JP2016182544A - Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same - Google Patents

Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same Download PDF

Info

Publication number
JP2016182544A
JP2016182544A JP2015063480A JP2015063480A JP2016182544A JP 2016182544 A JP2016182544 A JP 2016182544A JP 2015063480 A JP2015063480 A JP 2015063480A JP 2015063480 A JP2015063480 A JP 2015063480A JP 2016182544 A JP2016182544 A JP 2016182544A
Authority
JP
Japan
Prior art keywords
catalyst
silica gel
ruthenium
hydrogenation reaction
methylenedianiline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063480A
Other languages
Japanese (ja)
Inventor
神原 武志
Takeshi Kanbara
武志 神原
政喜 石田
Masaki Ishida
政喜 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015063480A priority Critical patent/JP2016182544A/en
Publication of JP2016182544A publication Critical patent/JP2016182544A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metal catalyst that is inexpensive and has high activity under a low hydrogen pressure condition with respect to a nucleus hydrogenation reaction of an aromatic compound, and a method for producing an alicyclic compound using the same.SOLUTION: The present invention provides a ruthenium-carrying silica gel catalyst obtained by carrying ruthenium on a silica gel with a particle size of 40-150 μm and a pore size of 5-50 nm, and provides a methylenedianiline hydrogenation method in which, in the presence of the catalyst, methylenedianiline and hydrogen are reacted to produce bis(aminocyclohexyl) methane.SELECTED DRAWING: None

Description

本発明は、芳香核水素化反応に用いられる触媒に関する。   The present invention relates to a catalyst used in an aromatic nucleus hydrogenation reaction.

ビス(アミノシクロヘキシル)メタンは、エポキシ樹脂アミン硬化剤として用いられる(例えば、非特許文献1参照)一方、ポリウレタン原料であるメチレンビス(シクロヘキシルイソシアネート)の原料アミンとしても知られている。   Bis (aminocyclohexyl) methane is used as an epoxy resin amine curing agent (see, for example, Non-Patent Document 1), while it is also known as a raw material amine for methylene bis (cyclohexyl isocyanate), which is a polyurethane raw material.

ビス(アミノシクロヘキシル)メタンの製造方法としては、芳香族ジアミンであるメチレンジアニリンを金属触媒の存在下に高圧で水素添加させ、芳香族を脂環族に変換させる方法が一般的に知られている(例えば、特許文献1、2参照)。   As a method for producing bis (aminocyclohexyl) methane, a method in which methylenedianiline which is an aromatic diamine is hydrogenated at high pressure in the presence of a metal catalyst to convert the aromatic to an alicyclic is generally known. (For example, refer to Patent Documents 1 and 2).

この水素化反応において適用される圧力は、触媒の種類によって異なる。具体的には、高価なロジウム系の触媒を用いた場合には、1.0MPa未満の低水素圧で反応を進行させることができるが(例えば、特許文献3、4参照)、一方、より安価なルテニウムやニッケル系の触媒では、低水素圧での反応進行例はほとんど知られていない。例外としてラネールテニウム触媒の例(例えば、特許文献5参照)があるものの、この調製は特殊な方法を必要とする。このように、これまでロジウムなどの高価な金属を使用せず、また上記ラネールテニウムのような特殊な触媒調製を必要としない低水素圧で使用可能な触媒は検討されていなかった。   The pressure applied in this hydrogenation reaction varies depending on the type of catalyst. Specifically, when an expensive rhodium-based catalyst is used, the reaction can proceed at a low hydrogen pressure of less than 1.0 MPa (for example, see Patent Documents 3 and 4), but on the other hand, it is cheaper. For ruthenium and nickel-based catalysts, few examples of reaction progress at low hydrogen pressures are known. Although there is an example of Raneruthenium catalyst (see, for example, Patent Document 5), this preparation requires a special method. Thus, a catalyst that does not use an expensive metal such as rhodium and can be used at a low hydrogen pressure that does not require the preparation of a special catalyst such as the above-mentioned raneruthenium has not been studied.

