JP2016176314A - 水底掘削システムおよび水底掘削方法 - Google Patents

水底掘削システムおよび水底掘削方法 Download PDF

Info

Publication number
JP2016176314A
JP2016176314A JP2015059334A JP2015059334A JP2016176314A JP 2016176314 A JP2016176314 A JP 2016176314A JP 2015059334 A JP2015059334 A JP 2015059334A JP 2015059334 A JP2015059334 A JP 2015059334A JP 2016176314 A JP2016176314 A JP 2016176314A
Authority
JP
Japan
Prior art keywords
water
riser pipe
pipe
drill pipe
crushing blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015059334A
Other languages
English (en)
Inventor
誠二 丹
Seiji Tan
誠二 丹
弘隆 大橋
Hirotaka Ohashi
弘隆 大橋
寿仁 加藤
Hisakimi Kato
寿仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2015059334A priority Critical patent/JP2016176314A/ja
Publication of JP2016176314A publication Critical patent/JP2016176314A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)

Abstract

【課題】水底から分離した被掘削物をライザー管で揚収する際に、ライザー管の閉塞を抑制できる水底掘削システムおよび水底掘削方法を提供する。【解決手段】掘削機構5をドリルパイプ6とその端部に設置する掘削歯7とで構成し、この掘削歯7により水底2から分離された被掘削物mをライザー管4とドリルパイプ6との間を通じて収集船3に向けて揚収しつつ、ドリルパイプ6の外周面からライザー管4に向かって突出してドリルパイプ6の軸線c周りに回転する破砕刃9より被掘削物mを破砕する。【選択図】図2

