JP2016178204A - Organic photoelectric conversion element and method for manufacturing the same - Google Patents

Organic photoelectric conversion element and method for manufacturing the same Download PDF

Info

Publication number
JP2016178204A
JP2016178204A JP2015057355A JP2015057355A JP2016178204A JP 2016178204 A JP2016178204 A JP 2016178204A JP 2015057355 A JP2015057355 A JP 2015057355A JP 2015057355 A JP2015057355 A JP 2015057355A JP 2016178204 A JP2016178204 A JP 2016178204A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transport layer
organic photoelectric
metal nanoparticles
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015057355A
Other languages
Japanese (ja)
Other versions
JP6613037B2 (en
Inventor
茂彦 森
Shigehiko Mori
茂彦 森
五反田 武志
Takeshi Gotanda
武志 五反田
中野 義彦
Yoshihiko Nakano
義彦 中野
斉藤 三長
Mitsunaga Saito
三長 斉藤
都鳥 顕司
Kenji Todori
顕司 都鳥
留美子 早瀬
Rumiko Hayase
留美子 早瀬
直美 信田
Naomi Shida
直美 信田
大岡 青日
Seijitsu Oka
青日 大岡
中尾 英之
Hideyuki Nakao
英之 中尾
太郎 朝倉
Taro Asakura
太郎 朝倉
細矢 雅弘
Masahiro Hosoya
雅弘 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015057355A priority Critical patent/JP6613037B2/en
Publication of JP2016178204A publication Critical patent/JP2016178204A/en
Application granted granted Critical
Publication of JP6613037B2 publication Critical patent/JP6613037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion element high in conversion efficiency, low in cost, and having no need for a drastic change in existing process lines, and a method for manufacturing the organic photoelectric conversion element.SOLUTION: An organic photoelectric conversion element according to the present embodiment includes: a first electrode; a hole transport layer provided on the first electrode; an organic photoelectric conversion layer provided on the hole transport layer and including an organic p-type semiconductor and an organic n-type semiconductor; an electron transport layer provided on the organic photoelectric conversion layer; and a second electrode provided on the electron transport layer. The hole transport layer contains metal nanoparticles and polyethylene dioxythiophene/polystyrene sulfonate (PEDOT/PSS), a relationship of d<t is satisfied between an average particle size d of the metal nanoparticles and a film thickness t of the hole transport layer, the metal nanoparticles are unevenly distributed on a first electrode side, and the density of the metal nanoparticles arranged on the first electrode side is within a range of 1-55 particles/μm.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、有機光電変換素子及びその製造方法に関する。   Embodiments described herein relate generally to an organic photoelectric conversion element and a method for manufacturing the same.

有機光電変換素子として、例えば、有機薄膜太陽電池が知られている。有機薄膜太陽電池は、導電性ポリマーやフラーレン等を組み合わせた有機薄膜半導体を用いた太陽電池である。有機薄膜太陽電池は、シリコンやCIGS(Copper Indium Gallium DiSelenide)、CdTeなどの無機系材料をベースとした太陽電池に比べて光電変換膜を塗布や印刷という簡便な方法で生産でき、低コスト化できる可能性がある。その反面、有機薄膜太陽電池の変換効率は、従来の無機系太陽電池と比較して低いという問題を有する。   As an organic photoelectric conversion element, for example, an organic thin film solar cell is known. An organic thin film solar cell is a solar cell using an organic thin film semiconductor in which a conductive polymer, fullerene, or the like is combined. Organic thin-film solar cells can be produced by a simple method of applying or printing a photoelectric conversion film compared to solar cells based on inorganic materials such as silicon, CIGS (Copper Indium Gallium DiSelenide), and CdTe, which can reduce costs. there is a possibility. On the other hand, the conversion efficiency of the organic thin film solar cell has a problem that it is lower than that of a conventional inorganic solar cell.

そこで、従来から、金属ナノ粒子を有機薄膜太陽電池に組み込むことで変換効率を向上させる試みがなされてきた。例えば、金属ナノ粒子に光を照射すると、金属ナノ粒子中の電子が光と相互作用し、局在表面プラズモン共鳴が起こり、金属ナノ粒子表面近傍の電場が増強される現象が生じる。光電変換層にこの強い電場生じるとキャリア数の生成が増加し、その結果変換効率も向上する。   Therefore, conventionally, attempts have been made to improve conversion efficiency by incorporating metal nanoparticles into an organic thin film solar cell. For example, when a metal nanoparticle is irradiated with light, electrons in the metal nanoparticle interact with light, local surface plasmon resonance occurs, and the electric field near the surface of the metal nanoparticle is enhanced. When this strong electric field is generated in the photoelectric conversion layer, the generation of the number of carriers increases, and as a result, the conversion efficiency is also improved.

例えば、光リソグラフィーとエッチング技術を用いて導電性基板上に金属ナノ構造を形成した第1の有機薄膜太陽電池が知られている。この第1の有機薄膜太陽電池においては、金属ナノ構造による電場増強光効果によって有機薄膜太陽電池の短絡電流密度向上が確認されている。   For example, a first organic thin film solar cell in which metal nanostructures are formed on a conductive substrate using photolithography and etching techniques is known. In the first organic thin-film solar cell, it has been confirmed that the short-circuit current density of the organic thin-film solar cell is improved by the electric field-enhanced light effect by the metal nanostructure.

また、導電性基板上に金属ナノ粒子を内包した正孔輸送層を形成した第2の有機薄膜太陽電池が知られている。この第2の有機薄膜太陽電池では、金属ナノ粒子を内包していない場合と比較して有機薄膜太陽電池の特性は向上しているが、必ずしも局在表面プラズモン効果によって変換効率が改善したわけではないと考えられる。   In addition, a second organic thin-film solar cell is known in which a hole transport layer including metal nanoparticles is formed on a conductive substrate. In the second organic thin film solar cell, the characteristics of the organic thin film solar cell are improved as compared with the case where the metal nanoparticles are not included, but the conversion efficiency is not necessarily improved by the localized surface plasmon effect. It is not considered.

このように、有機薄膜太陽電池の導電性基板上に金属ナノ粒子を内包した正孔輸送層を形成することで、変換効率の向上が可能である。   Thus, the conversion efficiency can be improved by forming the hole transport layer including the metal nanoparticles on the conductive substrate of the organic thin film solar cell.

ところが、導電性基板上に金属ナノ粒子を内包した正孔輸送層を低コストかつ簡便に形成することは容易ではない。上記第1の有機薄膜太陽電池は、光リソグラフィーとエッチング技術を用いて製造するため、設備コストが大きく、プロセス数も多い。   However, it is not easy to form a hole transport layer containing metal nanoparticles on a conductive substrate at low cost and in a simple manner. Since the first organic thin-film solar cell is manufactured using photolithography and etching technology, the equipment cost is high and the number of processes is also large.

また、上記第2の有薄膜太陽電池は、金属ナノ粒子溶液を導電性高分子溶液に添加して製造するため、材料コストは低い。しかし、金属ナノ粒子溶液を添加した導電性高分子溶液を透明電極上に滴下し、一般的に用いられているスピンコート塗布法で正孔輸送層の成膜を試みると、スピンコート回転による遠心力で金属ナノ粒子の大部分が飛散される。このため、所望の金属ナノ粒子濃度を有する正孔輸送層の形成は容易では無く、結局材料コストも増えてしまう。   In addition, since the second thin film solar cell is manufactured by adding the metal nanoparticle solution to the conductive polymer solution, the material cost is low. However, when a conductive polymer solution with a metal nanoparticle solution added is dropped onto a transparent electrode and a hole transport layer is formed by a generally used spin coat coating method, a spin coating by centrifugal rotation is performed. Most of the metal nanoparticles are scattered by the force. For this reason, it is not easy to form a hole transport layer having a desired metal nanoparticle concentration, resulting in an increase in material cost.

特開2012−074569号公報JP 2012-074569 A 特開2012−124290号公報JP 2012-124290 A

本実施形態は、変換効率が高く、低コスト、かつ既存のプロセスラインの大幅な変更を必要としない有機光電変換素子およびその製造方法を提供する。   The present embodiment provides an organic photoelectric conversion element that has high conversion efficiency, low cost, and does not require significant changes to existing process lines, and a method for manufacturing the same.

本実施形態による有機光電変換素子は、第1電極と、前記第1電極上に設けられた正孔輸送層と、前記正孔輸送層上に設けられ、有機p型半導体および有機n型半導体を有する有機光電変換層と、前記有機光電変換層上に設けられた電子輸送層と、前記電子輸送層上に設けられた第2電極と、を備え、前記正孔輸送層は、金属ナノ粒子とポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)を含み、前記金属ナノ粒子の平均粒径dと前記正孔輸送層の膜厚tとの間にd<tの関係が成立し、かつ、前記金属ナノ粒子が前記第1電極側に偏在し、前記第1電極側に配置されている前記金属ナノ粒子の密度が1〜55粒子/μmの範囲内にある。 The organic photoelectric conversion device according to the present embodiment includes a first electrode, a hole transport layer provided on the first electrode, an organic p-type semiconductor and an organic n-type semiconductor provided on the hole transport layer. An organic photoelectric conversion layer, an electron transport layer provided on the organic photoelectric conversion layer, and a second electrode provided on the electron transport layer, wherein the hole transport layer includes metal nanoparticles and Including polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), a relationship of d <t is established between the average particle diameter d of the metal nanoparticles and the film thickness t of the hole transport layer, and The metal nanoparticles are unevenly distributed on the first electrode side, and the density of the metal nanoparticles arranged on the first electrode side is in the range of 1 to 55 particles / μm 2 .

