JP2016176741A - 加速度センサおよびその製造方法 - Google Patents

加速度センサおよびその製造方法 Download PDF

Info

Publication number
JP2016176741A
JP2016176741A JP2015055652A JP2015055652A JP2016176741A JP 2016176741 A JP2016176741 A JP 2016176741A JP 2015055652 A JP2015055652 A JP 2015055652A JP 2015055652 A JP2015055652 A JP 2015055652A JP 2016176741 A JP2016176741 A JP 2016176741A
Authority
JP
Japan
Prior art keywords
layer
acceleration sensor
active layer
insulating layer
beam portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015055652A
Other languages
English (en)
Inventor
政紀 山内
Masanori Yamauchi
政紀 山内
陽平 島田
Yohei Shimada
陽平 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015055652A priority Critical patent/JP2016176741A/ja
Publication of JP2016176741A publication Critical patent/JP2016176741A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

【課題】梁部の厚みが変化することにより梁部の撓み量が変動するということのない、出力信号の安定した加速度センサおよびその製造方法を提供することを目的とするものである。
【解決手段】ベース層20aの上面に酸化膜層20bを介して活性層20cを設けるとともにこの活性層20cの上面に第1の絶縁層20dを設けさらにこの第1の絶縁層20dの上面に第1の金属層200bを設けた梁部12aにおける下面の表面粗さをRa=0.01μm以下とする構成としたものである。
【選択図】図7

