JP2016166806A - Three-dimensional measurement method - Google Patents

Three-dimensional measurement method Download PDF

Info

Publication number
JP2016166806A
JP2016166806A JP2015047035A JP2015047035A JP2016166806A JP 2016166806 A JP2016166806 A JP 2016166806A JP 2015047035 A JP2015047035 A JP 2015047035A JP 2015047035 A JP2015047035 A JP 2015047035A JP 2016166806 A JP2016166806 A JP 2016166806A
Authority
JP
Japan
Prior art keywords
phase shift
value
phase
shift amount
δφpq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015047035A
Other languages
Japanese (ja)
Other versions
JP6482119B2 (en
Inventor
宣一 吉川
Yoshiichi Yoshikawa
宣一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2015047035A priority Critical patent/JP6482119B2/en
Publication of JP2016166806A publication Critical patent/JP2016166806A/en
Application granted granted Critical
Publication of JP6482119B2 publication Critical patent/JP6482119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To three-dimensionally measure a shape of a workpiece with ease by a generalization phase shift method in which an imaging method is an integration type, and an amount of phase shift of a grating pattern to be projected is arbitrary.SOLUTION: A phase shift analysis device 7 is configured to: input continuous three deformation grating images a, b, and c from an imaging device 6 thereinto to calculate an average square error about luminance values I, I, and Iamong the deformation grating images; obtain an absolute value of a relative amount of phase shift Δφpq among the deformation grating images by use of arccos serving as an inverse trigonometric function from the average square error in which a term expressing an oscillation component of the luminance value is set to 0 and expressed by a sin function; obtain a code of each amount of phase shift Δφpq and its solution κin which an evaluation function f(κ) expressed by a sum of obtained each amount of phase shift Δφpq satisfies a circuit difference phase condition; obtain a value of the amount of phase shift Δφpq including the code; obtain a value of a phase θ of the luminance value from the value of the amount of phase shift Δφpq; and three-dimensionally measure a shape of a workpiece 1.SELECTED DRAWING: Figure 1

Description

本発明は、被測定物の形状を三次元計測する三次元計測法に関するものである。   The present invention relates to a three-dimensional measurement method for three-dimensionally measuring the shape of an object to be measured.

従来、この種の三次元計測法としては、例えば、特許文献1に開示されたリアルタイム形状変形計測方法がある。この計測方法では、格子投影装置によって計測対象物体に格子パターンを投影する。投影する格子パターンは、1ピッチを明暗比1:2に分けた矩形波状の格子パターンを用い、その格子パターンが投影された物体をCCDカメラで撮影する。格子パターンは、CCDカメラの1フレームの撮影時間である1/30秒間に1/3ピッチで等速にシフトされ、CCDカメラは1/30秒間に受けた光の強度を電荷として蓄え、それを輝度とした1つの格子画像に変換する。順次取得される各格子画像は、対応する第1〜第3フレームメモリに順に格納され、更新されていく。第1〜第3フレームメモリに格納された画像は、予め演算して求めた位相値に対する輝度値を格納する3次元位相算出テーブルによって即座に位相値に変換され、物体の位相分布画像としてリアルタイムに出力される。   Conventionally, as this type of three-dimensional measurement method, for example, there is a real-time shape deformation measurement method disclosed in Patent Document 1. In this measurement method, a lattice pattern is projected onto a measurement target object by a lattice projection device. As the lattice pattern to be projected, a rectangular wave lattice pattern in which one pitch is divided into a contrast ratio of 1: 2 is used, and an object on which the lattice pattern is projected is photographed with a CCD camera. The lattice pattern is shifted at a constant rate of 1/3 pitch in 1/30 seconds, which is the shooting time of one frame of the CCD camera, and the CCD camera stores the intensity of light received in 1/30 seconds as a charge. It is converted into one grid image with luminance. Each grid image acquired sequentially is sequentially stored and updated in the corresponding first to third frame memories. The images stored in the first to third frame memories are immediately converted into phase values by a three-dimensional phase calculation table that stores luminance values with respect to the phase values calculated in advance, and in real time as a phase distribution image of the object Is output.

特許第3554816号公報Japanese Patent No. 3554816

格子パターン投影法で撮影された変形格子像の解析手法として、位相シフト法がある。 位相シフト法は、 投影する格子パターンの位相をシフトさせて3枚以上の変形格子像を撮影し、その変形格子像から位相情報を求めることで、計測対象物体の三次元情報を復元する手法である。この位相シフト法は、その撮影方式からステップ型と積分型とに分類することができる。   There is a phase shift method as an analysis method of a deformed lattice image photographed by the lattice pattern projection method. The phase shift method is a method of reconstructing the three-dimensional information of the measurement target object by shifting the phase of the projected grating pattern and photographing three or more deformed grating images and obtaining the phase information from the deformed grating images. is there. This phase shift method can be classified into a step type and an integral type according to the photographing method.

ステップ型は、計測対象物体に投影する格子パターンの位相をステップ移動させてシフトさせる手順、その位相シフトを一時停止させる手順、変形格子像を撮影する手順が順に行われ、その後に再び格子パターンの位相をシフトさせる手順以下の手順の流れが繰り返される方法である。一方、積分型は、計測対象物体に投影する格子パターンの位相を停止させずに連続的にシフトさせながら、変形格子像の撮影が行われる手法であり、連続フリンジスキャンと呼ばれることもある。   In the step type, the steps of shifting the phase of the grating pattern projected onto the measurement target object by step movement, the procedure of temporarily stopping the phase shift, and the procedure of photographing the deformed grating image are performed in order, and then the grating pattern is again formed. Procedure for shifting the phase This is a method in which the flow of the following procedure is repeated. On the other hand, the integral type is a technique in which a deformed grid image is captured while continuously shifting the phase of the grid pattern projected onto the measurement target object without stopping, and is sometimes called a continuous fringe scan.

また、位相シフト法は、投影する格子パターンの位相シフト量の違いから、一定量位相シフト法と一般化位相シフト法とに分類することができる。一定量位相シフト法は、一般に用いられる位相シフト法で、例えばπ/2の一定量の位相を3ステップでシフトする3ステップ法が有名である。一方、一般化位相シフト法は、任意の位相シフト量で格子パターンの位相をシフトする方法である。   Further, the phase shift method can be classified into a constant amount phase shift method and a generalized phase shift method based on the difference in the phase shift amount of the projected grating pattern. The fixed amount phase shift method is a commonly used phase shift method, for example, a three step method in which a fixed amount of phase of π / 2 is shifted in three steps is famous. On the other hand, the generalized phase shift method is a method of shifting the phase of the grating pattern by an arbitrary amount of phase shift.