Description

本発明は、船舶から水底に向かって配置されるライザー管とこのライザー管の水底側端部で水底を掘削する掘削機構とを備える水底掘削システムおよび水底掘削方法に関するものであり、詳しくは掘削により水底から分離した被掘削物をライザー管で揚収する際に、ライザー管の閉塞を抑制できる水底掘削システムおよび水底掘削方法に関するものである。
海底に存在するメタンガスハイドレートを掘削する水底掘削システムが種々提案されている(例えば特許文献1参照)。
特許文献1は、船舶から水底に向かって配置されるライザー管と、ライザー管の下端部に設置され水底を掘削するオーガとを備える水底掘削システムを提案する。このオーガは、水平方向に回転軸を有するスクリュー状の掘削歯で構成され、この掘削歯の回転により水底を掘削してガスハイドレートを水底から分離する。水底から分離された塊状のガスハイドレートはライザー管を介して船舶に揚収される。
水底から分離された被掘削物である塊状のガスハイドレートが比較的大きい場合は、ライザー管の途中で詰まったりして、ライザー管が閉塞する不具合が発生する。ライザー管が閉塞すると、この閉塞部分にライザー管内を浮上しているガスハイドレートが次々接触して、互いに固着したりしてしまい、閉塞区間が拡大する可能性が高い。
ライザー管が閉塞した場合の復旧作業では、例えば船舶側からライザー管内に比較的温度の高い海水を供給して、閉塞区間のガスハイドレートを融解させる方法が考えられる。しかしライザー管が完全に閉塞している場合には、水上側から供給した海水等がライザー管の水底側から抜けないので、比較的温度の高い海水等を閉塞区間に送ること自体が困難となる。
また復旧作業として、例えばライザー管を船舶上に引き上げて、船舶上で閉塞区間のガスハイドレートを加熱して融解させる方法が考えられる。しかしガスハイドレートが存在する水底は例えば400〜2000mの深さとなり、ライザー管も同等の長さとなるので、このライザー管を船舶上に引き上げるには多大な時間と労力がかかる。
ライザー管が閉塞するとその復旧は極めて困難であり、水底から回収できるガスハイドレートの量も著しく減少してしまう。
特許3395008号公報
本発明は上記の問題を鑑みてなされたものであり、その目的は掘削により水底から分離した被掘削物をライザー管で揚収する際に、ライザー管の閉塞を抑制できる水底掘削システムおよび水底掘削方法を提供することにある。
上記の目的を達成する第一の本発明の水底掘削システムは、水上に配置される収集船から水底に向かって延設されるライザー管と、このライザー管の水底側で水底を掘削する掘削機構とを備える水底掘削システムにおいて、前記掘削機構が、前記ライザー管内に配置されるドリルパイプと、前記ドリルパイプの水底側端部に設置される掘削歯と、前記ドリルパイプの外周面から前記ライザー管に向かって突出する破砕刃とを備え、前記破砕刃が前記ドリルパイプの軸線周りに回転可能に設置されていることを特徴とする。
第一の本発明の水底掘削方法は、水上に配置される収集船から水底に向かってライザー管を配置し、掘削機構により前記ライザー管の水底側で水底を掘削する水底掘削方法において、前記掘削機構をドリルパイプとその端部に設置する掘削歯とで構成し、この掘削歯により水底から分離された被掘削物を前記ライザー管と前記ドリルパイプとの間を通じて収集船に向けて揚収しつつ、前記ドリルパイプの外周面から前記ライザー管に向かって突出して前記ドリルパイプの軸線周りに回転する破砕刃により前記被掘削物を破砕することを特徴とする。
第二の本発明の水底掘削システムは、水上に配置される収集船から水底に向かって延設されるライザー管と、このライザー管の水底側で水底を掘削する掘削機構とを備える水底掘削システムにおいて、前記掘削機構が、前記ライザー管内に配置されるドリルパイプと、前記ドリルパイプの水底側端部に設置される掘削歯と、前記ライザー管の内周面から前記ドリルパイプに向って突出する固定破砕刃を備えることを特徴とする。
第二の本発明の水底掘削方法は、水上に配置される収集船から水底に向かってライザー管を配置し、掘削機構により前記ライザー管の水底側で水底を掘削する水底掘削方法において、前記掘削機構をドリルパイプとその端部に設置する掘削歯とで構成し、前記ライザー管の内周面から前記ドリルパイプに向って突出する固定破砕刃を設置して、前記掘削歯により水底から分離された被掘削物を前記ライザー管と前記ドリルパイプとの間を通じて収集船に向けて揚収しつつ、前記固定破砕刃により前記被掘削物を破砕することを特徴とする。
第一の本発明に係る水底掘削システムおよび水底掘削方法では、ライザー管内を揚収される被掘削物が、ドリルパイプの軸線周りに回転する破砕刃に衝突して破砕され小さくなるので、被掘削物がライザー管とドリルパイプとの間に挟まりライザー管が閉塞することを抑制するには有利である。
破砕刃が、ライザー管内の水をドリルパイプの軸線周りに旋回させるパドル面を備える構成にすることができる。この構成によれば、パドル面を有する破砕刃がライザー管内に旋回流を発生させるので、被掘削物がライザー管の内周面に付着してライザー管を閉塞させることを抑制するには有利である。
