JP2016160278A - 絶縁熱伝導性ポリカーボネート樹脂組成物 - Google Patents

絶縁熱伝導性ポリカーボネート樹脂組成物 Download PDF

Info

Publication number
JP2016160278A
JP2016160278A JP2015037165A JP2015037165A JP2016160278A JP 2016160278 A JP2016160278 A JP 2016160278A JP 2015037165 A JP2015037165 A JP 2015037165A JP 2015037165 A JP2015037165 A JP 2015037165A JP 2016160278 A JP2016160278 A JP 2016160278A
Authority
JP
Japan
Prior art keywords
component
weight
polycarbonate resin
resin composition
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037165A
Other languages
English (en)
Other versions
JP6495683B2 (ja
Inventor
俊介 奥澤
Shunsuke Okuzawa
俊介 奥澤
正人 本城
Masato Honjo
正人 本城
菊池 清治
Seiji Kikuchi
清治 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2015037165A priority Critical patent/JP6495683B2/ja
Publication of JP2016160278A publication Critical patent/JP2016160278A/ja
Application granted granted Critical
Publication of JP6495683B2 publication Critical patent/JP6495683B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】熱伝導性、絶縁性、耐衝撃性、耐熱性に優れた絶縁熱伝導性ポリカーボネート樹脂組成物を提供する。
【解決手段】(A)ポリカーボネート系樹脂(A成分)50〜80重量%、(B)窒化ホウ素(B成分)15〜25重量%並びに(C)タルクおよび/またはウォラストナイト(C成分)5〜25重量%からなる絶縁熱伝導性ポリカーボネート樹脂組成物。
【選択図】なし