特許文献1に開示された上記従来の三次元計測法は、投影する格子パターンの撮影方式が1/30秒間電荷を蓄える積分型で、位相シフト量がπ/3の一定量の、積分型・一定量位相シフト法である。投影する格子パターンの位相を一定量でシフトするこのような位相シフト法で、変形格子像を高速に撮影するためには、高速なデジタルカメラと位相シフタが必要になる。そして、格子投影装置の格子パターン表示,カメラの露光時間,シャッタータイミングなどを高精度に同期して制御する必要がある。これを実現するためには高性能な同期回路,デバイスと、十分な位相キャリブレーション作業が必要になる。   In the conventional three-dimensional measurement method disclosed in Patent Document 1, the imaging method of the projected grid pattern is an integral type in which charges are stored for 1/30 seconds, and a certain amount of phase shift is π / 3. This is a fixed phase shift method. A high-speed digital camera and a phase shifter are required to capture a deformed lattice image at a high speed by such a phase shift method that shifts the phase of the lattice pattern to be projected by a certain amount. Then, it is necessary to control the lattice pattern display of the lattice projection device, the exposure time of the camera, the shutter timing, and the like in synchronization with high accuracy. In order to realize this, a high-performance synchronization circuit and device and sufficient phase calibration work are required.

一方、任意の位相シフト量で格子パターンの位相をシフトする一般化位相シフト法は、位相シフト量の推定が必要になる。このため、従来、別の計測装置を使用して格子パターンの位相シフト量を計測したり、大量の変形格子像を用いて計算で位相シフト量を求めるなどの処理が必要になり、簡単に三次元計測が行えなかった。   On the other hand, the generalized phase shift method for shifting the phase of the grating pattern by an arbitrary phase shift amount requires estimation of the phase shift amount. For this reason, conventionally, processing such as measuring the phase shift amount of the grating pattern using another measuring device or obtaining the phase shift amount by calculation using a large amount of deformed grating images is required. The original measurement could not be performed.

本発明はこのような課題を解決するためになされたもので、
移動する格子パターンを被測定物に投影し、被測定物の形状に応じて変形する格子パターンを撮影して3枚の変形格子像を取得し、取得した3枚の変形格子像間における輝度値について平均二乗誤差を計算し、輝度値の位相分布のランダム性が成り立つときには輝度値の振動成分の空間平均が統計的に0になることに基づいて振動成分を表す項が0にされて三角関数で表された平均二乗誤差から、各変形格子像間の相対的な位相シフト量の絶対値を逆三角関数を使って求め、求めた各位相シフト量の和で表した評価関数が巡回差分位相条件を満たす各位相シフト量の符号および評価関数の解を解探索アルゴリズムを用いて求め、求めた各位相シフト量の符号および評価関数の解から符号を含めた位相シフト量の値を求め、位相シフト量のこの値から変形格子像の位相値を求めて被測定物の形状を三次元計測する三次元計測法を構成した。
The present invention has been made to solve such problems,
The moving lattice pattern is projected onto the object to be measured, the lattice pattern deforming according to the shape of the object to be measured is photographed to obtain three deformed lattice images, and the luminance value between the obtained three deformed lattice images When the mean square error is calculated and the randomness of the phase distribution of the luminance value holds, the term representing the vibration component is set to zero based on the fact that the spatial average of the vibration component of the luminance value is statistically zero, and the trigonometric function Using the inverse trigonometric function, the absolute value of the relative phase shift amount between the deformed lattice images is obtained from the mean square error expressed by the equation, and the evaluation function expressed as the sum of the obtained phase shift amounts is the cyclic difference phase. The solution of the code and evaluation function for each phase shift amount that satisfies the condition is obtained using a solution search algorithm, the value of the phase shift amount including the sign is obtained from the solution of the obtained code and evaluation function for each phase shift amount, and the phase This amount of shift Shape of the workpiece seeking phase value modification lattice image from constitute a three-dimensional measurement method for measuring three dimensions.

本構成によれば、撮影方式が積分型で、投影する格子パターンの位相シフト量が任意の一般化位相シフト法により、各変形格子像間の相対的な位相シフト量の値を簡単に算出することができる。したがって、算出した位相シフト量の値から変形格子像の位相値を求めることで、被測定物の形状を簡単に三次元計測することが可能になる。一般化位相シフト法は、一定量位相シフト法におけるような正確な位相キャリブレーションを必要とせず、また、撮影装置と格子投影装置との間で高精度な同期制御をとる必要がない。このため、一定量位相シフト法を用いて三次元計測する際に発生する様々な問題を生じることなく、計測システムを容易に構築して簡単な計測手順で三次元計測することが可能になる。   According to this configuration, the value of the relative phase shift amount between the deformed lattice images is easily calculated by the generalized phase shift method in which the imaging method is the integral type and the phase shift amount of the projected lattice pattern is arbitrary. be able to. Therefore, by obtaining the phase value of the deformed grating image from the calculated phase shift value, the shape of the object to be measured can be easily measured three-dimensionally. The generalized phase shift method does not require accurate phase calibration as in the fixed amount phase shift method, and does not require high-accuracy synchronous control between the imaging device and the lattice projection device. Therefore, it is possible to easily construct a measurement system and perform three-dimensional measurement with a simple measurement procedure without causing various problems that occur when performing three-dimensional measurement using the constant phase shift method.

また、本発明は、解探索アルゴリズムが、値が0となる評価関数を求めて、求めた評価関数を構成する各位相シフト量の係数値から各位相シフト量の符号を求め、求めた評価関数から解を見つけることを特徴とする。   In the present invention, the solution search algorithm obtains an evaluation function having a value of 0, obtains the sign of each phase shift amount from the coefficient value of each phase shift amount constituting the obtained evaluation function, and obtains the obtained evaluation function It is characterized by finding a solution from

本構成によれば、簡単なアルゴリズムで各位相シフト量の符号および評価関数の解を見つけることができる。このため、変形格子像間の相対的な位相シフト量の値をより簡単に算出することができ、被測定物の形状をより簡単に三次元計測することが可能になる。   According to this configuration, it is possible to find the solution of the sign of each phase shift amount and the evaluation function with a simple algorithm. For this reason, the value of the relative phase shift amount between the deformed grating images can be calculated more easily, and the shape of the object to be measured can be more easily three-dimensionally measured.