第二の本発明に係る水底掘削システムおよび水底掘削方法では、ライザー管内を揚収される被掘削物が、ライザー管の内周面からドリルパイプに向って突出する固定破砕刃に衝突して破砕され小さくなるので、被掘削物がライザー管とドリルパイプとの間に挟まりライザー管が閉塞することを抑制するには有利である。
破砕刃および/または固定破砕刃が、ドリルパイプの軸線方向に間隔をあけて複数箇所に設置される構成にすることができる。ライザー管内を揚収される被掘削物を複数箇所で順次破砕することができる。
本発明の水底掘削システムを例示する説明図である。 第一の本発明の水底掘削システムのライザー管の水底側端部を拡大して例示する説明図である。 図2のライザー管をA−A矢視で例示する説明図である。 第二の本発明の水底掘削システムのライザー管の水底側端部を拡大して例示する説明図である。 図4のライザー管をB−B矢視で例示する説明図である。 別の実施形態のライザー管の水底側端部を拡大して例示する説明図である。 図6のライザー管をC−C矢視で例示する説明図である。
以下、本発明の水底掘削システムおよび水底掘削方法を図に示した実施形態に基づいて説明する。尚、図中ではライザー管およびドリルパイプの軸線方向を矢印z、この軸線方向に直交する方向を矢印x、矢印xおよびzに直交する方向を矢印yで示している。
図1に例示するように本発明の水底掘削システム1は、海や湖の底である水底2に存在する表層メタンハイドレートを掘削して、回収する際に利用できる。水深数百メートルから数千メートルの水底2には、ガスハイドレートmが密集してその一部が水底2から露出しているいわゆる表層型メタンハイドレートや、ガスハイドレートmが水底2の砂粒の間に分散しているいわゆる砂層型メタンハイドレートが存在している。
水底掘削システム1は、水上に配置される収集船3と、収集船3から水底2に向かって延設されるライザー管4と、水底2を掘削する掘削機構5とを備えている。掘削機構5は、ライザー管4内でその軸線方向(延設方向)zに進退可能に配置されるドリルパイプ6と、ドリルパイプ6の水底側端部に設置される掘削歯7とを備えている。
この水底掘削システム1で水底2のガスハイドレートを掘削して回収する際には、まず収集船3から水底2に向かってライザー管4を配置する。このライザー管4は、水底側端部が水底2との間にすき間を有する状態で配置される。つまりライザー管4の水底側端部と水底2とは接触しない状態となっている。
このライザー管4の水上側端部から掘削歯7が設置されたドリルパイプ6を降下させていく。このドリルパイプ6およびライザー管4は、その軸方向に複数に分割された状態で収集船3に搭載されていて、収集船3上で連結しながら水底2に向かって延設される。
掘削歯7を水底2に着床させた後に、ドリルパイプ6をその軸周りに回転させることにより掘削歯7を回転させ、水底2を掘削する。掘削歯7を回転させる方法は上記に限らず、例えばタービンモータを設置した掘削歯7をドリルパイプ6の水底側端部に設置して、ドリルパイプ6を介して水底側に流体を供給し、この流体の圧力によりタービンモータを回転させることにより、掘削歯7を回転させる構成にしてもよい。
ガスハイドレートmは、水分子の立体的な網状構造のすき間にメタンガス等の分子が入り込み氷状の結晶になっているものである。本明細書において網状構造を構成する海水や湖水等を原料水といい、メタンガスやメタンガスを含む複数種類のガスで構成される天然ガス等を原料ガスということがある。
掘削歯7により水底2から分離された被掘削物である塊状のガスハイドレートは、比重が0.9程度なので浮力によりドリルパイプ6とライザー管4との間を浮上していく。
ライザー管4内の圧力(水圧)は水深が浅くなるにしたがって低くなるので、ライザー
管4の上方に行くにしたがって塊状のガスハイドレートmの一部が溶けて原料ガスの気泡が発生することがある。また水深が浅くなるにしたがって原料ガスが水中に溶解できる量が低下(溶解度が低下)するので、溶解できなくなった原料ガスが気泡の状態になることがある。ライザー管4の水上側端部に近いほど気泡が発生し易く、その量が増えるので、ライザー管4内を流れる流体の密度は水上側端部に近いほど低くなる。
ライザー管4内の流体の密度が周囲の水よりも小さくなるので、ライザー管4の水底側端部から周囲の水が流入し、ライザー管4内に上昇流が発生する。この上昇流によってもガスハイドレートmは、水上に向かって搬送される。いわゆるガスリフト方式と同様の効果を得られる。ガスハイドレートmに発生する浮力やライザー管4内と周囲の水との密度差を利用するので、膨大なエネルギを必要とすることなくガスハイドレートmを水底2から水上まで搬送することができる。水底2が深い位置にある場合はこのメリットが顕著となる。
ライザー管4内に強制的に気体を送り込むエアリフトポンプを設置して、ライザー管4内との密度差をさらに大きくすることもできる。密度差が大きくなるとライザー管4内に発生する上昇流の流速が上昇するので、ガスハイドレートmの移動速度を上昇させて搬送効率を向上することができる。収集船3に流体ポンプを設置し、ライザー管4内の流体をこの流体ポンプで吸い上げる構成にしてもよい。