一実施形態による有機光電変換素子を示す断面図。Sectional drawing which shows the organic photoelectric conversion element by one Embodiment. 一変形例による有機光電変換素子を示す断面図。Sectional drawing which shows the organic photoelectric conversion element by one modification. 図3(a)乃至3(h)は、実施例1による有機光電変換素子の製造工程を示す断面図。3 (a) to 3 (h) are cross-sectional views showing the manufacturing process of the organic photoelectric conversion device according to Example 1. FIG. ITO上のAgナノ粒子を示す走査型電子顕微鏡写真。Scanning electron micrograph showing Ag nanoparticles on ITO. 実施例および比較例による有機光電変換素子の短絡電流密度(Jsc)、開放電圧(Voc)、極性因子(FF)、変換効率を示す図。The figure which shows the short circuit current density (Jsc), open circuit voltage (Voc), polarity factor (FF), and conversion efficiency of the organic photoelectric conversion element by an Example and a comparative example. 実施例および比較例による有機光電変換素子の変換効率とAgナノ粒子の希釈条件との関係を示す図。The figure which shows the relationship between the conversion efficiency of the organic photoelectric conversion element by an Example and a comparative example, and the dilution conditions of Ag nanoparticle. 有機薄膜太陽電池の一応用例を示す図。The figure which shows one application example of an organic thin-film solar cell. 有機薄膜太陽電池の一応用例を示す図。The figure which shows one application example of an organic thin-film solar cell. 有機薄膜太陽電池の一応用例を示す図。The figure which shows one application example of an organic thin-film solar cell.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(一実施形態)
一実施形態による有機光電変換素子を図1に示す。この実施形態の有機光電変換素子1は、基板11と、透明電極12と、金属ナノ粒子13が内包された正孔輸送層14と、光電変換層15と、電子輸送層16と、対向電極17と、を備えている。透明電極12は基板11上に設けられ、正孔輸送層14は透明電極12上に設けられる。光電変換層15は正孔輸送層14上に設けられ、p型半導体とn型半導体とがバルクヘテロジャンクションした構造の薄膜である。電子輸送層16は光電変換層15上に設けられ、対向電極17は電子輸送層16上に設けられる。
(One embodiment)
The organic photoelectric conversion element by one Embodiment is shown in FIG. The organic photoelectric conversion element 1 according to this embodiment includes a substrate 11, a transparent electrode 12, a hole transport layer 14 including metal nanoparticles 13, a photoelectric conversion layer 15, an electron transport layer 16, and a counter electrode 17. And. The transparent electrode 12 is provided on the substrate 11, and the hole transport layer 14 is provided on the transparent electrode 12. The photoelectric conversion layer 15 is provided on the hole transport layer 14, and is a thin film having a structure in which a p-type semiconductor and an n-type semiconductor are bulk heterojunctioned. The electron transport layer 16 is provided on the photoelectric conversion layer 15, and the counter electrode 17 is provided on the electron transport layer 16.

以下、本実施形態の有機光電変換素子を構成する各部材について詳細に説明する。   Hereinafter, each member which comprises the organic photoelectric conversion element of this embodiment is demonstrated in detail.

(基板)
基板11は、他の構成部材を支持するためのものである。この基板11は、電極を形成でき、熱や有機溶剤によって変質しないものが好ましい。基板11の材料としては、例えば、無アルカリガラス、石英ガラス等の無機材料、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリアミド、ポリアミドイミド、液晶ポリマー、シクロオレフィンポリマー等のプラスチック、高分子フィルム、ステンレス鋼(SUS)、シリコン等の金属基板等が挙げられる。
(substrate)
The substrate 11 is for supporting other constituent members. The substrate 11 is preferably one that can form electrodes and is not altered by heat or an organic solvent. Examples of the material of the substrate 11 include inorganic materials such as alkali-free glass and quartz glass, polyethylene, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyamide, polyamideimide, liquid crystal polymer, cycloolefin polymer, and the like. Examples thereof include metal substrates such as plastic, polymer film, stainless steel (SUS), and silicon.

基板11は、光が入射する側に配置される場合、透明な材料が使用される。対向電極17が透明または半透明である場合、基板11として不透明な基板を使用してもよい。基板11の厚さは、その他の構成部材を支持するために十分な強度があれば、特に限定されない。   The substrate 11 is made of a transparent material when arranged on the light incident side. When the counter electrode 17 is transparent or translucent, an opaque substrate may be used as the substrate 11. The thickness of the substrate 11 is not particularly limited as long as it has sufficient strength to support other components.

光が入射される側に基板11が配置された場合、例えば、図2に示す一変形例のように、基板11の光入射面には、例えばモスアイ構造の反射防止膜18を設けることで光を効率的に取り込み、セルのエネルギー変換効率を向上させることが可能である。モスアイ構造は表面に100nm程度の規則的な突起配列を有する構造をしており、この突起構造により厚み方向の屈折率が連続的に変化する。このため、無反射フィルムを媒介させることで屈折率の不連続的な変化面が無くなり、光の反射が減少し、セル効率が向上する。   When the substrate 11 is disposed on the light incident side, for example, as in a modification shown in FIG. 2, the light incident surface of the substrate 11 is provided with an antireflection film 18 having a moth-eye structure, for example. It is possible to improve the energy conversion efficiency of the cell. The moth-eye structure has a structure having a regular protrusion arrangement of about 100 nm on the surface, and the refractive index in the thickness direction is continuously changed by this protrusion structure. For this reason, by disposing the non-reflective film, there is no discontinuous change surface of the refractive index, light reflection is reduced, and the cell efficiency is improved.

(透明電極)
透明電極12の材料としては、導電性を有するものであれば特に限定されない。通常は、透明または半透明の導電性を有する材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等で成膜する。透明または半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるITO(Indium Tin Oxide)、フッ素ドープ酸化スズ(FTO(Fluorine-doped Tin Oxide))、またはインジウム、亜鉛、およびオキサイド等からなる導電性ガラスを用いて作製された酸化スズ膜等が用いられる。特に、ITOまたはFTOが好ましい。また、金、白金、銀、銅等の金属を用いてもよい。
(Transparent electrode)
The material of the transparent electrode 12 is not particularly limited as long as it has conductivity. Usually, a transparent or translucent conductive material is formed by vacuum deposition, sputtering, ion plating, plating, coating, or the like. Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and their composites, ITO (Indium Tin Oxide), fluorine-doped tin oxide (FTO), or indium, zinc, and oxide A tin oxide film or the like produced using conductive glass made of or the like is used. In particular, ITO or FTO is preferable. Moreover, you may use metals, such as gold | metal | money, platinum, silver, copper.

また、透明電極12の材料として、有機系の導電性ポリマーであるポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等を用いてもよい。透明電極12の膜厚は、ITOを用いた場合、30nm〜300nmであることが好ましい。30nmより薄くすると、導電性が低下して抵抗が高くなり、光電変換効率の低下の原因となる。300nmよりも厚くすると、ITOに可撓性がなくなり、応力が透明電極12に作用するとひび割れてしまう。   Further, as the material of the transparent electrode 12, polyaniline and its derivative, polythiophene and its derivative, etc., which are organic conductive polymers, may be used. The film thickness of the transparent electrode 12 is preferably 30 nm to 300 nm when ITO is used. If it is thinner than 30 nm, the conductivity is lowered, the resistance is increased, and the photoelectric conversion efficiency is lowered. If the thickness is greater than 300 nm, the ITO becomes inflexible and cracks when stress acts on the transparent electrode 12.

また、透明電極12のシート抵抗は可能な限り低いことが好ましく、10Ω/□以下であることが好ましい。透明電極12は、単層であってもよく、異なる仕事関数の材料で構成される層を積層したものであってもよい。   Further, the sheet resistance of the transparent electrode 12 is preferably as low as possible, and is preferably 10Ω / □ or less. The transparent electrode 12 may be a single layer or may be a laminate of layers made of materials having different work functions.

(金属ナノ粒子が内包された正孔輸送層)
正孔輸送層14は、透明電極12上に金属ナノ粒子溶液を塗布して金属ナノ粒子13を透明電極12上に配置してから、ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸(以下、PEDOT−PSS(poly(3,4-ethylenedioxythiopherene)-polystyrene acid)とも云う))溶液を透明電極12上に塗布することで形成される。金属ナノ粒子溶液は、金属イオンを含む液体に還元剤を添加して金属ナノ粒子13を析出した後、液体に分散させてもよい。
(Hole transport layer containing metal nanoparticles)
The hole transport layer 14 is formed by applying a metal nanoparticle solution on the transparent electrode 12 and disposing the metal nanoparticles 13 on the transparent electrode 12, and then polyethylene dioxythiophene-polystyrenesulfonic acid (hereinafter, PEDOT-PSS ( Poly (3,4-ethylenedioxythiopherene) -polystyrene acid)))) solution is applied on the transparent electrode 12. The metal nanoparticle solution may be dispersed in a liquid after adding a reducing agent to the liquid containing metal ions to precipitate the metal nanoparticles 13.

金属ナノ粒子13を透明電極12に配置する方法は、配置できる方法であれば特に限定されないが、例えばスピンコート法で塗布することが可能である。金属ナノ粒子13を透明電極12に配置した後、自然乾燥させる。塗布する金属ナノ粒子溶液は、フィルタで予め濾過したものを使用することが望ましい。   Although the method of arrange | positioning the metal nanoparticle 13 to the transparent electrode 12 will not be specifically limited if it is a method which can be arrange | positioned, For example, it can apply | coat by a spin coat method. After the metal nanoparticles 13 are disposed on the transparent electrode 12, they are naturally dried. It is desirable to use a metal nanoparticle solution to be applied that has been filtered in advance with a filter.

また、後述するように、透明電極12上に配置する金属ナノ粒子13の密度は1〜55粒子/μmの範囲内であることが好ましい。金属ナノ粒子13の密度を55粒子/μm以下にすることで、金属ナノ粒子13同士の凝集が抑制される。金属ナノ粒子13同士が凝集すると、金属ナノ粒子13の2次粒子径が増加し、光電変換層15に露出してしまう。この場合、光電変換層15で光照射によって発生したキャリアが金属ナノ粒子13の2次粒子で再結合してしまうため変換効率が低下してしまう。 As will be described later, the density of the metal nanoparticles 13 disposed on the transparent electrode 12 is preferably in the range of 1 to 55 particles / μm 2 . By setting the density of the metal nanoparticles 13 to 55 particles / μm 2 or less, aggregation of the metal nanoparticles 13 is suppressed. When the metal nanoparticles 13 are aggregated, the secondary particle diameter of the metal nanoparticles 13 increases and is exposed to the photoelectric conversion layer 15. In this case, since the carriers generated by light irradiation in the photoelectric conversion layer 15 are recombined with the secondary particles of the metal nanoparticles 13, the conversion efficiency is lowered.