本発明によれば、撮影方式が積分型で、投影する格子パターンの位相シフト量が任意の一般化位相シフト法により、変形格子像間の相対的な位相シフト量の値を簡単に算出して、被測定物の形状を簡単に三次元計測することが可能になる。   According to the present invention, the value of the relative phase shift amount between the deformed lattice images can be easily calculated by the generalized phase shift method in which the imaging method is the integral type and the phase shift amount of the projected lattice pattern is arbitrary. The shape of the object to be measured can be easily measured three-dimensionally.

本発明の一実施の形態による三次元計測法を実施するための計測システムを示す概略構成図である。It is a schematic block diagram which shows the measurement system for implementing the three-dimensional measuring method by one embodiment of this invention. (a)は、一実施の形態による三次元計測法を実施するための計測システムにおける格子投影法の概略図、(b)は、第1の変形例による格子投影法の概略図、(c)は、第2の変形例による格子投影法の概略図である。(A) is the schematic of the lattice projection method in the measurement system for implementing the three-dimensional measurement method by one Embodiment, (b) is the schematic of the lattice projection method by a 1st modification, (c). These are the schematic diagrams of the lattice projection method by the 2nd modification. (a),(b),(c)は、それぞれ、一実施の形態による三次元計測法に用いられる位相シフトされた3枚の変形格子像を示す図である。(A), (b), (c) is a figure which respectively shows the three phase-shifted deformation | transformation grating | lattice images used for the three-dimensional measurement method by one Embodiment. 一実施の形態による三次元計測法における解探索アルゴリズムで用いられる評価関数f(κ)を表すグラフである。It is a graph evaluation representing the function f n (κ) for use in the solution search algorithm in three-dimensional measurement method according to an embodiment. (a)は、一実施の形態による三次元計測法で求められた位相θを用いて三次元復元を行うことで得られる画像、(b)は、最終的に計測される被測定物の三次元形状を示す画像である。(A) is an image obtained by performing three-dimensional reconstruction using the phase θ obtained by the three-dimensional measurement method according to one embodiment, and (b) is the tertiary of the object to be measured finally. It is an image which shows an original shape.

次に、本発明による三次元計測法を実施するための形態について、説明する。   Next, the form for implementing the three-dimensional measuring method by this invention is demonstrated.

図1は、本発明の一実施の形態による三次元計測法を実施するための計測システムSを示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a measurement system S for carrying out a three-dimensional measurement method according to an embodiment of the present invention.

三次元計測が行われる対象の被測定物1には、等速で移動する格子パターン2が格子投影装置3によって投影される。本実施の形態では、格子パターン2には、輝度が正弦波状に変化する正弦波格子パターンが縞パターンとして理論的に用いられる。しかし、実際には、輝度キャリブレーションしてグラデーションのある正弦波近似縞パターンを作ったり、白黒二値の格子パターンをぼかして正弦波近似縞パターンを作ることなどで、明るい帯と暗い帯とが交互に繰り返される縞パターンを正弦波近似格子パターンとして得る。格子投影装置3から出射される格子パターン2は、軸4を中心に回転するミラー5で反射し、被測定物1に投影されることで、等速vで移動させられる。被測定物1に投影される格子パターン2はデジタルカメラ等の撮影装置6によって撮影され、撮影装置6には、被測定物1の形状に応じて変形する格子パターン2が変形格子像として取得される。この際、被測定物1は、撮影装置6からz方向に距離L離れたx−y平面を基準平面として撮影される。 A lattice pattern 2 that moves at a constant speed is projected by a lattice projection device 3 onto an object to be measured 1 on which three-dimensional measurement is performed. In the present embodiment, a sine wave grating pattern whose luminance changes in a sine wave shape is theoretically used as the fringe pattern. In reality, however, bright bands and dark bands can be created by brightness calibration to create a sine wave approximate fringe pattern with gradation, or by blurring a black and white binary lattice pattern to create a sine wave approximate fringe pattern. An alternately repeated fringe pattern is obtained as a sinusoidal approximate lattice pattern. The grating pattern 2 emitted from the grating projection device 3 is reflected by the mirror 5 rotating around the axis 4 and projected onto the DUT 1 so that it is moved at a constant speed v. The lattice pattern 2 projected onto the device under test 1 is photographed by a photographing device 6 such as a digital camera, and the photographing device 6 acquires a lattice pattern 2 that deforms according to the shape of the device under test 1 as a deformed lattice image. The At this time, the DUT 1 is imaged using the xy plane that is a distance L 0 away from the imaging device 6 in the z direction as a reference plane.

縞画像のアニメーションをプロジェクタを用いてPC(パーソナルコンピュータ)の制御で被測定物1に投影すると、格子パターン2が等速vで移動しなかったり、撮影装置6との同期制御が必要になる。このため、本実施の形態では、図2(a)に示すように、格子投影装置3の内蔵光源3aから出射される光を縞パターンが印刷されたフィルム3bに通し、軸4を中心に回転するミラー5で反射させることで、格子パターン2を等速vで移動させ続ける。   When the animation of the fringe image is projected onto the DUT 1 under the control of a PC (personal computer) using a projector, the lattice pattern 2 does not move at a constant speed v, or synchronous control with the photographing device 6 is required. For this reason, in this embodiment, as shown in FIG. 2A, the light emitted from the built-in light source 3a of the grating projection device 3 is passed through the film 3b on which the fringe pattern is printed, and is rotated about the axis 4. The grating pattern 2 is continuously moved at a constant speed v by being reflected by the mirror 5.

なお、格子パターン2を投影するデバイスは、上記のような写真フィルムを用いたスライド式のプロジェクタに限られることはなく、透過型や反射型の液晶パネルをPCで制御して投影する方式のプロジェクタ等であってもよく、固定パターンを投影することができるものであればよい。また、同図(b)に示すように、格子投影装置3の内部で、円筒状に形成したフィルム3bを光源3aを中心に等速で回転させることによっても、格子パターン2を等速vで移動させ続けることができる。また、同図(c)に示すように、格子投影装置3の内部でフィルム3bを等速vで平行移動させることで、格子パターン2を等速vで移動させることもできる。図2に例示するこれらの構成によれば、格子投影装置3は、PC制御のプロジェクタである必要は無く、単なる縞パターンを投影する機能だけを備えた安価なものでよくなる。   The device for projecting the lattice pattern 2 is not limited to the slide type projector using the photographic film as described above, and a projector that projects by controlling a transmissive or reflective liquid crystal panel with a PC. Or any other type that can project a fixed pattern. In addition, as shown in FIG. 5B, the lattice pattern 2 can be moved at a constant velocity v by rotating the film 3b formed in a cylindrical shape around the light source 3a at a constant speed inside the lattice projection device 3. Can continue to move. Further, as shown in FIG. 3C, the lattice pattern 2 can be moved at a constant velocity v by translating the film 3b at a constant velocity v inside the lattice projection device 3. According to these configurations illustrated in FIG. 2, the lattice projection device 3 does not need to be a PC-controlled projector, and may be an inexpensive one having only a function of projecting a fringe pattern.