ライザー管4の水上側端部に搬送された塊状のガスハイドレートmは収集船3により回収され貯蔵される。ガスハイドレートmをライザー管4内で融解させて原料ガスの状態で回収する構成にしてもよい。
ライザー管4の水底側端部には、水底2に向かって拡開する筒状の捕集カバー8を設置してもよい。捕集カバー8を設置する構成により、水底2から分離して浮上する被掘削物であるガスハイドレートmをライザー管4内に導き易くなり、ガスハイドレートmの回収漏れをなくして回収量を増加させるには有利となる。
第一の本発明の水底掘削システム1は図2および図3に例示するように、ドリルパイプ6の水底側端部近傍に、ドリルパイプ6の外周面から突出する状態で複数の破砕刃9が設置されている。ドリルパイプ6の外周面に突設される破砕刃9は、ドリルパイプ6の軸線c周りに回転可能な状態となっている。この実施形態ではライザー管4の水底側端部が水底2に接触しない状態で配置している。
破砕刃9は略平板状に形成されていて、天面が水上側を向き底面が水底側を向いた状態でドリルパイプ6に設置されている。図3に例示するように平板状の破砕刃9の固定端側はドリルパイプ6の外周面と接触する状態で設置され、自由端側はライザー管4の内周面に向かって延びている。破砕刃9の自由端はライザー管4の内周面には接触しない位置であり、固定端から自由端までの長さはドリルパイプ6の外周面とライザー管4の内周面とを結ぶ直線の最短距離に対して40〜70%程度の長さとしている。
破砕刃9はドリルパイプ6の軸線c周りに回転したときに、ライザー管4内の流体を押してこの軸線c周りに旋回流を発生させるパドル面10を備えている。即ちドリルパイプ6の回転方向に応じて破砕刃9の天面または底面がパドル面10となる。
この実施形態ではドリルパイプ6の外周面に沿って周方向に90°ずつずらして四つの破砕刃9を設置しているが、本発明はこの構成に限定されない。破砕刃9は少なくとも一つ設置されていればよく、五つ以上設置されてもよい。またドリルパイプ6の軸線方向zのいずれの位置であっても、破砕刃9を設置することができる。このとき破砕刃9をドリ
ルパイプ6の水底側端部の近傍に設置する方が、ライザー管4内を揚収される塊状のガスハイドレートmを早い段階で破砕でき、ライザー管4の閉塞を抑制するには有利である。
掘削歯7を水底2に接触させた後に、ドリルパイプ6をその軸線c周りに反時計回りに回転させる。例えば10〜300rpmでドリルパイプ6を回転させると、これにともない掘削歯7が回転して水底2を掘削する。このとき収集船3からドリルパイプ6内に海水等の流体を供給して、掘削歯7近傍から排出する構成にすることができる。この流体により、水底2から削り取られた被掘削物を水底2から分離させ易くすることができる。
水底2から分離された塊状のガスハイドレートm(被掘削物)は、ドリルパイプ6とライザー管4との間を通じて収集船3まで揚収される。ライザー管4内に発生した上昇流により、ライザー管4の水底側端部と水底2との間から周囲の海水等がライザー管4内に流入する。ドリルパイプ6とともに軸線c周りに回転している破砕刃9は、ドリルパイプ6とライザー管4との間を上昇してくる塊状のガスハイドレートmに衝突して破砕する。塊状のガスハイドレートmは破砕刃9により小さく破砕されるので、ガスハイドレートmがドリルパイプ6とライザー管4との間に挟まってライザー管4を閉塞させることを抑制するには有利である。
この実施形態では破砕刃9がパドル面10を有しているので、ライザー管4内に旋回流が発生する。この旋回流により比重の比較的小さい塊状のガスハイドレートmはライザー管4の中心部に集まり、ガスハイドレートmがライザー管4の内周面に付着することを抑制できるので、ライザー管4が閉塞すること抑制するには有利である。軸線方向zに対するパドル面10の面方向の角度θは適宜決定することができる。
破砕刃9が支持軸11を介してドリルパイプ6の外周面に設置される構成にしてもよい。支持軸11はドリルパイプ6の軸線方向zに直交する方向に延設され、この支持軸11により破砕刃9は傾動可能な状態で設置される。このときドリルパイプ6に固定された支持軸11に対して軸受を形成された破砕刃9が回転する構成にしてもよく、ドリルパイプ6に形成された軸受に対して支持軸11を固定された破砕刃9が回転する構成にしてもよい。
軸線方向zに対するパドル面10の面方向の角度θを可変とすることができるので、旋回流の強さを制御することができる。この角度θは、破砕刃9を自由端側から固定端側を通過して軸線cを見通したときに、パドル面10の面方向が軸線cと平行となる状態から水上側に向く方向に傾いた角度、即ち軸線cとパドル面10の平面がなす角の角度を示す。角度θを例えば0°とすると、パドル面10の面方向と軸線cとが平行になり、ライザー管4内の水を押すパドル面10の範囲が最大となるので、旋回流は最も強くなる。角度θを例えば45°とすると、パドル面10は水上側に傾くので軸線c周りに旋回してかつ上昇する旋回流を発生させることができる。角度θを例えば90°とすると、パドル面10は完全に水上側を向くので、旋回流がほとんど発生しない状態となる。つまりパドル面10としての機能を果たさなくなる。旋回流を発生させずにガスハイドレートmの破砕のみを行いたい場合は有利である。またドリルパイプ6の回転抵抗を小さくできるので、比較的な小さな力でドリルパイプ6を回転させることができる。なお、パドル面10が平面ではなく湾曲したり起伏を有する形状の場合は、パドル面10の起伏等を近似的に平面とした平均面と軸線cとのなす角を角度θとする。