米国出願公開第2012−323401号明細書US Application Publication No. 2012-323401 特表2011−509970公報Special table 2011-509970 gazette 特開昭52−21504号公報Japanese Patent Laid-Open No. 52-21504 米国特許第3591635号明細書US Pat. No. 3,591,635 特許第3560377号公報Japanese Patent No. 3560377

「総説 エポキシ樹脂」,エポキシ樹脂技術協会編,2003年,基礎編I,p124−125(表1)"Review Epoxy Resin", edited by Epoxy Resin Technology Association, 2003, Basic I, p124-125 (Table 1)

本発明は上記の背景技術に鑑みてなされたものであり、その目的は、低水素圧条件において高い水素化活性を有する安価な芳香核水素化触媒を提供することである。   The present invention has been made in view of the above background art, and an object thereof is to provide an inexpensive aromatic nucleus hydrogenation catalyst having high hydrogenation activity under low hydrogen pressure conditions.

本発明者らは上記課題を解決すべく鋭意検討した結果、特定のシリカゲルを担体としたルテニウム担持触媒が、低水素圧でもメチレンジアニリンの芳香環を水素化できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a ruthenium-supported catalyst using a specific silica gel as a carrier can hydrogenate the aromatic ring of methylenedianiline even at a low hydrogen pressure, thereby completing the present invention. It came to.

すなわち、本発明は、以下に示すとおりのメチレンジアニリンの水素化用触媒およびこれを用いた脂環族化合物の製造方法である。   That is, the present invention is a catalyst for hydrogenation of methylenedianiline and a method for producing an alicyclic compound using the same as shown below.

[1]粒子径が40乃至150マイクロメートルであり、かつ細孔径が5乃至50ナノメートルであるシリカゲルにルテニウムを担持してなるルテニウム担持シリカゲル触媒。   [1] A ruthenium-supported silica gel catalyst in which ruthenium is supported on silica gel having a particle diameter of 40 to 150 micrometers and a pore diameter of 5 to 50 nanometers.

[2]ルテニウム源が塩化ルテニウムであることを特徴とする上記[1]に記載のルテニウム担持シリカゲル触媒。   [2] The ruthenium-supported silica gel catalyst according to [1], wherein the ruthenium source is ruthenium chloride.

[3]上記[1]または[2]に記載の触媒の存在下、メチレンジアニリンと水素とを反応させることを特徴とするメチレンジアニリンの水素化方法。   [3] A method for hydrogenating methylenedianiline, comprising reacting methylenedianiline with hydrogen in the presence of the catalyst according to [1] or [2].

以下、本発明を詳細に述べる。   The present invention will be described in detail below.

本発明の触媒は、粒子径が40乃至150マイクロメートルであり、かつ細孔径が5乃至50ナノメートルであるシリカゲルにルテニウムを担持してなるルテニウム担持シリカゲル触媒である。粒子径が150マイクロメートルより大きい、細孔径が50ナノメートルより大きい、または粒子径が40マイクロメートルより小さい、細孔径が5ナノメートルより小さい場合、水素化反応の転化率が低下する。   The catalyst of the present invention is a ruthenium-supported silica gel catalyst in which ruthenium is supported on silica gel having a particle size of 40 to 150 micrometers and a pore size of 5 to 50 nanometers. When the particle size is larger than 150 micrometers, the pore diameter is larger than 50 nanometers, or the particle diameter is smaller than 40 micrometers, and the pore diameter is smaller than 5 nanometers, the conversion rate of the hydrogenation reaction is lowered.

本発明の触媒において、シリカゲル担体の重量に対するルテニウム金属の含有比率は、0.3重量%以上6重量%以下の範囲が好ましい。6重量%よりも大きい、または0.3重量%よりも小さい場合、触媒の作用効率が低下する傾向にある。   In the catalyst of the present invention, the content ratio of the ruthenium metal with respect to the weight of the silica gel support is preferably in the range of 0.3 wt% to 6 wt%. When it is larger than 6% by weight or smaller than 0.3% by weight, the working efficiency of the catalyst tends to be lowered.

本発明の触媒の調製において、ルテニウム源としては、塩化ルテニウムや硝酸ルテニウムなどを用いることができるが、活性の点で塩化ルテニウムが好ましい。   In the preparation of the catalyst of the present invention, as the ruthenium source, ruthenium chloride, ruthenium nitrate or the like can be used, but ruthenium chloride is preferable in terms of activity.