PEDOT−PSS層の成膜方法は、薄膜を形成できる方法であれば特に限定されないが、例えばスピンコート法で塗布することが可能である。PEDOT−PSSを所望の膜厚に塗布した後、ホットプレート等で加熱乾燥する。140℃〜200℃で数分〜10分間程度加熱乾燥することが好ましい。塗布する溶液は、フィルタで予め濾過したものを使用することが望ましい。   The method for forming the PEDOT-PSS layer is not particularly limited as long as it is a method capable of forming a thin film, but it can be applied by, for example, a spin coating method. After applying PEDOT-PSS to a desired film thickness, it is heated and dried with a hot plate or the like. Heat drying is preferably performed at 140 to 200 ° C. for several minutes to 10 minutes. As the solution to be applied, it is desirable to use a solution preliminarily filtered with a filter.

また、金属ナノ粒子13の平均粒径d(nm)と正孔輸送層14の膜厚t(nm)との間にd<t≦100nmの関係が成立することが好ましい。正孔輸送層14の膜厚tが平均粒径dよりも小さいと、金属ナノ粒子13が光電変換層15に露出してしまう。この場合、光電変換層15において入射光によって発生したキャリアが金属ナノ粒子13で再結合してしまうため変換効率が低下してしまう。さらに、膜厚tが薄いと透明電極12と光電変換層15間と間の並列抵抗が小さくなり、光電変換層15で発生した光電流がリークしてしまう。   Further, it is preferable that a relationship of d <t ≦ 100 nm is established between the average particle diameter d (nm) of the metal nanoparticles 13 and the film thickness t (nm) of the hole transport layer 14. When the film thickness t of the hole transport layer 14 is smaller than the average particle diameter d, the metal nanoparticles 13 are exposed to the photoelectric conversion layer 15. In this case, since the carriers generated by the incident light in the photoelectric conversion layer 15 are recombined with the metal nanoparticles 13, the conversion efficiency is lowered. Furthermore, when the film thickness t is thin, the parallel resistance between the transparent electrode 12 and the photoelectric conversion layer 15 is reduced, and the photocurrent generated in the photoelectric conversion layer 15 is leaked.

なお、金属ナノ粒子13の平均粒径は10nm〜50nmであることが好ましい。金属ナノ粒子13の平均粒径が10nmよりも小さくなると、ファンデルワールス引力による凝集が生じる。そして、凝集の効果が大きくなると、透明電極12と光電変換層15との間もしくは透明電極12と対向電極17との間に、凝集した多数の金属ナノ粒子13を介してリーク電流が生じる原因となり、有機薄膜太陽電池の特性が低下してしまうためである。また、正孔輸送層14の厚みは一般的には数10nm〜100nmである。100nm以上の厚さを有すると、正孔輸送層14による入射光の光吸収割合が大きくなるので有機薄膜太陽電池の短絡電流密度(Jsc)が減少すること、および直列抵抗成分が大きくなるので有機薄膜太陽電池の形状因子(FF)が小さくなることにより、変換効率が低下してしまう。また、金属ナノ粒子13の平均粒径が大きくなると少ない数の金属ナノ粒子13が凝集しても、透明電極12と光電変換層15間をリークする確率が増える。例えば、透明電極12に対して垂直方向に粒径が50nmの金属ナノ粒子13が2個凝集した場合、100nm厚の正孔輸送層14に対して透明電極12と光電変換層15間が短絡してしまう。以上の理由から、上限を50nmとした。   In addition, it is preferable that the average particle diameter of the metal nanoparticle 13 is 10 nm-50 nm. When the average particle diameter of the metal nanoparticles 13 is smaller than 10 nm, aggregation due to van der Waals attraction occurs. When the effect of aggregation is increased, a leakage current is generated between the transparent electrode 12 and the photoelectric conversion layer 15 or between the transparent electrode 12 and the counter electrode 17 through a large number of aggregated metal nanoparticles 13. This is because the characteristics of the organic thin film solar cell are deteriorated. The thickness of the hole transport layer 14 is generally several tens of nm to 100 nm. When the thickness is 100 nm or more, the light absorption ratio of incident light by the hole transport layer 14 is increased, so that the short-circuit current density (Jsc) of the organic thin film solar cell is reduced and the series resistance component is increased. Conversion efficiency will fall by the small form factor (FF) of a thin film solar cell. Further, when the average particle diameter of the metal nanoparticles 13 is increased, the probability of leakage between the transparent electrode 12 and the photoelectric conversion layer 15 is increased even if a small number of metal nanoparticles 13 are aggregated. For example, when two metal nanoparticles 13 having a particle diameter of 50 nm are aggregated in a direction perpendicular to the transparent electrode 12, the transparent electrode 12 and the photoelectric conversion layer 15 are short-circuited with respect to the hole transport layer 14 having a thickness of 100 nm. End up. For the above reasons, the upper limit is set to 50 nm.

本実施形態においては、金属ナノ粒子13を透明電極12に配置した後、PEDOT−PSS層を成膜することで正孔輸送層14を形成する。このため、一般的に用いられているスピンコート塗布法で正孔輸送層14を形成したものよりも材料コストを低減することができる。その理由は、金属ナノ粒子溶液を導電性高分子溶液に添加したものをスピンコートすると、スピンコート回転による遠心力で金属ナノ粒子13の大部分が飛散されるため、材料消費が大きいからである。   In this embodiment, after arrange | positioning the metal nanoparticle 13 to the transparent electrode 12, the positive hole transport layer 14 is formed by forming a PEDOT-PSS layer into a film. For this reason, material cost can be reduced rather than what formed the positive hole transport layer 14 with the spin coat application method generally used. The reason is that when a metal nanoparticle solution added to a conductive polymer solution is spin-coated, the material consumption is large because most of the metal nanoparticles 13 are scattered by the centrifugal force generated by spin coating rotation. .

金属ナノ粒子13が作る局在表面プラズモンによる増強電場の発生範囲は金属ナノ粒子13の表面からその粒径程度と言われている。従って、局在表面プラズモンを利用して変換効率を向上させるためには、金属ナノ粒子13の表面から光電変換層14までの距離を数10nm以内に制御する必要がある。   It is said that the generation range of the enhanced electric field by the localized surface plasmon produced by the metal nanoparticles 13 is about the particle size from the surface of the metal nanoparticles 13. Therefore, in order to improve the conversion efficiency using the localized surface plasmon, it is necessary to control the distance from the surface of the metal nanoparticle 13 to the photoelectric conversion layer 14 within several tens of nm.

一方、本発明者らの実験結果によると、金属ナノ粒子13の表面から光電変換層14までの距離が金属ナノ粒子13の粒径よりも十分大きいにも関わらず、変換効率の向上が確認された。この実験結果は、金属ナノ粒子が作る局在表面プラズモンでは、変換効率が向上するという現象を説明できないことを示している。なお、本発明者らは、上記現象は金属ナノ粒子13による光散乱強度が何らかの形で寄与していると推察している。   On the other hand, according to the experiment results of the present inventors, although the distance from the surface of the metal nanoparticle 13 to the photoelectric conversion layer 14 is sufficiently larger than the particle size of the metal nanoparticle 13, the conversion efficiency is improved. It was. This experimental result shows that localized surface plasmons produced by metal nanoparticles cannot explain the phenomenon that the conversion efficiency is improved. The present inventors presume that the above phenomenon contributes in some way to the light scattering intensity by the metal nanoparticles 13.

なお、PEDOT−PSS以外の正孔輸送層14の材料として、酸化ニッケル、酸化モリブデン、酸化バナジウムの群から選択された少なくとも1つを含んでいることが好ましい。PEDOT−PSSの仕事関数は〜−5eVである。酸化ニッケルは価電子帯エネルギー準位Evが−5.5eV、酸化モリブデンは伝導帯エネルギー準位Ecが−5.1eV、酸化バナジウムは伝導帯エネルギー準位Ecが−5.1eVである。これらの準位は、PEDOT−PSSの仕事関数と近い値なので、正孔が輸送されるエネルギー準位として機能する。また、正孔輸送層14は、浅い伝導帯エネルギー準位Ecを有することで電子ブロッキング機能を持つ。酸化ニッケルは、浅い伝導帯エネルギー準位Ec(−1.7eV)を有するので優れた電子ブロッキング機能を持つ。一方、酸化モリブデンと酸化バナジウムは伝導帯エネルギー準位Ecが深い(−5.1eV)ので、電子ブロッキング機能が劣ると考えられるが、実際の有機薄膜太陽電池素子では高い性能を示すことが知られている。   In addition, it is preferable that the material of the hole transport layer 14 other than PEDOT-PSS includes at least one selected from the group consisting of nickel oxide, molybdenum oxide, and vanadium oxide. The work function of PEDOT-PSS is -5 eV. Nickel oxide has a valence band energy level Ev of −5.5 eV, molybdenum oxide has a conduction band energy level Ec of −5.1 eV, and vanadium oxide has a conduction band energy level Ec of −5.1 eV. Since these levels are close to the work function of PEDOT-PSS, they function as energy levels for transporting holes. The hole transport layer 14 has an electron blocking function by having a shallow conduction band energy level Ec. Since nickel oxide has a shallow conduction band energy level Ec (-1.7 eV), it has an excellent electron blocking function. On the other hand, molybdenum oxide and vanadium oxide have a deep conduction band energy level Ec (−5.1 eV), so it is considered that the electron blocking function is inferior, but it is known that an actual organic thin film solar cell element exhibits high performance. ing.