撮影装置6によって撮影される被測定物1の変形格子像は位相シフト解析装置7へ出力され、以下のようにして、変形格子像の位相値、すなわち、被測定物1のz方向における高さが算出されて、被測定物1の三次元形状が計測される。位相シフト解析装置7は、並列処理に優れるGPU(グラフィック・プロセッシング・ユニット)を備えて構成される場合があり、高速動作するマイクロコンピュータによって以下の計算処理がリアルタイムに行われることで、撮影方式が積分型で、投影する格子パターン2の位相シフト量が任意の一般化位相シフト法により、被測定物1の三次元計測が高速にかつ高解像度で行われる。   The deformed grating image of the DUT 1 photographed by the photographing device 6 is output to the phase shift analyzer 7 and the phase value of the deformed grating image, that is, the height of the DUT 1 in the z direction is as follows. Is calculated, and the three-dimensional shape of the DUT 1 is measured. The phase shift analysis device 7 may be configured with a GPU (Graphic Processing Unit) excellent in parallel processing, and the following calculation processing is performed in real time by a microcomputer that operates at high speed. The three-dimensional measurement of the DUT 1 is performed at high speed and with high resolution by the generalized phase shift method that is an integral type and the phase shift amount of the projected grating pattern 2 is arbitrary.

位相シフト解析装置7は撮影装置6から連続する3枚の変形格子像、例えば、図3(a),(b),(c)に示すお面の3枚の変形格子像a,b,cを入力する。これら各変形格子像a,b,cにおける縞の輝度分布は余弦波形と見なすことができ、縞の輝度値Iφ(x,y)は空間(x,y)上に余弦波状に分布する。このとき、その波の、被測定物1により作られる位相をθ(x,y)とすると、輝度値Iφ(x,y)は次の(1)式のように表される。

Figure 2016166806
The phase shift analysis device 7 has three deformed lattice images continuous from the photographing device 6, for example, three deformed lattice images a, b, and c shown in FIGS. 3 (a), 3 (b), and 3 (c). Enter. The luminance distribution of fringes in each of these modified lattice images a, b, and c can be regarded as a cosine waveform, and the luminance value Iφ (x, y) of the fringe is distributed in a cosine wave shape on the space (x, y). At this time, assuming that the phase of the wave produced by the DUT 1 is θ 0 (x, y), the luminance value Iφ (x, y) is expressed by the following equation (1).
Figure 2016166806

ここで、Aは背景輝度を表すバイアス項、Bは輝度の振幅を表すコントラスト項、fは縞の周波数、Tは縞の周期、φは縞の位相シフト量である。θを次の(2)式

Figure 2016166806
で定義し、θ=θ+θとおいて、座標系(x,y)を省略すると、(1)式に表される輝度値Iφ(x,y)は次の(3)式のように簡単化することができる。
Figure 2016166806
Here, A is a bias term representing background luminance, B is a contrast term representing luminance amplitude, f 0 is a fringe frequency, T is a fringe period, and φ is a fringe phase shift amount. θ R is the following equation (2)
Figure 2016166806
If the coordinate system (x, y) is omitted when θ = θ 0 + θ R , the luminance value Iφ (x, y) represented by the equation (1) is as shown in the following equation (3): It can be simplified.
Figure 2016166806

変形格子像の位相φが連続的に変化している状態においては、撮影装置6の露光時間tの間にシフトする変形格子像の位相変化量をΔt とすると、位相シフト解析装置7に取得されて記録される変形格子像a,b,cの輝度値Ii(x,y)はその強度を積分することで求めることができ、次の(4)式のように表される。

Figure 2016166806
In a state in which the phase φ of the deformed grating image is continuously changed, if the phase change amount of the deformed grating image that is shifted during the exposure time t of the photographing apparatus 6 is Δt, the phase shift analyzing apparatus 7 acquires the phase change amount. The luminance values Ii (x, y) of the deformed lattice images a, b, c recorded in this way can be obtained by integrating their intensities, and are expressed as the following equation (4).
Figure 2016166806

ここで、φi は変形格子像iの位相シフト量で、また、関数sinc(x)は次の(5)式のように表される。

Figure 2016166806
Here, φi is the phase shift amount of the deformed grating image i, and the function sinc (x) is expressed by the following equation (5).
Figure 2016166806

(4)式は、元の(3)式の振動項にsinc関数の形の定数が掛算されたものである。ここで、Δt=0ならばステップ型、Δt>0ならば積分型の位相シフトになる。つまり、ステップ型と積分型の位相シフトは、次の(6)式に示す、実質的に同じ変形格子像の式で表すことができる。

Figure 2016166806
Equation (4) is obtained by multiplying the vibration term of the original equation (3) by a constant in the form of a sinc function. Here, if Δt = 0, the phase shift is a step type, and if Δt> 0, the phase shift is an integral type. That is, the step-type and integral-type phase shifts can be expressed by substantially the same modified lattice image equation shown in the following equation (6).
Figure 2016166806

上記の(4)式から、変形格子像a,b,cの輝度値I,I,Iは、変形格子像a,b,cの位相シフト量をそれぞれφ,φ,φとすると、次の(7)式のように表される。

Figure 2016166806
From the above equation (4), the luminance values I 0 , I 1 , and I 2 of the modified lattice images a, b, and c are the phase shift amounts of the modified lattice images a, b, and c, respectively, φ 0 , φ 1 , φ Assuming 2 , it is expressed as the following equation (7).
Figure 2016166806

これらの式からθを求めると、次の(8)式となる。

Figure 2016166806
When θ is obtained from these equations, the following equation (8) is obtained.
Figure 2016166806

ただし、ΔIpq=Iq−Ip、Δφpq=φq−φp(p,q=0,1,2)である。この(8)式の導出は次のように行われる。ΔI01,ΔI12,ΔI20は、各輝度値I,I,Iの差分をとり、複素形式で表すと、次の(9)式のようになる。

Figure 2016166806
However, ΔIpq = Iq−Ip and Δφpq = φq−φp (p, q = 0, 1, 2). The derivation of equation (8) is performed as follows. ΔI 01 , ΔI 12 , ΔI 20 takes the difference between the luminance values I 0 , I 1 , I 2 and is expressed in the following complex expression (9).
Figure 2016166806