Description

本発明は、車両等に用いられる加速度センサおよびその製造方法に関するものである。
図10は従来の加速度センサ1の側断面図である。
図10において、従来の加速度センサ1は、錘部2と、外枠部3と、外枠部3に一端が接続され、錘部2に他端が接続された梁部4と、錘部2と対向するように外枠部3に接続された上部基板8と、錘部2の上面に形成された自己診断電極7と、上部基板8において、自己診断電極7と対向する位置に形成された対向電極6とにより構成されていた。
なお、この出願の発明に関連する先行技術文献としては、例えば、特許文献1が知られている。
特開平6−148230号公報
しかしながら、上記従来の加速度センサ1においては、梁部2の厚みが変化すると、梁部2の撓み量が変動することとなり、その結果、加速度センサ1の出力信号が変動してしまうという課題を有していた。
本発明は上記従来の課題を解決するもので、梁部の厚みが変化することにより梁部の撓み量が変動するということのない、出力信号の安定した加速度センサおよびその製造方法を提供することを目的とするものである。
本発明の請求項1に記載の発明は、ベース層の上面に酸化膜層を介して活性層を設けるとともにこの活性層の上面に第1の絶縁層を設けさらにこの第1の絶縁層の上面に第1の金属層を設けた枠部と、前記枠部に一端を接続され前記ベース層、酸化膜層、活性層および第1の絶縁層を設けるとともに上面に検出部を設けた梁部と、前記梁部の他端に接続されるとともに前記ベース層、酸化膜層、活性層および第1の絶縁層を設けた錘部と備え、前記梁部における下面の表面粗さをRa=0.01μm以下としたものである。
この構成によれば、梁部の下面の表面粗さが小さいため、梁部の厚みの変化量が小さくなり、これにより、梁部の撓み量が変動することがなくなるから、加速度センサの出力信号が安定するという作用効果を有するものである。
本発明の請求項2に記載の発明は、予め酸化膜層を介して活性層を設けたベース層における活性層の上面に第1の絶縁層を形成した後、第1の絶縁層の上面に第1の金属層を形成する工程と、前記第1の金属層の上面に第2の絶縁層を形成した後、この第2の絶縁層の上面に第2の金属層を形成する工程と、前記ベース層の所定の位置にレジスト膜を形成した後、ベース層および酸化膜層を除去する工程と、前記活性層の所定の位置にレジスト膜を形成した後、活性層を除去する工程とを備え、前記活性層を除去する前に、活性層の下面に保護膜を形成した方法である。この方法によれば、活性層の下面に形成した保護膜により、エッチング時に梁部の下面が荒れることを防止できるという作用効果を有するものである。
本発明の請求項3に記載の発明は、活性層を除去する工程は、エッチングとデポジションを繰り返す工程とからなり、このエッチングおよびデポジションのガス流量を略等しくした方法で、この方法によれば、エッチング時に梁部の下面が荒れることを防止できるとともに、デポジションにより、梁部の下面を保護することができるという作用効果を有するものである。
本発明の加速度センサは、ベース層の上面に酸化膜層を介して活性層を設けるとともにこの活性層の上面に第1の絶縁層を設けさらにこの第1の絶縁層の上面に第1の金属層を設けた枠部と、前記枠部に一端を接続され前記ベース層、酸化膜層、活性層および第1の絶縁層を設けるとともに上面に検出部を設けた梁部と、前記梁部の他端に接続されるとともに前記ベース層、酸化膜層、活性層および第1の絶縁層を設けた錘部と備え、前記梁部における下面の表面粗さをRa=0.01μm以下としたものである。この構成によれば、梁部の下面の表面粗さが小さいため、梁部2の厚みの変化量が小さくなり、これにより、梁部2の撓み量が変動することがなくなるから、出力信号が安定した加速度センサを提供することができるという効果を有するものである。
本発明の一実施の形態における加速度センサの分解斜視図 同加速度センサの検出素子の上面図 同加速度センサの側断面図 同加速度センサの検出回路を示す回路図 同加速度センサにおけるベース層の上面に活性層を介して形成されるコンタクト部の側断面図 本発明の一実施の形態における加速度センサの製造工程図 同加速度センサの製造工程図 同加速度センサの製造工程図 同加速度のセンサにおける梁部の裏面の表面粗さを示す図 従来の加速度センサの側断面図
以下、本発明の一実施の形態における加速度センサについて、図面を参照しながら説明する。
図1は本発明の一実施の形態における加速度センサの分解斜視図、図2は同加速度センサにおける検出素子の上面図、図3(a)は図2のA−A´線における断面図、(b)は(a)の検出素子20を拡大した図である。
図1、図2、図3に示すように、加速度センサ10は、検出素子20と、検出素子20の上面に接続される上蓋30と、検出素子20の下面に設けた錘部と備え、前記梁部における下面の表面粗さをRa=0.01μm以下としたものである。
検出素子20は、支持基板12と、錘部13と、支持基板12に一端が接続され、錘部13に他端が接続された第1の梁部14aおよび第2の梁部14bと、錘部13の上面に形成された自己診断電極16と、支持基板12に形成された接地電極18と、を備える。
ここで、支持基板12は、検出素子20の外周側に位置し、その形状は、例えば略四角形の枠状に形成されている。そして、前記支持基板12から延出されている枠部12aにより、検出素子20における錘部13を取り囲むように構成されている。また、支持基板12の内側には、第1の梁部14aおよび第2の梁部14bが設けられている。
第1の梁部14aおよび第2の梁部14bはそれぞれ、一端が支持基板12に繋がり、他端が錘部13に繋がっている。なお、図1では1対の梁を有する構造を示すが、これに限らない。例えば、1本、あるいは3本の梁部で錘部13を支持する構造であってもよい。