(光電変換層)
光電変換層15は、透明電極12と対向電極17との間に配置される。本実施形態による有機光電変換素子は、バルクへテロ接合型の光電変換素子である。バルクヘテロ接合型の光電変換素子は、p型半導体とn型半導体が光電変換層中で混合してミクロ層分離構造を取ることが特徴である。バルクへテロ接合型は、混合されたp型半導体とn型半導体が光電変換層内でナノオーダーのサイズのpn接合を形成し、接合面において生じる光電荷分離を利用して電流を得る。
(Photoelectric conversion layer)
The photoelectric conversion layer 15 is disposed between the transparent electrode 12 and the counter electrode 17. The organic photoelectric conversion element according to the present embodiment is a bulk heterojunction photoelectric conversion element. A bulk heterojunction photoelectric conversion element is characterized in that a p-type semiconductor and an n-type semiconductor are mixed in a photoelectric conversion layer to form a micro layer separation structure. In the bulk heterojunction type, a mixed p-type semiconductor and n-type semiconductor form a pn junction having a nano-order size in the photoelectric conversion layer, and a current is obtained by utilizing photocharge separation generated at the junction surface.

p型半導体は、電子供与性の性質を有する材料で構成される。これに対して、n型半導体は、電子受容性の性質を有する材料で構成される。本実施形態においては、p型半導体およびn型半導体の少なくとも一方が有機半導体であってもよい。   A p-type semiconductor is composed of a material having an electron donating property. On the other hand, the n-type semiconductor is composed of a material having an electron accepting property. In the present embodiment, at least one of the p-type semiconductor and the n-type semiconductor may be an organic semiconductor.

p型有機半導体としては、例えば、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェンおよびその誘導体、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリンおよびその誘導体、フタロシアニン誘導体、ポルフィリンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体等を使用することができ、これらを併用してもよい。また、これらの共重合体を使用してもよく、例えば、チオフェン−フルオレン共重合体、フェニレンエチニレン−フェニレンビニレン共重合体等が挙げられる。   Examples of p-type organic semiconductors include polythiophene and derivatives thereof, polypyrrole and derivatives thereof, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof. Polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, phthalocyanine derivatives, porphyrins and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and the like can be used, These may be used in combination. These copolymers may be used, and examples thereof include a thiophene-fluorene copolymer, a phenylene ethynylene-phenylene vinylene copolymer, and the like.

好ましいp型有機半導体は、π共役を有する導電性高分子であるポリチオフェンおよびその誘導体である。ポリチオフェンおよびその誘導体は、優れた立体規則性を確保することができ、溶媒への溶解性が比較的高い。ポリチオフェンおよびその誘導体は、チオフェン骨格を有する化合物であれば特に限定されない。ポリチオフェンおよびその誘導体の具体例としては、ポリ3−メチルチオフェン、ポリ3−ブチルチオフェン、ポリ3−ヘキシルチオフェン、ポリ3−オクチルチオフェン、ポリ3−デシルチオフェン、ポリ3−ドデシルチオフェン等のポリアルキルチオフェン;ポリ3−フェニルチオフェン、ポリ3−(p−アルキルフェニルチオフェン)等のポリアリールチオフェン;ポリ3−ブチルイソチオナフテン、ポリ3−ヘキシルイソチオナフテン、ポリ3−オクチルイソチオナフテン、ポリ3−デシルイソチオナフテン等のポリアルキルイソチオナフテン;ポリエチレンジオキシチオフェン等が挙げられる。   A preferred p-type organic semiconductor is polythiophene which is a conductive polymer having π conjugation and derivatives thereof. Polythiophene and its derivatives can ensure excellent stereoregularity and have relatively high solubility in a solvent. Polythiophene and derivatives thereof are not particularly limited as long as they are compounds having a thiophene skeleton. Specific examples of polythiophene and derivatives thereof include polyalkylthiophenes such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, poly-3-decylthiophene, poly-3-dodecylthiophene, etc. Polyarylthiophene such as poly-3-phenylthiophene and poly-3- (p-alkylphenylthiophene); poly-3-butylisothionaphthene, poly-3-hexylisothionaphthene, poly-3-octylisothionaphthene, poly-3- And polyalkylisothionaphthene such as decylisothionaphthene; polyethylenedioxythiophene and the like.

また近年では、カルバゾール、ベンゾチアジアゾールおよびチオフェンからなる共重合体であるPCDTBT(ポリ[N−9”−ヘプタ−デカニル−2,7−カルバゾール−アルト−5,5−(4’,7’−ジ−2−チエニル−2’,1’,3’−ベンゾチアジアゾール)])などの誘導体やチエノチオフェンとベンゾジチオフェンからなる共重合体であるPTB7(ポリ[[4,8−ビス[(2−エチルヘキシル)オキシ]ベンゾ[1,2−b:4−5−b’]ジチオフェン−2,6−ジル][3−フルオロ−2−[(2−エチルヘキシル)カルボニル]チエノ[3,4−6]チオフェンジル])などの誘導体が、優れた光電変換効率を得られる化合物として知られている。   In recent years, PCDTBT (poly [N-9 "-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di ()), which is a copolymer of carbazole, benzothiadiazole and thiophene. -2-thienyl-2 ′, 1 ′, 3′-benzothiadiazole)]) and the like, and PTB7 (poly [[4,8-bis [(2- Ethylhexyl) oxy] benzo [1,2-b: 4-5-b ′] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-4] Derivatives such as thiophenzyl]) are known as compounds capable of obtaining excellent photoelectric conversion efficiency.

これらの導電性高分子は、溶媒に溶解させた溶液を塗布することにより成膜可能である。従って、大面積の有機薄膜太陽電池を、印刷法等により、安価な設備にて低コストで製造できるという利点がある。   These conductive polymers can be formed by applying a solution dissolved in a solvent. Therefore, there is an advantage that a large-area organic thin film solar cell can be manufactured at low cost with inexpensive equipment by a printing method or the like.

n型有機半導体としては、フラーレンおよびその誘導体が好適に使用される。ここで使用されるフラーレン誘導体は、フラーレン骨格を有する誘導体であれば特に限定されない。具体的には、C60、C70、C76、C78、C84等を基本骨格として構成される誘導体が挙げられる。フラーレン誘導体は、フラーレン骨格における炭素原子が任意の官能基で修飾されていてもよく、この官能基同士が互いに結合して環を形成していてもよい。フラーレン誘導体には、フラーレン結合ポリマーも含まれる。溶剤に親和性の高い官能基を有し、溶媒への可溶性が高いフラーレン誘導体が好ましい。 As the n-type organic semiconductor, fullerene and derivatives thereof are preferably used. The fullerene derivative used here is not particularly limited as long as it is a derivative having a fullerene skeleton. Specific examples include derivatives composed of C 60 , C 70 , C 76 , C 78 , C 84 and the like as a basic skeleton. In the fullerene derivative, carbon atoms in the fullerene skeleton may be modified with an arbitrary functional group, and these functional groups may be bonded to each other to form a ring. Fullerene derivatives also include fullerene bonded polymers. A fullerene derivative having a functional group with high affinity for the solvent and high solubility in the solvent is preferred.

フラーレン誘導体における官能基としては、例えば、水素原子;水酸基;フッ素原子、塩素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;シアノ基;メトキシ基、エトキシ基等のアルコキシ基;フェニル基、ナフチル基等の芳香族炭化水素基、チエニル基、ピリジル基等の芳香族複素環基等が挙げられる。具体的には、C6036、C7036等の水素化フラーレン、C60、C70等のオキサイドフラーレン、フラーレン金属錯体等が挙げられる。 Examples of the functional group in the fullerene derivative include hydrogen atom; hydroxyl group; halogen atom such as fluorine atom and chlorine atom; alkyl group such as methyl group and ethyl group; alkenyl group such as vinyl group; cyano group; methoxy group and ethoxy group. Alkoxy groups such as phenyl groups, aromatic hydrocarbon groups such as naphthyl groups, and aromatic heterocyclic groups such as thienyl groups and pyridyl groups. Specific examples include hydrogenated fullerenes such as C 60 H 36 and C 70 H 36 , oxide fullerenes such as C 60 and C 70 , fullerene metal complexes, and the like.

上述した中でも、フラーレン誘導体として、60PCBM([6,6]−フェニルC61酪酸メチルエステル)または70PCBM([6,6]−フェニルC71酪酸メチルエステル)を使用することが特に好ましい。 Among the above, a fullerene derivative, 60PCBM ([6,6] - phenyl C 61 butyric acid methyl ester), or 70PCBM - it is particularly preferred to use ([6,6] phenyl C 71 butyric acid methyl ester).

未修飾のフラーレンを使用する場合、C70を使用することが好ましい。フラーレンC70は、光キャリアの発生効率が高く、有機薄膜太陽電池に使用するのに適している。 When using the unmodified fullerene, it is preferred to use a C 70. Fullerene C 70 is the generation efficiency of photocarriers high, are suitable for use in organic thin film solar cell.

光電変換層15におけるn型有機半導体とp型有機半導体の混合比率は、n型有機半導体の含有率をp型半導体がP3AT系の場合、およそn:p=1:1とすることが好ましく、p型半導体がPCDTBT系の場合、およそn:p=4:1とすることが好ましい。また、p型半導体がPTB7系の場合、およそn:p=1:1.5とすることが好ましい。   The mixing ratio of the n-type organic semiconductor and the p-type organic semiconductor in the photoelectric conversion layer 15 is preferably about n: p = 1: 1 when the p-type semiconductor is a P3AT system, When the p-type semiconductor is a PCDTBT system, it is preferable that n: p = 4: 1. When the p-type semiconductor is PTB7, it is preferable that n: p = 1: 1.5.

有機半導体を塗布するためには、溶媒に溶解する必要があるが、それに用いる溶媒としては、例えば、トルエン、キシレン、テトラリン、デカリン、メシチレン、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類が挙げられる。特に、ハロゲン系の芳香族溶剤が好ましい。これらの溶剤を単独、もしくは混合して使用することが可能である。   In order to apply an organic semiconductor, it is necessary to dissolve in a solvent. Examples of the solvent used therefor include toluene, xylene, tetralin, decalin, mesitylene, n-butylbenzene, sec-butylbenzene, and tert-butylbenzene. Unsaturated hydrocarbon solvents such as, halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, chlorohexane, bromohexane, Halogenated saturated hydrocarbon solvents such as chlorocyclohexane and ethers such as tetrahydrofuran and tetrahydropyran. In particular, a halogen-based aromatic solvent is preferable. These solvents can be used alone or in combination.