角度を例えば90°よりも大きくすると、上記とは逆側の面である底面がパドル面10となり、旋回流を発生させるとともに下降流を発生させる。つまり軸線方向zに対するパドル面10の角度θは0°以上180°未満の範囲で可変とすることができる。
ドリルパイプ6の回転方向を逆の時計回りとした場合も同様に、パドル面10が水上側に傾く角度に応じて旋回流および上昇流が発生し、パドル面10が水底側に傾くと下降流が発生する。
パドル面10の傾きを適宜調整しながらガスハイドレートmを揚収できるので、ドリルパイプ6を回転させるのに必要なエネルギ量を調整しつつ、旋回流の強さを調整できる。
ガスハイドレートmは、破砕刃9により破砕された比較的小さい塊状体で収集船3に回収することができる。また破砕された塊を海水等で融かしながら揚収して、収集船3上で気液分離して気体の状態で回収してもよい。この場合は破砕刃9で比較的小さく破砕した後に海水等に融かすので、比較的大きな塊のまま海水等に融かすよりも効率よく融かすことができる。
ドリルパイプ6の軸線方向zに沿って複数の破砕刃9を設置してもよい。ライザー管4内を揚収される塊状のガスハイドレートmを複数の場所で破砕刃9により破砕できるので、塊状のガスハイドレートmをもれなく効率よく破砕するには有利である。
このときドリルパイプ6の水底側端部近傍に少なくとも一つの破砕刃9を設置することが望ましい。ライザー管4内を揚収される比較的大きな塊状のガスハイドレートmを早い段階で破砕する方が、ライザー管4の閉塞を抑制するには有利である。
ドリルパイプ6の途中にタービンポンプ等の駆動機構を組み込み、この駆動機構により破砕刃9が回転する構成にすることができる。掘削歯7がタービンポンプ等により回転してドリルパイプ6は回転しない構成であっても、駆動機構を組み込むことで破砕刃9を回転させることができる。
また駆動機構を組み込む構成により、ドリルパイプ6の回転とは異なる速度で破砕刃9を回転させてもよい。例えば水底2を掘削する際の初期段階において、ドリルパイプ6とともに回転する掘削歯7の回転速度を低速の10〜30rpm程度として水底2の状態を確認しながら掘削しつつ、破砕刃9の回転速度を300〜800rpm程度としてライザー管4内に上昇流を発生させることができる。
第二の本発明の水底掘削システム1は図4および図5に例示するように、ライザー管4の水底側端部近傍に、ライザー管4の内周面から突出する状態で複数の固定破砕刃12が設置されている。この実施形態ではライザー管4の水底側端部を水底2に接触させた状態で配置している。またドリルパイプ6の水上側から流体を供給して、掘削歯7近傍から排出された流体をライザー管4内に循環させる構成としている。
この実施形態では固定破砕刃12は略平板状に形成されていて、天面が水上側を向き底面が水底側を向いた状態で、この天面が軸線方向zに直交する(90°となる)状態でライザー管4に設置されている。固定破砕刃12はライザー管4の軸線方向zに三枚重ねて一組としている。図5に例示するように一組の固定破砕刃12の固定端側はライザー管4の内周面と接触する状態で設置され、自由端側はドリルパイプ6に向かって延びている。固定破砕刃12の自由端はドリルパイプ6の外周面に接触しない位置であり、固定端から自由端までの長さはライザー管4の内周面とドリルパイプ6の外周面とを結ぶ直線の最短距離に対して40〜70%程度の長さとしている。
図4に例示するように固定破砕刃12の自由端近傍では、重ねられた三枚の固定破砕刃12は間隔をあけて、互いに接触しない状態に構成されている。即ち重ねられた三枚の固定破砕刃12は、自由端に向かってその厚みが薄くなる状態に形成されている。
この実施形態ではライザー管4の内周面に沿って周方向に90°ずつずらして四組の固定破砕刃12を設置しているが、本発明はこの構成に限定されない。固定破砕刃12は少なくとも一組設置されていればよく、五つ以上設置されてもよい。固定破砕刃12は三枚以上重ねて一組としてもよく、重ねずに一枚で使用してもよい。
またライザー管4の軸線方向zのいずれの位置であっても、固定破砕刃12を設置することができる。このとき固定破砕刃12をライザー管4の水底側端部の近傍に設置する方が、ライザー管4内を揚収される塊状のガスハイドレートmを早い段階で破砕でき、ライザー管4の閉塞を抑制するには有利である。
軸線方向zに対する固定破砕刃12の天面の角度は、図4に例示する90°に限らず、0°以上180°未満の範囲で適宜決定することができる。
掘削歯7により水底2から分離された塊状のガスハイドレートmは、ドリルパイプ6とライザー管4との間を上昇していく。このときドリルパイプ6の水底側端部から排出される流体の流量を多くすることにより、ドリルパイプ6とライザー管4との間で発生する上昇流の流速を増加させることができる。この上昇流によりライザー管4内を上昇する塊状のガスハイドレートmは、固定破砕刃12と衝突してその衝撃により破砕されて小さくなる。
また塊状のガスハイドレートmは、固定破砕刃12の自由端と回転しているドリルパイプ6との間に挟まれて破砕される。
固定破砕刃12により塊状のガスハイドレートmを破砕できるので、ガスハイドレートmがドリルパイプ6とライザー管4との間に挟まってライザー管4を閉塞させることを抑制するには有利である。
この実施形態においてドリルパイプ6に、パドル面10を有する破砕刃9を設置する構成にすることもできる。即ち破砕刃9と固定破砕刃12とを備える水底掘削システム1とすることができる。この構成によればライザー管4内に旋回流が発生し、この旋回流により塊状のガスハイドレートmが上昇しつつライザー管4の軸線cを中心に旋回しながら固定破砕刃12に衝突する。塊状のガスハイドレートmが固定破砕刃12に衝突する力を大きくできるので、ガスハイドレートmを効率よく破砕するには有利である。
図6および図7に例示するように、ドリルパイプ6の水底側端部近傍に設置する破砕刃9に加えて、その水上側に第二破砕刃13を設置する構成にすることができる。この第二破砕刃13は、平板状に形成されていて、破砕刃9と異なり支持軸11を介さずにドリルパイプ6に直接固定されている。また第二破砕刃13は、ドリルパイプ6の軸線方向zに対して天面の角度θが90°であり、天面が完全に水上側を向いた状態で設置されている。第二破砕刃13の天面および底面はライザー管4内の水を押さないので、パドル面10を有さないといえる。
図7に例示するように、第二破砕刃13はドリルパイプ6の外周面に沿って周方向に90°ずつずらして四枚設置している。固定破砕刃12は、ライザー管4の内周面からドリルパイプ6に向かって突設され、ライザー管4の内周面に沿って周方向に90°ずつずらして四枚配置している。
図6に例示するように固定破砕刃12は、ライザー管4の軸線方向zに間隔をあけて複数箇所に配置されている。この構成により、ドリルパイプ6が掘削の進行等によりドリル
パイプ6の軸線方向zに移動した場合であっても、第二破砕刃13がいずれかの固定破砕刃12と対向する状態を維持し、第二破砕刃13と固定破砕刃12との間を通過するガスハイドレートmを効率的に破砕することができる。
固定破砕刃12と第二破砕刃13とは、ドリルパイプ6の軸線方向zに移動させた場合にそれぞれの自由端が互いに接触しない大きさに形成されている。つまり固定破砕刃12と第二破砕刃13とが、ライザー管4の軸線方向zに重ならない状態となる。
水底2から分離してライザー管4内を上昇する塊状のガスハイドレートmは、まず破砕刃9により破砕される。破砕されたガスハイドレートmは、破砕刃9のパドル面10が発生させる旋回流により旋回しながら上昇していく。この破砕されたガスハイドレートmは、一対の固定破砕刃12とその間を通り回転する第二破砕刃13に衝突したり挟まれたりして更に小さく破砕された後に、ライザー管4内を上昇していき収集船3に回収される。
この構成によれば、塊状のガスハイドレートmは一定以下の大きさまで破砕されないと固定破砕刃12および第二破砕刃13を通過できない。つまり比較的大きな塊状のガスハイドレートmを確実に破砕して小さくすることができる。破砕刃9等に衝突することなく比較的大きいままでライザー管4内を移動する塊状のガスハイドレートmが存在し難くなるので、ライザー管4の閉塞を防止するにはさらに有利となる。
固定破砕刃12と第二破砕刃13とは、ライザー管4の水底側端部からある程度離れた位置に設置することが望ましい。水底2から分離した石等が上昇流によりライザー管4内を上昇することがあるが、石等は比重が大きいので、大きい塊になるほど上昇し難くなる。大きな塊の石等が上昇できない位置に固定破砕刃12等を設置することで、この石等を噛み込み固定破砕刃12等が破損することを防止するには有利となる。
ドリルパイプ6を介して掘削歯7の近傍に流体が供給されている場合は、ドリルパイプ6の外周面であって第二破砕刃13の近傍に開口部を形成して、この流体が第二破砕刃13の近傍に供給される構成にしてもよい。原料ガス濃度の低い水が第二破砕刃13の近傍に供給されるので、原料水である海水等とこの海水に溶解した原料ガスとの反応によりガスハイドレートが生成し、このガスハイドレートmが第二破砕刃13や固定破砕刃12に付着して、第二破砕刃13の回転を妨げることを防止するには有利である。
破砕刃9、固定破砕刃12、第二破砕刃13は、上記に限らず適宜組み合わせて設置することができる。またライザー管4の軸線方向zに間隔をあけて複数箇所に適宜組み合わせて設置することができる。ライザー管4の水底側端部は、水底2に接触させてもよく、接触させなくてもよい。
1 水底掘削システム
2 水底
3 収集船
4 ライザー管
5 掘削機構
6 ドリルパイプ
7 掘削歯
8 捕集カバー
9 破砕刃
10 パドル面
11 支持軸
12 固定破砕刃
13 第二破砕刃
c (ライザー管またはドリルパイプの)軸線
m ガスハイドレート

Claims (9)

  1. 水上に配置される収集船から水底に向かって延設されるライザー管と、このライザー管の水底側で水底を掘削する掘削機構とを備える水底掘削システムにおいて、
    前記掘削機構が、前記ライザー管内に配置されるドリルパイプと、前記ドリルパイプの水底側端部に設置される掘削歯と、前記ドリルパイプの外周面から前記ライザー管に向かって突出する破砕刃とを備え、
    前記破砕刃が前記ドリルパイプの軸線周りに回転可能に設置されていることを特徴とする水底掘削システム。
  2. 前記破砕刃が、前記ライザー管内の水を前記ドリルパイプの軸線周りに旋回させるパドル面を備えている請求項1に記載の水底掘削システム。
  3. 前記ライザー管の内周面から前記ドリルパイプに向かって突出する固定破砕刃を備える請求項1または2に記載の水底掘削システム。
  4. 水上に配置される収集船から水底に向かって延設されるライザー管と、このライザー管の水底側で水底を掘削する掘削機構とを備える水底掘削システムにおいて、
    前記掘削機構が、前記ライザー管内に配置されるドリルパイプと、前記ドリルパイプの水底側端部に設置される掘削歯と、前記ライザー管の内周面から前記ドリルパイプに向って突出する固定破砕刃を備えることを特徴とする水底掘削システム。
  5. 前記破砕刃および/または前記固定破砕刃が、前記ドリルパイプの軸線方向に間隔をあけて複数箇所に配置される請求項1〜4のいずれかに記載の水底掘削システム。
  6. 水上に配置される収集船から水底に向かってライザー管を配置し、掘削機構により前記ライザー管の水底側で水底を掘削する水底掘削方法において、
    前記掘削機構をドリルパイプとその端部に設置する掘削歯とで構成し、この掘削歯により水底から分離された被掘削物を前記ライザー管と前記ドリルパイプとの間を通じて収集船に向けて揚収しつつ、前記ドリルパイプの外周面から前記ライザー管に向かって突出して前記ドリルパイプの軸線周りに回転する破砕刃により前記被掘削物を破砕することを特徴とする水底掘削方法。
  7. 前記破砕刃にパドル面を形成し、このパドル面が前記ライザー管内の水を前記ドリルパイプの軸線周りに旋回させる請求項6に記載の水底掘削方法。
  8. 前記ライザー管の内周面から前記ドリルパイプに向って突出する固定破砕刃を設置して、前記被掘削物を前記ライザー管と前記ドリルパイプとの間を通じて収集船に向けて揚収しつつ、前記固定破砕刃により前記被掘削物を破砕する請求項6または7に記載の水底掘削方法。
  9. 水上に配置される収集船から水底に向かってライザー管を配置し、掘削機構により前記ライザー管の水底側で水底を掘削する水底掘削方法において、
    前記掘削機構をドリルパイプとその端部に設置する掘削歯とで構成し、前記ライザー管の内周面から前記ドリルパイプに向って突出する固定破砕刃を設置して、前記掘削歯により水底から分離された被掘削物を前記ライザー管と前記ドリルパイプとの間を通じて収集船に向けて揚収しつつ、前記固定破砕刃により前記被掘削物を破砕することを特徴とする水底掘削方法。
JP2015059334A 2015-03-23 2015-03-23 水底掘削システムおよび水底掘削方法 Pending JP2016176314A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059334A JP2016176314A (ja) 2015-03-23 2015-03-23 水底掘削システムおよび水底掘削方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059334A JP2016176314A (ja) 2015-03-23 2015-03-23 水底掘削システムおよび水底掘削方法