Description

本発明はポリカーボネート系樹脂、窒化ホウ素並びにタルクおよび/またはウォラストナイトからなる樹脂組成物であって、熱伝導性、絶縁性、耐衝撃性および耐熱性に優れた絶縁熱伝導性ポリカーボネート樹脂組成物に関するものである。
熱可塑性樹脂は、その製造、成形の容易さのため、あらゆる産業において広く用いられている。特に、芳香族ポリカーボネート系樹脂組成物は、一般に優れた耐熱性や耐衝撃性を有し、電子機器、事務機、機械、自動車などに幅広く使用されている。特に近年、LED照明用途においては、LEDの寿命の低下や輝度の低下を抑制するために、発生する熱を効率的に外部へ放散させる放熱対策が非常に重要な課題となっている。通常、LED照明の熱を拡散させるには、熱伝導性の良い金属やセラミックス系の材料を使用する方法、金属製のヒートシンクや放熱ファンを利用して熱源から熱を放散させる方法が用いられている。しかしながら、金属製の放熱部材では比重が重い、製造コストが高い等といった問題を抱えており、さらなるLED照明の市場発展のためには、射出成形可能な熱伝導性樹脂組成物の要求が非常に高い。
これらの熱伝導性を要求される高分子組成物の熱伝導性を更に向上させる方法として、熱伝導性の高い炭素系材料を高分子材料に充填させた熱伝導性高分子材料が提案されている。例えば、高分子材料に黒鉛化炭素繊維を添加する方法(特許文献1〜3参照)、熱可塑性樹脂にピッチ系炭素繊維と鱗状黒鉛を添加する方法が公知であるが、絶縁性の低下や難燃性の低下など様々な課題があった。
一方、絶縁性を維持したまま熱伝導率を向上させるためには酸化アルミニウムや窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化マグネシウム、酸化亜鉛、炭化ケイ素、石英、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの充填剤を添加することが知られているが、熱伝導率を向上させ、高い難燃性を発現させた熱可塑性樹脂を得ることは困難であった。(特許文献4〜7参照)また、ポリカーボネート樹脂の絶縁性を維持したまま熱伝導率、難燃性、耐衝撃性など向上させるために特定の窒化ホウ素を使用したり、アミン系シランカップリング剤を添加することが知られているが、熱伝導率、難燃性、耐衝撃性が十分とはいえないのが現状である(特許文献8、9参照)。
特開2002−88250号公報 特開2002−339171号公報 特開2003−112915号公報 特開2010−195890号公報 特開2008−239899号公報 特開2008−270709号公報 特開2011−12193号公報 特開2012−188579号公報 特開2013−203770号公報
上記に鑑み、本発明の目的は優れた熱伝導性、絶縁性、耐衝撃性および耐熱性を有する絶縁熱伝導性ポリカーボネート樹脂組成物に関するものである。
本発明者は上記課題を解決すべく鋭意検討を行った結果、ポリカーボネート系樹脂、窒化ホウ素並びにタルクおよび/またはウォラストナイトを特定の割合で配合することにより熱伝導性、絶縁性、耐衝撃性および耐熱性に優れた絶縁熱伝導性ポリカーボネート樹脂組成物を得る方法を見出し、本発明を完成するに至った。
本発明によれば、上記課題は、(A)ポリカーボネート系樹脂(A成分)50〜80重量%、(B)窒化ホウ素(B成分)15〜25重量%並びに(C)タルクおよび/またはウォラストナイト(C成分)5〜25重量%からなる絶縁熱伝導性ポリカーボネート樹脂組成物により達成される。
以下、本発明の詳細について説明する。
(A成分:ポリカーボネート系樹脂)
本発明において使用されるポリカーボネート系樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。
本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01〜1モル%、より好ましくは0.05〜0.9モル%、さらに好ましくは0.05〜0.8モル%である。
また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H−NMR測定により算出することが可能である。
脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
本発明のポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
本発明の樹脂組成物を製造するにあたり、ポリカーボネート系樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10〜5×10であり、より好ましくは1.4×10〜3×10、さらに好ましくは1.4×10〜2.4×10である。
粘度平均分子量が1×10未満のポリカーボネート系樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。
なお、前記ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10〜3×10のポリカーボネート系樹脂A−1−1−1成分)、および粘度平均分子量1×10〜3×10の芳香族ポリカーボネート樹脂(A−1−1−2成分)からなり、その粘度平均分子量が1.6×10〜3.5×10であるポリカーボネート系樹脂(A−1−1成分)(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。
かかる高分子量成分含有ポリカーボネート系樹脂(A−1−1成分)において、A−1−1−1成分の分子量は7×10〜2×10が好ましく、より好ましくは8×10〜2×10、さらに好ましくは1×10〜2×10、特に好ましくは1×10〜1.6×10である。またA−1−1−2成分の分子量は1×10〜2.5×10が好ましく、より好ましくは1.1×10〜2.4×10、さらに好ましくは1.2×10〜2.4×10、特に好ましくは1.2×10〜2.3×10である。
高分子量成分含有ポリカーボネート系樹脂(A−1−1成分)は前記A−1−1−1成分とA−1−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1−1成分100重量%中、A−1−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1−1成分が4〜20重量%であり、特に好ましくはA−1−1−1成分が5〜20重量%である。
また、A−1−1成分の調製方法としては、(1)A−1−1−1成分とA−1−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1−1成分および/またはA−1−1−2成分とを混合する方法などを挙げることができる。
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
尚、本発明のポリカーボネート樹脂組成物におけるポリカーボネート系樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
本発明のポリカーボネート系樹脂(A成分)としてポリカーボネート−ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂とは下記一般式(1)で表される二価フェノールおよび下記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂である。
Figure 2016160278
[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。]
Figure 2016160278
[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。]
Figure 2016160278
[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。]
一般式(1)で表される二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
上記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。
Figure 2016160278
ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。
また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10〜300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10〜200、より好ましくは12〜150、更に好ましくは14〜100である。かかる好適な範囲の下限未満では、ポリカーボネート−ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。
