JP2016175826A - Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same - Google Patents

Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same Download PDF

Info

Publication number
JP2016175826A
JP2016175826A JP2016049988A JP2016049988A JP2016175826A JP 2016175826 A JP2016175826 A JP 2016175826A JP 2016049988 A JP2016049988 A JP 2016049988A JP 2016049988 A JP2016049988 A JP 2016049988A JP 2016175826 A JP2016175826 A JP 2016175826A
Authority
JP
Japan
Prior art keywords
manganese
lithium
manganese oxide
composition
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016049988A
Other languages
Japanese (ja)
Other versions
JP6680006B2 (en
Inventor
昌樹 岡田
Masaki Okada
昌樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2016175826A publication Critical patent/JP2016175826A/en
Application granted granted Critical
Publication of JP6680006B2 publication Critical patent/JP6680006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide manganese oxide which makes high energy density compatible with a low cost and is a new cathode material for manganese-based lithium secondary batteries, and to provide the lithium secondary battery which is obtained by using the manganese oxide in a cathode and has high energy density.SOLUTION: The manganese oxide is shown by a general formula: LiMnMO(in which 0<X≤8/9 and 0≤Z≤8/9 are satisfied and M is one or more elements selected from elements other than Li, Mn, O.). A production method of the manganese oxide comprises a step of electrochemically oxidizing a lithium-containing manganese composition shown by another general formula: LiMnMO(in which 0≤Z≤8/9 is satisfied and M is one or more elements selected from elements other than Li, Mn, O.). The lithium secondary battery includes the manganese oxide-containing cathode.SELECTED DRAWING: None

Description

本発明は、マンガン酸化物およびその製法並びにこれを用いるリチウム二次電池に関する。   The present invention relates to a manganese oxide, a method for producing the same, and a lithium secondary battery using the same.

リチウム二次電池は他の蓄電池に比べてエネルギー密度が高いことから、携帯端末用の蓄電池として幅広く使用されてきた。最近では、定置用や車載用といった大型で大容量が必要とされる用途への適用も進められている。   Lithium secondary batteries have been widely used as storage batteries for portable terminals because they have higher energy density than other storage batteries. Recently, application to a large-sized application requiring a large capacity such as a stationary one and an in-vehicle one has been promoted.

大容量が必要とされる用途では高エネルギー密度化の要望が強く、コストダウンに対する要求が特に厳しい。   In applications that require large capacity, there is a strong demand for higher energy density, and the demand for cost reduction is particularly severe.

高エネルギー密度化を目指して現在開発中のリチウム二次電池の正極材料には、コバルト(Co)やニッケル(Ni)などの金属元素を多く含む酸化物材料が主に検討されている。これら希少元素を多く含む正極材料のコストダウンは極めて難しく、現時点では高エネルギー密度と低コストを両立する実用材料はない。   As a positive electrode material of a lithium secondary battery currently being developed with the aim of increasing energy density, oxide materials containing a large amount of metal elements such as cobalt (Co) and nickel (Ni) are mainly studied. It is extremely difficult to reduce the cost of the positive electrode material containing a large amount of these rare elements. At present, there is no practical material that achieves both high energy density and low cost.

マンガン(Mn)は、CoやNiなどの希少金属元素に比べて埋蔵量が多く、安価な元素である。また、CoやNiに比べて安全性が高く環境への負荷も小さい。   Manganese (Mn) is an inexpensive element with a large reserve compared to rare metal elements such as Co and Ni. Moreover, it is safer and less burden on the environment than Co and Ni.

高エネルギー密度のマンガン系正極材料を実用化できればコストとの両立が可能になり、大型で大容量のリチウム二次電池市場の拡大が後押される。特に、希少金属元素を全く使用しないマンガン系正極材料を開発することができれば、車載用を中心にリチウム二次電池市場が飛躍的に拡大するものと思われる。   If a high-energy density manganese-based positive electrode material can be put to practical use, it will be possible to achieve both cost and expansion of the market for large-sized, large-capacity lithium secondary batteries. In particular, if a manganese-based positive electrode material that does not use any rare metal element can be developed, the lithium secondary battery market, especially for in-vehicle use, is expected to expand dramatically.

希少元素を含まないマンガン系正極材料は以前から検討が進められ、リチウム(Li)の可逆的な挿入脱離が容易で安定なスピネル型構造のLiMnが実用化されている。スピネル型構造のLiMnは安全性が高く環境への影響が小さいことから、電動工具、電動自転車、電気自動車等を中心に使用が広がっている。 Manganese positive electrode materials that do not contain rare elements have been studied for some time, and LiMn 2 O 4 having a spinel structure, in which reversible insertion / extraction of lithium (Li) is easy and stable, has been put into practical use. Since spinel type LiMn 2 O 4 has high safety and little influence on the environment, its use is widespread mainly in electric tools, electric bicycles, electric vehicles and the like.

スピネル型構造のLiMnは、立方晶の空間群Fd3−mの8aサイトをLi、16dサイトをMnが占めており、(Li)8a[Mn]16d(O32eと標記できる。 In the spinel structure LiMn 2 O 4 , the cubic space group Fd3-m has the 8a site occupied by Li and the 16d site occupied by Mn, and can be represented as (Li) 8a [Mn] 16d (O 4 ) 32e .