Publications (1)

Publication Number Publication Date
JP2016176314A true JP2016176314A (ja) 2016-10-06

Family

ID=57070933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059334A Pending JP2016176314A (ja) 2015-03-23 2015-03-23 水底掘削システムおよび水底掘削方法

Country Status (1)

Country Link
JP (1) JP2016176314A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071098A (ja) * 2016-10-26 2018-05-10 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
CN108643869A (zh) * 2018-04-24 2018-10-12 西南石油大学 一种海底浅层天然气水合物固态流化绿色开采装置及方法
CN109098664A (zh) * 2018-08-07 2018-12-28 胡琴 一种海底可燃冰开采钻头
JP2019011568A (ja) * 2017-06-29 2019-01-24 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP2019011569A (ja) * 2017-06-29 2019-01-24 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP2019078016A (ja) * 2017-10-20 2019-05-23 国立大学法人 東京大学 海洋資源の揚鉱方法、並びに、海洋資源揚鉱用バルンおよびこれを備える海洋資源揚鉱装置
JP2020501048A (ja) * 2016-12-12 2020-01-16 サウジ アラビアン オイル カンパニー 電動水中ポンプ用の坑井孔屑処理装置
CN112647950A (zh) * 2020-11-27 2021-04-13 吉县古贤泵业有限公司 一种深海采矿方法及深海采矿装置
WO2022185861A1 (ja) * 2021-03-04 2022-09-09 東亜建設工業株式会社 水底資源の採取方法
JP7420683B2 (ja) 2020-08-26 2024-01-23 三井海洋開発株式会社 表層型ガスハイドレートの回収方法及び表層型ガスハイドレートの回収システム
JP7518512B2 (ja) 2021-03-04 2024-07-18 東亜建設工業株式会社 水底資源の採取方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071098A (ja) * 2016-10-26 2018-05-10 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP2020501048A (ja) * 2016-12-12 2020-01-16 サウジ アラビアン オイル カンパニー 電動水中ポンプ用の坑井孔屑処理装置
JP2019011568A (ja) * 2017-06-29 2019-01-24 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP2019011569A (ja) * 2017-06-29 2019-01-24 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP2019078016A (ja) * 2017-10-20 2019-05-23 国立大学法人 東京大学 海洋資源の揚鉱方法、並びに、海洋資源揚鉱用バルンおよびこれを備える海洋資源揚鉱装置
CN108643869A (zh) * 2018-04-24 2018-10-12 西南石油大学 一种海底浅层天然气水合物固态流化绿色开采装置及方法
CN109098664A (zh) * 2018-08-07 2018-12-28 胡琴 一种海底可燃冰开采钻头
CN110700761A (zh) * 2018-08-07 2020-01-17 胡琴 一种海底可燃冰开采钻头的使用方法
JP7420683B2 (ja) 2020-08-26 2024-01-23 三井海洋開発株式会社 表層型ガスハイドレートの回収方法及び表層型ガスハイドレートの回収システム
CN112647950A (zh) * 2020-11-27 2021-04-13 吉县古贤泵业有限公司 一种深海采矿方法及深海采矿装置
WO2022185861A1 (ja) * 2021-03-04 2022-09-09 東亜建設工業株式会社 水底資源の採取方法
JP7518512B2 (ja) 2021-03-04 2024-07-18 東亜建設工業株式会社 水底資源の採取方法

Similar Documents

Publication Publication Date Title
JP2016176314A (ja) 水底掘削システムおよび水底掘削方法
RU2654923C2 (ru) Дноуглубительное устройство и способ удаления осадочных отложений со дна
JP5539918B2 (ja) 海底鉱物資源の揚鉱システム及び揚鉱方法
BE1020785A5 (nl) Inrichting en werkwijze voor het baggeren van bodemmateriaal onder water.
KR101930377B1 (ko) 해저 비축 시스템 및 방법
JP6653890B2 (ja) 海底資源回収装置
CN106320417B (zh) 利用水体自然动能的移动式气动挟沙旋流清淤设备及方法
JP6810937B2 (ja) 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP5432022B2 (ja) 揚鉱システム
AU2013273634A1 (en) Apparatus, dredging device and method for transporting material taken up in a liquid
KR20140033369A (ko) 해저 비축용 장치 및 방법
JP4713930B2 (ja) 浚渫装置
WO2014015361A1 (en) A self cleaning collection apparatus and method
DK2317016T3 (en) UNDERWATER EXCAVATION APPARATUS
US20180044881A1 (en) Dredging apparatus and method of dredging
JP2016108774A (ja) ガスハイドレート回収システムおよびその回収方法
JP2016156187A (ja) 水底掘削システムおよび水底掘削方法
JP2016166476A (ja) ライザー管
JP2006037518A (ja) ガスハイドレードの採集方法、ガスハイドレード採集システム
JP2016204875A (ja) 海底資源採掘システム
JP7319946B2 (ja) 浚渫装置と浚渫システム、及び浚渫方法
CN204001006U (zh) 一种海底开沟装置
KR20140043425A (ko) 고압펌프와 인력발생장치(引力發生裝置)와 와류발생장치(渦流發生裝置), 공기압축기 등을 이용한 준설장치와 준설토이송장치 및 그 방법
JPS5941597A (ja) 海底熱水鉱床からの採鉱方法及びその装置
JP6713408B2 (ja) ガスハイドレート回収装置およびガスハイドレート回収方法