ルテニウム源をシリカゲルに担持させる方法に関しては特に限定するものではないが、一般的な担持触媒を合成する方法であれば、何れでも用いることができる。   The method for supporting the ruthenium source on silica gel is not particularly limited, but any method for synthesizing a general supported catalyst can be used.

本発明の水素化方法において、基質のメチレンジアニリンに対して用いる触媒の量は特に限定するものではないが、0.3乃至10重量%の範囲が好ましい。   In the hydrogenation method of the present invention, the amount of catalyst used for the substrate methylenedianiline is not particularly limited, but is preferably in the range of 0.3 to 10% by weight.

本発明の水素化方法において、適用する水素の圧力は特に限定するものではないが、1.0MPa未満であることが好ましい。   In the hydrogenation method of the present invention, the applied hydrogen pressure is not particularly limited, but is preferably less than 1.0 MPa.

本発明の水素化方法において、適用する反応温度は特に限定するものではないが、80乃至250℃の範囲であることが好ましい。   In the hydrogenation method of the present invention, the reaction temperature to be applied is not particularly limited, but is preferably in the range of 80 to 250 ° C.

本発明の水素化方法において、適用する反応時間は特に限定するものではないが、1乃至48時間の範囲であることが好ましい。   In the hydrogenation method of the present invention, the reaction time to be applied is not particularly limited, but is preferably in the range of 1 to 48 hours.

本発明の触媒は、低圧で高い水素化活性を示すことから、芳香族化合物の水素化触媒として有用である。   Since the catalyst of the present invention exhibits high hydrogenation activity at a low pressure, it is useful as a hydrogenation catalyst for aromatic compounds.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples at all.

実施例1 触媒3の調製および触媒3を用いたメチレンジアニリンの水素化反応
200mLのナス型フラスコに、シリカゲル担体C(和光純薬製)を9.5g入れ、次に硝酸ルテニウム水溶液(50g/L、田中貴金属製)を10mL加えた。さらに純水を10g加えて流動性を与えた後、ロータリーエバポレーターで水分を留去した。硝酸ルテニウムが担持された乾燥シリカゲルを200mLのステンレス製オートクレーブに移した後、容器内を窒素で置換してから、さらに水素で置換した。容器を200℃まで昇温した後、水素圧を1.0MPaに保ちつつ水素の吸収が止まるまで3時間熟成した。冷却後、容器内を窒素で置換し、触媒3を得た。
Example 1 Preparation of Catalyst 3 and Hydrogenation Reaction of Methylenedianiline Using Catalyst 3 In a 200 mL eggplant type flask, 9.5 g of silica gel carrier C (manufactured by Wako Pure Chemical Industries, Ltd.) was placed, and then an aqueous ruthenium nitrate solution (50 g / L, made by Tanaka Kikinzoku) was added. Further, 10 g of pure water was added to give fluidity, and then water was distilled off with a rotary evaporator. After the dried silica gel carrying ruthenium nitrate was transferred to a 200 mL stainless steel autoclave, the inside of the container was replaced with nitrogen, and further replaced with hydrogen. After raising the temperature to 200 ° C., the container was aged for 3 hours until hydrogen absorption stopped while maintaining the hydrogen pressure at 1.0 MPa. After cooling, the inside of the container was replaced with nitrogen to obtain catalyst 3.

内容積200mLの撹拌装置を備えたステンレス製オートクレーブに、4,4’−メチレンジアニリン(東ソー社製)を50g、上記で調製した触媒3を2.5g加え、窒素で系内を置換した。さらに系内を水素で置換した後、撹拌下140℃まで昇温させた。系内の水素圧を0.9MPaまで昇圧した後、140℃で1時間熟成した。反応液を室温まで冷却し、残圧分の水素を抜き、窒素で系内を置換した。スラリーを一部抜き出し、触媒をろ別し、有機成分をガスクロマトグラフで分析した。結果を表1に示す。   50 g of 4,4'-methylenedianiline (manufactured by Tosoh Corporation) and 2.5 g of the catalyst 3 prepared above were added to a stainless steel autoclave equipped with a stirring device having an internal volume of 200 mL, and the inside of the system was replaced with nitrogen. Furthermore, after replacing the system with hydrogen, the temperature was raised to 140 ° C. with stirring. After raising the hydrogen pressure in the system to 0.9 MPa, it was aged at 140 ° C. for 1 hour. The reaction solution was cooled to room temperature, the residual pressure of hydrogen was removed, and the system was replaced with nitrogen. A part of the slurry was extracted, the catalyst was filtered off, and the organic components were analyzed by gas chromatography. The results are shown in Table 1.