8aサイトと16dサイトの格子間に空の16cサイトが位置しており、Liの挿入脱離に対する高い可逆性を示す理由のひとつとされている。   An empty 16c site is located between the lattices of the 8a site and the 16d site, which is one of the reasons for showing high reversibility with respect to insertion and desorption of Li.

空の16cサイトにLiを満たすことも可能で、原理的にはLiMn組成、すなわち、(Li)8a[Li]16c[Mn]16d(O32eまでLiを挿入することが可能である。この場合、電気化学容量はCoやNiを含む層状岩塩型構造の酸化物、例えば、LiCoO、Li(Ni1−X・Al)O、Li(Ni1/3Co1/3Mn1/3)Oと同程度の285mAh/gになる。 It is possible to fill Li in the empty 16c site, and in principle, Li is inserted up to Li 2 Mn 2 O 4 composition, that is, (Li) 8a [Li] 16c [Mn] 16d (O 4 ) 32e. Is possible. In this case, the electrochemical capacity is an oxide having a layered rock-salt structure containing Co or Ni, for example, LiCoO 2 , Li (Ni 1−X · Al X ) O 2 , Li (Ni 1/3 Co 1/3 Mn 1). / 3 ) 285 mAh / g, which is about the same as O 2 .

しかし、16cサイトへのLi挿入は結晶構造の立方晶から正方晶への変化や電子伝導性の低下を招き、充放電サイクルを重ねる度に微結晶化とそれに伴う不活性化が進み充放電容量が低下する。このため可逆的な16cサイトへのLi挿入は難しい。加えて、既存リチウムイオン電池は、そのほとんどの場合、正極材料に含まれるLiのみが充放電反応を担うために空の16cサイトに予めLiを挿入しておくことが望ましいが、スピネル型構造のLiMn組成物は水と容易に反応してLiMn組成に戻り易く、取り扱いが極めて煩雑である。従って、スピネル型構造のLiMnの実用的な電気化学容量は100mAh/g程度に留まり、小さい電気化学容量がゆえに一部の用途への適用に留まっている。 However, the insertion of Li into the 16c site leads to a change in crystal structure from cubic to tetragonal and a decrease in electronic conductivity, and as the charge / discharge cycle is repeated, microcrystallization and accompanying deactivation advance and charge / discharge capacity. Decreases. For this reason, it is difficult to insert Li into the reversible 16c site. In addition, in most of the existing lithium ion batteries, it is desirable to insert Li into the empty 16c site in advance because only Li contained in the positive electrode material is responsible for charge / discharge reaction. The Li 2 Mn 2 O 4 composition easily reacts with water and easily returns to the LiMn 2 O 4 composition, and handling is extremely complicated. Therefore, the practical electrochemical capacity of LiMn 2 O 4 having a spinel structure is limited to about 100 mAh / g, and is only applicable to some applications because of its small electrochemical capacity.

ここに、LiMnとLi/Mn比が同じLi8/9Mn16/9(LiMn)も、リチウム二次電池用正極材料として検討されている。 Here, Li 8/9 Mn 16/9 O 4 (Li 2 Mn 4 O 9 ) having the same Li / Mn ratio as LiMn 2 O 4 has also been studied as a positive electrode material for a lithium secondary battery.

従来、Li8/9Mn16/9(LiMn)は、非特許文献1に記載されているように、Liを挿入する還元反応、すなわち放電反応からの使用に制限されていた。 Conventionally, Li 8/9 Mn 16/9 O 4 (Li 2 Mn 4 O 9 ) is limited to use from a reduction reaction in which Li is inserted, that is, a discharge reaction, as described in Non-Patent Document 1. It was.

これは、Li8/9Mn16/9(LiMn)のMn原子価は全て+4価で、LiMnの+3.5価(+3価と+4価が1:1の割合で共存する状態)と異なり、+3価を含んでいない。これまで、リチウムイオン電池で安定に存在し得るMnの原子価は+4価が最高と考えられていたため、LiMnのようにMnの+3価を含む材料では充電反応、即ち酸化反応が行えるが、Li8/9Mn16/9(LiMn)はMnの+4価を含む材料のため、放電反応、すなわち還元反応からの使用のみに限られている。放電で得られる容量は150mAh/g程度に留まり、この容量以下で充放電を繰り返すことが可能と考えられていた(特許文献1)。 This is because Li 8/9 Mn 16/9 O 4 (Li 2 Mn 4 O 9 ) all have a Mn valence of +4, and LiMn 2 O 4 has a +3.5 valence (+3 and +4 are 1: 1). Unlike the state of coexistence at a ratio of Up to now, the valence of Mn that can exist stably in a lithium ion battery has been considered to be the highest value of +4. Therefore, a material containing +3 valence of Mn such as LiMn 2 O 4 can perform a charging reaction, that is, an oxidation reaction. However, since Li 8/9 Mn 16/9 O 4 (Li 2 Mn 4 O 9 ) is a material containing +4 valence of Mn, it is limited to use only from a discharge reaction, that is, a reduction reaction. The capacity obtained by discharging remained at about 150 mAh / g, and it was thought that charging and discharging could be repeated below this capacity (Patent Document 1).

特開平7−85878号公報Japanese Patent Laid-Open No. 7-85878

M.M.Thackeray,A de Kock,M.H.Rossouw,D.Liles and,R.Bittihn,J.Electrochem.Soc.,vol.139,363−366(1992).M.M. M.M. Thackeray, A de Kock, M .; H. Rossouw, D.W. Liles and, R.C. Bittihn, J .; Electrochem. Soc. , Vol. 139, 363-366 (1992).

