase current I Ai , the B phase current I Bi , and the C phase current I Ci ) from the current value acquisition unit 32. . The main line reverse phase current value calculation unit 34 is a main line downstream that is a negative phase current value flowing through the main line L downstream of the point P i from the current values of the A phase current I Ai , the B phase current I Bi , and the C phase current I Ci. The current value of the negative phase current I N0i is calculated. The main line reverse phase current value calculation unit 34 calculates the main line downstream reverse phase current I N0i from the current values of the A phase current I Ai , the B phase current I Bi , and the C phase current I Ci by a symmetric coordinate method. The main line negative phase current value calculation unit 34 outputs information on the calculated current value of the main line downstream negative phase current INOi to the negative phase current sum calculation unit 36.

分岐線逆相電流値算出部35は、電流値取得部32から、分岐線電流値(ここでは分岐線電流IXi、IYi、IZiの電流値)の情報を取得する。分岐線逆相電流値算出部35は、分岐線電流IXi、IYi、IZiの電流値から、ポイントPにおいて分岐線SLに流れる逆相電流値である分岐線逆相電流の電流値を、接続相毎に複数算出する。 The branch line reverse phase current value calculation unit 35 acquires information on the branch line current values (here, the current values of the branch line currents I Xi , I Yi , and I Zi ) from the current value acquisition unit 32. The branch line reverse phase current value calculation unit 35 calculates the current of the branch line reverse phase current which is the reverse phase current value flowing through the branch line SL i at the point P i from the current values of the branch line currents I Xi , I Yi and I Zi. Multiple values are calculated for each connected phase.

以下、接続相毎の分岐線逆相電流の算出方法について説明する。以下の説明では、分岐線電流IXiの電流値は、分岐線電流IYiの電流値よりも大きいものとする。また、分岐線電流IYiの電流値は、分岐線電流IZiの電流値よりも大きいものとする。また、分岐線電流IXiと分岐線電流IYiとの位相差を位相差θ1−2とし、分岐線電流IYiと分岐線電流IZiとの位相差を位相差θ2−3とし、分岐線電流IZiと分岐線電流IXiとの位相差を位相差θ3−1とする。以下の説明では、位相差θ1−2と位相差θ2−3と位相差θ3−1とは、互いに値が異なる。ただし、これらの分岐線電流の電流値及び位相差の関係は、一例である。 Hereinafter, a method of calculating the branch line reverse phase current for each connection phase will be described. In the following description, the current value of the branch line current I Xi shall be greater than the current value of the branch line current I Yi. Further, it is assumed that the current value of the branch line current I Yi is larger than the current value of the branch line current I Zi . Further, the phase difference between the branch line current I Xi and the branch line current I Yi is a phase difference θ 1-2, and the phase difference between the branch line current I Yi and the branch line current I Zi is a phase difference θ 2-3 . A phase difference between the branch line current I Zi and the branch line current I Xi is defined as a phase difference θ 3-1 . In the following description, the phase difference theta 1-2 and the phase difference theta 2-3 and the phase difference theta 3-1, values are different from each other. However, the relationship between the current value and the phase difference of these branch line currents is an example.

図6Aは、第1接続相における分岐線と幹線との接続状態を示す模式図である。図6Bは、第1接続相における分岐線電流の一例を説明したベクトル図である。図6Cは、第1接続相における逆相電流の一例を説明したベクトル図である。上述のように、配電系統10は、初期状態として、図6Aに示すように、幹線LAと分岐線SLXとが接続され、幹線LBと分岐線SLYとが接続され、幹線LCと分岐線SLZとが接続されている。この接続状態を、適宜、第1接続相と記載する。 FIG. 6A is a schematic diagram illustrating a connection state between the branch line and the trunk line in the first connection phase. FIG. 6B is a vector diagram illustrating an example of the branch line current in the first connection phase. FIG. 6C is a vector diagram illustrating an example of the reverse phase current in the first connection phase. As described above, as shown in FIG. 6A, the power distribution system 10 has an initial state in which the trunk line LA and the branch line SLX i are connected, the trunk line LB and the branch line SLY i are connected, and the trunk line LC and the branch line. SLZ i is connected. This connection state is described as a first connection phase as appropriate.

図6A及び図6Bに示すように、第1接続相では、分岐線電流IXiがA相電流となり、分岐線電流IYiがB相電流となり、分岐線電流IZiがC相電流となる。分岐線逆相電流値算出部35は、第1接続相におけるポイントPで分岐線SLに流れる分岐線逆相電流を、電流IXiをA相電流とし、電流IYiをB相電流とし、電流IZiをC相電流として、対称座標法により算出する。 As shown in FIGS. 6A and 6B, in the first connection phase, the branch line current I Xi becomes an A phase current, the branch line current I Yi becomes a B phase current, and the branch line current I Zi becomes a C phase current. The branch line reverse phase current value calculation unit 35 uses the branch line reverse phase current flowing through the branch line SL i at the point P i in the first connection phase as the current I Xi as the A phase current and the current I Yi as the B phase current. The current I Zi is calculated as a C-phase current by the symmetric coordinate method.

第1接続相での分岐線逆相電流は、図6Cに示すように、分岐線A相逆相電流INA1iと、分岐線B相逆相電流INB1iと、分岐線C相逆相電流INC1iとの、逆回転の電流である。ここでは、分岐線A相逆相電流INA1iを、第1接続相での分岐線逆相電流IN1iと記載する。 As shown in FIG. 6C, the branch line reverse phase current in the first connection phase includes the branch line A phase negative phase current IN A1i , the branch line B phase negative phase current IN B1i, and the branch line C phase negative phase current IN. This is a reverse rotation current with C1i . Here, the branch line A-phase reverse phase current IN A1i is referred to as a branch line reverse-phase current IN 1i in the first connection phase.

図7Aは、第2接続相における分岐線と幹線との接続状態を示す模式図である。図7Bは、第2接続相における分岐線電流の一例を説明したベクトル図である。図7Cは、第2接続相における逆相電流の一例を説明したベクトル図である。図7Aが示すように、幹線LAと分岐線SLYとが接続され、幹線LBと分岐線SLZとが接続され、幹線LCと分岐線SLXとが接続されている接続状態を、第2接続相とする。第2接続相は、第1接続相から、幹線Lの相回転方向を維持する接続相である。 FIG. 7A is a schematic diagram illustrating a connection state between the branch line and the trunk line in the second connection phase. FIG. 7B is a vector diagram illustrating an example of a branch line current in the second connection phase. FIG. 7C is a vector diagram illustrating an example of the reverse phase current in the second connection phase. As shown in FIG. 7A, the main line LA and the branch line SLY i are connected, the main line LB and the branch line SLZ i are connected, and the main line LC and the branch line SLX i are connected in the second state. Connected phase. The second connection phase is a connection phase that maintains the phase rotation direction of the trunk line L from the first connection phase.