A成分で使用されるポリカーボネート−ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1〜50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H−NMR測定により算出することが可能である。
本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。
また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。
本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。
二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。
炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。
前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。
オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。
本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート−ポリジオルガノシロキサン共重合体を得る。
Figure 2016160278
(上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。)
界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。
かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p−tert−ブチルフェノール、p−クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100〜0.5モル、好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。
重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。
かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。
分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート−ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート−ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%、特に好ましくは0.05〜0.4モル%である。なお、かかる分岐構造量については1H−NMR測定により算出することが可能である。
反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。
場合により、得られたポリカーボネート−ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として回収することができる。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1〜40nmの範囲が好ましい。かかる平均サイズはより好ましくは1〜30nm、更に好ましくは5〜25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより耐衝撃性および外観に優れたポリカーボネート樹脂組成物が提供される。
本発明におけるポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、規格化分散は、小角エックス線散乱法(Small Angle X−ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1〜100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート−ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズと粒径分布を、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均サイズで規格化したパラメータを意味する。具体的には、ポリジオルガノシロキサンドメインサイズの分散を平均ドメインサイズで規格化した値であり、下記式(1)で表される。
Figure 2016160278
上記式(1)において、δはポリジオルガノシロキサンドメインサイズの標準偏差、Davは平均ドメインサイズである。
本発明に関連して用いる用語「平均ドメインサイズ」、「規格化分散」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。
A成分の含有量はA成分、B成分およびC成分の合計100重量%中、50〜80重量%であり、55〜75重量%が好ましく、60〜70重量%がより好ましい。A成分の割合が50重量%未満であると押出加工性悪く、機械的強度が低下する。また80重量%より多いと熱伝導性が低下する。
(B成分:窒化ホウ素)
窒化ホウ素は立方晶窒化ホウ素、六方晶窒化ホウ素等が挙げられ、六方晶窒化ホウ素が好ましい。また、窒化ホウ素には、球状、鱗片状、およびそれらの凝集体などがあり、本発明にはいずれも使用することができる。なかでも鱗片状、鱗片状の凝集体を用いるとより熱伝導性の良好な組成物が得られるとともに機械物性等が良好となるので好ましい。窒化ホウ素の平均粒径(D50)はレーザー回折・散乱法にて測定した数値にて1〜100μmが好ましく。5〜50μmがより好ましい。平均粒径が1μm未満では樹脂組成物製造時の押出安定性が悪く生産性が低下する場合があり好ましくない。平均粒径が100μmを超えると成形品表面の外観が悪くなる場合があり好ましくない。
B成分の含有量はA成分、B成分およびC成分の合計100重量%中、15〜25重量%であり、17〜23重量%が好ましく、18〜22重量%がより好ましい。B成分の割合が15重量%未満の場合には曲げ弾性率が低いうえ、熱伝導性が低く、25重量%を超えると押出加工性が低下するうえ、熱伝導性におけるC成分との相乗効果が発現しない。
(C成分:タルクおよび/またはウォラストナイト)
本発明の樹脂組成物はタルクおよび/またはウォラストナイトを含有する。
(タルク)
本発明におけるタルクとは、化学組成的には含水珪酸マグネシウムであり、一般的には化学式4SiO・3MgO・2HOで表され、通常層状構造を持った鱗片状の粒子であり、また組成的にはSiOを56〜65重量%、MgOを28〜35重量%、HO約5重量%程度から構成されている。その他の少量成分としてFeが0.03〜1.2重量%、Alが0.05〜1.5重量%、CaOが0.05〜1.2重量%、KOが0.2重量%以下、NaOが0.2重量%以下などを含有している。タルクの粒子径は、レーザー回折・散乱法により測定される平均粒径サイズ(D50)が1〜15μm(より好ましくは1〜10μm、更に好ましくは.2〜8μm、特に好ましくは3〜7μm)の範囲であることが好ましい。平均粒径が1μm未満では樹脂組成物製造時の生産性が低下する場合があり好ましくない。平均粒径が15μmを超えるとB成分の窒化ホウ素との熱伝導性の相乗効果が低くなる場合があり好ましくない。
更にかさ密度を0.5g/cm以上としたタルクを原料として使用することが特に好適である。またタルクを原石から粉砕する際の製法に関しては特に制限はなく、軸流型ミル法、アニュラー型ミル法、ロールミル法、ボールミル法、ジェットミル法、および容器回転式圧縮剪断型ミル法等を利用することができる。さらに粉砕後のタルクは、各種の分級機によって分級処理され、粒子径の分布が揃ったものが好適である。分級機としては特に制限はなく、インパクタ型慣性力分級機(バリアブルインパクターなど)、コアンダ効果利用型慣性力分級機(エルボージェットなど)、遠心場分級機(多段サイクロン、ミクロプレックス、ディスパージョンセパレーター、アキュカット、ターボクラシファイア、ターボプレックス、ミクロンセパレーター、およびスーパーセパレーターなど)などを挙げることができる。
さらにタルクは、その取り扱い性等の点で凝集状態であるものが好ましく、かかる製法としては脱気圧縮による方法、集束剤を使用し圧縮する方法等がある。特に脱気圧縮による方法が簡便かつ不要の集束剤樹脂成分を本発明の樹脂組成物中に混入させない点で好ましい。
(ウォラストナイト)