本発明の目的は、高エネルギー密度と低コストを両立できる従来にはない新しいマンガン系リチウム二次電池用正極材料であるマンガン酸化物を提供するものであり、さらには、これを正極に用いた高エネルギー密度のリチウム二次電池を提供するものである。   An object of the present invention is to provide a manganese oxide that is a novel positive electrode material for a manganese-based lithium secondary battery that can achieve both high energy density and low cost, and further, this is used for a positive electrode. A high energy density lithium secondary battery is provided.

本発明者は、高エネルギー密度のマンガン系リチウム二次電池用正極材料であるマンガン酸化物について鋭意検討を重ねた。その結果、一般式Li8/9Mn(16/9)−Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られるマンガン酸化物が、従来のマンガン系正極材料に比べて極めて高い容量で充放電することが可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度のリチウム二次電池が構成できることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式Li(8/9)−XMn(16/9)−Z4−(X/2)(ここで、0<X≦8/9、0≦Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるマンガン酸化物、一般式Li8/9Mn(16/9)−Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化するマンガン酸化物の製法、およびマンガン酸化物を含有する正極を備えるリチウム二次電池である。 The inventor has conducted intensive studies on manganese oxide, which is a positive electrode material for high-energy density manganese-based lithium secondary batteries. As a result, the general formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more selected from elements other than Li, Mn, and O) The manganese oxide obtained by electrochemically oxidizing the lithium-containing manganese composition represented by (2) can be charged and discharged at a very high capacity compared to conventional manganese-based positive electrode materials. Thus, the present inventors have found that a high energy density lithium secondary battery can be constructed by using it as a positive electrode of a lithium secondary battery, and the present invention has been completed. That is, the present invention has the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) (where 0 <X ≦ 8/9 , 0 ≦ Z ≦ Mn is one or more elements selected from elements other than Li, Mn, and O.) Manganese oxide represented by the general formula Li 8/9 Mn (16/9) -Z M The lithium-containing manganese composition represented by Z O 4 (where 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is electrochemically produced. It is a lithium secondary battery provided with the manufacturing method of the manganese oxide which oxidizes automatically, and the positive electrode containing a manganese oxide.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明のマンガン酸化物は、一般式Li(8/9)−XMn(16/9)−Z4−(X/2)(ここで、0<X≦8/9、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるものである。 Manganese oxide of the present invention have the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) ( where, 0 <X ≦ 8 / 9,0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)のXの値は、電気化学的酸化によるLiとOの脱離に対応することから、電気化学的酸化の際の電気量からクーロンの法則を用いて算出することができる。 The value of X which is a manganese oxide of the present invention the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) is, Li and O by electrochemical oxidation Can be calculated from the quantity of electricity during electrochemical oxidation using Coulomb's law.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)のZの値は、本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)−Zの組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 The value of Z which is a manganese oxide of the present invention the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) , the lithium-containing manganese composition of the present invention formula Li 8/9 Mn (16/9) can be calculated from the composition analysis of -Z M Z O 4 is. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)のMには、Li、Mn、O以外の元素から選ばれるひとつ以上の元素を用いることができる。Li、Mn、O以外の元素から選ばれるひとつ以上の元素としては、例えば、Ia族元素のH、Na、K、Rb、Cs、Ib族元素のCu、Ag、Au、IIa族元素のBe、Mg、Ca、Sr、Ba、IIb族元素のZn、Cd、IIIa族元素のSc、Y、IIIb族元素のB、Al、Ge、In、Mn以外の遷移金属としては、Mnを除く第一遷移系列元素のTi、V、Cr、Fe、Co、Ni、第二および第三遷移系列元素のZr、Nb、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Pt、Au等が例示される。正極としての重量あたりの容量を維持するため、H、Na、K、Mg、Ca、Al、Zn、Ga,Ti、V、Cr、Fe、Co、Niが好ましい。 To M of the manganese oxide of the present invention the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) is, Li, Mn, from elements other than O One or more selected elements can be used. Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable.

本発明のマンガン組成物のMn原子価は、一般的な遷移金属の原子価評価手法で求めることができる。例えば、XPS測定(X−ray photoelectron spectroscopy)、XAFS測定(X−ray adsorption fine structure)、PES測定(Photoelectron spectroscopy)で得られる各スペクトルから見積もる方法、JIS(日本工業規格)に記載のMnの定量分析手法(G 1311‐1)とJISに記載の二酸化マンガン分析手法(K 1467)を組み合わせた方法等が例示されるが、これらに制限されない。   The Mn valence of the manganese composition of the present invention can be determined by a general transition metal valence evaluation method. For example, a method for estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.

本発明のマンガン酸化物は、可逆的にリチウムを挿入脱離させるため、スピネル型構造が好ましい。スピネル型構造はLiの移動経路を備えた構造を持つ。そのため、粒子内での組成や構造の不均一性が起き難いと考えられ、充放放電サイクルに伴う容量の低下が抑制されるものと考えられる。   The manganese oxide of the present invention preferably has a spinel structure in order to reversibly insert and desorb lithium. The spinel structure has a structure having a Li movement path. Therefore, it is considered that the composition and structure non-uniformity within the particles hardly occur, and it is considered that the decrease in capacity accompanying the charge / discharge cycle is suppressed.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)(ここで、0<X≦8/9、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、一般式Li8/9Mn(16/9)−Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られる。 Manganese oxide of the present invention the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) ( where, 0 <X ≦ 8 / 9,0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) is represented by the general formula Li 8/9 Mn (16/9) -Z M Z O 4 ( Here, 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O). Can be obtained.