ただし、Cは次の(10)式に表され、CはCの共役複素数である。

Figure 2016166806
However, C is represented by the following equation (10), and C * is a conjugate complex number of C.
Figure 2016166806

次に、(9)式のΔI01とΔI20の式からなる以下の(11)式に表される連立方程式を考え、

Figure 2016166806
この連立方程式をCについて解くと、Cは次の(12)式に表される。
Figure 2016166806
Next, consider the simultaneous equations expressed by the following equation (11) consisting of ΔI 01 and ΔI 20 in equation (9):
Figure 2016166806
When this simultaneous equation is solved for C, C is expressed by the following equation (12).
Figure 2016166806

ただし、Dは次の(13)式に表される。

Figure 2016166806
However, D is represented by the following equation (13).
Figure 2016166806

(12)式において、初期位相φをゼロとしても一般性は失われないので、Cは次の(14)式に表すことができる。

Figure 2016166806
In the equation (12), since the generality is not lost even if the initial phase φ 0 is set to zero, C can be expressed by the following equation (14).
Figure 2016166806

この(14)式に(13)式に表されるDを代入して整理すると、Cは次の(15)式のように表される。

Figure 2016166806
Substituting D represented by the equation (13) into the equation (14) for rearrangement, C is represented by the following equation (15).
Figure 2016166806

位相θは、(15)式に表されるCの位相から次の(16)式のように求めることができる。

Figure 2016166806
The phase θ can be obtained from the C phase represented by the equation (15) as in the following equation (16).
Figure 2016166806

この結果、変形格子像a,b,cのz方向の高さに相当する波の位相θは、(8)式に表されることになる。また、変形格子像a,b,cの波の振幅(コントラスト)、つまり、縞の輝度値Iiの大きさは、(15)式に表されるCの絶対値を次の(17)式で算出することで、求まる。

Figure 2016166806
As a result, the wave phase θ corresponding to the height in the z direction of the deformed lattice images a, b, and c is expressed by equation (8). The amplitude (contrast) of the waves of the deformed lattice images a, b and c, that is, the magnitude of the stripe luminance value Ii is the absolute value of C expressed by the equation (15) by the following equation (17). It is obtained by calculating.
Figure 2016166806

縞のコントラストが低い画像領域の位相θは信頼性の低い性質がある。このため、振幅が低い位相θの情報を除去することで、信頼性の高い三次元計測を行うことができる。   The phase θ of the image area where the fringe contrast is low has a low reliability. For this reason, highly reliable three-dimensional measurement can be performed by removing information on the phase θ having a low amplitude.

(8)式に表される位相θの値を求めるには、変形格子像a,b,c間の相対的な位相シフト量Δφpqを知る必要がある。本実施の形態では、次のようにして位相シフト量Δφpqの値を統計手法を用いて推定する。まず、(7)式に示される縞の輝度値I,I,Iから、取得した2枚の変形格子像a,b、b,c、c,a間における輝度値Iiの差ΔIpqを次の(18)式により求める。

Figure 2016166806
In order to obtain the value of the phase θ expressed by the equation (8), it is necessary to know the relative phase shift amount Δφpq between the deformed lattice images a, b, and c. In the present embodiment, the value of the phase shift amount Δφpq is estimated using a statistical method as follows. First, the difference ΔIpq of the luminance value Ii between the two deformed lattice images a, b, b, c, c, a acquired from the luminance values I 0 , I 1 , I 2 of the stripes shown in the equation (7). Is obtained by the following equation (18).
Figure 2016166806

次に、ΔIpqの絶対値の二乗の空間平均を平均二乗誤差として次の(19)式のように求める。

Figure 2016166806
Next, the spatial average of the square of the absolute value of ΔIpq is obtained as the mean square error as shown in the following equation (19).
Figure 2016166806

(19)式における記号<>は、1フレームの画像全体について平均をとる演算子である。輝度値Iiの位相分布のランダム性が成り立つときには、空間に分布する輝度値Iiの振動成分の空間平均は統計的に0になる。本実施形態のように、縞状の格子パターン2を投影して撮影する縞パターン投影方式では、輝度値Iiの位相分布のランダム性が十分に成り立つことが分かっている。このことに基づき、(19)式における輝度値Iiの振動成分を表す余弦関数の項<cos(2θ+φp+φq)>を0にすると、(19)式は次の(20)式で表される。

Figure 2016166806
The symbol <> in the equation (19) is an operator that takes an average over the entire image of one frame. When the randomness of the phase distribution of the luminance value Ii holds, the spatial average of the vibration component of the luminance value Ii distributed in the space is statistically zero. It is known that the randomness of the phase distribution of the luminance value Ii is sufficiently established in the fringe pattern projection method in which the striped lattice pattern 2 is projected and photographed as in the present embodiment. Based on this, when the term <cos (2θ + φp + φq)> representing the vibration component of the luminance value Ii in equation (19) is set to 0, equation (19) is expressed by the following equation (20).
Figure 2016166806

各変形格子像a,b、b,c、c,a間における格子パターン2の相対的な位相シフト量Δφpqの絶対値は、(20)式に示す三角関数sinで表された平均二乗誤差から、次の(21)式のように、逆三角関数arccosを使って求めることができる。

Figure 2016166806
The absolute value of the relative phase shift amount Δφpq of the lattice pattern 2 between the respective deformed lattice images a, b, b, c, c, a is obtained from the mean square error represented by the trigonometric function sin shown in the equation (20). As shown in the following equation (21), the inverse trigonometric function arccos can be used.
Figure 2016166806

ただし、Epqおよびκはそれぞれ次の(22)式に表されるものとする。

Figure 2016166806
However, Epq and κ are each expressed by the following equation (22).
Figure 2016166806

ここで、逆三角関数arccosによって表される位相シフト量Δφpqは、0≦Δφpq<πの位相シフト範囲に制限され、その符号はこれだけでは決定できない。このため、位相シフト範囲を−π≦Δφpq<πに拡張するため、位相シフト量Δφpqの総和が2mπ(mは整数)となる次の(23)式に表される巡回差分位相条件を使って、位相シフト量Δφpqの符号推定を行う。

Figure 2016166806
Here, the phase shift amount Δφpq represented by the inverse trigonometric function arccos is limited to the phase shift range of 0 ≦ Δφpq <π, and the sign thereof cannot be determined by itself. Therefore, in order to extend the phase shift range to −π ≦ Δφpq <π, the cyclic difference phase condition expressed by the following equation (23) in which the total sum of the phase shift amounts Δφpq is 2mπ (m is an integer) is used. The sign of the phase shift amount Δφpq is estimated.
Figure 2016166806