ウォラストナイトのレーザー回折・散乱法により測定される平均粒子サイズ(D50)は、1〜20μm(より好ましくは1〜15μm、更に好ましくは3〜15μm、特に好ましくは4〜10μm)の範囲であることが好ましい。平均粒径が1μm未満では樹脂組成物製造時の生産性が低下する場合があり好ましくない。平均粒径が20μmを超えるとB成分の窒化ホウ素との熱伝導性の相乗効果が低くなる場合があり好ましくない。本発明のウォラストナイトは、その元来有する白色度を十分に樹脂組成物に反映させるため、原料鉱石中に混入する鉄分並びに原料鉱石を粉砕する際に機器の摩耗により混入する鉄分を磁選機によって極力取り除くことが好ましい。かかる磁選機処理によりウォラストナイト中の鉄の含有量はFeに換算して、0.5重量%以下であることが好ましい。
タルクおよびウォラストナイトは、表面処理されていないことが好ましいが、あらかじめD成分以外のシランカップリング剤、高級脂肪酸エステル、およびワックスなどの各種表面処理剤で表面処理されていてもよい。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。また、ウォラストナイトの場合、樹脂組成物の難燃化がタルクより容易となるため、難燃性の必要な用途には、より好適である。
C成分の含有量はA成分、B成分およびC成分の合計100重量%中、5〜25重量%であり、8〜22重量%が好ましく、10〜20重量%がより好ましい。C成分の割合が5重量%未満の場合には、曲げ弾性率が低下するうえ熱伝導性におけるB成分との相乗効果が発現せず、25重量%を超えると、押出性が悪いうえ熱伝導性における相乗効果が発現しなくなる。
(D成分:有機シラン化合物)
本発明の樹脂組成物はD成分として下記一般式(5)で表される有機シラン化合物を含有することができる。
Figure 2016160278
(上記一般式(5)において、Xは水素原子、ハロゲン原子、およびRO(Rは炭素数1〜8のアルキル基を示し、該アルキル基はヘテロ原子を含有してよい)のいずれかを示し、Rは炭素数4〜30であり、フッ素原子で置換されてもよいアルキル基を示し、Rは炭素数1〜3であり、ハロゲン原子で置換されてもよいアルキル基を示す。mおよびnはそれぞれ1、2または3であり、4−(m+n)は0、1または2であり、X、R、およびRがそれぞれ複数存在するときは、それらは互いに同一であっても異なっていてもよい。)
有機シラン化合物の具体例としては、Rがメチル基の例として、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ブチルメチルジメトキシシラン、ブチルジメチルメトキシシラン、tert−ブチルトリメトキシシラン、tert−ブチルジメチルメトキシシラン、ジブチルジメトキシシラン、およびトリブチルメトキシシラン(以上Rが炭素数4のアルキル基の場合、以下単に“R=C”と表記する);ペンチルトリメトキシシラン、およびメチルペンチルジメトキシシラン(R=C);ヘキシルトリメトキシシラン、トリヘキシルメトキシシラン、ノナフルオロへキシルトリメトキシシラン、およびノナフルオロヘキシルメチルジメトキシシラン(R=C);ヘプチルメチルジメトキシシラン(R=C);オクチルトリメトキシシラン、メチルオクチルジメトキシシラン、ジメチルオクチルメトキシシラン、およびトリデカフルオロオクチルトリメトキシシラン、オクテニルトリメトキシシラン(R=C);ノニルトリメトキシシラン(R=C);デシルトリメトキシシラン、デシルメチルジメトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、およびヘプタデカフルオロデシルトリメトキシシラン(R=C10);ドデシルトリメトキシシラン、およびドデシルメチルジメトキシシラン(R=C12);テトラデシルトリメトキシシラン(R=C14);オクタデシルトリメトキシシラン、メチルオクタデシルジメトキシシラン、およびジメチルオクタデシルメトキシシラン(R=C18);エイコシルトリメトキシシラン(R=C20);ドコシルトリメトキシシラン、およびドコシルメチルジメトキシシラン(R=C22)などが挙げられる。Rがメチル基以外の例として、上記シラン化合物のメチル基がエチル基に置換したシラン化合物が例示される。D成分の市販品としては、信越化学工業(株)製 KBM−3103(デシルトリメトキシシラン)、KBM−1083(オクテニルトリメトキシシラン)などがあげられる。
有機シラン化合物は、珪酸塩鉱物表面に対する高い反応性と芳香族ポリカーボネート樹脂組成物に対する非親和性が求められるため、上記一般式(5)において、4−(m+n)=0であり、m=2(即ちn=2)またはm=3(即ちn=1)であることが好ましい。特にm=3およびn=1であることが好ましい。
また上記一般式(5)においてXは、取り扱い性や反応性の点から、メトキシ基およびエトキシ基が好ましく、特にメトキシ基が好ましい。一方でRにおける炭素数が多いほど(鎖長が長いほど)、芳香族ポリカーボネート樹脂に対する非親和性は高くなる傾向にある。しかしながらRの炭素数が多いほどそれ自体の熱安定性が低下して色相が悪化する傾向にある。したがってRの炭素数は、好適には4〜18であり、より好適には4〜10である。
D成分の含有量は、A成分、B成分およびC成分の合計100重量部あたり0.01〜3重量部であることが好ましく、より好ましくは0.1〜2重量部、より好ましくは、0.2〜1重量部である。含有量が0.01重量部より少ないと、熱伝導性および耐衝撃性が向上しない場合があり、3重量部より多くしても効果が増大することがない場合があり、不経済である。
(E成分:酸変性オレフィンワックス)
本発明の樹脂組成物は、E成分として酸変性オレフィンワックスを含有することができる。酸変性オレフィンワックスとしては、カルボキシル基および/またはその誘導体基を有するオレフィン系ワックスが好ましく使用される。カルボキシル基誘導体としては、カルボン酸無水物基、カルボン酸の金属塩、カルボン酸のアルキルエステルまたはアリールエステル等が挙げられる。このカルボキシル基および/またはその誘導体基は、このオレフィン系ワックスのどの部分に結合してもよく、またその濃度は特に限定されないが、該オレフィン系ワックス1g当り0.1〜6meq/gの範囲が好ましい。0.1meq/gより少なくなると剛性および耐衝撃性の改良が不十分となり、6meq/gより多くなると該オレフィン系ワックス自身の熱安定性が悪化し好ましくない。かかるオレフィン系ワックスの市販品としては、例えばダイヤカルナ−DC30M(三菱化学(株)製)、Licolub CE 2 TP(クラリアント(株)製)、ハイワックス酸処理タイプの2203A、1105A(三井石油化学工業(株)製)、ダウケミカル(株)製EXL3808および酸化パラフィン(日本精蝋(株)製)等が挙げられる。本発明において、オレフィン系ワックスは単独あるいは2種以上の混合物として使用できる。
E成分の含有量は、A成分、B成分およびC成分の合計100重量部あたり0.01〜3重量部であることが好ましく、より好ましくは0.1〜2重量部、さらに好ましくは0.2〜1.5重量部である。E成分の含有量が0.01重量部未満では、耐衝撃性が低下し、またシルバーにより外観が著しく悪化する場合があり、3重量部を超えると耐熱性や加工性が低下する場合がある。
(F成分:ドリップ防止剤)
本発明の樹脂組成物は、F成分としてドリップ防止剤を含有することができる。このドリップ防止剤の含有により、成形品の物性を損なうことなく、良好な難燃性を達成することができる。
F成分のドリップ防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることができる。中でも好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万〜1000万、より好ましく200万〜900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。
かかるフィブリル形成能を有するPTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン工業(株)のポリフロンMPA FA500HおよびF−201Lなどを挙げることができる。PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1およびD−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。
混合形態のPTFEとしては、(1)PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、さらに該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これら混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、「メタブレンA3750」などを挙げることができる。
混合形態におけるPTFEの割合としては、PTFE混合物100重量%中、PTFEが1〜60重量%が好ましく、より好ましくは5〜55重量%である。PTFEの割合がかかる範囲にある場合は、PTFEの良好な分散性を達成することができる。