錘部13は、第1の梁部14aおよび第2の梁部14bの先端に繋がっており、支持基板12の内側に位置する。また、錘部13と支持基板12との間には、錘部13を取囲む溝が設けられている。これにより、錘部13と支持基板12との間には隙間が形成され、錘部13は、第1の梁部14aおよび第2の梁部14bによってZ軸方向に変位可能に支持されている。
検出素子20は、シリコンからなるベース層20aと、ベース層20a上のシリコン酸化膜の絶縁層からなる酸化膜層20bと、酸化膜層20b上のシリコン層である活性層20cと、活性層20c上に設けた第1の絶縁層20dと、を有している。
上蓋30は、自己診断電極16と対向する位置に形成された対向電極17を備えている。また、第1の梁部14aの上に検出部14cが形成され、第2の梁部14bの上に検出部14dが形成されている。自己診断電極16は第1の梁部14aおよび第2の梁部14b上の配線を経由して支持基板12上の電極パッドに接続されている。
また、支持基板12、錘部13、第1の梁部14a、第2の梁部14b、上蓋30は、シリコン、溶融石英、アルミナ等を用いることができる。好ましくは、シリコンを用いて形成することにより、微細加工技術を用いて小型の加速度センサとすることができる。
また、支持基板12と上蓋30とを接着する方法として、接着材による接着や金属接合、常温接合、陽極接合等を用いることができる。このうち、接着材としてはエポキシ系樹脂やシリコン系樹脂等の接着剤が用いられる。接着剤として、シリコン系樹脂を用いることにより、接着剤自身の硬化による応力を小さくすることができる。
検出部14c、14dとして、歪抵抗方式を用いることができる。歪抵抗としてピエゾ抵抗を用いることにより、加速度センサ10の感度を向上させることができる。また、歪抵抗方式として酸化膜歪み抵抗体を用いた薄膜抵抗方式を用いることにより、加速度センサ10の温度特性を向上させることができる。
図4は加速度センサ10の検出回路を示す回路図である。
R1は検出部14cに対応する抵抗、R4は検出部14dに対応するピエゾ抵抗、R2およびR3は支持基板12に設けられた基準となるピエゾ抵抗である。図4に示す如く、R1、R2、R3、R4をブリッジ型に接続し、対向する一対の接続点VddとGNDとの間に電圧を印加し、Vout1とVout2と間の電圧の変化を検出することにより、加速度センサ10に印加された加速度を検出することができる。
以上の構成において、加速度センサ10にZ軸方向の加速度が作用すると、錘部13に作用する慣性力(外部応力)によって錘部13が揺動し、これに起因して梁部が歪み変形する。その結果、検出部14c、14dに応力が加わる。これにより、加速度による外部応力に応じてピエゾ抵抗の抵抗値が変化するため、ピエゾ抵抗に流れる電流も抵抗値に応じて変化する。このため、ピエゾ抵抗に流れる電流を検出信号として用いることで検出素子20に作用した加速度(慣性力)を検出することができる。
図3に戻り、下蓋40は、錘部13と対向する部分に凹部41を形成している。下蓋40は、シリコン材料を用いて形成されている。また、上蓋30も、シリコン材料を用いて形成されている。
以下、図3および図4を用いて自己診断機能について説明する。
図3に示すように、自己診断を行う際には、診断回路から、自己診断電極16と対向電極17との間に電圧Vを印加する。これにより自己診断電極16と対向電極17の間に静電力が発生し、錘部13が上蓋30に引き寄せられる。この錘部13の変位により、検出部14cに対応する抵抗R1および検出部14dに対応する抵抗R4が低下する。したがって、ブリッジ回路の出力電圧Voutが検出され、正常に動作していることが確認できる。
図5は、本発明の一実施の形態における加速度センサのベース層の上面に活性層を介して形成される他のコンタクト部の側断面図である。
コンタクト部11は、第1の絶縁層20dに設けた第1の開口部20fに、例えばクロム、あるいはクロムを含む合金等からなる第1の金属層200bを設けている。そして、この第1の金属層200bは活性層20cが第2の金属層200aに相互拡散しないための密着層としての役割を果たしている。そして、この第1の金属層200bを前記第2の金属層200aと絶縁するために、第2の絶縁層20eを設けている。そして、さらに、第2の金属層200aは図2に示すように、配線18aを経由して、検出素子20に設けられる接地電極18に接続される。
この構成により、自己診断の際に錘部13に帯電が発生したとしても、その電荷を錘部13における活性層20c、梁部14a、14bにおける活性層20c、枠部12aのコンタクト部11における活性層20c、第1の金属層200b、第2の金属層200a、配線18a、接地電極18を介してグランドに落とすことができるので、例えば、活性層20cと対向電極17で形成される空間に電界が形成されることを抑制でき、その結果、錘部13を動作させる静電力が安定し正常な自己診断を行うことができる。
このように、第1の金属層200bを設けた場合のコンタクト部11bでは、第1の絶縁層20dに設けた第1の開口部20fと第2の絶縁層20eに設けた第2の開口部20gは同じ位置に設けられる。そして、第1の絶縁層20dに設ける第1の開口部20fよりも第2の絶縁層20eに設ける第2の開口部20gの方が大きいことが好ましい。(すなわち、図5において、D2<D1、あるいは、第1の絶縁層20dに設ける第1の開口部20fよりも第2の絶縁層20eに設ける第2の開口部20gの方が、垂直方向断面において、幅において大きい)この構成により、第2の金属層200aと第1の金属層200bとのコンタクト抵抗を低減でき、より効率よく錘部13の帯電を抑制することができる。
以下に、この実施形態例のベース層の上面に、活性層を介して形成されるコンタクト部の製造工程の一例を図6に基づいて説明する。