実施例2
シリカゲル担体Cの代わりにシリカゲル担体Fを用いる以外は実施例1と同様にして触媒6を得た。さらに、得られた触媒6を用い、水素化反応を実施した結果を表1に示す。
Example 2
A catalyst 6 was obtained in the same manner as in Example 1 except that the silica gel carrier F was used instead of the silica gel carrier C. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 6.

実施例3
シリカゲル担体Cの代わりにシリカゲル担体Gを用いる以外は実施例1と同様にして触媒7を得た。さらに、得られた触媒7を用い、水素化反応を実施した結果を表1に示す。
Example 3
A catalyst 7 was obtained in the same manner as in Example 1 except that the silica gel carrier G was used instead of the silica gel carrier C. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 7.

比較例1
シリカゲル担体Cの代わりにシリカゲル担体Aを用いる以外は実施例1と同様にして触媒1を得た。さらに、得られた触媒1を用い、水素化反応を実施した結果を表1に示す。
Comparative Example 1
A catalyst 1 was obtained in the same manner as in Example 1 except that the silica gel carrier A was used instead of the silica gel carrier C. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 1.

比較例2
シリカゲル担体Cの代わりにシリカゲル担体Bを用いる以外は実施例1と同様にして触媒2を得た。さらに、得られた触媒2を用い、水素化反応を実施した結果を表1に示す。
Comparative Example 2
A catalyst 2 was obtained in the same manner as in Example 1 except that the silica gel carrier B was used instead of the silica gel carrier C. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 2.

比較例3
シリカゲル担体Cの代わりにシリカゲル担体Dを用いる以外は実施例1と同様にして触媒4を得た。さらに、得られた触媒4を用い、水素化反応を実施した結果を表1に示す。
Comparative Example 3
A catalyst 4 was obtained in the same manner as in Example 1 except that the silica gel carrier D was used instead of the silica gel carrier C. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 4.

比較例4
シリカゲル担体Cの代わりにシリカゲル担体Eを用いる以外は実施例1と同様にして触媒5を得た。さらに、得られた触媒5を用い、水素化反応を実施した結果を表1に示す。
Comparative Example 4
A catalyst 5 was obtained in the same manner as in Example 1 except that the silica gel carrier E was used instead of the silica gel carrier C. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 5.

実施例4
硝酸ルテニウム水溶液の代わりに塩化ルテニウム水溶液(100g/L、田中貴金属製)を5mL用いる以外は実施例2と同様にして触媒8を得た。さらに、得られた触媒8を用い、水素化反応を実施した結果を表1に示す。
Example 4
A catalyst 8 was obtained in the same manner as in Example 2 except that 5 mL of an aqueous ruthenium chloride solution (100 g / L, manufactured by Tanaka Kikinzoku) was used instead of the aqueous ruthenium nitrate solution. Furthermore, Table 1 shows the results of carrying out the hydrogenation reaction using the obtained catalyst 8.

Figure 2016182544
Figure 2016182544

Claims (3)

粒子径が40乃至150マイクロメートルであり、かつ細孔径が5乃至50ナノメートルであるシリカゲルにルテニウムを担持してなるルテニウム担持シリカゲル触媒。 A ruthenium-supported silica gel catalyst obtained by supporting ruthenium on silica gel having a particle diameter of 40 to 150 micrometers and a pore diameter of 5 to 50 nanometers. ルテニウム源が塩化ルテニウムであることを特徴とする請求項1に記載のルテニウム担持シリカゲル触媒。 The ruthenium-supporting silica gel catalyst according to claim 1, wherein the ruthenium source is ruthenium chloride. 請求項1または請求項2に記載の触媒の存在下、メチレンジアニリンと水素とを反応させることを特徴とするメチレンジアニリンの水素化方法。 A method for hydrogenating methylenedianiline, comprising reacting methylenedianiline with hydrogen in the presence of the catalyst according to claim 1 or 2.
JP2015063480A 2015-03-25 2015-03-25 Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same Pending JP2016182544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063480A JP2016182544A (en) 2015-03-25 2015-03-25 Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063480A JP2016182544A (en) 2015-03-25 2015-03-25 Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same