ポリテトラフルオロエチレン系混合体に使用される有機系重合体としてスチレン系単量体としては、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基およびハロゲンからなる群より選ばれた1つ以上の基で置換されてもよいスチレン、例えば、オルト−メチルスチレン、メタ−メチルスチレン、パラ−メチルスチレン、ジメチルスチレン、エチル−スチレン、パラ−tert−ブチルスチレン、メトキシスチレン、フルオロスチレン、モノブロモスチレン、ジブロモスチレン、およびトリブロモスチレン、ビニルキシレン、ビニルナフタレンが例示されるが、これらに制限されない。前記スチレン系単量体は単独又は2つ以上の種類を混合して使用することができる。
ポリテトラフルオロエチレン系混合体に使用される有機系重合体として使用されるアクリル系単量体は、置換されてもよい(メタ)アクリレート誘導体を含む。具体的に前記アクリル系単量体としては、炭素数1〜20のアルキル基、炭素数3〜8のシクロアルキル基、アリール基、及びグリシジル基からなる群より選ばれた1つ以上基によりの置換されてもよい(メタ)アクリレート誘導体、例えば(メタ)アクリロ二トリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートおよびグリシジル(メタ)アクリレート、炭素数1〜6のアルキル基、又はアリール基により置換されてもよいマレイミド、例えば、マレイミド、N−メチル−マレイミドおよびN−フェニル−マレイミド、マレイン酸、フタル酸およびイタコン酸が例示されるが、これらに制限されない。前記アクリル系単量体は単独又は2つ以上の種類を混合して使用することができる。これらの中でも(メタ)アクリロ二トリルが好ましい。
有機重合体に含まれるアクリル系単量体由来単位の量は、スチレン系単量体由来単位100重量部に対して好ましくは8〜11重量部、より好ましくは8〜10重量部、さらに好ましくは8〜9重量部である。アクリル系単量体由来単位が8重量部より少ないとコーティング強度が低下することがあり、11重量部より多いと成形品の表面外観が悪くなり得る。
本発明のポリテトラフルオロエチレン系混合体は、残存水分含量が0.5重量%以下であることが好ましく、より好ましくは0.2〜0.4重量%、さらに好ましくは0.1〜0.3重量%である。残存水分量が0.5重量%より多いと難燃性に悪影響を与えることがある。
本発明のポリテトラフルオロエチレン系混合体の製造工程には、開始剤の存在下でスチレン系単量体及びアクリル単量体からなるグループより選ばれた1つ以上の単量体を含むコーティング層を分岐状ポリテトラフルオロエチレンの外部に形成するステップが含まれる。さらに、前記コーティング層形成のステップ後に残存水分含量を0.5重量%以下、好ましくは0.2〜0.4重量%、より好ましくは0.1〜0.3重量%となるように乾燥させるステップを含むことが好ましい。乾燥のステップは、例えば、熱風乾燥又は真空乾燥方法のような当業界に公知にされた方法を用いて行うことができる。
本発明のポリテトラフルオロエチレン系混合体に使用される開始剤は、スチレン系及び/又はアクリル系単量体の重合反応に使用されるものであれば制限なく使用され得る。前記開始剤としては、クミルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、ベンゾイルパーオキサイド、ハイドロゲンパーオキサイド、およびポタシウムパーオキサイドが例示されるが、これらに制限されない。本発明のポリテトラフルオロエチレン系混合体には、反応条件に応じて前記開始剤を1種以上使用することができる。前記開始剤の量は、ポリテトラフルオロエチレンの量及び単量体の種類/量を考慮して使用される範囲内で自由に選択され、全組成物の量を基準として0.15〜0.25重量部使用することが好ましい。
本発明のポリテトラフルオロエチレン系混合体は、懸濁重合法により下記の手順にて製造を行った。
まず、反応器中に水および分岐状ポリテトラフルオロエチレンディスパージョン(固形濃度:60%、ポリテトラフルオロエチレン粒子径:0.15〜0.3μm)を入れた後、攪拌しながらアクリルモノマー、スチレンモノマーおよび水溶性開始剤としてクメンハイドロパーオキサイドを添加し80〜90℃にて9時間反応を行なった。反応終了後、遠心分離機にて30分間遠心分離を行うことにより水分を除去し、ペースト状の生成物を得た。その後、生成物のペーストを熱風乾燥機にて80〜100℃にて8時間乾燥した。その後、かかる乾燥した生成物の粉砕を行い本発明のポリテトラフルオロエチレン系混合体を得た。
かかる懸濁重合法は、特許3469391号公報などに例示される乳化重合法における乳化分散による重合工程を必要としないため、乳化剤および重合後のラテックスを凝固沈殿するための電解質塩類を必要としない。また乳化重合法で製造されたポリテトラフルオロエチレン混合体では、混合体中の乳化剤および電解質塩類が混在しやすく取り除きにくくなるため、かかる乳化剤、電解質塩類由来のナトリウム金属イオン、カリウム金属イオンを低減することは難しい。本発明で使用するポリテトラフルオロエチレン系混合体(B成分)は、懸濁重合法で製造されているため、かかる乳化剤、電解質塩類を使用しないことから混合体中のナトリウム金属イオン、カリウム金属イオンが低減することができ、熱安定性および耐加水分解性を向上することができる。
また、本発明ではドリップ防止剤として被覆分岐PTFEを使用することができる。被覆分岐PTFEは分岐状ポリテトラフルオロエチレン粒子および有機系重合体からなるポリテトラフルオロエチレン系混合体であり、分岐状ポリテトラフルオロエチレンの外部に有機系重合体、好ましくはスチレン系単量体由来単位及び/又はアクリル系単量体由来単位を含む重合体からなるコーティング層を有する。前記コーティング層は、分岐状ポリテトラフルオロエチレンの表面上に形成される。また、前記コーティング層はスチレン系単量体及びアクリル系単量体の共重合体を含むことが好ましい。
被覆分岐PTFEに含まれるポリテトラフルオロエチレンは分岐状ポリテトラフルオロエチレンである。含まれるポリテトラフルオロエチレンが分岐状ポリテトラフルオロエチレンでない場合、ポリテトラフルオロエチレンの添加が少ない場合の滴下防止効果が不十分となる。分岐状ポリテトラフルオロエチレンは粒子状であり、好ましくは0.1〜0.6μm、より好ましくは0.3〜0.5μm、さらに好ましくは0.3〜0.4μmの粒子径を有する。0.1μmより粒子径が小さい場合には成形品の表面外観に優れるが、0.1μmより小さい粒子径を有するポリテトラフルオロエチレンを商業的に入手することは難しい。また0.6μmより粒子径が大きい場合には成形品の表面外観が悪くなる場合がある。本発明に使用されるポリテトラフルオロエチレンの数平均分子量は1×10〜1×10が好ましく、より好ましくは2×10〜9×10であり、一般的に高い分子量のポリテトラフルオロエチレンが安定性の側面においてより好ましい。粉末又は分散液の形態いずれも使用され得る。
被覆分岐PTFEにおける分岐状ポリテトラフルオロエチレンの含有量は、被覆分岐PTFEの総重量100重量部に対して、好ましくは20〜60重量部、より好ましくは40〜55重量部、さらに好ましくは47〜53重量部、特に好ましくは48〜52重量部、最も好ましくは49〜51重量部である。分岐状ポリテトラフルオロエチレンの割合がかかる範囲にある場合は、分岐状ポリテトラフルオロエチレンの良好な分散性を達成することができる。
F成分の含有量は、A成分、B成分およびC成分の合計100重量部に対し、好ましくは0.01〜2重量部、より好ましくは0.15〜1重量部、さらに好ましくは0.2〜0.6重量部である。含有量が上記範囲を超えて少なすぎる場合には押出加工性不十分となる場合がある。一方、含有量が上記範囲を超えて多すぎる場合にはPTFEが成形品表面に析出し外観不良となるばかりでなく、樹脂組成物のコストアップに繋がる場合があり好ましくない。なお、上記F成分の割合は正味のドリップ防止剤の量を示し、混合形態のPTFEの場合には、正味のPTFE量を示す。
(その他の添加剤について)
また、本発明の組成物は必要に応じて種々の特開2012−188579号公報に記載の公知の添加剤を添加することができ、各種添加剤の好ましい割合としては、A成分、B成分およびC成分の合計100重量部に対して、難燃剤は0.01〜15重量部、酸化防止剤、熱安定剤、光安定剤、滑剤、離型剤および帯電防止剤などは0.01〜5重量部、無機(酸化チタンなど)および/または有機系着色剤は0.01〜5重量部である。
(ポリカーボネート樹脂組成物の製造)
本発明のポリカーボネート樹脂組成物を製造するには、任意の方法が採用される。例えばA成分〜C成分および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、A成分以外の成分を予め予備混合した後、A成分の熱可塑性樹脂に混合または押出機に直接供給する方法が挙げられる。