電気化学的に酸化するのは、リチウム含有マンガン組成物からLiOを取り除くためである。電気化学的に酸化する以外の方法では、Mnの価数を+4価のままでLiとOを同時に取り除くことはできない。電気化学的にLiとOを同時に取り除くことで、本発明のマンガン酸化物はリチウム含有マンガン組成物のスピネル型構造を維持できる。 The reason for electrochemical oxidation is to remove Li 2 O from the lithium-containing manganese composition. By methods other than electrochemical oxidation, Li and O cannot be removed at the same time while the valence of Mn remains +4. By simultaneously removing Li and O electrochemically, the manganese oxide of the present invention can maintain the spinel structure of the lithium-containing manganese composition.

電気化学的に酸化する方法としては、例えば、電池を作製して電池内で充電する方法や酸化剤を使用する方法等が例示される。   Examples of the electrochemical oxidation method include a method of producing a battery and charging in the battery, a method of using an oxidizing agent, and the like.

電池を作製して電池内で充電する方法としては、本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)−Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)を正極材料に用いて、リチウム電池を作製して電池内で充電する方法が例示される。例えば、正極に本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)−Zを使用したリチウム電池を構成して、定電流、定電圧、または定電流と定電圧を組み合わせて充電する方法が例示される。リチウム電池の構成としては、そのままリチウム二次電池として使用できる構成が好ましい。 As a method for producing a battery and charging in the battery, a general formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 <Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) As a positive electrode material, a lithium battery is manufactured and charged in the battery. . For example, to configure a lithium battery using a general formula Li 8/9 Mn (16/9) -Z M Z O 4 lithium-containing manganese composition of the present invention to a positive electrode, a constant current, constant voltage or constant, A method of charging by combining current and constant voltage is exemplified. As a structure of a lithium battery, the structure which can be used as a lithium secondary battery as it is is preferable.

酸化剤を使用する方法としては、例えば、溶媒のアセトニトリルに酸化剤のNOBFを溶解した溶液中で、本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)−Zを撹拌する方法が例示される。酸化剤のNOBFの酸化電位はリチウム基準で5.1Vにあり、Mnの価数を+4価に保った状態でLiとOを取り除くことが可能である。 As a method of using an oxidizing agent, for example, in a solution in which NO 2 BF 4 as an oxidizing agent is dissolved in acetonitrile as a solvent, the general formula Li 8/9 Mn (16/9 ) that is the lithium-containing manganese composition of the present invention is used. ) -Z M Z O 4 is exemplified. The oxidation potential of the oxidant NO 2 BF 4 is 5.1 V on the basis of lithium, and Li and O can be removed while maintaining the valence of Mn at +4.

そのまま電池として使用できることから、電気化学的に酸化する方法は、電池を作製して電池内で充電する方法が好ましい。   Since it can be used as a battery as it is, the method of electrochemically oxidizing is preferably a method of producing a battery and charging in the battery.

スピネル型構造を有するリチウム含有マンガン組成物を電気化学的に酸化することで、スピネル構造を有する本発明のマンガン酸化物が得られる。   The manganese oxide of the present invention having a spinel structure can be obtained by electrochemically oxidizing a lithium-containing manganese composition having a spinel structure.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)(ここで、0<X≦8/9、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)の製造で使用するリチウム含有マンガン組成物の一般式Li8/9Mn(16/9)−Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、(□1/9Li8/98a[□2/9Mn(16/9)−Z16d(O32e(ここで□は空のサイトを表す。)と標記され、LiMnの8aサイトLiの1/9と16dサイトMnの2/9が空のスピネル型構造を持つ。 In manganese oxide in which the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O of the present invention 4- (X / 2) (where, 0 <X ≦ 8 / 9,0 < Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn and O. General formula Li 8/9 Mn (16 / 9) -Z M Z O 4 (where 0 <Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is (□ 1/9 Li 8/9 ) 8a [□ 2/9 Mn (16/9) -Z M Z ] 16d (O 4 ) 32e (where □ represents an empty site), and LiMn 2 O 4 8a 1/9 of the site Li and 2/9 of the 16d site Mn have an empty spinel structure.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)の製造で使用するリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)−Zの組成は、組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Manganese oxide of the present invention the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) the general formula is a lithium-containing manganese composition used in the preparation of The composition of Li 8/9 Mn (16/9) -Z M Z O 4 can be determined from composition analysis. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.

本発明のマンガン酸化物である一般式Li(8/9)−XMn(16/9)−Z4−(X/2)(ここで、0<X≦8/9、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)の製造で使用するリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)−Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を1/2、Mn原料とM原料のモル比[M/(Mn+M)比]を0≦M/(Mn+M)比≦1/2にして、Mn原料とLi原料、又はMn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300〜800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 In manganese oxide in which the general formula Li (8/9) -X Mn (16/9 ) -Z M Z O of the present invention 4- (X / 2) (where, 0 <X ≦ 8 / 9,0 < Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) General formula Li 8/9 Mn (16 / 9) -Z M Z O 4 (where 0 <Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is (Mn raw material + M The molar ratio of the raw material) to the Li raw material [Li / (Mn + M) ratio] is 1/2, and the molar ratio of the Mn raw material to the M raw material [M / (Mn + M) ratio] is 0 ≦ M / (Mn + M) ratio ≦ 1/2. Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. It can be prepared by firing. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.