Publications (1)

Publication Number Publication Date
JP2016182544A true JP2016182544A (en) 2016-10-20

Family

ID=57242141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063480A Pending JP2016182544A (en) 2015-03-25 2015-03-25 Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same

Country Status (1)

Country Link
JP (1) JP2016182544A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000972A (en) * 2002-05-31 2004-01-08 Degussa Ag Method for hydrogenating aromatic amine and catalyst used therefor
JP2004322085A (en) * 2003-04-07 2004-11-18 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing the catalyst and method for producing hydrocarbon
WO2009054462A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst
JP2013513477A (en) * 2009-12-15 2013-04-22 ビーエーエスエフ ソシエタス・ヨーロピア Aromatic compound hydrogenation catalyst and method
WO2014046009A1 (en) * 2012-09-21 2014-03-27 Jx日鉱日石エネルギー株式会社 Fischer-tropsch synthesis catalyst, method for producing same, and method for producing hydrocarbon
JP2015097980A (en) * 2013-11-18 2015-05-28 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000972A (en) * 2002-05-31 2004-01-08 Degussa Ag Method for hydrogenating aromatic amine and catalyst used therefor
JP2004322085A (en) * 2003-04-07 2004-11-18 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing the catalyst and method for producing hydrocarbon
WO2009054462A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst
JP2013513477A (en) * 2009-12-15 2013-04-22 ビーエーエスエフ ソシエタス・ヨーロピア Aromatic compound hydrogenation catalyst and method
WO2014046009A1 (en) * 2012-09-21 2014-03-27 Jx日鉱日石エネルギー株式会社 Fischer-tropsch synthesis catalyst, method for producing same, and method for producing hydrocarbon
JP2015097980A (en) * 2013-11-18 2015-05-28 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon

Similar Documents

Publication Publication Date Title
JP6877142B2 (en) Hydrogenation method of aromatic compounds
JP2004000972A (en) Method for hydrogenating aromatic amine and catalyst used therefor
JP6624490B2 (en) Method for producing aromatic compound or furan derivative having methylamino group
US8921616B2 (en) Method for producing glycol from polyhydric alcohol
CN109851508B (en) Synthesis of H with low trans-isomer content and low tar content12Method for MDA
Maegawa et al. Development of Molecular Sieves‐Supported Palladium Catalyst and Chemoselective Hydrogenation of Unsaturated Bonds in the Presence of Nitro Groups
JP4874749B2 (en) Hydrogenation of aromatic amines to alicyclic amines with lithium aluminate catalysts
JP2012509261A (en) 1,2-diaminocyclohexane and chemical methods
JP6143057B2 (en) Method for producing 1,2-pentanediol
JP2007099771A (en) Method for reductively aminating ketone and aldehyde with aqueous amine and suitable catalyst
JP2018520845A (en) Metal composite catalyst, its production method and utilization in the production of D, L-menthol
CN108129426B (en) Method for synthesizing 2, 5-dimethylamino furan by catalytic hydrogenation of 2, 5-dicyanofuran
CN109678732B (en) Method for continuously producing 5-amino-1-pentanol
JP4349227B2 (en) Method for producing 1,3-cyclohexanediol
JP2016182544A (en) Catalyst for hydrogenation reaction and method for producing alicyclic compound using the same
JP6263434B2 (en) Method for producing 1,3-propanediol
JP4552031B2 (en) Method for producing citral hydride
JP2016183143A (en) Method for producing (4-aminobenzyl) cyclohexylamine
JP2017109940A (en) Amino alcohol synthesis method and catalyst
TWI788750B (en) Catalyst composition for hydrogenating 4,4’-methylenedianiline derivatives and method for preparing 4,4’-methylene bis(cyclohexylamine) derivatives using the same
JP6567662B2 (en) Process for the synthesis of primary isohexamines
JP5668368B2 (en) Process for producing biscyclohexylamines
JP2017160175A (en) Method for producing 4-(4'-aminobenzyl) cyclohexylamine
KR101754332B1 (en) Preparation Method for Aromatic Diamine Compounds by Hydrogenation Reaction of Aromatic Nitrile Compounds
JP2012240936A (en) Method for producing 1,3-propanediol, and catalyst for hydrogenation reaction of glycerin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402