予備混合する方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
(本発明の樹脂組成物からなる成形品について)
本発明における樹脂組成物は、通常上述の方法で得られたペレットを射出成形して各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
また本発明における樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
本発明の絶縁熱伝導性ポリカーボネート樹脂組成物は、OA機器分野、電気電子機器分野、自動車分野をはじめとした各種工業用途に極めて有用である。OA機器および電気電子機器のハウジングおよびシャーシ成形品に対応した良好な特性を満足するものであり、特に、LSI、CPU、LEDランプ、レーザープリンタの定着器などの発熱源を有する製品やトナー搬送部品など放熱性の必要な成形品に有用である。具体的にはデスクトップパソコン、ノートパソコン、ゲーム機(家庭用ゲーム機、業務用ゲーム機、パチンコ、およびスロットマシーンなど)、ディスプレー装置(CRT、液晶、プラズマ、プロジェクタ、および有機ELなど)、並びにプリンター、コピー機、スキャナーおよびファックス(これらの複合機を含む)などのハウジングおよびシャーシ成形品において好適である。また、本発明の絶縁熱伝導性ポリカーボネート樹脂組成物は、その他幅広い用途に有用であり、例えば、携帯情報端末(いわゆるPDA)、携帯電話、携帯書籍(辞書類等)、電子書籍、携帯テレビ、記録媒体(CD、MD、DVD、次世代高密度ディスク、ハードディスクなど)のドライブ、記録媒体(ICカード、スマートメディア、メモリースティックなど)の読取装置、光学カメラ、デジタルカメラ、パラボラアンテナ、電動工具、VTR、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、照明機器(LED照明等)、冷蔵庫、エアコン、空気清浄機、マイナスイオン発生器、およびタイプライターなどを挙げることができ、これらの成形品やその他の部品に本発明の絶縁熱伝導性ポリカーボネート樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ランプリフレクター、ランプハウジング、インストルメンタルパネル、センターコンソールパネル、ディフレクター部品、カーナビケーション部品、カーオーディオビジュアル部品、オートモバイルコンピューター部品などの自動車等の車両用部品を挙げることができる。以上から明らかなように本発明の奏する工業的効果は極めて大である。
本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
以下に実施例をあげて本発明を更に説明する。なお、評価は下記の方法によって実施した。
(絶縁熱伝導性ポリカーボネート樹脂組成物の評価)
(i)熱伝導率
下記の方法で得られた引張りダンベル片(ISO規格ISO527−1および2準拠)の中央部分を所定の大きさ(10mm×10mm×3mmt)に切削し、レーザーフラッシュ装置(NETZSCH社製キセノンレーザーフラッシュアナライザLFA447型)を使用して、サンプルの流動方向の熱拡散率を測定し、熱伝導率を算出した。
(ii)荷重たわみ温度
下記の方法で得られたISO曲げ試験片を用いISO75−1および2に従い、1.80MPaの荷重で荷重たわみ温度を測定した。
(iii)シャルピー衝撃強度
下記の方法で得られたISO曲げ試験片を用いISO 179に従い、ノッチ付きのシャルピー衝撃強度の測定を実施した。
(iv)曲げ弾性率
下記の方法で得られたISO曲げ試験片を用い、ISO 178に従い、曲げ弾性率の測定を実施した。
(v)表面抵抗
JIS規格のJIS K6911に従って、作成された150mm×150mm×2mmtの試験片を用いて、500Vを電極間に印加し、1分後の抵抗値を測定した。
(vi)難燃性
下記の方法で得られたUL試験片を用いて、UL94に従い、厚み2.0mmにおけるV(垂直燃焼試験)試験を実施した。
(vii)押出加工性
押出時の安定性に関して以下の基準で評価を実施した。
押出時のストランドが極めて安定している:◎
押出時のストランドが安定している:○
押出時のストランドがやや不安定であるが、ペレット化は可能:△
押出時のストランドが安定せず、ペレット化が困難:×
[実施例1〜22、比較例1〜11]
表1〜表3に示す組成で、C成分のうちウォラストナイト、およびA成分のポリカーボネート系樹脂のうちL−1225Yを除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。C成分のウォラストナイトおよびポリカーボネート樹脂L−1225Yは、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α−38.5BW−3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで270℃で実施した。
得られたペレットの一部は、100℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、シリンダー温度280℃、金型温度70℃にて評価用の引張りダンベル片(ISO527−1および2準拠)、ISO曲げ試験片(ISO178およびISO179準拠))、ISOシャルピー衝撃試験片(ISO179に準拠)、表面抵抗測定用角板150mm×150mm×2mmtおよびUL試験片を成形した。
なお、表1〜表3中の記号表記の各成分は下記の通りである。
(A成分)
A−1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,400のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1225WP(製品名))
A−2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,200のポリカーボネート樹脂ペレット、帝人(株)製 パンライトL−1225Y(製品名))
(B成分)
B−1:窒化ホウ素(鱗片状凝集体 CF600(製品名)板状混合凝集体 レーザー回折・散乱法により測定される平均粒子サイズ(D50):16μm 粒度分布:D10/D90=6/55μm、表面積:8m/g、かさ密度:0.47g/cm
B−2:窒化ホウ素(モメンティブ製 PT110(製品名)、板状 レーザー回折・散乱法により測定される平均粒子サイズ(D50):45μm 粒度分布:D10/D90=20/80μm、表面積:0.6m/g、かさ密度:0.7g/cm
(C成分)
C−1:タルク((株)勝光山鉱業所製;ビクトリライトTK−RC(商品名)、レーザー回折・散乱法により測定される平均粒子サイズ(D50)4.7μmのタルクをかさ密度0.7〜0.8g/cmに脱気圧縮したタルク、白色度:92%、Ig.Loss(強熱減量割合:JIS M8855に準拠):5.83%、pH=9.5)
C−2:タルク((株)勝光山鉱業所製;ビクトリライトSG−A(商品名)、レーザー回折・散乱法により測定される平均粒子サイズ(D50)21.6μmのタルク 白色度:96%、Ig.Loss(強熱減量割合:JIS M8855に準拠):5.82%、pH=9.8)
C−3:ウォラストナイト(大連環球鉱産集団製:H−1250F(商品名)、レーザー回折・散乱法により測定される平均粒子サイズ(D50)7.7μm、白色度:96%、
Ig.Loss(強熱減量割合:JIS M8855に準拠):0.105%、pH=9.35)
(D成分)
D−1:デシルトリメトキシシラン(信越化学工業社(株)製 KBM−3103)
(E成分)
E−1:α−オレフィンと無水マレイン酸との共重合によるオレフィン系ワックス(三菱化学(株)製;ダイヤカルナ30M(商品名))
(F成分)
F−1:PTFE(ダイキン工業(株)製 ポリフロンMPA FA500H(商品名)
(その他の成分)
熱安定剤:トリフェニルホスフェート(大八化学工業(株)製)
着色剤:二酸化チタン(石原産業(株)製タイペークPC−3(商品名)、平均粒子径が0.21μm、二酸化チタン顔料中のTiO量が約93重量%であり、無機表面被覆剤として約2.5重量%のAlおよび約1.5重量%のSiOを含有し、約2重量%のポリメチル水素シロキサンで更に表面処理された二酸化チタン顔料)
難燃剤:リン酸エステル系難燃剤(大八化学工業(株)製 PX−200)
Figure 2016160278
Figure 2016160278
Figure 2016160278
上記表1〜表3から本発明の配合により、熱伝導性、絶縁性、耐衝撃性および耐熱性に優れた絶縁熱伝導性ポリカーボネート樹脂組成物が得られることが分かる。