リチウム含有マンガン組成物の製造で使用するMn原料に特に制限はないが、層状岩塩型構造とスピネル型構造を含有するためには、+2価のマンガンを含むマンガン原料および/又は単斜晶マンガン原料を使用することが好ましい。+2価のマンガンを含むマンガン原料としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。単斜晶マンガン原料としては、例えば、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。リチウム含有マンガン組成物の製造で使用するLi原料に特に制限はないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。 There is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used. Examples of manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict | limited to these. Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials. . The Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.

リチウム含有マンガン組成物の製造で使用するM原料に制限はないが、用いるM元素の炭酸塩、硝酸塩、蓚酸塩、塩化物、酸化物等が例示されるが、これらに制限されない。   Although there is no restriction | limiting in the M raw material used by manufacture of a lithium containing manganese composition, Although the carbonate, nitrate, oxalate, chloride, oxide, etc. of M element to be used are illustrated, it is not restrict | limited to these.

本発明のマンガン酸化物をリチウム二次電池の正極に使用することで、従来では得ることができなかった高容量のリチウム二次電池を構成することが可能になる。   By using the manganese oxide of the present invention for the positive electrode of a lithium secondary battery, it becomes possible to constitute a high-capacity lithium secondary battery that could not be obtained conventionally.

正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.

本発明のマンガン酸化物は、従来のマンガン系正極材料に比べて極めて高い容量での充放電が可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度と低コストを両立できるリチウム二次電池の提供が可能になる。   The manganese oxide of the present invention can be charged and discharged at a very high capacity compared to conventional manganese-based positive electrode materials, and by using this for the positive electrode of a lithium secondary battery, both high energy density and low cost are achieved. It is possible to provide a rechargeable lithium secondary battery.

実施例1〜実施例3と比較例4のリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 1 to 3 and Comparative Example 4. FIG. 実施例4〜実施例7のリチウム含有マンガン組成物の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of the lithium containing manganese composition of Example 4-Example 7. 実施例1〜実施例2の充放電試験前後の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern before and behind the charging / discharging test of Example 1-2. 実施例3と比較例4の充放電プロファイルである。It is a charging / discharging profile of Example 3 and Comparative Example 4.

次に、本発明を具体的な実施例で説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated with a specific Example, this invention is not limited to these Examples.

<電池の作製>
得られたリチウム含有マンガン組成物と導電性バインダー(商品名:TAB−2,宝泉株式会社製)を重量比2:1でメノウ乳鉢を使用して混合を行い、13mmφのSUSメッシュ(SUS316)に1ton/cmで一軸プレスしてペレット状にした後に、150℃で2時間、減圧乾燥して正極とした。
<Production of battery>
The obtained lithium-containing manganese composition and a conductive binder (trade name: TAB-2, manufactured by Hosen Co., Ltd.) were mixed at a weight ratio of 2: 1 using an agate mortar, and a 13 mmφ SUS mesh (SUS316). After uniaxial pressing at 1 ton / cm 2 to form a pellet, it was dried under reduced pressure at 150 ° C. for 2 hours to obtain a positive electrode.

負極に金属リチウムを、エチレンカーボネートとジメチルカーボネートの体積比1:2の溶媒にLiPFを1mol/dm溶解したものを電解液に、セパレータにポリエチレンシート(商品名:セルガード,ポリポア株式会社製)を使用して2032型コインセルを作製した。 Metallic lithium for the negative electrode, 1 mol / dm 3 of LiPF 6 dissolved in a 1: 2 volume ratio solvent of ethylene carbonate and dimethyl carbonate in the electrolyte, polyethylene sheet in the separator (trade name: Celgard, manufactured by Polypore Corporation) A 2032 type coin cell was prepared using

<充放電試験>
1)実施例1〜実施例7および比較例4の試験条件
作製したコインセルを用いて、室温条件下(22〜27℃)、10mA/gの定電流でセル電圧が4.8Vと2.0Vの間で、最初に充電を行い、次に放電を行い、以後充電・放電を繰り返して、1サイクル目の充電容量(mAh/g)、1サイクル目の放電容量(mAh/g)、10サイクル目の放電容量(mAh/g)を測定し、容量維持率(1サイクル目の放電容量に対する10サイクル目の放電容量の割合(%))を求めた。
<Charge / discharge test>
1) Test conditions of Examples 1 to 7 and Comparative Example 4 Using the produced coin cells, the cell voltages were 4.8 V and 2.0 V at a constant current of 10 mA / g under room temperature conditions (22 to 27 ° C.). The first charging is performed, the second discharging is performed, and the charging and discharging are repeated thereafter. The first cycle charging capacity (mAh / g), the first cycle discharging capacity (mAh / g), and the tenth cycle The discharge capacity (mAh / g) of the eye was measured, and the capacity retention rate (ratio (%) of the discharge capacity at the 10th cycle to the discharge capacity at the 1st cycle) was determined.