図7A及び図7Bに示すように、第2接続相では、分岐線電流IYiがA相電流となり、分岐線電流IZiがB相電流となり、分岐線電流IXiがC相電流となる。分岐線逆相電流値算出部35は、電流IYiをA相電流とし、電流IZiをB相電流とし、電流IXiをC相電流として、第2接続相におけるポイントPで分岐線SLに流れる分岐線逆相電流を、対称座標法により算出する。 As shown in FIGS. 7A and 7B, in the second connection phase, the branch line current I Yi becomes an A phase current, the branch line current I Zi becomes a B phase current, and the branch line current I Xi becomes a C phase current. The branch line reverse phase current value calculation unit 35 sets the current I Yi as the A phase current, the current I Zi as the B phase current, the current I Xi as the C phase current, and the branch line SL at the point P i in the second connection phase. The branch line reverse phase current flowing through i is calculated by the symmetric coordinate method.

第2接続相での分岐線逆相電流は、図7Cに示すように、分岐線A相逆相電流INA2iと、分岐線B相逆相電流INB2iと、分岐線C相逆相電流INC2iとの、逆回転の電流である。ここでは、分岐線A相逆相電流INA2iを、第2接続相での分岐線逆相電流IN2iと記載する。 Branch line negative sequence current in the second connection phase, as shown in FIG. 7C, a branch line A-phase negative sequence current IN A2i, a branch line B-phase negative sequence current IN B2i, branch line C-phase negative sequence current IN This is a reverse rotation current with C2i . Here, the branch line A-phase reverse phase current IN A2i is referred to as a branch line reverse-phase current IN 2i in the second connection phase.

図8Aは、第3接続相における分岐線と幹線との接続状態を示す模式図である。図8Bは、第3接続相における分岐線電流の一例を説明したベクトル図である。図8Cは、第3接続相における逆相電流の一例を説明したベクトル図である。図8Aが示すように、幹線LAと分岐線SLZとが接続され、幹線LBと分岐線SLXとが接続され、幹線LCと分岐線SLYとが接続されている接続状態を、第3接続相とする。第3接続相は、第1接続相から、幹線Lの相回転方向を維持する接続相である。 FIG. 8A is a schematic diagram illustrating a connection state between the branch line and the trunk line in the third connection phase. FIG. 8B is a vector diagram illustrating an example of the branch line current in the third connection phase. FIG. 8C is a vector diagram illustrating an example of the reverse phase current in the third connection phase. As shown in FIG. 8A, the main line LA and the branch line SLZ i are connected, the main line LB and the branch line SLX i are connected, and the main line LC and the branch line SLY i are connected in the third state. Connected phase. The third connection phase is a connection phase that maintains the phase rotation direction of the trunk line L from the first connection phase.

図8A及び図8Bに示すように、第3接続相では、分岐線電流IZiがA相電流となり、分岐線電流IXiがB相電流となり、分岐線電流IYiがC相電流となる。分岐線逆相電流値算出部35は、電流IZiをA相電流とし、電流IXiをB相電流とし、電流IYiをC相電流として、第3接続相におけるポイントPで分岐線SLに流れる分岐線逆相電流を、対称座標法により算出する。 As shown in FIGS. 8A and 8B, in the third connection phase, the branch line current I Zi becomes an A phase current, the branch line current I Xi becomes a B phase current, and the branch line current I Yi becomes a C phase current. The branch line reverse phase current value calculation unit 35 sets the current I Zi as the A phase current, the current I Xi as the B phase current, the current I Yi as the C phase current, and the branch line SL at the point P i in the third connection phase. The branch line reverse phase current flowing through i is calculated by the symmetric coordinate method.

第3接続相での分岐線逆相電流は、図8Cに示すように、分岐線A相逆相電流INA3iと、分岐線B相逆相電流INB3iと、分岐線C相逆相電流INC3iとの、逆回転の電流である。ここでは、分岐線A相逆相電流INA3iを、第3接続相での分岐線逆相電流IN3iと記載する。 As shown in FIG. 8C, the branch line reverse phase current in the third connection phase includes the branch line A phase negative phase current IN A3i , the branch line B phase negative phase current IN B3i, and the branch line C phase negative phase current IN. This is a reverse rotation current with C3i . Here, the branch line A-phase reverse phase current IN A3i is referred to as a branch line reverse-phase current IN 3i in the third connection phase.

以上のように、分岐線逆相電流値算出部35は、電流IXi、IYi、IZiの電流値と、接続相の関係(電流IXi、IYi、IZiが、A相、B相、C相のいずれの相の電流であるかを示す関係)とから、第1接続相での分岐線逆相電流IN1iを算出する。同様に、分岐線逆相電流値算出部35は、電流IXi、IYi、IZiの電流値と、接続相の関係とから、第2接続相での分岐線逆相電流IN2iを算出する。同様に、分岐線逆相電流値算出部35は、電流IXi、IYi、IZiの電流値と、接続相の関係とから、第3接続相での分岐線逆相電流IN3iを算出する。分岐線逆相電流値算出部35は、分岐線逆相電流IN1i、IN2i、IN3iの電流値の情報を、逆相電流和算出部36に出力する。 As described above, the branch line reverse phase current value calculation unit 35 determines the relationship between the current values of the currents I Xi , I Yi , I Zi and the connection phase (the currents I Xi , I Yi , I Zi are the A phase, B The branch line reverse phase current IN 1i in the first connection phase is calculated from the relationship between the phase and the C phase). Similarly, the branch line reverse phase current value calculation unit 35 calculates the branch line reverse phase current IN 2i in the second connection phase from the current values of the currents I Xi , I Yi , and I Zi and the relationship between the connection phases. To do. Similarly, the branch line reverse phase current value calculation unit 35 calculates the branch line reverse phase current IN 3i in the third connection phase from the current values of the currents I Xi , I Yi , and I Zi and the relationship between the connection phases. To do. The branch line negative phase current value calculation unit 35 outputs information on the current values of the branch line negative phase currents IN 1i , IN 2i , and IN 3i to the negative phase current sum calculation unit 36.

逆相電流和算出部36は、幹線逆相電流値算出部34から、ポイントPの下流において幹線Lに流れる逆相電流値である幹線下流逆相電流IN0iの電流値の情報が入力される。また、逆相電流和算出部36は、第1接続相における分岐線逆相電流IN1iの電流値、第2接続相における分岐線逆相電流IN2iの電流値、及び第3接続相における分岐線逆相電流IN3iの電流値の情報が入力される。 Negative sequence current sum calculating unit 36, from the mains negative sequence current value calculating section 34, information of the current value of the mains downstream negative sequence current IN 0i downstream point P i is the reverse-phase current flowing through the main line L is input The The negative phase current sum calculation unit 36 also includes a current value of the branch line negative phase current IN 1i in the first connection phase, a current value of the branch line negative phase current IN 2i in the second connection phase, and a branch in the third connection phase. Information on the current value of the line negative phase current IN 3i is input.