Claims (4)

  1. (A)ポリカーボネート系樹脂(A成分)50〜80重量%、(B)窒化ホウ素(B成分)15〜25重量%並びに(C)タルクおよび/またはウォラストナイト(C成分)5〜25重量%からなる絶縁熱伝導性ポリカーボネート樹脂組成物。
  2. タルクのレーザー回折・散乱法により測定される平均粒子サイズ(D50)平均粒子径が1〜15μmであり、ウォラストナイトのレーザー回折・散乱法により測定される平均粒子サイズ(D50)が1〜20μmであることを特徴とする請求項1に記載の絶縁熱伝導性ポリカーボネート樹脂組成物。
  3. (D)下記式(5)で示される有機シラン化合物(D成分)をA成分、B成分およびC成分の合計100重量部あたり0.01〜3重量部含有することを特徴とする請求項1または2に記載の絶縁熱伝導性ポリカーボネート樹脂組成物。
    Figure 2016160278
    (上記一般式(5)において、Xは水素原子、ハロゲン原子、およびRO(Rは炭素数1〜8のアルキル基を示し、該アルキル基はヘテロ原子を含有してよい)のいずれかを示し、Rは炭素数4〜30であり、フッ素原子で置換されてもよいアルキル基を示し、Rは炭素数1〜3であり、ハロゲン原子で置換されてもよいアルキル基を示す。mおよびnはそれぞれ1、2または3であり、4−(m+n)は0、1または2であり、X、R、およびRがそれぞれ複数存在するときは、それらは互いに同一であっても異なっていてもよい。)
  4. (E)酸変性オレフィンワックス(E成分)をA成分、B成分およびC成分の合計100重量部あたり0.01〜3重量部含有することを特徴とする請求項1〜3のいずれかに記載の絶縁熱伝導性ポリカーボネート樹脂組成物。
JP2015037165A 2015-02-26 2015-02-26 絶縁熱伝導性ポリカーボネート樹脂組成物 Active JP6495683B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037165A JP6495683B2 (ja) 2015-02-26 2015-02-26 絶縁熱伝導性ポリカーボネート樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037165A JP6495683B2 (ja) 2015-02-26 2015-02-26 絶縁熱伝導性ポリカーボネート樹脂組成物