2)比較例1〜比較例3、比較例5〜比較例8の試験条件
作製したコインセルを用いて、室温条件下(22〜27℃)、10mA/gの定電流でセル電圧が2.0Vと3.3Vの間で、最初に放電を行い、次に充電を行い、以後放電・充電充放電を繰り返して、1サイクル目の放電容量(mAh/g)、1サイクル目の充電容量(mAh/g)、10サイクル目の放電容量(mAh/g)を測定し、容量維持率(1サイクル目の放電容量に対する10サイクル目の放電容量の割合(%))を求めた。
2) Test conditions of Comparative Example 1 to Comparative Example 3 and Comparative Example 5 to Comparative Example 8 Using the produced coin cell, the cell voltage was 2.0 V at a constant current of 10 mA / g under room temperature conditions (22 to 27 ° C.). And 3.3 V, the battery is first discharged, then charged, and thereafter the discharge / charge charge / discharge is repeated until the first cycle discharge capacity (mAh / g) and the first cycle charge capacity (mAh). / G) The discharge capacity (mAh / g) at the 10th cycle was measured, and the capacity retention rate (ratio of discharge capacity at the 10th cycle to the discharge capacity at the 1st cycle) was determined.

<組成分析>
調製したリチウム含有マンガン組成物のリチウムとマンガンの組成、又は調製したリチウム含有マンガン組成物のリチウムとマンガンとM(リチウム、マンガン、酸素以外の元素から選ばれるひとつ以上の元素)の組成は、誘電結合プラズマ発光分析装置(商品名:ICP−AES,株式会社パーキンエルマージャパン製)で分析した。
<Composition analysis>
The composition of lithium and manganese in the prepared lithium-containing manganese composition, or the composition of lithium, manganese and M (one or more elements selected from elements other than lithium, manganese and oxygen) in the prepared lithium-containing manganese composition is dielectric. The analysis was performed with a coupled plasma emission analyzer (trade name: ICP-AES, manufactured by PerkinElmer Japan Co., Ltd.).

<結晶性の評価>
調製したリチウム含有マンガン組成物の結晶構造の同定を粉末X線回折測定装置(商品名:MXP3,マックサイエンス製)で行った。
<Evaluation of crystallinity>
The crystal structure of the prepared lithium-containing manganese composition was identified with a powder X-ray diffraction measurement device (trade name: MXP3, manufactured by Mac Science).

計測条件は、以下の通りとした。   The measurement conditions were as follows.

ターゲット:Cu
出力:1.2kW(30mA‐40kV)
ステップスキャン:0.04°(2θ/θ)
計測時間:3秒
<充放電試験前後の結晶性の変化>
充放電試験後のコインセルを解体して正極を取り出し、マンガン酸化物の結晶性の評価を粉末X線回折測定装置(商品名:MXP3,マックサイエンス製)で行った。
Target: Cu
Output: 1.2kW (30mA-40kV)
Step scan: 0.04 ° (2θ / θ)
Measurement time: 3 seconds <Change in crystallinity before and after the charge / discharge test>
The coin cell after the charge / discharge test was disassembled, the positive electrode was taken out, and the crystallinity of the manganese oxide was evaluated with a powder X-ray diffractometer (trade name: MXP3, manufactured by Mac Science).

計測条件は、以下の通りとした。   The measurement conditions were as follows.

ターゲット:Cu
出力:1.2kW(30mA−40kV)
ステップスキャン:0.04°(2θ/θ)
計測時間:3秒
実施例1
炭酸マンガンの0.5水和物(特級試薬)6.05gと水酸化リチウムの1水和物(特級試薬)1.06g(Li/Mn比=1/2)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Target: Cu
Output: 1.2kW (30mA-40kV)
Step scan: 0.04 ° (2θ / θ)
Measurement time: 3 seconds Example 1
30 mg of manganese carbonate hemihydrate (special grade reagent) 6.05 g and lithium hydroxide monohydrate (special grade reagent) 1.06 g (Li / Mn ratio = 1/2) using a mortar After dry-mixing for a minute, the mixture was pulverized until it passed through a mesh having a mesh size of 150 μm.

得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態となった。   2 g of the obtained mixed powder was put in a baking dish, subjected to a heat treatment at 400 ° C. for 32 hours under a 1-liter air aeration condition in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled below 150 ° C.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

Figure 2016175826
1サイクル目の充電容量から算出したXの値は0.70で、マンガン酸化物の組成はLi0.19Mn16/93.65であった。
Figure 2016175826
The value of X calculated from the charge capacity at the first cycle was 0.70, and the composition of the manganese oxide was Li 0.19 Mn 16/9 O 3.65 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

実施例2
調製温度を600℃とした以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。
Example 2
A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that the preparation temperature was 600 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

1サイクル目の充電容量から算出したXの値は0.81で、マンガン酸化物の組成はLi0.08Mn16/93.60であった。 The value of X calculated from the charge capacity at the first cycle was 0.81, and the composition of the manganese oxide was Li 0.08 Mn 16/9 O 3.60 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

実施例3
調製温度を800℃とした以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。
Example 3
A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that the preparation temperature was 800 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

1サイクル目の充電容量から算出したXの値は0.88で、マンガン酸化物の組成はLi0.01Mn16/93.56であった。 The value of X calculated from the charge capacity at the first cycle was 0.88, and the composition of the manganese oxide was Li 0.01 Mn 16/9 O 3.56 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

比較例1
実施例1で調製した試料を用いてコインセルを作製して、室温条件下(22〜27℃)、10mA/gの定電流で電池電圧が2.0Vと3.3Vの間で充放電を繰り返す充放電試験を実施した。
Comparative Example 1
A coin cell was manufactured using the sample prepared in Example 1, and charging and discharging were repeated at a constant current of 10 mA / g at room temperature (22 to 27 ° C.) and a battery voltage of 2.0 V and 3.3 V. A charge / discharge test was conducted.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