逆相電流和算出部36は、幹線下流逆相電流IN0iの電流値と第1接続相の分岐線逆相電流IN1iの電流値とのベクトル和の絶対値である第1接続相逆相電流I’N1i(第1接続相の逆相電流和)を算出する。逆相電流和算出部36は、幹線下流逆相電流IN0iの電流値と第2接続相の分岐線逆相電流IN2iの電流値とのベクトル和の絶対値である第2接続相逆相電流I’N2i(第2接続相の逆相電流和)を算出する。逆相電流和算出部36は、幹線下流逆相電流IN0iの電流値と第3接続相の分岐線逆相電流IN3iの電流値とのベクトル和の絶対値である第3接続相逆相電流I’N3i(第3接続相の逆相電流和)を算出する。逆相電流和算出部36は、算出した第1接続相逆相電流I’N1iと第2接続相逆相電流I’N2iと第3接続相逆相電流I’N3iとの電流値の情報を、逆相電流和比較部38に出力する。 The negative phase current sum calculation unit 36 is a first connection phase negative phase that is an absolute value of the vector sum of the current value of the mainstream downstream negative phase current IN 0i and the branch connection negative phase current IN 1i of the first connection phase. The current I′N 1i (the reverse phase current sum of the first connection phase) is calculated. The negative phase current sum calculation unit 36 is a second connection phase negative phase that is an absolute value of a vector sum of the current value of the main line downstream negative phase current IN 0i and the branch connection negative phase current IN 2i of the second connection phase. The current I′N 2i (the reverse phase current sum of the second connection phase) is calculated. The negative phase current sum calculation unit 36 is a third connection phase negative phase which is an absolute value of a vector sum of the current value of the mainstream downstream negative phase current IN 0i and the branch connection negative phase current IN 3i of the third connection phase. The current I′N 3i (the reverse phase current sum of the third connection phase) is calculated. The negative phase current sum calculation unit 36 calculates the current values of the calculated first connection phase negative phase current I′N 1i , second connection phase negative phase current I′N 2i, and third connection phase negative phase current I′N 3i. Is output to the negative-phase current sum comparison unit 38.

逆相電流和比較部38は、第1接続相逆相電流I’N1iと第2接続相逆相電流I’N2iと第3接続相逆相電流I’N3iとの電流値を比較し、最小のものの接続相の情報を、接続相決定部40に出力する。 The negative phase current sum comparison unit 38 compares the current values of the first connection phase negative phase current I′N 1i , the second connection phase negative phase current I′N 2i and the third connection phase negative phase current I′N 3i. Then, the information on the minimum connection phase is output to the connection phase determination unit 40.

図9は、逆相電流和の一例を示すグラフである。図9に示す例では、第2接続相逆相電流I’N2iの絶対値(スカラー値)は、第1接続相逆相電流I’N1i及び第3接続相逆相電流I’N3iよりも小さい。この場合、逆相電流和比較部38は、第2接続相の情報を、接続相決定部40に出力する。 FIG. 9 is a graph showing an example of the reverse-phase current sum. In the example shown in FIG. 9, the absolute value (scalar value) of the second connection phase negative phase current I′N 2i is the first connection phase negative phase current I′N 1i and the third connection phase negative phase current I′N 3i. Smaller than. In this case, the negative phase current sum comparison unit 38 outputs the information on the second connection phase to the connection phase determination unit 40.

接続相決定部40は、逆相電流和比較部38から入力された接続相の情報に基づき、入力された接続相を、電圧不平衡を抑制するための接続相として決定する。接続相決定部40は、表示部を有し、電圧不平衡を抑制するための接続相の情報を表示する。作業者は、この接続相の情報に基づき、必要に応じて、幹線Lと分岐線SLとの接続相を変更する。 The connection phase determination unit 40 determines the input connection phase as a connection phase for suppressing voltage imbalance based on the connection phase information input from the reverse phase current sum comparison unit 38. The connection phase determination unit 40 includes a display unit and displays connection phase information for suppressing voltage imbalance. Based on the information on the connection phase, the worker changes the connection phase between the trunk line L and the branch line SL i as necessary.

また、接続相決定部40は、幹線Lと分岐線SLとの接続相を決定したら、分岐線情報部31に、分岐線SLについて、決定した接続相の情報を出力する。また、分岐線情報部31は、分岐線SLについての接続相の情報が出力されたら、幹線Lの分岐線SLが接続されているポイントPの上流端12側に分岐線SLが接続されているかを判断する。ポイントPの上流端12側において分岐線SLが接続されている場合、分岐線情報部31は、分岐線SLが第2接続相で接続された場合における、分岐線SLi−1に対応する電流値を取得する旨の情報を、電流値取得部32に出力する。なお、分岐線SLi−1は、分岐線SLの上流端12側で、分岐線SLと隣接する分岐線である。 In addition, when the connection phase determination unit 40 determines the connection phase between the trunk line L and the branch line SL i , the connection phase determination unit 40 outputs information on the determined connection phase for the branch line SL i to the branch line information unit 31. The branch line information section 31, when information of the connection phase for the branch line SL i is output, the branch line SL connected to the upstream end 12 side of the point P i to the branch line SL i mains L is connected Judge whether it has been. If the branch line SL is connected at the upstream end 12 side of the point P i, the branch line information section 31, when the branch line SL i is connected with the second connection phase, corresponding to the branch line SL i-1 Information indicating that a current value to be acquired is acquired is output to the current value acquisition unit 32. The branch line SL i-1 is a branch line adjacent to the branch line SL i on the upstream end 12 side of the branch line SL i .

電流値取得部32は、幹線Lの上流端における配電電流に対応する電圧と、分岐線SLが第2接続相で接続された場合における幹線L及び複数の分岐線SLと柱上変圧器Trとの接続関係と、柱上変圧器Trの定格容量とから、分岐線SLi−1に対応する電流値を取得する。その後、接続相決定装置30は、分岐線SLにおいて接続相を決定した処理と同様の処理を行い、分岐線SLi−1と幹線Lとの接続相を決定する。接続相決定装置30は、この処理を、幹線Lの上流端12側に他の分岐線SLが存在しない分岐線SLまで繰り返し、各分岐線SLと幹線Lとの接続相を、上流端12側に向かって順次決定する。 The current value acquisition unit 32 includes the voltage corresponding to the distribution current at the upstream end of the trunk line L, and the trunk line L and the plurality of branch lines SL and the pole transformer Tr when the branch line SL i is connected in the second connection phase. The current value corresponding to the branch line SL i-1 is acquired from the connection relationship with the rated capacity of the pole transformer Tr. Thereafter, the connection phase determination unit 30 performs the same processing as that determined the connection phase in the branch line SL i, determining the connection phase of the branch line SL i-1 and main line L. The connection phase determining device 30 repeats this process up to the branch line SL n where no other branch line SL exists on the upstream end 12 side of the trunk line L, and the connection phase between each branch line SL and the trunk line L is changed to the upstream end 12. It decides sequentially toward the side.