Publications (2)

Publication Number Publication Date
JP2016160278A true JP2016160278A (ja) 2016-09-05
JP6495683B2 JP6495683B2 (ja) 2019-04-03

Family

ID=56844244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037165A Active JP6495683B2 (ja) 2015-02-26 2015-02-26 絶縁熱伝導性ポリカーボネート樹脂組成物

Country Status (1)

Country Link
JP (1) JP6495683B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094137A (ja) * 2018-12-13 2020-06-18 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物
JP2020158663A (ja) * 2019-03-27 2020-10-01 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
JP2021021001A (ja) * 2019-07-26 2021-02-18 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257127A (ja) * 2005-03-15 2006-09-28 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2007238904A (ja) * 2006-02-09 2007-09-20 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2008094701A (ja) * 2006-10-08 2008-04-24 Momentive Performance Materials Inc 機能強化型窒化ホウ素組成物及びそれで作った組成物
WO2008146400A1 (ja) * 2007-05-25 2008-12-04 Teijin Limited 樹脂組成物
JP2011140179A (ja) * 2010-01-08 2011-07-21 Mitsubishi Engineering Plastics Corp 成形品の製造方法、成形品および熱可塑性樹脂組成物
JP2012188579A (ja) * 2011-03-11 2012-10-04 Teijin Chem Ltd 難燃性熱可塑性樹脂組成物
JP2015117324A (ja) * 2013-12-19 2015-06-25 三菱エンジニアリングプラスチックス株式会社 熱伝導性ポリカーボネート樹脂組成物及び成形品
JP2016029142A (ja) * 2014-07-24 2016-03-03 三菱エンジニアリングプラスチックス株式会社 熱伝導性ポリカーボネート樹脂組成物及び成形品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257127A (ja) * 2005-03-15 2006-09-28 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2007238904A (ja) * 2006-02-09 2007-09-20 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物
JP2008094701A (ja) * 2006-10-08 2008-04-24 Momentive Performance Materials Inc 機能強化型窒化ホウ素組成物及びそれで作った組成物
WO2008146400A1 (ja) * 2007-05-25 2008-12-04 Teijin Limited 樹脂組成物
JP2011140179A (ja) * 2010-01-08 2011-07-21 Mitsubishi Engineering Plastics Corp 成形品の製造方法、成形品および熱可塑性樹脂組成物
JP2012188579A (ja) * 2011-03-11 2012-10-04 Teijin Chem Ltd 難燃性熱可塑性樹脂組成物
JP2015117324A (ja) * 2013-12-19 2015-06-25 三菱エンジニアリングプラスチックス株式会社 熱伝導性ポリカーボネート樹脂組成物及び成形品
JP2016029142A (ja) * 2014-07-24 2016-03-03 三菱エンジニアリングプラスチックス株式会社 熱伝導性ポリカーボネート樹脂組成物及び成形品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094137A (ja) * 2018-12-13 2020-06-18 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物
JP7111602B2 (ja) 2018-12-13 2022-08-02 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物
JP2020158663A (ja) * 2019-03-27 2020-10-01 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
JP2021021001A (ja) * 2019-07-26 2021-02-18 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物
JP7303058B2 (ja) 2019-07-26 2023-07-04 帝人株式会社 熱伝導性ポリカーボネート樹脂組成物

Also Published As

Publication number Publication date
JP6495683B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
KR101113616B1 (ko) 폴리카보네이트 수지 조성물 및 성형체
JP5755226B2 (ja) ポリカーボネート系樹脂組成物及びその成形品
TWI391442B (zh) 平板顯示器固定框及其製法
JP4817784B2 (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
JP5555588B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2013001801A (ja) 難燃性ポリカーボネート樹脂組成物
JP6200137B2 (ja) ポリカーボネート系樹脂組成物、及び成形品
TW201329158A (zh) 具有良好衝擊強度、流動性及化學耐性之防焰pc/abs組成物
WO2020184577A1 (ja) インペラ及びその樹脂組成物
JP2007169433A (ja) ポリカーボネート樹脂組成物、その成形品並びにフィルム及びシート
WO2020066535A1 (ja) 難燃性ポリカーボネート樹脂組成物
JP6495683B2 (ja) 絶縁熱伝導性ポリカーボネート樹脂組成物
JP5973282B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP7111602B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
JP2020079341A (ja) 難燃性ポリカーボネート樹脂組成物
JP2015137308A (ja) 難燃性炭素繊維強化ポリカーボネート樹脂組成物
JP2019123809A (ja) ポリカーボネート樹脂組成物及び成形品
JP7303058B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
JP6480120B2 (ja) 熱伝導性ポリカーボネート樹脂組成物及び成形品
JP2016130291A (ja) 難燃性ポリカーボネート樹脂組成物
JP5264586B2 (ja) ポリカーボネート樹脂組成物
KR20120101656A (ko) 폴리카보네이트 수지 조성물
JP7311357B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
WO2019176213A1 (ja) 透明難燃性樹脂組成物及び透明難燃性樹脂組成物の製造方法
JP7311355B2 (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6495683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150