ここで、位相シフト量Δφpqの符号を考慮した、次の(24)式に表される評価関数f(κ)を考える。評価関数f(κ)は、変形格子像a,b、b,c、c,a間について(21)式で求めた各位相シフト量Δφpqの和で表される。

Figure 2016166806
Here, an evaluation function f n (κ) expressed by the following equation (24) considering the sign of the phase shift amount Δφpq is considered. The evaluation function f n (κ) is expressed by the sum of the phase shift amounts Δφpq obtained by the equation (21) between the deformed lattice images a, b, b, c, c, a.
Figure 2016166806

ただし、係数cpq=+1または−1である。逆三角関数arccosによって(21)式のように表される位相シフト量Δφpqは正の値であるので、係数cpqの値は位相シフト量Δφpqの符号に対応している。f(κ)=2mπの制約条件式を成立させる評価関数f(κ)は巡回差分位相条件を満たし、その係数cpqの値は位相シフト量Δφpqの正しい符号である。 However, the coefficient cpq = + 1 or −1. Since the phase shift amount Δφpq expressed by the inverse trigonometric function arccos as expressed by the equation (21) is a positive value, the value of the coefficient cpq corresponds to the sign of the phase shift amount Δφpq. The evaluation function f n (κ) that satisfies the constraint condition expression of f n (κ) = 2mπ satisfies the cyclic difference phase condition, and the value of the coefficient cpq is a correct sign of the phase shift amount Δφpq.

巡回差分位相条件を満たす各位相シフト量Δφpqの符号および評価関数f(κ)の解は、一般的な解探索アルゴリズムを用いて求めることができる。本実施の形態に用いる解探索アルゴリズムでは、評価関数f(κ)の値が0となる以下に示すゼロクロス条件で評価関数f(κ)を選択して、その評価関数f(κ)の各位相シフト量Δφpqに係る係数cpqの値、およびその評価関数f(κ)の解κを見つける。 The sign of each phase shift amount Δφpq that satisfies the cyclic differential phase condition and the solution of the evaluation function f n (κ) can be obtained using a general solution search algorithm. In solution search algorithm used in the present embodiment, the evaluation function value of f n (kappa) selects the evaluation function f n (κ) at the zero crossing under the following conditions to be 0, the evaluation function f n (kappa) Find the value of the coefficient cpq associated with each phase shift amount Δφpq and the solution κ 0 of its evaluation function f n (κ).

評価関数f(κ)は、3つの位相シフト量Δφpqの和で表され、各係数cpqの取り得る値の組み合わせによって次の8つの式f(κ)〜f(κ)で表される。

Figure 2016166806
The evaluation function f n (κ) is represented by the sum of the three phase shift amounts Δφpq, and is represented by the following eight formulas f 1 (κ) to f 8 (κ) depending on combinations of values that can be taken by the coefficients cpq. The
Figure 2016166806

(κ)〜f(κ)はf(κ)〜f(κ)の符号反転なので、位相の回転方向が逆になっていることを示している。つまり、実質的にはf(κ)〜f(κ)までの4 通りを考えればよいことになる。これらの各式f(κ)〜f(κ)は、図4に示すグラフに表すことができる。同グラフの横軸はκの値、縦軸は評価関数f(κ)の値である。 Since f 5 (κ) to f 8 (κ) are sign inversions of f 1 (κ) to f 4 (κ), it indicates that the phase rotation direction is reversed. That is, substantially four patterns from f 1 (κ) to f 4 (κ) may be considered. Each of these formulas f 1 (κ) to f 8 (κ) can be represented in the graph shown in FIG. In the graph, the horizontal axis represents the value of κ, and the vertical axis represents the value of the evaluation function f n (κ).

同グラフから、f(κ)=0のラインにクロスする評価関数f(κ)はf(κ)であることが分かる。したがって、この例では、各係数cpq(c01,c12,c20)の値は、(25)式のf(κ)の式からそれぞれ+1となる。また、f(κ)=2mπの制約条件を満たすκの解κは、f(κ)がf(κ)=0のラインにクロスするκの値になる。 From the graph, it can be seen that the evaluation function f n (κ) that crosses the line of f n (κ) = 0 is f 1 (κ). Therefore, in this example, the value of each coefficient cpq (c 01 , c 12 , c 20 ) is +1 from the expression of f 1 (κ) in the expression (25). Further, the solution κ 0 of κ that satisfies the constraint condition of f n (κ) = 2mπ is a value of κ at which f 1 (κ) crosses the line of f n (κ) = 0.

最適な評価関数f(κ)は、詳細には次のように求めることができる。(21)式に示す逆三角関数arccosより、次の(26)式に示す不等式が成り立つ。

Figure 2016166806
The optimum evaluation function f n (κ) can be obtained in detail as follows. From the inverse trigonometric function arccos shown in equation (21), the following inequality is established as shown in equation (26).
Figure 2016166806

したがって、κの範囲は次の(27)式に示す範囲となる。

Figure 2016166806
Therefore, the range of κ is the range shown in the following equation (27).
Figure 2016166806

ただし、Emaxは次の(28)式の大括弧{}中の最も大きなEpqとする。

Figure 2016166806
However, Emax is the largest Epq in the brackets {} in the following equation (28).
Figure 2016166806

このκの範囲で、巡回差分位相条件を満たす評価関数f(κ)を調べる。ここで、αを0<α<κ<2/Emaxの関係を満たす値とする(実際の計算ではαは0に近い値とすればよい)。また、f(κ)の場合は評価関数f(κ)=f(κ)−2π、f(κ),f(κ),f(κ)の場合は評価関数f(κ)=f(κ)、n=2,3,4の式を用いる。評価関数f(κ)がf(κ)=0の軸と交差する場合、0の前後で評価関数f(κ)の符号が変わるので、f(α)・f(2/Emax)<0となる関数が最適な評価関数f(κ)となる。最適な評価関数f(κ)が決定したら、その解κは2分法のような単純なアルゴリズムによって求めることができる。また、各位相シフト量Δφpqの係数cpqの値は(25)式のf(κ)〜f(κ)の式を参照することで求めることができる。 In this range of κ, the evaluation function f n (κ) that satisfies the cyclic differential phase condition is examined. Here, α is set to a value satisfying the relationship of 0 <α <κ 0 <2 / Emax (α may be a value close to 0 in actual calculation). In the case of f 1 (κ), the evaluation function f n (κ) = f 1 (κ) −2π, and in the case of f 2 (κ), f 3 (κ), f 4 (κ), the evaluation function f n. (Κ) = f n (κ), n = 2, 3 and 4 are used. When the evaluation function f n (κ) intersects the axis of f n (κ) = 0, the sign of the evaluation function f n (κ) changes before and after 0, so that f n (α) · f n (2 / A function satisfying Emax) <0 is the optimum evaluation function f n (κ). When the optimum evaluation function f n (κ) is determined, the solution κ 0 can be obtained by a simple algorithm such as a bisection method. Further, the value of the coefficient cpq of each phase shift amount Δφpq can be obtained by referring to the equations f 1 (κ) to f 8 (κ) in the equation (25).