比較例2
実施例2で調製した試料を用いてコインセルを作製して、比較例1と同様にして充放電試験を行った。
Comparative Example 2
A coin cell was prepared using the sample prepared in Example 2, and a charge / discharge test was performed in the same manner as in Comparative Example 1.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

比較例3
実施例3で調製した試料を用いてコインセルを作製して、比較例1と同様にして充放電試験を行った。
Comparative Example 3
A coin cell was prepared using the sample prepared in Example 3, and a charge / discharge test was performed in the same manner as in Comparative Example 1.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

比較例4
電解二酸化マンガン(東ソー日向株式会社製)の20.00gと炭酸リチウム(特級試薬)の4.58gとを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Comparative Example 4
20.00 g of electrolytic manganese dioxide (manufactured by Tosoh Hinata Co., Ltd.) and 4.58 g of lithium carbonate (special grade reagent) were dry-mixed for 30 minutes using a mortar, and then pulverized until all of the mesh passed through a 150 μm mesh. .

得られた混合粉の2gを焼成皿に入れて、大気開放箱型炉を用いた以外は実施例3と同条件でリチウム含有マンガン組成物を調製した。   A lithium-containing manganese composition was prepared under the same conditions as in Example 3 except that 2 g of the obtained mixed powder was placed in a baking dish and an air-open box furnace was used.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は2.81/5で、Li1.08Mn1.92(Li25/81Mn144/2512)であった。Mnの価数は+3.6であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 2.81 / 5, and Li 1.08 Mn 1.92. It was O 4 (Li 25/81 Mn 144/25 O 12 ). The valence of Mn was +3.6.

充放電試験の結果を表1に示す。その結果から、同条件で調製した実施例3と比較して、1サイクル目の充放電容量は小さく、容量維持率も小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the charge / discharge capacity at the first cycle was small and the capacity retention rate was small as compared with Example 3 prepared under the same conditions.

実施例4
四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)2.33g(Li/Mn比=1/2)を使用した以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。
Example 4
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And lithium hydroxide monohydrate (special grade reagent) 2.33 g (Li / Mn ratio = 1/2) was used to prepare a lithium-containing manganese composition in the same manner as in Example 1.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

1サイクル目の充電容量から算出したXの値は0.88で、マンガン酸化物の組成はLi0.01Mn16/93.56であった。 The value of X calculated from the charge capacity at the first cycle was 0.88, and the composition of the manganese oxide was Li 0.01 Mn 16/9 O 3.56 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

実施例5
炭酸マンガンの0.5水和物(特級試薬)3.04gと水酸化マグネシウム(特級試薬)0.03gと水酸化リチウムの1水和物(特級試薬)0.53gを使用した以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。
Example 5
Example except that 3.04 g of manganese carbonate hemihydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.53 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in Example 1, a lithium-containing manganese composition was prepared.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg)比は1/2で、Mg/(Mn+Mg)比は0.02であった。この値から、Zの値は8/225で、Li8/9Mn392/225Mg8/225のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is ½, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 8/225, and a lithium-containing manganese composition of Li 8/9 Mn 392/225 Mg 8/225 O 4 was obtained.

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

1サイクル目の充電容量から算出したXの値は0.81で、マンガン酸化物の組成はLi0.08Mn392/225Mg8/2253.60であった。 The value of X calculated from the charge capacity at the first cycle was 0.81, and the composition of the manganese oxide was Li 0.08 Mn 392/225 Mg 8/225 O 3.60 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

実施例6
四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)2.45gを使用した以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。
Example 6
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that 0.34 g of magnesium hydroxide (special grade reagent) and 2.45 g of lithium hydroxide monohydrate (special grade reagent) were used.

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は1/2で、Mg/(Mn+Mg)比は0.05であった。この値から、Zの値は4/45で、Li8/9Mn76/45Mg4/45のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/2, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 4/45, and a lithium-containing manganese composition of Li 8/9 Mn 76/45 Mg 4/45 O 4 was obtained.

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

1サイクル目の充電容量から算出したXの値は0.80で、マンガン酸化物の組成はLi0.09Mn76/45Mg4/453.60であった。 The value of X calculated from the charge capacity at the first cycle was 0.80, and the composition of the manganese oxide was Li 0.09 Mn 76/45 Mg 4/45 O 3.60 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

実施例7
炭酸マンガンの0.5水和物(特級試薬)5.76gと水酸化マグネシウム(特級試薬)0.15gと炭酸ナトリウム(特級試薬)0.11gと水酸化リチウムの1水和物(特級試薬)1.06gを使用して、実施例1と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=1/2、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 7
Manganese carbonate hemihydrate (special grade reagent) 5.76 g, magnesium hydroxide (special grade reagent) 0.15 g, sodium carbonate (special grade reagent) 0.11 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 1 using 1.06 g (Li / (Mn + Mg + Na) ratio = 1/2, Mg / (Mn + Mg + Na) ratio = 0.05, Na / (Mn + Mg + Na). ) = 0.02).

調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg+Na)比は1/2で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Zの値は28/225で、Li8/9Mn372/225Mg4/45Na8/225のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 1/2, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 28/225, and a lithium-containing manganese composition of Li 8/9 Mn 372/225 Mg 4/45 Na 8/225 O 4 was obtained.

充放電試験の結果を表1に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.