溶液を塗布し成膜する方法としては、スピンコート法、ディップコート法、キャスティング法、バーコート法、ロールコート法、ワイアーバーコート法、スプレー法、スクリーン印刷、グラビア印刷法、フレキソ印刷法、オフセット印刷法、グラビア・オフセット印刷、ディスペンサー塗布、ノズルコート法、キャピラリーコート法、インクジェット法等が挙げられ、これらの塗布法を単独で、もしくは組み合わせて用いることができる。   As a method of applying a solution to form a film, spin coating, dip coating, casting, bar coating, roll coating, wire bar coating, spraying, screen printing, gravure printing, flexographic printing, offset Examples thereof include a printing method, gravure / offset printing, dispenser coating, nozzle coating method, capillary coating method, and ink jet method, and these coating methods can be used alone or in combination.

(電子輸送層)
電子輸送層16は、対向電極17と光電変換層15との間に配置される。電子輸送層16は、正孔をブロックして電子のみを効率的に輸送する機能、および光電変換層15と電子輸送層16との界面で生じたエキシトンの消滅を防ぐ機能を有する。
(Electron transport layer)
The electron transport layer 16 is disposed between the counter electrode 17 and the photoelectric conversion layer 15. The electron transport layer 16 has a function of blocking holes and efficiently transporting only electrons, and a function of preventing the disappearance of excitons generated at the interface between the photoelectric conversion layer 15 and the electron transport layer 16.

電子輸送層16の材料としては、金属酸化物、たとえばゾルゲル法にてチタンアルコキシドを加水分解して得たアモルファス性の酸化チタンなどが挙げられる。成膜方法は、薄膜を形成できる方法であれば特に限定されないが、例えば、スピンコート法が挙げられる。電子輸送層の材料として酸化チタンを使用する場合、膜厚は5nm〜20nmの厚さに成膜することが望ましい。膜厚が上記範囲より薄い場合は、正孔ブロック効果が減少してしまうため、発生したエキシトンが電子とホールに解離する前に失活してしまい、効率的に電流を取り出すことができない。膜厚が厚すぎる場合は、膜抵抗が大きくなり、発生した電流を制限してしまうため光変換効率が低下する。   Examples of the material for the electron transport layer 16 include metal oxides such as amorphous titanium oxide obtained by hydrolyzing titanium alkoxide by a sol-gel method. The film forming method is not particularly limited as long as it is a method capable of forming a thin film, and examples thereof include a spin coating method. When titanium oxide is used as the material for the electron transport layer, the film thickness is desirably 5 nm to 20 nm. When the film thickness is thinner than the above range, the hole blocking effect is reduced, so that the generated exciton is deactivated before dissociating into electrons and holes, and current cannot be efficiently extracted. When the film thickness is too thick, the film resistance increases and the generated current is limited, so that the light conversion efficiency is lowered.

塗布溶液は、フィルタで予め濾過したものを使用することが望ましい。規定の膜厚に塗布した後、ホットプレートなどを用いて加熱乾燥する。50℃〜100℃で数分〜10分間程度、空気中にて加水分解を促進しながら加熱乾燥する。無機物ではフッ化リチウムや金属カルシウムなどが好適な材料である。   It is desirable to use a coating solution that has been filtered in advance with a filter. After applying to a specified film thickness, it is heated and dried using a hot plate or the like. Heat drying at 50 to 100 ° C. for several minutes to 10 minutes while promoting hydrolysis in the air. Among inorganic materials, lithium fluoride, metallic calcium, and the like are suitable materials.

(対向電極)
対向電極17は、導電性を有する材料を真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等で成膜する。電極材料としては、導電性の金属薄膜、金属酸化物膜等が挙げられる。対向電極17を電子輸送層16と接して形成する場合は、対向電極17には仕事関数の低い材料を用いることが好ましい。仕事関数の低い材料としては、例えば、アルカリ金属、アルカリ土類金属等が挙げられる。具体的には、Li、In、Al、Ca、Mg、Sm、Tb、Yb、Zr、Na、K、Rb、Cs、およびBaからなる群から選択された1つの元素からなる単体、および選択された元素を少なくとも1つ含む合金を挙げることができる。
(Counter electrode)
The counter electrode 17 is formed by depositing a conductive material by vacuum deposition, sputtering, ion plating, plating, coating, or the like. Examples of the electrode material include a conductive metal thin film and a metal oxide film. When the counter electrode 17 is formed in contact with the electron transport layer 16, it is preferable to use a material having a low work function for the counter electrode 17. Examples of the material having a low work function include alkali metals and alkaline earth metals. Specifically, a single element selected from the group consisting of Li, In, Al, Ca, Mg, Sm, Tb, Yb, Zr, Na, K, Rb, Cs, and Ba, and selected And alloys containing at least one element.

対向電極17は、単層であってもよく、異なる仕事関数の材料で構成される層を積層したものであってもよい。また、仕事関数の低い材料のうちの1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫などとの合金であってもよい。合金の例としては、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、カルシウム−アルミニウム合金等が挙げられる。   The counter electrode 17 may be a single layer or may be a laminate of layers made of materials having different work functions. Alternatively, an alloy of one or more of materials having a low work function and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, or the like may be used. Examples of the alloy include a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, and a calcium-aluminum alloy.

対向電極17の膜厚は、1nm〜500nmであり、好ましくは10nm〜300nmである。膜厚が上記範囲より薄い場合は、抵抗が大きくなりすぎ、発生した電荷を十分に外部回路へ伝達できない。膜厚が厚い場合には、対向電極17の成膜に長時間を要するため材料温度が上昇し、有機層にダメージを与えて性能が劣化してしまう。さらに、材料を大量に使用するため、成膜装置の占有時間が長くなり、コストアップに繋がる。   The thickness of the counter electrode 17 is 1 nm to 500 nm, preferably 10 nm to 300 nm. When the film thickness is smaller than the above range, the resistance becomes too large and the generated charge cannot be sufficiently transmitted to the external circuit. When the film thickness is thick, it takes a long time to form the counter electrode 17, so that the material temperature rises and the organic layer is damaged to deteriorate the performance. Further, since a large amount of material is used, the occupation time of the film forming apparatus becomes longer, leading to an increase in cost.

(実施例1)
本実施形態の有機光電変換素子の変換効率を評価するために、図3(a)乃至3(h)に示す製造方法を用いてサンプルを作製し、疑似太陽光を照射したときの電流−電圧(I−V)特性を評価した。
Example 1
In order to evaluate the conversion efficiency of the organic photoelectric conversion element of this embodiment, a sample was produced using the manufacturing method shown in FIGS. 3 (a) to 3 (h), and current-voltage when irradiated with pseudo-sunlight. (IV) characteristics were evaluated.

ガラス板の表面上に透明電極としてITOが形成されたITO基板12aを用意し、このITO基板12aの表面に紫外線オゾン(UV−O)を照射し、ITO基板12aの有機物汚染を除去した(図3(a)、3(b))。 An ITO substrate 12a having ITO formed as a transparent electrode on the surface of a glass plate was prepared, and the surface of the ITO substrate 12a was irradiated with ultraviolet ozone (UV-O 3 ) to remove organic contamination of the ITO substrate 12a ( FIG. 3 (a), 3 (b)).

続いて、ITO基板12a上に、Agの濃度が10w%であるAgナノ粒子溶液を100倍希釈したものを、直径が0.2μmのフィルタを通して滴下し、スピンコート法で塗布し、Agナノ粒子13をITO基板12a上に配置した(図3(c))。このときのAgナノ粒子13の密度は、ITO基板12a上に11粒/μmであった。 Subsequently, a 100-fold diluted Ag nanoparticle solution having an Ag concentration of 10 w% is dropped on the ITO substrate 12a through a filter having a diameter of 0.2 μm, and is applied by a spin coating method. 13 was placed on the ITO substrate 12a (FIG. 3C). The density of the Ag nanoparticles 13 at this time was 11 grains / μm 2 on the ITO substrate 12a.

ここで、Ag粒子溶液は、Agナノ粒子の平均直径がほぼ20nm、溶媒はエタノールを用いた。スピンコートの条件は、スピンコータの回転数が1000rpmで30秒間行った。この時のITO基板12a上に配置されたAgナノ粒子13のSEM(Scanning Electron Microscope)像を示す。Agナノ粒子13の密度は11粒子/μmであることを確認した。ITO基板12a上に配置したAgナノ粒子13は、Ag原子のd軌道とITOの酸素2p軌道とで共有結合を作る。共有結合は原子間の結合で最も強い結合であり、結合の強さを順に並べると、共有結合>イオン結合>金属結合>ファンデルワールス結合である。従って、ITO基板12a上に配置されたAgナノ粒子13はITO基板12a上に強く結合している。 Here, the Ag particle solution had an average diameter of Ag nanoparticles of approximately 20 nm, and ethanol was used as the solvent. The spin coating was performed at a spin coater rotation speed of 1000 rpm for 30 seconds. An SEM (Scanning Electron Microscope) image of the Ag nanoparticles 13 arranged on the ITO substrate 12a at this time is shown. It was confirmed that the density of the Ag nanoparticles 13 was 11 particles / μm 2 . The Ag nanoparticles 13 arranged on the ITO substrate 12a form a covalent bond between the d orbital of Ag atoms and the oxygen 2p orbital of ITO. A covalent bond is the strongest bond between atoms, and when the bond strengths are arranged in order, it is covalent bond> ionic bond> metal bond> van der Waals bond. Therefore, the Ag nanoparticles 13 arranged on the ITO substrate 12a are strongly bonded to the ITO substrate 12a.

なお、本発明におけるAgナノ粒子13の密度の測定方法は以下のように行われる。   In addition, the measuring method of the density of Ag nanoparticle 13 in this invention is performed as follows.

図4に示す走査型電子顕微鏡の像(以下、SEM像とも云う)倍率5万倍条件下でAgナノ粒子密度を算出する。まず、SEM像に写っているAgナノ粒子数を数える。SEM像のスケールバーから、SEM像の表示面積が分かる。これにより、Agナノ粒子密度を算出することができる。   The Ag nanoparticle density is calculated under the conditions of an image of a scanning electron microscope shown in FIG. First, the number of Ag nanoparticles in the SEM image is counted. The display area of the SEM image is known from the scale bar of the SEM image. Thereby, Ag nanoparticle density is computable.

なお、倍率5万倍の条件は以下の理由により設定した。Agナノ粒子の密度値の精度を向上するためには、SEM像の表示範囲を広げ、すなわち、SEM像の倍率を下げ、観察するAgナノ粒子数が多いことが望ましい。ところが、SEM像の倍率を下げすぎると、Ag粒子の見え方が小さくなるので、Ag粒子数を数えにくくなる。一方、SEM像の倍率を上げ過ぎると、観察するAgナノ粒子数が少なくなり、Agナノ粒子密度の精度が低下する。そこで、両者が両立するSEMの倍率が5万倍条件下で、Agナノ粒子密度を評価した。   The condition of 50,000 times magnification was set for the following reason. In order to improve the accuracy of the density value of Ag nanoparticles, it is desirable that the display range of the SEM image is expanded, that is, the magnification of the SEM image is lowered and the number of Ag nanoparticles to be observed is large. However, if the magnification of the SEM image is lowered too much, the appearance of Ag particles becomes small, so it is difficult to count the number of Ag particles. On the other hand, if the magnification of the SEM image is increased too much, the number of Ag nanoparticles to be observed decreases, and the accuracy of the Ag nanoparticle density decreases. Therefore, the Ag nanoparticle density was evaluated under the condition that the SEM magnification at which both were compatible was 50,000 times.

次に、PEDOT−PSS溶液を、Agナノ粒子13が配置されたITO基板12a上に直径が0.45μmのフィルタを通して滴下し、PEDOT−PSS層14をスピンコート法で成膜した。このときのスピンコートの条件は、スピンコータの回転数が4000rpmで、30秒間行った。成膜後、ITO基板12aを大気下で145℃、10分加熱を行い、余分な溶媒を飛ばした。Agナノ粒子13を内包したPEDOT−PSS層14の膜厚は段差計を用いて測定した。得られた膜厚は60nm程度である。このとき、Agナノ粒子13はITO基板12a側に偏在していた(図3(d))。ここで偏在とは、Agナノ粒子13の中心からITO基板12aの表面までの距離(XAg−ITO)とAgナノ粒子の中心から後述する光電変換層15までの距離(XAg−pal)において、XAg−ITO<XAg−palの関係を満たすことである。 Next, the PEDOT-PSS solution was dropped through a filter having a diameter of 0.45 μm on the ITO substrate 12a on which the Ag nanoparticles 13 were arranged, and the PEDOT-PSS layer 14 was formed by a spin coating method. The spin coating conditions at this time were 30 seconds with a spin coater rotating at 4000 rpm. After the film formation, the ITO substrate 12a was heated in the atmosphere at 145 ° C. for 10 minutes to remove excess solvent. The film thickness of the PEDOT-PSS layer 14 including the Ag nanoparticles 13 was measured using a step gauge. The film thickness obtained is about 60 nm. At this time, Ag nanoparticles 13 were unevenly distributed on the ITO substrate 12a side (FIG. 3D). Here, uneven distribution refers to the distance from the center of the Ag nanoparticles 13 to the surface of the ITO substrate 12a (X Ag-ITO ) and the distance from the center of the Ag nanoparticles to the photoelectric conversion layer 15 described later (X Ag-pal ). , X Ag-ITO <X Ag-pal .

また、一般的にはPEDOT−PSSのPSS成分14aは後述する対向電極17側に偏析することが知られている。PSS成分14aは強酸性のため、Agナノ粒子13を酸化させ、有機光電変換素子の特性に悪影響を与えてしまう。本実施例では、Agナノ粒子13をITO基板12a側に偏在させることで上記問題を回避することができる。   In general, it is known that the PSS component 14a of PEDOT-PSS is segregated on the counter electrode 17 side described later. Since the PSS component 14a is strongly acidic, it oxidizes the Ag nanoparticles 13 and adversely affects the characteristics of the organic photoelectric conversion element. In the present embodiment, the above problem can be avoided by making the Ag nanoparticles 13 unevenly distributed on the ITO substrate 12a side.

次に、その上にPTB7および70PCBMをクロロベンゼンと1,8−ジヨードオクタンに溶解した混合溶液をスピンコート法で塗布して光電変換層15を形成した(図3(e))。上記混合溶液は、PTB7と70PCBMとの比が1:1.5であり、PTB7および70PCBMはクロロベンゼンおよび1,8−ジヨードオクタンの混合溶液(クロロベンゼン:1,8−ジヨードオクタン=97Vol%:3Vol%)1ml中に20mg溶解されている。スピンコートの条件は、スピンコータの回転数が700rpmで60秒間行った。   Next, a mixed solution in which PTB7 and 70PCBM were dissolved in chlorobenzene and 1,8-diiodooctane was applied thereon by a spin coating method to form the photoelectric conversion layer 15 (FIG. 3E). In the mixed solution, the ratio of PTB7 to 70PCBM is 1: 1.5, and PTB7 and 70PCBM are mixed solutions of chlorobenzene and 1,8-diiodooctane (chlorobenzene: 1,8-diiodooctane = 97 Vol%: 3 vol%) 20 mg is dissolved in 1 ml. The spin coating was performed at a spin coater rotation speed of 700 rpm for 60 seconds.

続いて、光電変換層15の表面に、電子輸送層としてフッ化リチウム層16を蒸着により形成する(図3(f))。その後、電子輸送層16上にAg−Mg合金をマスクを用いて蒸着し、対向電極17を形成する。このようにして形成された有機光電変換素子に光を照射し、ITO基板12aと対向電極17との間にI−V特性を測定した(図3(g)、3(h))。   Subsequently, a lithium fluoride layer 16 is formed as an electron transport layer on the surface of the photoelectric conversion layer 15 by vapor deposition (FIG. 3F). Thereafter, an Ag—Mg alloy is deposited on the electron transport layer 16 using a mask to form the counter electrode 17. The organic photoelectric conversion element thus formed was irradiated with light, and IV characteristics were measured between the ITO substrate 12a and the counter electrode 17 (FIGS. 3 (g) and 3 (h)).

(実施例2)
上記の実施例1において、Agナノ粒子100倍希釈したものに代えて200倍希釈したものを用いた以外は、実施例1と同様にして有機光電変換素子を作製した。この実施例2においては、Agナノ粒子13の密度は、ITO基板12a上に6粒/μmであった。
(Example 2)
An organic photoelectric conversion device was produced in the same manner as in Example 1 except that in Example 1 above, a 200-fold diluted solution was used instead of the Ag nanoparticle diluted 100-fold. In Example 2, the density of the Ag nanoparticles 13 was 6 particles / μm 2 on the ITO substrate 12a.

(実施例3)
上記の実施例1において、Agナノ粒子100倍希釈したものに代えて40倍希釈したものを用いた以外は、実施例1と同様にして有機光電変換素子を作製した。この実施例3においては、Agナノ粒子13の密度は、ITO基板12a上に28粒/μmであった。
(Example 3)
An organic photoelectric conversion element was produced in the same manner as in Example 1 except that in Example 1 above, a 40-fold diluted one was used instead of the Ag nanoparticle diluted 100-fold. In Example 3, the density of the Ag nanoparticles 13 was 28 grains / μm 2 on the ITO substrate 12a.

(実施例4)
上記の実施例1において、Agナノ粒子100倍希釈したものに代えて20倍希釈したものを用いた以外は、実施例1と同様にして有機光電変換素子を作製した。この実施例4においては、Agナノ粒子13の密度は、ITO基板12a上に55粒/μmであった。
Example 4
An organic photoelectric conversion device was produced in the same manner as in Example 1 except that in Example 1 above, a 20-fold diluted one was used instead of the Ag nanoparticle diluted 100-fold. In Example 4, the density of the Ag nanoparticles 13 was 55 grains / μm 2 on the ITO substrate 12a.

(比較例1)
上記の実施例1において、PEDOT−PSS層にAgナノ粒子を内包しない以外は、実施例1と同様にして有機光電変換素子を作製した。
(Comparative Example 1)
In said Example 1, the organic photoelectric conversion element was produced like Example 1 except not including Ag nanoparticle in a PEDOT-PSS layer.

(比較例2)
上記の実施例1において、PEDOT−PSS溶液にAgナノ粒子溶液を100倍希釈したものを添加し、その溶液をITO上に滴下、スピンコート法で成膜した以外は、実施例1と同様にして有機光電変換素子を作製した。スピンコートの条件は、スピンコータの回転数が4000rpmで30秒間行った。この比較例2においては、スピンコート回転による遠心力でAgナノ粒子の大部分が飛散された。
(Comparative Example 2)
In Example 1 described above, except that a 100-fold diluted Ag nanoparticle solution was added to the PEDOT-PSS solution, and the solution was dropped on ITO and formed into a film by a spin coating method. Thus, an organic photoelectric conversion element was produced. The spin coating was performed at a spin coater rotation speed of 4000 rpm for 30 seconds. In Comparative Example 2, most of the Ag nanoparticles were scattered by centrifugal force due to spin coating rotation.

(比較例3)
上記の実施例1において、Agナノ粒子100倍希釈したものに代えて5倍希釈したものを用いた以外は、実施例1と同様にして有機光電変換素子を作製した。この実施例5においては、Agナノ粒子13の密度は、ITO基板12a上に220粒/μmであった。
(Comparative Example 3)
An organic photoelectric conversion device was produced in the same manner as in Example 1 except that in Example 1 above, a solution diluted 5 times instead of 100 times diluted with Ag nanoparticles was used. In Example 5, the density of the Ag nanoparticles 13 was 220 particles / μm 2 on the ITO substrate 12a.

(有機光電変換素子の短絡電流密度(Jsc)、開放電圧(Voc)、形状因子(FF)、変換効率評価)
上記の実施例1乃至4および比較例1乃至3の有機光電変換素子において、1cm角のマスクを被せて照射光100mw/cmの条件で電流−電圧特性を評価した。図5は、実施例1乃至4および比較例1乃至3の有機光電変換素子の電流−電圧特性から得られた短絡電流密度(Jsc)、開放電圧(Voc)、形状因子(FF)、変換効率を示す。
(Short-circuit current density (Jsc), open-circuit voltage (Voc), form factor (FF), conversion efficiency evaluation of organic photoelectric conversion element)
In the organic photoelectric conversion elements of Examples 1 to 4 and Comparative Examples 1 to 3, the current-voltage characteristics were evaluated under the condition of irradiation light of 100 mw / cm 2 with a 1 cm square mask. FIG. 5 shows the short-circuit current density (Jsc), open-circuit voltage (Voc), form factor (FF), and conversion efficiency obtained from the current-voltage characteristics of the organic photoelectric conversion elements of Examples 1 to 4 and Comparative Examples 1 to 3. Indicates.

図6にAgナノ粒子希釈条件と変換効率の関係を表す。20〜100倍の希釈では、Agナノ粒子を内包しない場合よりも変換効率が高い結果が得られた。これは、Agナノ粒子の密度が6〜55個/μmおよびAgナノ粒子の被覆率が0.033%〜0.33%に対応する。従って、ITO上にAgナノ粒子を配置してからPEDOT−PSS層を形成した実施例1乃至4は、PEDOT−PSS層中にAgナノ粒子を内包しない比較例1よりも高い変換効率が得られた。 FIG. 6 shows the relationship between Ag nanoparticle dilution conditions and conversion efficiency. When the dilution was 20 to 100 times, the conversion efficiency was higher than when no Ag nanoparticles were encapsulated. This corresponds to a density of Ag nanoparticles of 6 to 55 particles / μm 2 and a coverage of Ag nanoparticles of 0.033% to 0.33%. Therefore, Examples 1 to 4 in which the PEDOT-PSS layer was formed after the Ag nanoparticles were placed on the ITO obtained higher conversion efficiency than Comparative Example 1 in which the Ag nanoparticles were not included in the PEDOT-PSS layer. It was.

なお、比較例3は、ITO基板上のAgナノ粒子の密度が220粒/μmであるにも関わらず、比較例1よりも変換効率が低い。これは、比較例3は比較例1に比べて、Agナノ粒子が高濃度(5倍希釈)であり、製造時は20nm程度のAgナノ粒子は凝集して2次粒子を形成する。2次粒子を形成したAgナノ粒子がITOと光電変換層との間のリークもしくはITOと対向電極を構成するAg−Mg合金との間のリークを促進したために変換効率が低下したと推察される。 In Comparative Example 3, although the density of Ag nanoparticles on the ITO substrate is 220 particles / μm 2 , the conversion efficiency is lower than that of Comparative Example 1. This is because Comparative Example 3 has a higher concentration (5 times dilution) of Ag nanoparticles than Comparative Example 1, and Ag nanoparticles of about 20 nm aggregate to form secondary particles during production. It is inferred that the conversion efficiency was lowered because the Ag nanoparticles forming the secondary particles promoted the leakage between the ITO and the photoelectric conversion layer or the leakage between the ITO and the Ag-Mg alloy constituting the counter electrode. .

以上のことから、Agナノ粒子の密度が1〜55個/μmであれば高い変換効率を得ることができる。 From the above, high conversion efficiency can be obtained when the density of Ag nanoparticles is 1 to 55 particles / μm 2 .

また、図5からわかるように、PEDOT−PSS溶液にAgナノ粒子溶液を添加して、その溶液をITO上に滴下し、スピンコート法で成膜した比較例2の有機薄膜太陽電池は、Agナノ粒子を内包していない比較例1の有機光電変換素子と同程度の変換効率が得られた。これは、PEDOT−PSS溶液にAgナノ粒子溶液を添加し、その溶液をITO上に滴下、スピンコート法で成膜すると、スピンコート回転による遠心力でAgナノ粒子の大部分が飛散されたと考えられる。そのため、比較例2は実質的に比較例1と同様にPEDOT−PSS層にAgナノ粒子を内包しないものと近い状態になったために、比較例2の変換効率は比較例1よりも改善しなかったと考えられる。   In addition, as can be seen from FIG. 5, the organic thin-film solar cell of Comparative Example 2 in which an Ag nanoparticle solution was added to a PEDOT-PSS solution, the solution was dropped on ITO, and formed by spin coating, A conversion efficiency comparable to that of the organic photoelectric conversion element of Comparative Example 1 not including nanoparticles was obtained. This is because when Ag nanoparticle solution was added to PEDOT-PSS solution, and the solution was dropped on ITO and deposited by spin coating, most of Ag nanoparticles were scattered by centrifugal force due to spin coating rotation. It is done. Therefore, Comparative Example 2 is substantially similar to Comparative Example 1 in which the PEDOT-PSS layer is not encapsulated with Ag nanoparticles, so that the conversion efficiency of Comparative Example 2 is not improved as compared with Comparative Example 1. It is thought.

また、上記説明では、金属ナノ粒子はAgであったが、金属ナノ粒子は、Au、Ag、Al、Cu、Ptの群から選ばれる少なくとも1つの元素を含んでいてもよい。   In the above description, the metal nanoparticles are Ag. However, the metal nanoparticles may contain at least one element selected from the group consisting of Au, Ag, Al, Cu, and Pt.

以上の結果から、本発明者らの実験結果によると、金属ナノ粒子の表面から光電変換層までの距離がその粒径よりも十分大きいにもかかわらず、変換効率の向上が確認された。この実験結果は、金属ナノ粒子が作る局在表面プラズモンでは、変換効率の向上が説明できない現象である。   From the above results, according to the experiment results of the present inventors, it was confirmed that the conversion efficiency was improved even though the distance from the surface of the metal nanoparticles to the photoelectric conversion layer was sufficiently larger than the particle size. This experimental result is a phenomenon in which the improvement in conversion efficiency cannot be explained by localized surface plasmons produced by metal nanoparticles.

なお、本発明者らは、上記現象は金属ナノ粒子の光散乱強度が何らかの形で寄与していると推察している。   The present inventors presume that the above phenomenon contributes in some way to the light scattering intensity of the metal nanoparticles.

以上説明したように、本実施形態および各実施例によれば、有機光電変換素子の導電性基板上に金属ナノ粒子を内包した正孔輸送層を形成するため、変換効率を向上させることができる。また、導電性高分子溶液の塗布によって導電性基板上に金属ナノ粒子を内包した正孔輸送層を形成するので、真空設備が不要であり、製造コストを削減することができる。さらに、既存のプロセスラインに導電性基板上に金属ナノ粒子を内包した正孔輸送層を形成する工程を追加することで有機光電変換素子を作製できるため、既存のプロセスラインの大幅な変更を必要としないという利点がある。   As described above, according to the present embodiment and each example, since the hole transport layer including the metal nanoparticles is formed on the conductive substrate of the organic photoelectric conversion element, the conversion efficiency can be improved. . In addition, since the hole transport layer including the metal nanoparticles is formed on the conductive substrate by applying the conductive polymer solution, a vacuum facility is unnecessary, and the manufacturing cost can be reduced. In addition, it is possible to produce organic photoelectric conversion elements by adding a process for forming a hole transport layer containing metal nanoparticles on a conductive substrate to an existing process line, which requires significant changes to the existing process line. There is an advantage of not.

以上により、本実施形態によれば、変換効率が高く、低コスト、かつ既存のプロセスラインの大幅な変更を必要としない有機光電変換素子を提供することができる。   As described above, according to the present embodiment, it is possible to provide an organic photoelectric conversion element that has high conversion efficiency, low cost, and does not require a significant change of an existing process line.

本実施形態の有機光電変換素子を備えた有機薄膜太陽電池は、低照度な室内光において発電効率が高い。このため、この有機薄膜太陽電池は、図7に示すように、サーバPCまたはラジオ放送局からの信号に基づいて表示する電子棚札200の電源210として用いることができる。また、図8に示すように、センサー250、例えば動きセンサー、温度センサー、湿度センサー、照明センサー等の電源210として用いることができる。さらに、図9に示すように、腕時計260の電源210として用いることができる。   The organic thin-film solar cell provided with the organic photoelectric conversion element of this embodiment has high power generation efficiency in low-intensity indoor light. Therefore, as shown in FIG. 7, the organic thin film solar cell can be used as a power source 210 of an electronic shelf label 200 that is displayed based on a signal from a server PC or a radio broadcast station. Further, as shown in FIG. 8, the sensor 250 can be used as a power source 210 such as a motion sensor, a temperature sensor, a humidity sensor, and a lighting sensor. Furthermore, as shown in FIG. 9, it can be used as the power source 210 of the wristwatch 260.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

1 有機薄膜太陽電池のセル
11 基板
12 透明電極
13 金属ナノ粒子
14 正孔輸送層
15 光電変換層
16 電子輸送層
17 対向電極
18 反射防止膜
DESCRIPTION OF SYMBOLS 1 Cell of organic thin film solar cell 11 Substrate 12 Transparent electrode 13 Metal nanoparticle 14 Hole transport layer 15 Photoelectric conversion layer 16 Electron transport layer 17 Counter electrode 18 Antireflection film

Claims (9)

第1電極と、前記第1電極上に設けられた正孔輸送層と、前記正孔輸送層上に設けられ、有機p型半導体および有機n型半導体を有する有機光電変換層と、前記有機光電変換層上に設けられた電子輸送層と、前記電子輸送層上に設けられた第2電極と、を備え、
前記正孔輸送層は、金属ナノ粒子とポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)を含み、前記金属ナノ粒子の平均粒径dと前記正孔輸送層の膜厚tとの間にd<tの関係が成立し、かつ、前記金属ナノ粒子が前記第1電極側に偏在し、前記第1電極側に配置されている前記金属ナノ粒子の密度が1〜55粒子/μmの範囲内にある有機光電変換素子。
A first electrode; a hole transport layer provided on the first electrode; an organic photoelectric conversion layer provided on the hole transport layer and having an organic p-type semiconductor and an organic n-type semiconductor; An electron transport layer provided on the conversion layer, and a second electrode provided on the electron transport layer,
The hole transport layer includes metal nanoparticles and polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), and is between an average particle diameter d of the metal nanoparticles and a film thickness t of the hole transport layer. The relationship of d <t is established, the metal nanoparticles are unevenly distributed on the first electrode side, and the density of the metal nanoparticles arranged on the first electrode side is 1 to 55 particles / μm 2 . Organic photoelectric conversion element in the range.
前記正孔輸送層は、酸化ニッケル、酸化モリブデン、酸化バナジウムの群から選択された少なくとも1つを含む請求項1記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the hole transport layer includes at least one selected from the group consisting of nickel oxide, molybdenum oxide, and vanadium oxide. 前記金属ナノ粒子は、Au、Ag、Al、Cu、Ptの群から選ばれる少なくとも1つの元素を含む請求項1または2記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the metal nanoparticles include at least one element selected from the group consisting of Au, Ag, Al, Cu, and Pt. 前記金属ナノ粒子は、Agを含む請求項1乃至3のいずれかに記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the metal nanoparticles include Ag. 前記金属ナノ粒子の平均粒径が10nm〜50nmである請求項1乃至4のいずれかに記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein the metal nanoparticles have an average particle diameter of 10 nm to 50 nm. 前記有機p型半導体は、ポリ[[4,8−ビス[(2−エチルヘキシル)オキシ]ベンゾ[1,2−b:4−5−b’]ジチオフェン−2,6−ジル][3−フルオロ−2−[(2−エチルヘキシル)カルボニル]チエノ[3,4−6]チオフェンジル]を含む請求項1乃至5のいずれかに記載の有機光電変換素子。   The organic p-type semiconductor is poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4-5-b ′] dithiophene-2,6-zyl] [3-fluoro. The organic photoelectric conversion element according to any one of claims 1 to 5, comprising -2-[(2-ethylhexyl) carbonyl] thieno [3,4-4] thiophenzyl]. 前記第1電極の前記正孔輸送層と反対側に設けられた基板を更に備えている請求項1乃至6のいずれかに記載の有機光電変換素子。   The organic photoelectric conversion element according to any one of claims 1 to 6, further comprising a substrate provided on a side of the first electrode opposite to the hole transport layer. 前記基板は透明であり、前記基板の前記第1電極側と反対側に設けられた反射防止膜を更に備えた請求項7記載の有機光電変換素子。   The organic photoelectric conversion device according to claim 7, further comprising an antireflection film provided on the opposite side of the substrate from the first electrode side, wherein the substrate is transparent. 請求項1乃至8のいずれかに記載の有機光電変換素子を製造する製造方法であって、
前記正孔輸送層は、前記金属ナノ粒子を前記第1電極に配置してから前記ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸を含む溶液を塗布して形成する有機光電変換素子の製造方法。
It is a manufacturing method which manufactures the organic photoelectric conversion element in any one of Claims 1 thru | or 8, Comprising:
The hole transport layer is a method for manufacturing an organic photoelectric conversion element, in which the metal nanoparticles are disposed on the first electrode and then a solution containing the polyethylenedioxythiophene / polystyrenesulfonic acid is applied.
JP2015057355A 2015-03-20 2015-03-20 Organic photoelectric conversion device and manufacturing method thereof Active JP6613037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057355A JP6613037B2 (en) 2015-03-20 2015-03-20 Organic photoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057355A JP6613037B2 (en) 2015-03-20 2015-03-20 Organic photoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016178204A true JP2016178204A (en) 2016-10-06
JP6613037B2 JP6613037B2 (en) 2019-11-27

Family

ID=57071513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057355A Active JP6613037B2 (en) 2015-03-20 2015-03-20 Organic photoelectric conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6613037B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346603A (en) * 2018-09-18 2019-02-15 张军 A kind of organic solar batteries and preparation method thereof
CN109390474A (en) * 2018-11-15 2019-02-26 南京邮电大学 A method of improving inverted structure perovskite solar battery open-circuit voltage and fill factor
JP2019067817A (en) * 2017-09-28 2019-04-25 積水化学工業株式会社 Solar cell
US10566558B2 (en) 2017-03-17 2020-02-18 Kabushiki Kaisha Toshiba Photodetection element and photodetector
CN111276623A (en) * 2020-01-19 2020-06-12 中国工程物理研究院流体物理研究所 Modified hole transport layer and blue-light perovskite light-emitting diode based on same
WO2021220926A1 (en) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 Solar cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074569A (en) * 2010-09-29 2012-04-12 Jx Nippon Oil & Energy Corp Photoelectric conversion element
JP2012124290A (en) * 2010-12-07 2012-06-28 Kyushu Univ Photoelectric conversion device and method for manufacturing the same
JP2013026432A (en) * 2011-07-21 2013-02-04 Konica Minolta Holdings Inc Organic photoelectric conversion element, method for manufacturing the same, and organic solar cell using the same
JP2013110395A (en) * 2011-10-26 2013-06-06 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2014175439A (en) * 2013-03-08 2014-09-22 Osaka Gas Co Ltd All-solid-state solar cell
JP2014200926A (en) * 2013-04-01 2014-10-27 株式会社東芝 Transparent conductive film and electrical element
WO2014185536A1 (en) * 2013-05-16 2014-11-20 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074569A (en) * 2010-09-29 2012-04-12 Jx Nippon Oil & Energy Corp Photoelectric conversion element
JP2012124290A (en) * 2010-12-07 2012-06-28 Kyushu Univ Photoelectric conversion device and method for manufacturing the same
JP2013026432A (en) * 2011-07-21 2013-02-04 Konica Minolta Holdings Inc Organic photoelectric conversion element, method for manufacturing the same, and organic solar cell using the same
JP2013110395A (en) * 2011-10-26 2013-06-06 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2014175439A (en) * 2013-03-08 2014-09-22 Osaka Gas Co Ltd All-solid-state solar cell
JP2014200926A (en) * 2013-04-01 2014-10-27 株式会社東芝 Transparent conductive film and electrical element
WO2014185536A1 (en) * 2013-05-16 2014-11-20 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTHONY J. MORFA, ET AL.: "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics", APPL. PHYS. LETT., vol. 92, JPN7014001481, 2008, pages 013504, ISSN: 0003865325 *
JYH-LIH WU ET AL.: "Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunctio", ACS NANO, vol. 5, no. 2, JPN6018033059, 2011, pages 959 - 967, ISSN: 0004006843 *
N.KALFAGIANNIS ET AL.: "Plasmonic silver nanoparticles for improved organic solar cells", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 104, JPN6018033058, 2012, pages 165 - 174, XP028497830, ISSN: 0004006842, DOI: 10.1016/j.solmat.2012.05.018 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566558B2 (en) 2017-03-17 2020-02-18 Kabushiki Kaisha Toshiba Photodetection element and photodetector
JP2019067817A (en) * 2017-09-28 2019-04-25 積水化学工業株式会社 Solar cell
CN109346603A (en) * 2018-09-18 2019-02-15 张军 A kind of organic solar batteries and preparation method thereof
CN109390474A (en) * 2018-11-15 2019-02-26 南京邮电大学 A method of improving inverted structure perovskite solar battery open-circuit voltage and fill factor
CN111276623A (en) * 2020-01-19 2020-06-12 中国工程物理研究院流体物理研究所 Modified hole transport layer and blue-light perovskite light-emitting diode based on same
WO2021220926A1 (en) * 2020-04-27 2021-11-04 パナソニックIpマネジメント株式会社 Solar cell

Also Published As

Publication number Publication date
JP6613037B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6613037B2 (en) Organic photoelectric conversion device and manufacturing method thereof
Noh et al. Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis
Leem et al. Efficient organic solar cells with solution‐processed silver nanowire electrodes
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
US8969718B2 (en) Organic compound and solar cell using the same
US10236460B2 (en) Photovoltaic cell enhancement through UVO treatment
US9296848B2 (en) Polymer material, solar cell using the same, and solar photovoltaic generation system
US10714270B2 (en) Photoelectric conversion device and method for manufacturing the same
JP6005785B1 (en) Photoelectric conversion element and manufacturing method thereof
Chang et al. Cross-linked triarylamine-based hole-transporting layer for solution-processed PEDOT: PSS-free inverted perovskite solar cells
Kohlstädt et al. Inverted ITO-and PEDOT: PSS-free polymer solar cells with high power conversion efficiency
Qiao et al. Organic/inorganic polymer solar cells using a buffer layer from all-water-solution processing
CN106256029B (en) Organic solar cell and method for manufacturing same
Yao et al. Solution-processed vanadium oxide thin film as the hole extraction layer for efficient hysteresis-free perovskite hybrid solar cells
JP2016058455A (en) Photoelectric conversion element, wiring board for photoelectric conversion element, manufacturing method of photoelectric conversion element, and photoelectric conversion structure
JP2014067921A (en) Solar cell module
Reshak et al. Photovoltaic characteristics of hybrid MEH-PPV-nanoparticles compound
Park et al. Water-processable electron-collecting layers of a hybrid poly (ethylene oxide): Caesium carbonate composite for flexible inverted polymer solar cells
Wen et al. A simple and effective method via PH1000 modified Ag-nanowires electrode enable efficient flexible nonfullerene organic solar cells
Chen et al. Solution-processed polymer bilayer heterostructures as hole-transport layers for high-performance opaque and semitransparent organic solar cells
JP5362017B2 (en) Organic thin film solar cell
JP2020520095A (en) Organic electronic device and manufacturing method thereof
Lu et al. Polymer solar cells based on spontaneously-spreading film with double electron-transporting layers
JP6010649B2 (en) Solar cell module and manufacturing method thereof
JP2016100418A (en) Organic thin film solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191101

R151 Written notification of patent or utility model registration

Ref document number: 6613037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151