まず、図6(a)のように、活性層20cの表面に第1の絶縁層20dを形成する。この第1の絶縁層20dは、活性層20cの表面を保護すると共に、活性層20cを絶縁させるためのものである。例えば、第1の絶縁層20dとしてSiO2等の酸化膜を形成する場合には、例えば熱酸化手法により活性層20cの表面部分を酸化させて第1の絶縁層20dが形成される。
次に、図6(b)に示されるように、その第1の絶縁層20dの予め定められた位置に第1の開口部20fを開口形成する。その第1の開口部20fは、例えばフォトリソ技術を用いて形成することができる。つまり、まず、第1の絶縁層20dの表面全面にレジスト膜を形成し、その後、そのレジスト膜の上方側に配置したコンタクトホール形成位置規制用のマスクを利用してコンタクトホール形成領域以外のレジスト膜部分を紫外線照射により硬化させる。そして、レジスト膜の硬化してない部分、つまり、コンタクトホール形成領域のレジスト膜部分を除去してレジスト膜に第1の絶縁層20dまで達する孔部を形成する。その後、そのレジスト膜の孔部の形成位置の第1の絶縁層20dの部分をそのレジスト膜の孔部を通して例えばドライエッチング手法やウエットエッチング手法により除去してコンタクトホールを形成する。その後、レジスト膜を例えばアッシング手法により除去する。このようにフォトリソ技術を利用して第1の開口部20fを形成することができる。
次に、図6(c)に示すように、密着層としての第1の金属層200bを形成する。この金属層も例えば第1の絶縁層20dの表面全面にスパッタ等の成膜形成技術により形成する。
次に、図6(d)に示すように、第1の金属層200bの表面に第2の絶縁層20eを形成する。この第2の絶縁層20eは第1の金属層200bの表面を保護すると共に、第2の絶縁層20eの表面上に形成される図4に示す、Vdd、GND、Vout1およびVout2からなる電極や検出部14cに対応するビエゾ抵抗R1、検出部14dに対応するピエゾ抵抗R4、支持基板12に設けられたピエゾ抵抗R2、R3およびそれらを結線してブリッジ回路を構成する配線と、第1の金属層200bとを絶縁させるためのものである。
また、第2の絶縁層20eとしてSiN膜が形成される場合には、例えばCVD(chemical vapor deposition)法により第2の絶縁層20eが第1の金属層200b上に積層形成される。
次に、図6(e)に示されるように、第2の絶縁層20eの予め定められた位置に第2の開口部20gを形成する。第2の開口部20gも前述のフォトリソ技術を用いることで形成することができる。
次に、図6(f)に示すように、第2の金属層200aを形成する。この第2の金属層200aも例えば第2の絶縁層20eの表面全面にスパッタ等の成膜形成技術により形成する。
次に、図7(a)に示すように、第2の金属層200aの所定の位置にレジスト膜(図示せず)を形成した後、ドライエッチングをすることにより、活性層20cを残すまで、前記第2の金属層200a、第2の絶縁層20eおよび第1の金属層200bを除去する。
次に、図7(b)に示すように、ウエハーを上下逆さまに取り付けた後、ベース層20aの下面の所定の位置にレジスト膜(図示せず)を形成し、さらに、ドライエッチングすることにより、ベース層20aを除去し、さらに、ウェットエッチングすることにより、酸化膜層20bを除去する。
次に、図7(c)に示すように、活性層20cおよびベース層20aの下面に保護膜220を形成する。
次に、図7(d)に示すように、ウエハーの上下を戻して取り付けた後、活性層20cの所定の位置にレジスト膜(図示せず)を形成し、さらに、ドライエッチングすることにより、活性層20cを貫通させる。
ここで、活性層20cを除去する製造条件を調整する場合を考えると、従来の加速度センサの製造方法においては、エッチングをデポジションを数十回繰り返す際に、エッチングのガス流量を400[sccm]とするとともに、デポジションのガス流量を150[sccm]としていた。そのため、図8(a)に示すように、活性層20cの下面にまで、エッチングガスが回り込むこととなり、活性層20cの下面に表面粗さRa=0.057[μm]からなる荒部210が発生していた。そのため、第1の梁部14aおよび第2の梁部14bの厚みが薄くなり、曲がり易くなるから、加速度センサの出力信号が変動してしまうという課題を有していた。
本発明の一実施の形態における加速度センサの製造方法においては、活性層を除去する前に、活性層の下面に保護膜を形成するとともに、エッチングのガス流量を300[sccm]とするとともに、デポジションのガス流量を300[sccm]と略等しくしているため、第1の梁部14aおよび第2の梁部14bの下面にエッチングガスが回り込んで、荒部210の表面粗さを小さくすることが出来るという作用効果を有するものである。
すなわち、図9に示すように、エッチングのガス流量を従来に比較して変更することにより、活性層20cの下面に表面粗さRa=0.01[μm]とすることが出来る。
そしてさらに、活性層20cおよびベース層20aの下面に保護膜220を形成することにより、図8(b)および図9に示すように、荒部210の表面粗さRa=0.005[μm]まで、低減するものである。
本発明の加速度センサおよびその製造方法は、梁部の厚みが変化することにより梁部の撓み量が変動するということのない、出力信号の安定した加速度センサを提供することができるという効果を有するものであり、車両等に用いられる加速度センサとして有用なものである。
12a 枠部
13 錘部
14a 第1の梁部
14b 第2の梁部
14c、14d 検出部
20a ベース層
20b 酸化膜層
20d、20e 絶縁層
20c 活性層
200a、200b 金属層
210 荒部
220 保護膜