次に、接続相決定装置30による幹線Lと分岐線SLとの接続相決定処理について、フローチャートに基づき説明する。図10は、幹線と分岐線との接続相決定処理を説明するフローチャートである。幹線Lと分岐線SLとの接続相を決定する場合、接続相決定装置30は、最初に、分岐線情報部31に分岐線SLを接続相決定すべき分岐線SLとする旨の情報が入力される。分岐線情報部31は、電流値取得部32に、分岐線SLに対応する電流値を取得する旨の情報を出力する。 Next, a connection phase determination process between the trunk line L and the branch line SL i by the connection phase determination device 30 will be described based on a flowchart. FIG. 10 is a flowchart for explaining the connection phase determination process between the main line and the branch line. When determining the connection phase between the trunk line L and the branch line SL i , the connection phase determination device 30 firstly sets information indicating that the branch line SL i is the branch line SL to be determined as the connection phase in the branch line information unit 31. Is entered. The branch line information unit 31 outputs information indicating that a current value corresponding to the branch line SL i is acquired to the current value acquisition unit 32.

図10に示すように、接続相決定装置30は、電流値取得部32により、ポイントPにおける幹線下流電流値と、ポイントPにおける分岐線電流値とを取得する(ステップS12)。言い換えれば、電流値取得部32は、A相電流IAi、B相電流IBi、C相電流ICi及び分岐線電流IXi、IYi、IZiの電流値を取得する。電流値取得部32は、A相電流IAi、B相電流IBi、C相電流ICi及び分岐線電流IXi、IYi、IZiの電流値を、柱上変圧器Trの定格容量に基づき算出する。 As shown in FIG. 10, the connection phase determination unit 30, by the current value acquiring unit 32 acquires the mains downstream current value at the point P i, and a branch line current value at the point P i (step S12). In other words, the current value acquisition unit 32 acquires the current values of the A phase current I Ai , the B phase current I Bi , the C phase current I Ci and the branch line currents I Xi , I Yi , I Zi . The current value acquisition unit 32 converts the current values of the A phase current I Ai , the B phase current I Bi , the C phase current I Ci and the branch line currents I Xi , I Yi , I Zi to the rated capacity of the pole transformer Tr. Calculate based on

ポイントPにおける幹線下流電流値及び分岐線電流値を取得した後、接続相決定装置30は、幹線逆相電流値算出部34により、ポイントPの下流において幹線Lに流れる逆相電流値である幹線下流逆相電流IN0iの電流値を算出する。そして、接続相決定装置30は、分岐線逆相電流値算出部35により、第1接続相、第2接続相及び第3接続相における、ポイントPにおいて分岐線SLに流れる逆相電流値である分岐線逆相電流の電流値を算出する(ステップS14、第1ステップ)。 After obtaining the main line downstream current value and the branch line current value at the point P i , the connection phase determination device 30 uses the main line negative phase current value calculation unit 34 to calculate the reverse phase current value flowing through the main line L downstream of the point P i. A current value of a certain mainstream downstream reverse-phase current IN0i is calculated. Then, the connection phase determination device 30 causes the branch line reverse phase current value calculation unit 35 to perform the reverse phase current value flowing through the branch line SL i at the point P i in the first connection phase, the second connection phase, and the third connection phase. The current value of the branch line reverse phase current is calculated (step S14, first step).

より詳しくは、幹線逆相電流値算出部34は、A相電流IAi、B相電流IBi、C相電流ICiの電流値から、対称座標法により、幹線下流逆相電流IN0iを算出する。 More specifically, the main line reverse phase current value calculation unit 34 calculates the main line downstream negative phase current IN 0i from the current values of the A phase current I Ai , the B phase current I Bi , and the C phase current I Ci by a symmetric coordinate method. To do.

また、分岐線逆相電流値算出部35は、分岐線電流IXi、IYi、IZiの電流値と接続相の関係とから、第1接続相の分岐線逆相電流IN1i、第2接続相の分岐線逆相電流IN2i、及び第3接続相の分岐線逆相電流IN3iを算出する。 Further, the branch line reverse phase current value calculation unit 35 determines the branch line reverse phase current IN 1i , second phase of the first connection phase from the relation between the current values of the branch line currents I Xi , I Yi , I Zi and the connection phase. The branch line reverse phase current IN 2i of the connection phase and the branch line reverse phase current IN 3i of the third connection phase are calculated.

幹線下流逆相電流IN0iの電流値と、第1接続相における分岐線逆相電流IN1iの電流値、第2接続相における分岐線逆相電流IN2iの電流値、及び第3接続相における分岐線逆相電流IN3iの電流値とを算出した後、接続相決定装置30は、逆相電流和算出部36により、第1接続相の逆相電流和と、第2接続相の逆相電流和と、第3接続相の逆相電流和とを算出する(ステップS16)。言い換えれば、逆相電流和算出部36は、幹線下流逆相電流IN0iの電流値と第1接続相における分岐線逆相電流IN1iの電流値とのベクトル和の絶対値である第1接続相逆相電流I’N1iを算出する。また、逆相電流和算出部36は、幹線下流逆相電流IN0iの電流値と第2接続相における分岐線逆相電流IN2iの電流値とのベクトル和の絶対値である第2接続相逆相電流I’N2iを算出する。また、逆相電流和算出部36は、幹線下流逆相電流IN0iの電流値と第3接続相における分岐線逆相電流IN3iの電流値とのベクトル和の絶対値である第3接続相逆相電流I’N3iを算出する。 The current value of the mainstream downstream negative phase current IN 0i, the current value of the branch line negative phase current IN 1i in the first connection phase, the current value of the branch line negative phase current IN 2i in the second connection phase, and the third connection phase After calculating the current value of the branch line reverse phase current IN 3i , the connection phase determination device 30 uses the negative phase current sum calculation unit 36 to calculate the negative phase current sum of the first connection phase and the negative phase of the second connection phase. The current sum and the reverse phase current sum of the third connection phase are calculated (step S16). In other words, the negative phase current sum calculation unit 36 is the first connection that is the absolute value of the vector sum of the current value of the mainstream downstream negative phase current IN 0i and the current value of the branch line negative phase current IN 1i in the first connection phase. The phase reverse phase current I′N 1i is calculated. Further, the negative phase current sum calculation unit 36 is a second connection phase that is an absolute value of a vector sum of the current value of the main line downstream negative phase current IN 0i and the branch line negative phase current IN 2i in the second connection phase. The reverse phase current I′N 2i is calculated. Further, the negative phase current sum calculation unit 36 is a third connection phase that is an absolute value of a vector sum of the current value of the mainstream downstream negative phase current IN 0i and the current value of the branch line negative phase current IN 3i in the third connection phase. The reverse phase current I′N 3i is calculated.