符号を含めた位相シフト量Δφpqの値は、このように求めた各位相シフト量Δφpqの係数cpqの値および評価関数f(κ)の解κから、次の(29)式によって求めることができる。

Figure 2016166806
The value of the phase shift amount Δφpq including the sign is obtained from the value of the coefficient cpq of each phase shift amount Δφpq and the solution κ 0 of the evaluation function f n (κ) by the following equation (29). Can do.
Figure 2016166806

前述したように、この符号を含めた位相シフト量Δφpqの値を(8)式に代入することで、変形格子像a,b,cのz方向の高さに相当する波の位相θが求められる。この位相θから一般的な方法を用いて三次元復元を行うことで図5(a)に示す画像が得られ、最終的に同図(b)に示す被測定物1の三次元形状が計測される。   As described above, the phase θ of the wave corresponding to the height in the z direction of the deformed grating images a, b, and c is obtained by substituting the value of the phase shift amount Δφpq including this sign into the equation (8). It is done. By performing three-dimensional reconstruction from this phase θ using a general method, the image shown in FIG. 5A is obtained, and finally the three-dimensional shape of the DUT 1 shown in FIG. 5B is measured. Is done.

このような本実施の形態による三次元計測法によれば、撮影方式が積分型で、投影する格子パターン2の位相シフト量Δφpqが任意の一般化位相シフト法により、各変形格子像a,b,c間の相対的な位相シフト量Δφpqの値を上記のように簡単に算出することができる。したがって、算出した位相シフト量Δφpqの値から(8)式を用いて変形格子像a,b,cの位相θの値を求めることで、被測定物1の形状を簡単に三次元計測することが可能になる。一般化位相シフト法は、一定量位相シフト法におけるような正確な位相キャリブレーションを必要とせず、また、撮影装置6と格子投影装置3との間で高精度な同期制御をとる必要がない。さらに、位相シフトの安定性が良い。このため、一定量位相シフト法を用いて三次元計測する際に発生する様々な問題を生じることなく、PCシステム等で計測システムSを容易に構築して、簡単な計測手順で短時間に三次元計測することが可能になる。   According to such a three-dimensional measurement method according to the present embodiment, the imaging method is an integral type, and the phase shift amount Δφpq of the lattice pattern 2 to be projected is determined by the arbitrary generalized phase shift method. , C, the value of the relative phase shift amount Δφpq can be easily calculated as described above. Therefore, the shape of the DUT 1 can be easily measured three-dimensionally by determining the value of the phase θ of the deformed grating images a, b, and c from the calculated value of the phase shift amount Δφpq using equation (8). Is possible. The generalized phase shift method does not require accurate phase calibration as in the constant amount phase shift method, and does not require high-accuracy synchronous control between the imaging device 6 and the lattice projection device 3. Furthermore, the stability of the phase shift is good. For this reason, the measurement system S is easily constructed with a PC system or the like without causing various problems that occur when performing the three-dimensional measurement using the constant phase shift method, and the third order can be performed in a short time with a simple measurement procedure. The original measurement can be performed.

また、本実施の形態による三次元計測法では、値が0となる評価関数f(κ)を求めて、求めた評価関数f(κ)を構成する各位相シフト量Δφpqの係数cpqの値から各位相シフト量Δφpqの符号を求め、また、求めた評価関数f(κ)から解κを見つける解探索アルゴリズムが採用されている。本構成によれば、簡単なアルゴリズムで各位相シフト量Δφpqの符号および評価関数f(κ)の解κを見つけることができる。このため、変形格子像a,b,c間における格子パターン2の相対的な位相シフト量Δφpqの値をより簡単に算出することができ、被測定物1の形状をより簡単に三次元計測することが可能になる。 In the three-dimensional measurement method according to the present embodiment, the evaluation function f n (κ) having a value of 0 is obtained, and the coefficient cpq of each phase shift amount Δφpq constituting the obtained evaluation function f n (κ) is calculated. A solution search algorithm for obtaining the sign of each phase shift amount Δφpq from the value and finding the solution κ 0 from the obtained evaluation function f n (κ) is employed. According to this configuration, the sign of each phase shift amount Δφpq and the solution κ 0 of the evaluation function f n (κ) can be found with a simple algorithm. Therefore, the value of the relative phase shift amount Δφpq of the lattice pattern 2 between the deformed lattice images a, b, and c can be calculated more easily, and the shape of the DUT 1 can be more easily measured three-dimensionally. It becomes possible.

上記の本発明による三次元計測法は、デジタル3D(三次元)アーカイブのための3Dスキャナや、腹腔鏡下での手術における三次元計測、義肢・装具製作,義歯製作における三次元計測、ロボットビジョンや人間の運動解析における三次元計測、ヒューマンインターフェース、生体認証等のセキュリティ技術、リバースエンジニアリング、3DCG(コンピュータ・グラフィック)や3Dプリンタのための3Dデータ取得技術等に利用することが可能である。   The above-described three-dimensional measurement method according to the present invention includes a 3D scanner for digital 3D (three-dimensional) archiving, three-dimensional measurement in laparoscopic surgery, three-dimensional measurement in prosthetic limb and orthosis production, denture production, robot vision It can be used for 3D measurement in human motion analysis, human interface, security technology such as biometric authentication, reverse engineering, 3D data acquisition technology for 3DCG (computer graphics) and 3D printers.