Claims (3)

  1. ベース層の上面に酸化膜層を介して活性層を設けるとともにこの活性層の上面に第1の絶縁層を設けさらにこの第1の絶縁層の上面に第1の金属層を設けた枠部と、前記枠部に一端を接続され前記ベース層、酸化膜層、活性層および第1の絶縁層を設けるとともに上面に検出部を設けた梁部と、前記梁部の他端に接続されるとともに前記ベース層、酸化膜層、活性層および第1の絶縁層を設けた錘部と備え、前記梁部における下面の表面粗さをRa=0.01μm以下とした加速度センサ。
  2. 予め酸化膜層を介して活性層を設けたベース層における活性層の上面に第1の絶縁層を形成した後、第1の絶縁層の上面に第1の金属層を形成する工程と、前記第1の金属層の上面に第2の絶縁層を形成した後、この第2の絶縁層の上面に第2の金属層を形成する工程と、前記ベース層の所定の位置にレジスト膜を形成した後、ベース層および酸化膜層を除去する工程と、前記活性層の所定の位置にレジスト膜を形成した後、活性層を除去する工程とを備え、前記活性層を除去する前に、活性層の下面に保護膜を形成した加速度センサの製造方法。
  3. 活性層を除去する工程は、エッチングとデポジションを繰り返す工程とからなり、このエッチングおよびデポジションのガス流量を略等しくした請求項2記載の加速度センサの製造方法。
JP2015055652A 2015-03-19 2015-03-19 加速度センサおよびその製造方法 Pending JP2016176741A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055652A JP2016176741A (ja) 2015-03-19 2015-03-19 加速度センサおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055652A JP2016176741A (ja) 2015-03-19 2015-03-19 加速度センサおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2016176741A true JP2016176741A (ja) 2016-10-06

Family

ID=57069885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055652A Pending JP2016176741A (ja) 2015-03-19 2015-03-19 加速度センサおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2016176741A (ja)

Similar Documents

Publication Publication Date Title
US10393606B2 (en) Dynamic pressure sensor
KR101910867B1 (ko) 차동 콤 드라이브 mems를 위한 시스템 및 방법
JPH04143628A (ja) 静電容量式圧力センサ
US10913652B2 (en) Micromechanical z-inertial sensor
JP4737535B2 (ja) コンデンサマイクロホン
JP5845447B2 (ja) 加速度センサ
JP6123613B2 (ja) 物理量センサおよびその製造方法
JP2016176741A (ja) 加速度センサおよびその製造方法
JPH04249727A (ja) 力および加速度の検出装置
JP6531281B2 (ja) 加速度センサ
JP2018169176A (ja) 加速度センサおよびその製造方法
JP2008039595A (ja) 静電容量型加速度センサ
US11054326B2 (en) Physical quantity sensor
JP2011082195A (ja) 半導体装置及びその製造方法
JP4737720B2 (ja) ダイヤフラム及びその製造方法並びにそのダイヤフラムを有するコンデンサマイクロホン及びその製造方法
US11262246B2 (en) Pyroelectric detection device with rigid membrane
JP2004354074A (ja) 半導体加速度センサ
JP5067295B2 (ja) センサ及びその製造方法
JP2008170271A (ja) 外力検知センサ
JP2012247204A (ja) 加速度センサおよび加速度の測定方法
JP2017049252A (ja) 物理量センサおよびその製造方法
JP5240900B2 (ja) エレクトレット構造及びその形成方法並びにエレクトレット型静電容量センサ
JP5067288B2 (ja) センサ
JP6519021B2 (ja) 微細素子およびその製造方法
JP2016095177A (ja) 加速度センサ