第1接続相の逆相電流和、第2接続相の逆相電流和及び第3接続相の逆相電流和を算出した後、接続相決定装置30は、逆相電流和比較部38により逆相電流和の最小値を算出し、接続相決定部40により、逆相電流和が最小値である場合における接続相を、接続すべき接続相として決定する(ステップS18、第2ステップ)。接続相決定装置30は、例えば第2接続相逆相電流I’N2iが、第1接続相逆相電流I’N1i及び第3接続相逆相電流I’N3iの電流値よりも小さい場合、第2接続相を、接続すべき接続相として決定する。 After calculating the negative phase current sum of the first connection phase, the negative phase current sum of the second connection phase, and the negative phase current sum of the third connection phase, the connection phase determination device 30 reverses the reverse phase current sum comparison unit 38. The minimum value of the phase current sum is calculated, and the connection phase determining unit 40 determines the connection phase when the reverse-phase current sum is the minimum value as the connection phase to be connected (step S18, second step). In the connection phase determination device 30, for example, the second connection phase negative phase current I′N 2i is smaller than the current values of the first connection phase negative phase current I′N 1i and the third connection phase negative phase current I′N 3i. In this case, the second connection phase is determined as the connection phase to be connected.

接続相を決定した後、接続相決定装置30は、分岐線情報部31により、分岐線SLが接続されるポイントPよりも上流端12側に分岐線SLが接続されているかを判断する(ステップS20)。 After determining the connection phase, the connection phase determination device 30 determines whether the branch line SL is connected to the upstream end 12 side from the point P i to which the branch line SL i is connected by the branch line information unit 31. (Step S20).

分岐線SLが接続されるポイントPよりも上流端12側に分岐線SLが接続されている場合(ステップS20でYes)、接続相決定装置30は、電流値取得部32により、決定した接続相で分岐線SLと幹線Lとが接続された場合における、分岐線SLの上流側に隣接する分岐線SLi+1に対応するポイントPi+1での幹線下流電流値と分岐線電流値とを取得する(ステップS22)。その後、ステップS14に戻り、接続相決定装置30は、分岐線SLi+1と幹線Lとの接続相を決定する。 When the branch line SL is connected to the upstream end 12 side of the point P i to which the branch line SL i is connected (Yes in step S20), the connection phase determination device 30 is determined by the current value acquisition unit 32. in a case where the branch line SL i and trunk L are connected by the connection phase, a mains downstream current value and the branch line current at point P i + 1 corresponding to the branch line SL i + 1 adjacent to the upstream side of the branch line SL i Is acquired (step S22). Then, returning to step S14, the connection phase determination device 30 determines the connection phase between the branch line SL i + 1 and the trunk line L.

上流端12側に分岐線SLが接続されていないと判断した場合(ステップS20でNo)、接続相決定装置30は、接続相決定処理を終了する。すなわち、接続相決定装置30は、各分岐線SLと幹線Lとの接続相を、上流端12側に向かって順次決定し、最も上流端12側の分岐線SLの接続相を決定したら、接続相決定処理を終了する。   When it is determined that the branch line SL is not connected to the upstream end 12 side (No in step S20), the connection phase determination device 30 ends the connection phase determination process. That is, the connection phase determination device 30 sequentially determines the connection phase between each branch line SL and the trunk line L toward the upstream end 12 side, and determines the connection phase of the branch line SL on the most upstream end 12 side. End the phase determination process.

以上のように、接続相決定装置30は、分岐線SLと接続されるポイントPよりも下流における幹線Lの幹線逆相電流値の情報を取得し、幹線Lと接続されるポイントPにおける分岐線SLの分岐線逆相電流値の情報を、幹線Lと分岐線SLとの接続相毎に複数取得する。そして、接続相決定装置30は、幹線逆相電流値と分岐線逆相電流値との和の絶対値が最小となるように、複数の接続相から幹線Lと分岐線SLとの接続相を決定する。 As described above, connecting phase determination unit 30, than the point P i to be connected to the branch line SL i acquires information mains negative sequence current value of the mains L downstream, the point P i to be connected to the main line L the information of the branch line negative sequence current value of the branch line SL i in, a plurality of acquired connection phase for each of the mains L and the branch line SL i. The connection phase determination device 30 then connects the connection phase between the main line L and the branch line SL i from the plurality of connection phases so that the absolute value of the sum of the main line negative phase current value and the branch line negative phase current value is minimized. To decide.

ここで、ポイントPよりも下流における幹線Lの幹線逆相電流値とポイントPにおける分岐線SLの分岐線逆相電流値との和は、ポイントPの上流における幹線Lの逆相電流値となる。従って、接続相決定装置30は、幹線逆相電流値と分岐線逆相電流値との和の絶対値が最小となるように、幹線Lと分岐線SLとの接続相を決定することにより、ポイントPの上流における幹線Lの逆相電流値を小さくするような接続相を選択することができる。ポイントPの上流における幹線Lの逆相電流値が小さくなることにより、ポイントPの上流における幹線Lの電圧不平衡は小さくなる。従って、接続相決定装置30は、幹線Lの電圧不平衡を小さくするような幹線Lと分岐線SLとの接続相を決定することができる。 Here, the sum of the branch line reverse-phase current value of the branch line SL i of the trunk line negative sequence current value and the point P i of the mains L downstream than the point P i, reverse-phase mains L upstream of the point P i Current value. Therefore, the connection phase determination device 30 determines the connection phase between the main line L and the branch line SL i so that the absolute value of the sum of the main line reverse phase current value and the branch line reverse phase current value is minimized. , it is possible to select a connection phase, such as to reduce the negative sequence current value of the mains L upstream of the point P i. By reverse-phase current value of the mains L upstream of the point P i is small, the voltage unbalance of the mains L upstream of the point P i becomes smaller. Therefore, the connection phase determination device 30 can determine the connection phase between the main line L and the branch line SL so as to reduce the voltage imbalance of the main line L.

さらに、接続相決定装置30は、幹線Lと分岐線SLとの接続相の決定処理を幹線Lの上流端12側に向かって行い、最も上流端12側の分岐線SLの接続相を決定したら、接続相の決定処理を終了する。ポイントPの上流における幹線Lの逆相電流値は、その下流側の逆相電流値に応じて変化する。従って、接続相決定装置30は、幹線Lの上流端12側に向かって接続相の決定処理を行うことにより、複数の分岐線SLに対して、幹線Lの電圧不平衡を小さくするような接続相を、より適切に決定することができる。 Furthermore, the connection phase determination device 30 performs the process of determining the connection phase between the trunk line L and the branch line SL toward the upstream end 12 side of the trunk line L, and determines the connection phase of the branch line SL on the most upstream end 12 side. The connection phase determination process is terminated. Reverse-phase current value of the mains L upstream of the point P i is changed according to the reverse-phase current value of the downstream side. Therefore, the connection phase determination device 30 performs a connection phase determination process toward the upstream end 12 side of the main line L, thereby reducing the voltage unbalance of the main line L with respect to the plurality of branch lines SL. The phase can be determined more appropriately.

また、接続相決定装置30は、幹線Lにおける配電電流の相回転方向を維持するように、幹線Lと分岐線SLとの接続相を決定する。従って、接続相決定装置30は、例えば負荷Rにおける逆回転を防止し、負荷Rの保護リレーの動作、機器の誤動作または停止を回避することができる。   Moreover, the connection phase determination apparatus 30 determines the connection phase of the trunk line L and the branch line SL so that the phase rotation direction of the distribution current in the trunk line L may be maintained. Therefore, the connection phase determination device 30 can prevent, for example, reverse rotation in the load R and can avoid the operation of the protection relay of the load R, the malfunction of the device, or the stop.

さらに詳しくは、接続相決定装置30は、第1接続相の逆相電流和と、第2接続相の逆相電流和と、第3接続相の逆相電流和とを算出し、第1接続相の逆相電流和と第2接続相の逆相電流和と第3接続相の逆相電流和とのうち、絶対値が最小である場合の接続相を、幹線Lと分岐線SLとの接続相として決定する。従って、接続相決定装置30は、幹線Lの電圧不平衡を小さくするような幹線Lと分岐線SLとの接続相を、適切に決定することができる。   More specifically, the connection phase determination device 30 calculates a negative phase current sum of the first connection phase, a negative phase current sum of the second connection phase, and a negative phase current sum of the third connection phase, and first connection Of the negative phase current sum of the phases, the negative phase current sum of the second connection phase, and the negative phase current sum of the third connection phase, the connection phase when the absolute value is the minimum is determined between the main line L and the branch line SL. Determine as connection phase. Therefore, the connection phase determination device 30 can appropriately determine the connection phase between the main line L and the branch line SL that reduces the voltage imbalance of the main line L.

また、接続相決定装置30は、幹線逆相電流値と分岐線逆相電流値とを、柱上変圧器Trの定格容量に基づいて算出する。従って、接続相決定装置30は、幹線L及び分岐線SLにおける電流値を測定することなく、幹線Lと分岐線SLとの接続相を決定することができる。   In addition, the connection phase determination device 30 calculates the main line reverse phase current value and the branch line reverse phase current value based on the rated capacity of the pole transformer Tr. Therefore, the connection phase determination device 30 can determine the connection phase between the main line L and the branch line SL without measuring the current values in the main line L and the branch line SL.

ただし、接続相決定装置30は、例えばポイントPiに設けられた電流計が測定したA相電流IAi、B相電流IBi、C相電流ICi及び分岐線電流IXi、IYi、IZiの電流値に基づき、ポイントPよりも下流における幹線逆相電流値とポイントPにおける分岐線逆相電流値とを算出してもよい。この場合、接続相決定装置30は、幹線逆相電流値と分岐線逆相電流値とを、正確に算出することができる。なお、この場合、接続相決定装置30は、分岐線SLの接続相を決定した後、その接続相に従って分岐線SLと幹線Lとを接続してから電流値を測定し、その電流値の測定結果に基づき分岐線SLi+1の接続相を決定する。ただし、この場合においても、分岐線SLの接続相を決定した後、その接続相における幹線L及び複数の分岐線SLと柱上変圧器Trとの接続関係と、柱上変圧器Trの定格容量とから、分岐線SLi+1に対応する電流値を算出してもよい。 However, the connection phase determination device 30 is, for example, the A phase current I Ai , the B phase current I Bi , the C phase current I Ci and the branch line currents I Xi , I Yi , I Zi measured by an ammeter provided at the point Pi. the basis of the current value may be calculated and branch line reverse-phase current value of the trunk line negative sequence current value and the point P i in the downstream of the point P i. In this case, the connection phase determination device 30 can accurately calculate the main line negative phase current value and the branch line negative phase current value. In this case, after determining the connection phase of the branch line SL i , the connection phase determining device 30 measures the current value after connecting the branch line SL i and the trunk line L according to the connection phase, and the current value The connection phase of the branch line SL i + 1 is determined based on the measurement result. However, also in this case, after determining the connection phase of the branch line SL i , the connection relationship between the trunk line L and the plurality of branch lines SL and the pole transformer Tr in the connection phase, and the rating of the pole transformer Tr A current value corresponding to the branch line SL i + 1 may be calculated from the capacitance.

以上、本発明の実施形態について説明したが、これら実施形態の内容によりこの発明が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited by the content of these embodiment. In addition, the above-described constituent elements include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the above-described components can be appropriately combined. Furthermore, various omissions, substitutions, or changes of the components can be made without departing from the spirit of the above-described embodiment.

10 配電系統
12 上流端
14 末端
30 接続相決定装置
31 分岐線情報部
32 電流値取得部
34 幹線逆相電流値算出部
35 分岐線逆相電流値算出部
36 逆相電流和算出部
38 逆相電流和比較部
40 接続相決定部
L、LA、LB、LC 幹線
SL、SLX、SLY、SLZ 分岐線
Tr 柱上変圧器
R 負荷
DESCRIPTION OF SYMBOLS 10 Distribution system 12 Upstream end 14 End 30 Connection phase determination apparatus 31 Branch line information part 32 Current value acquisition part 34 Trunk line reverse phase current value calculation part 35 Branch line reverse phase current value calculation part 36 Reverse phase current sum calculation part 38 Reverse phase Current sum comparison unit 40 Connection phase determination unit L, LA, LB, LC Trunk line SL, SLX, SLY, SLZ Branch line Tr Pillar transformer R Load

Claims (8)

上流から三相交流電流が供給される三相配電線である幹線と、前記幹線から分岐される三相配電線である分岐線との接続相を決定する接続相決定方法であって、
前記分岐線と接続される箇所よりも下流における前記幹線の逆相電流値である幹線逆相電流値の情報を取得し、前記幹線と接続される箇所における前記分岐線の逆相電流値である分岐線逆相電流値の情報を、幹線と分岐線との接続相毎に複数取得する第1ステップと、
前記第1ステップにおいて取得した前記幹線逆相電流値と前記分岐線逆相電流値との和の絶対値が最小となるように、前記幹線と前記分岐線との接続相を決定する第2ステップと、
を有する接続相決定方法。
A connection phase determination method for determining a connection phase between a trunk line that is a three-phase distribution line to which a three-phase alternating current is supplied from upstream and a branch line that is a three-phase distribution line branched from the trunk line,
Information on the main line negative phase current value, which is the negative phase current value of the main line downstream from the part connected to the branch line, is obtained, and the negative phase current value of the branch line at the part connected to the main line A first step of acquiring a plurality of branch line reverse-phase current value information for each connection phase of the trunk line and the branch line;
A second step of determining a connection phase between the trunk line and the branch line so that the absolute value of the sum of the main line negative phase current value and the branch line negative phase current value acquired in the first step is minimized; When,
A method for determining a connection phase.
前記分岐線は、前記幹線の前記交流電流が流れる方向に沿って複数設けられており、
前記第1ステップ及び前記第2ステップは、前記幹線の下流における前記分岐線から前記幹線の上流における前記分岐線に向かって行われ、前記幹線の最も上流側の分岐線についての前記第1ステップ及び前記第2ステップの処理が終了することにより、処理を終了する、請求項1に記載の接続相決定方法。
A plurality of the branch lines are provided along a direction in which the alternating current of the trunk line flows,
The first step and the second step are performed from the branch line downstream of the trunk line toward the branch line upstream of the trunk line, and the first step and the first step for the branch line upstream of the trunk line and The connection phase determination method according to claim 1, wherein the process is terminated when the process of the second step is terminated.
前記第2ステップにおいて、さらに、前記幹線の相回転方向を維持するように、前記幹線と前記分岐線との接続相を決定する、請求項1又は請求項2に記載の接続相決定方法。   The connection phase determination method according to claim 1 or 2, wherein in the second step, a connection phase between the trunk line and the branch line is further determined so as to maintain a phase rotation direction of the trunk line. 前記幹線は、第1相の交流電流が流れる第1幹線、第2相の交流電流が流れる第2幹線及び第3相の交流電流が流れる第3幹線を有し、前記分岐線は、第1分岐線、第2分岐線及び第3分岐線を有し、
前記第2ステップは、
前記第1幹線と前記第1分岐線とを接続し、前記第2幹線と前記第2分岐線とを接続し、前記第3幹線と前記第3分岐線とを接続した接続相における、前記幹線逆相電流値と前記分岐線逆相電流値との和である第1接続相逆相電流和と、
前記第1幹線と前記第2分岐線とを接続し、前記第2幹線と前記第3分岐線とを接続し、前記第3幹線と前記第1分岐線とを接続した接続相における、前記幹線逆相電流値と前記分岐線逆相電流値との和である第2接続相逆相電流和と、
前記第1幹線と前記第3分岐線とを接続し、前記第2幹線と前記第1分岐線とを接続し、前記第3幹線と前記第2分岐線とを接続した接続相における、前記幹線逆相電流値と前記分岐線逆相電流値との和である第3接続相逆相電流和と、を算出し、
前記第1接続相逆相電流和、前記第2接続相逆相電流和及び前記第3接続相逆相電流和のうち、絶対値が最小である場合における接続相を、前記幹線と前記分岐線との接続相として決定する、請求項3に記載の接続相決定方法。
The trunk line includes a first trunk line through which a first-phase alternating current flows, a second trunk line through which a second-phase alternating current flows, and a third trunk line through which a third-phase alternating current flows. A branch line, a second branch line and a third branch line;
The second step includes
The main line in a connection phase connecting the first main line and the first branch line, connecting the second main line and the second branch line, and connecting the third main line and the third branch line. A first connection phase negative phase current sum that is the sum of the negative phase current value and the branch line negative phase current value;
The main line in a connection phase connecting the first main line and the second branch line, connecting the second main line and the third branch line, and connecting the third main line and the first branch line. A second connection phase negative phase current sum that is the sum of the negative phase current value and the branch line negative phase current value;
The trunk line in a connection phase that connects the first trunk line and the third branch line, connects the second trunk line and the first branch line, and connects the third trunk line and the second branch line. A third connection phase negative phase current sum that is the sum of the negative phase current value and the branch line negative phase current value;
Of the first connection phase negative phase current sum, the second connection phase negative phase current sum, and the third connection phase negative phase current sum, the connection phase when the absolute value is minimum is the trunk line and the branch line. The connection phase determination method according to claim 3, wherein the connection phase is determined as a connection phase with the connection phase.
前記幹線及び前記分岐線は、あらかじめ容量が定められている柱上変圧器が接続されており、
前記第1ステップにおいて、前記幹線逆相電流値と前記分岐線逆相電流値とを、前記柱上変圧器の容量に基づいて算出する、請求項1から請求項4のいずれか1項に記載の接続相決定方法。
The trunk line and the branch line are connected to a pole transformer with a predetermined capacity,
The said 1st step WHEREIN: The said trunk line negative phase current value and the said branch line negative phase current value are calculated based on the capacity | capacitance of the said pole transformer, The any one of Claims 1-4. Connection phase determination method.
前記第1ステップにおいて、前記幹線逆相電流値を、前記分岐線と接続される箇所よりも下流における前記幹線の電流値を測定することにより取得し、前記分岐線逆相電流値を、前記幹線と接続される箇所における前記分岐線の電流値を測定することにより取得する、請求項1から請求項4のいずれか1項に記載の接続相決定方法。   In the first step, the main line reverse-phase current value is obtained by measuring the current value of the main line downstream from a location connected to the branch line, and the branch line negative-phase current value is acquired by the main line. The connection phase determination method according to any one of claims 1 to 4, wherein the connection phase determination method is obtained by measuring a current value of the branch line at a location where the connection line is connected. 上流から交流電流が供給される三相配電線である幹線と、前記幹線から分岐される三相配電線である分岐線との接続相を決定する接続相決定装置であって、
前記分岐線と接続される箇所よりも下流における前記幹線の逆相電流値である幹線逆相電流値の情報を取得し、前記幹線と接続される箇所における前記分岐線の逆相電流値である分岐線逆相電流値の情報を、幹線と分岐線との接続相毎に複数取得する逆相電流値取得部と、
逆相電流値取得部が取得した前記幹線逆相電流値と前記分岐線逆相電流値との和の絶対値が最小となるように、前記幹線と前記分岐線との接続相を決定する接続相決定部と、
を有する、接続相決定装置。
A connection phase determination device that determines a connection phase between a trunk line that is a three-phase distribution line to which an alternating current is supplied from upstream and a branch line that is a three-phase distribution line branched from the trunk line,
Information on the main line negative phase current value, which is the negative phase current value of the main line downstream from the part connected to the branch line, is obtained, and the negative phase current value of the branch line at the part connected to the main line A reverse phase current value acquisition unit that acquires a plurality of branch line reverse phase current value information for each connection phase between the main line and the branch line,
Connection for determining a connection phase between the main line and the branch line so that an absolute value of the sum of the main line negative phase current value acquired by the negative phase current value acquisition unit and the branch line negative phase current value is minimized. A phase determination unit;
A connected phase determining device.
前記分岐線は、前記幹線の前記交流電流が流れる方向に沿って、複数設けられており、
前記接続相決定部が決定した前記分岐線の位置情報を有する分岐線情報部を更に有し、
前記逆相電流値取得部は、前記分岐線情報部からの前記分岐線の位置情報に基づき、前記分岐線よりも前記幹線の上流側の前記分岐線に対応する前記幹線逆相電流値及び前記分岐線逆相電流値との情報を取得し、
前記接続相決定部は、前記上流側の分岐線に対応する前記幹線逆相電流値と前記分岐線逆相電流値との和の絶対値が最小となるように、前記幹線と前記上流側の分岐線との接続相を決定する、請求項7に記載の接続相決定装置。
A plurality of the branch lines are provided along the direction in which the alternating current flows through the trunk line,
A branch line information part having position information of the branch line determined by the connection phase determination part;
The negative phase current value acquisition unit is based on the branch line position information from the branch line information unit, and the main line negative phase current value corresponding to the branch line upstream of the main line from the branch line and the branch line information unit. Get information on the branch line reverse phase current value,
The connection phase determination unit is configured so that the absolute value of the sum of the main line reverse-phase current value and the branch line negative-phase current value corresponding to the upstream branch line is minimized. The connection phase determination device according to claim 7, wherein a connection phase with the branch line is determined.
JP2015063372A 2015-03-25 2015-03-25 Connection phase determination method and connection phase determination device Active JP6492857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063372A JP6492857B2 (en) 2015-03-25 2015-03-25 Connection phase determination method and connection phase determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063372A JP6492857B2 (en) 2015-03-25 2015-03-25 Connection phase determination method and connection phase determination device

Publications (2)

Publication Number Publication Date
JP2016184999A true JP2016184999A (en) 2016-10-20
JP6492857B2 JP6492857B2 (en) 2019-04-03

Family

ID=57243310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063372A Active JP6492857B2 (en) 2015-03-25 2015-03-25 Connection phase determination method and connection phase determination device

Country Status (1)

Country Link
JP (1) JP6492857B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410827A (en) * 2016-11-05 2017-02-15 上海大学 Interphase short-circuit protection circuit of three-phase imbalance adjusting device
CN107359628A (en) * 2017-08-08 2017-11-17 陈鸽 A kind of low-voltage network threephase load equalizing system
CN107579532A (en) * 2017-08-08 2018-01-12 陈鸽 A kind of low-voltage network threephase load balance method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019467A1 (en) * 2007-07-23 2009-01-28 K.N. Toosi University of Technology Automated Load Balancing for distribution substation feeders
JP2011101564A (en) * 2009-11-09 2011-05-19 Chugoku Electric Power Co Inc:The Method for eliminating voltage imbalance of three-phase power distribution line, and information processing apparatus for use in the method
JP2014135805A (en) * 2013-01-08 2014-07-24 Chugoku Electric Power Co Inc:The Connection phase determination method, and connection phase determination device
JP2014183710A (en) * 2013-03-21 2014-09-29 Chugoku Electric Power Co Inc:The Connection phase determination method and connection phase determination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019467A1 (en) * 2007-07-23 2009-01-28 K.N. Toosi University of Technology Automated Load Balancing for distribution substation feeders
JP2011101564A (en) * 2009-11-09 2011-05-19 Chugoku Electric Power Co Inc:The Method for eliminating voltage imbalance of three-phase power distribution line, and information processing apparatus for use in the method
JP2014135805A (en) * 2013-01-08 2014-07-24 Chugoku Electric Power Co Inc:The Connection phase determination method, and connection phase determination device
JP2014183710A (en) * 2013-03-21 2014-09-29 Chugoku Electric Power Co Inc:The Connection phase determination method and connection phase determination device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410827A (en) * 2016-11-05 2017-02-15 上海大学 Interphase short-circuit protection circuit of three-phase imbalance adjusting device
CN106410827B (en) * 2016-11-05 2019-06-25 上海大学 A kind of phase fault protection circuit of three-phase imbalance regulating device
CN107359628A (en) * 2017-08-08 2017-11-17 陈鸽 A kind of low-voltage network threephase load equalizing system
CN107579532A (en) * 2017-08-08 2018-01-12 陈鸽 A kind of low-voltage network threephase load balance method

Also Published As

Publication number Publication date
JP6492857B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6859790B2 (en) Voltage prediction method, load distribution determination method and voltage prediction system
Amar et al. Study of the periodic ferroresonance in the electrical power networks by bifurcation diagrams
CN102651551A (en) Method for controlling power factor of three-phase converter, method for controlling reactive power of three-phase converter, and controller of three-phase converter
Ustariz et al. Tensor analysis of the instantaneous power in electrical networks
US8699245B2 (en) Method for inputting power and power input system
JP6492857B2 (en) Connection phase determination method and connection phase determination device
EP2770600B1 (en) Method and system for determining power consumption of loads
US9599641B2 (en) Current detection device
Emadi et al. A reference current perturbation method for islanding detection of a multi-inverter system
Langkowski et al. Grid impedance determination—relevancy for grid integration of renewable energy systems
Shaikh et al. Estimation of phase angle jump (PAJ) for different types of faults and unbalancing in distribution system
JP4523950B2 (en) Reactive power compensation device, reactive power compensation system, and reactive power compensation method
JP5647040B2 (en) Generator output estimation method, system and program thereof
RU2552377C2 (en) Voltage balancer in three-phase network
Belitckiy et al. The question of compensation overload neutral wire current in low voltage electrical networks
RU2524347C2 (en) Device for earth fault current compensation in three-phase electrical networks (versions)
WO2021078943A1 (en) Method and device for controlled switching of a coupled load
Etingov et al. Development of restraint algorithm for improvement of reliability of transformer differential protection during external short circuits
US10345831B2 (en) Methods and systems for using a tapped transformer to generate voltage sags
JP6638482B2 (en) Power factor determination method, power factor determination system, and power distribution system.
Lepadat et al. Considerations on the unbalance regime of the three-phase consumers
RU2796196C1 (en) Stand for identifying short-circuit currents of inter-substation zone of traction network
JP2019024281A (en) Reactive power compensation device and control method therefor
Heyduk et al. Comparative analysis of European and American standards for maximum fault current calculations on medium voltage mine power networks
Fokeev et al. An approach to the calculation of general industrial nonlinear electrical loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150