1サイクル目の充電容量から算出したXの値は0.79で、マンガン酸化物の組成はLi0.10Mn372/225Mg4/45Na8/2253.61であった。 The value of X calculated from the charge capacity at the first cycle was 0.79, and the composition of the manganese oxide was Li 0.10 Mn 372/225 Mg 4/45 Na 8/225 O 3.61 .

充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。   About the change of crystallinity before and after a charge / discharge test, it turned out that the crystallinity of a lithium containing manganese composition and manganese oxide has not changed from the comparison of the X-ray-diffraction pattern before and behind a charge / discharge test.

比較例5
実施例4で調製した試料を用いてコインセルを作製して、比較例1と同様にして充放電試験を行った。
Comparative Example 5
A coin cell was prepared using the sample prepared in Example 4, and a charge / discharge test was performed in the same manner as in Comparative Example 1.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

比較例6
実施例5で調製した試料を用いてコインセルを作製して、比較例1と同様にして充放電試験を行った。
Comparative Example 6
A coin cell was prepared using the sample prepared in Example 5, and a charge / discharge test was performed in the same manner as in Comparative Example 1.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

比較例7
実施例6で調製した試料を用いてコインセルを作製して、比較例1と同様にして充放電試験を行った。
Comparative Example 7
A coin cell was prepared using the sample prepared in Example 6, and a charge / discharge test was performed in the same manner as in Comparative Example 1.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

比較例8
実施例7で調製した試料を用いてコインセルを作製して、比較例1と同様にして充放電試験を行った。
Comparative Example 8
A coin cell was prepared using the sample prepared in Example 7, and a charge / discharge test was performed in the same manner as in Comparative Example 1.

充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物よりも放電容量が小さいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of the example.

本発明のマンガン酸化物は、リチウム二次電池の正極に使用することができる。   The manganese oxide of the present invention can be used for a positive electrode of a lithium secondary battery.

Claims (6)

一般式Li(8/9)−XMn(16/9)−Z4−(X/2)(ここで、0<X≦8/9、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されることを特徴とするマンガン酸化物。 Formula Li (8/9) -X Mn (16/9 ) -Z M Z O 4- (X / 2) ( where, meets 0 <X ≦ 8 / 9,0 ≦ Z ≦ 8/9, M is one or more elements selected from elements other than Li, Mn, and O.) スピネル構造を有することを特徴とする請求項1に記載のマンガン酸化物。 The manganese oxide according to claim 1, which has a spinel structure. 一般式Li8/9Mn(16/9)−Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする請求項1に記載のマンガン酸化物の製法。 General formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) The method for producing a manganese oxide according to claim 1, wherein the lithium-containing manganese composition represented by formula (1) is electrochemically oxidized. リチウム含有マンガン組成物が、スピネル構造を有することを特徴とする請求項2に記載のマンガン酸化物の製法。 The method for producing a manganese oxide according to claim 2, wherein the lithium-containing manganese composition has a spinel structure. 電気化学的に酸化することが、電池内で充電するものであることを特徴とする請求項3又は請求項4に記載のマンガン酸化物の製法。 The method for producing a manganese oxide according to claim 3 or 4, wherein the electrochemical oxidation is charging in the battery. 請求項1又は請求項2に記載のマンガン酸化物を含有する正極を備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode containing the manganese oxide according to claim 1.
JP2016049988A 2015-03-19 2016-03-14 Manganese oxide, method for producing the same, and lithium secondary battery using the same Active JP6680006B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015056647 2015-03-19
JP2015056647 2015-03-19

Publications (2)

Publication Number Publication Date
JP2016175826A true JP2016175826A (en) 2016-10-06
JP6680006B2 JP6680006B2 (en) 2020-04-15

Family

ID=57069004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049988A Active JP6680006B2 (en) 2015-03-19 2016-03-14 Manganese oxide, method for producing the same, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6680006B2 (en)

Also Published As

Publication number Publication date
JP6680006B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
EP2872450B1 (en) Doped nickelate compounds
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JPH1171115A (en) Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
TW201736277A (en) Lithium-iron-manganese-based composite oxide
JP2008137837A (en) Lithium-nickel-manganese complex oxide, its manufacturing process and its application
JP2011105565A (en) Lithium manganate compound replaced by different metal and application thereof
JP6746961B2 (en) Manganese oxide, method for producing the same, and lithium secondary battery using the same
WO2017017208A1 (en) Active cathode material and its use in rechargeable electrochemical cells
JP2016175825A (en) Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same
JP5819786B2 (en) Lithium cuprate positive electrode material, method for producing the positive electrode material, and lithium secondary battery containing the positive electrode material as a positive electrode active material
JP2011243585A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2017162614A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same
JP2021160970A (en) Spinel lithium manganate and method for producing the same and applications thereof
WO2007007581A1 (en) Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JP2002226214A (en) New lithium manganese complex oxide and its production method and application thereof
WO2022138702A1 (en) Spinel-type lithium manganese, method for producing same, and use of same
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP6680006B2 (en) Manganese oxide, method for producing the same, and lithium secondary battery using the same
JP6680007B2 (en) Manganese oxide, method for producing the same, and lithium secondary battery using the same
JP2013004401A (en) Positive electrode active material for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
WO2016148283A1 (en) Manganese oxide and method for producing same, and lithium secondary battery using same
WO2018181967A1 (en) Manganese oxide, production method therefor, and lithium secondary battery
JP2018043889A (en) Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same
JP2017168218A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6680006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151