S…計測システム
1…被測定物
2…格子パターン
3…格子投影装置
3a…光源
3b…フィルム
4…軸
5…ミラー
6…撮影装置
7…位相シフト解析装置
DESCRIPTION OF SYMBOLS S ... Measuring system 1 ... Object to be measured 2 ... Lattice pattern 3 ... Lattice projection device 3a ... Light source 3b ... Film 4 ... Axis 5 ... Mirror 6 ... Imaging device 7 ... Phase shift analysis device

Claims (2)

移動する格子パターンを被測定物に投影し、被測定物の形状に応じて変形する前記格子パターンを撮影して3枚の変形格子像を取得し、取得した3枚の前記変形格子像間における輝度値について平均二乗誤差を計算し、前記輝度値の位相分布のランダム性が成り立つときには前記輝度値の振動成分の空間平均が統計的に0になることに基づいて前記振動成分を表す項が0にされて三角関数で表された前記平均二乗誤差から、各前記変形格子像間の相対的な位相シフト量の絶対値を逆三角関数を使って求め、求めた各前記位相シフト量の和で表した評価関数が巡回差分位相条件を満たす各前記位相シフト量の符号および前記評価関数の解を解探索アルゴリズムを用いて求め、求めた各前記位相シフト量の符号および前記評価関数の解から符号を含めた前記位相シフト量の値を求め、前記位相シフト量のこの値から前記変形格子像の位相値を求めて被測定物の形状を三次元計測する三次元計測法。   The moving lattice pattern is projected onto the object to be measured, the lattice pattern deformed according to the shape of the object to be measured is photographed to obtain three deformed lattice images, and between the obtained three deformed lattice images. A term representing the vibration component is calculated based on the fact that the mean square error is calculated for the luminance value, and the spatial average of the vibration component of the luminance value is statistically zero when the randomness of the phase distribution of the luminance value holds. From the mean square error expressed as a trigonometric function, the absolute value of the relative phase shift amount between the deformed lattice images is obtained using an inverse trigonometric function, and the sum of the obtained phase shift amounts is obtained. A sign of each phase shift amount satisfying a cyclic differential phase condition and a solution of the evaluation function are obtained using a solution search algorithm, and a sign of each obtained phase shift amount and a solution of the evaluation function are obtained. The Obtains a value of meta said phase shift, three-dimensional measurement method for measuring three-dimensional shape of the object to be measured by obtaining a phase value of the deformation lattice image from this value of the phase shift amount. 前記解探索アルゴリズムは、値が0となる前記評価関数を求めて、求めた前記評価関数を構成する各前記位相シフト量の係数値から各前記位相シフト量の符号を求め、求めた前記評価関数から前記解を見つけることを特徴とする請求項1に記載の三次元計測法。   The solution search algorithm obtains the evaluation function having a value of 0, obtains the sign of each phase shift amount from the coefficient value of each phase shift amount constituting the obtained evaluation function, and obtains the obtained evaluation function The three-dimensional measurement method according to claim 1, wherein the solution is found from:
JP2015047035A 2015-03-10 2015-03-10 Three-dimensional measurement method Expired - Fee Related JP6482119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047035A JP6482119B2 (en) 2015-03-10 2015-03-10 Three-dimensional measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047035A JP6482119B2 (en) 2015-03-10 2015-03-10 Three-dimensional measurement method

Publications (2)

Publication Number Publication Date
JP2016166806A true JP2016166806A (en) 2016-09-15
JP6482119B2 JP6482119B2 (en) 2019-03-13

Family

ID=56898260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047035A Expired - Fee Related JP6482119B2 (en) 2015-03-10 2015-03-10 Three-dimensional measurement method

Country Status (1)

Country Link
JP (1) JP6482119B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004338A (en) * 1999-06-25 2001-01-12 Wakayama Univ Real time shape deformation measuring method
JP2002090126A (en) * 2000-09-14 2002-03-27 Wakayama Univ Real time shape deformation measuring method by color rectangular wave grid projection
JP2006249590A (en) * 2005-03-09 2006-09-21 Shiraishi Kogyo Kaisha Ltd Printing coated paper using composite pigment, and paperboard
US20070206204A1 (en) * 2005-12-01 2007-09-06 Peirong Jia Full-field three-dimensional measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004338A (en) * 1999-06-25 2001-01-12 Wakayama Univ Real time shape deformation measuring method
JP2002090126A (en) * 2000-09-14 2002-03-27 Wakayama Univ Real time shape deformation measuring method by color rectangular wave grid projection
JP2006249590A (en) * 2005-03-09 2006-09-21 Shiraishi Kogyo Kaisha Ltd Printing coated paper using composite pigment, and paperboard
US20070206204A1 (en) * 2005-12-01 2007-09-06 Peirong Jia Full-field three-dimensional measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梅崎栄作、小池尚男、渡辺寛: "一般化位相化シフト法による光弾性しま次数の全域自動測定", 日本機械学会論文集(A編), vol. 62巻599号, JPN6019002504, July 1996 (1996-07-01), JP, pages 162 - 167, ISSN: 0003967634 *

Also Published As

Publication number Publication date
JP6482119B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
Zhang et al. High-resolution, real-time three-dimensional shape measurement
US9322643B2 (en) Apparatus and method for 3D surface measurement
US10706570B2 (en) System and method to acquire the three-dimensional shape of an object using a moving patterned substrate
JP4873485B2 (en) Shape measuring method and shape measuring apparatus using a number of reference surfaces
JP5016520B2 (en) Three-dimensional shape measuring method and apparatus
US20070115484A1 (en) 3d shape measurement system and method including fast three-step phase shifting, error compensation and calibration
JP4830871B2 (en) 3D shape measuring apparatus and 3D shape measuring method
JP5032943B2 (en) 3D shape measuring apparatus and 3D shape measuring method
KR102149707B1 (en) 3D shape measurement device, 3D shape measurement method and program
TWI573984B (en) System and method of adjusting matching image
JP6590339B2 (en) Measuring method, measuring apparatus, measuring program, and computer-readable recording medium recording the measuring program
JP2002257528A (en) Three-dimensional shape measuring device by phase shift method
US11300402B2 (en) Deriving topology information of a scene
JP2015094701A (en) Mtf measurement device and mtf measurement program
JPWO2017175341A1 (en) Measuring method, measuring apparatus, measuring program, and computer-readable recording medium recording the measuring program
JP4516949B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP2008145139A (en) Shape measuring device
JP4797109B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP3536097B2 (en) Method and apparatus for measuring grating projection shape using frequency modulation grating
JP2012514192A (en) 3D measurement method of object surface especially for dentistry
JP2000146543A (en) Three dimensional shape measuring device, method and record medium
KR101001894B1 (en) Apparatus and method for 3-D profilometry using color projection moire technique
JP2010175554A (en) Device and method for measuring three-dimensional shape
Marrugo et al. Fourier transform profilometry in LabVIEW
JPH1096606A (en) Shape measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190208

R150 Certificate of patent or registration of utility model

Ref document number: 6482119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees