JP2016159225A - Aldehydes remover using ruthenium (fcc) carrier - Google Patents

Aldehydes remover using ruthenium (fcc) carrier Download PDF

Info

Publication number
JP2016159225A
JP2016159225A JP2015039671A JP2015039671A JP2016159225A JP 2016159225 A JP2016159225 A JP 2016159225A JP 2015039671 A JP2015039671 A JP 2015039671A JP 2015039671 A JP2015039671 A JP 2015039671A JP 2016159225 A JP2016159225 A JP 2016159225A
Authority
JP
Japan
Prior art keywords
carrier
fcc
particles
aldehydes
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015039671A
Other languages
Japanese (ja)
Other versions
JP6540990B2 (en
Inventor
有希 岡田
Yuki Okada
有希 岡田
小林 真申
Masanobu Kobayashi
真申 小林
横山 正幸
Masayuki Yokoyama
正幸 横山
北川 宏
Hiroshi Kitagawa
宏 北川
康平 草田
Kohei Kusada
康平 草田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Toyobo Co Ltd
Original Assignee
Kyoto University
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Toyobo Co Ltd filed Critical Kyoto University
Priority to JP2015039671A priority Critical patent/JP6540990B2/en
Publication of JP2016159225A publication Critical patent/JP2016159225A/en
Application granted granted Critical
Publication of JP6540990B2 publication Critical patent/JP6540990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aldehydes remover using a ruthenium (Ru) carrier that can remove aldehydes efficiently at lower temperature than that of a ruthenium Ru particle carrier that forms hexagonal closest packed structure (hcp).SOLUTION: There is provided an aldehydes remover using a Ru (fcc) carrier comprising: Ru (fcc) particles that forms face-centered cubic structure; and a carrier selected from among an activated carbon, an activated carbon fiber, alumina, silica, zeolite, a composite oxide or a porous metal complex.EFFECT: The Ru (fcc) carrier exhibits an excellent removing rate of aldehydes at lower temperature than that of a Ru (hcp) carrier, for example, even at 80°C.SELECTED DRAWING: Figure 1

Description

本発明は、Ru(fcc)担持体を用いたアルデヒド類除去材に関するものである。   The present invention relates to an aldehyde removing material using a Ru (fcc) carrier.

従来より、建物の室内や自動車の車内等でのタバコ臭の主成分であるアセトアルデヒド、あるいは、シックハウス症候群の原因物質として知られているホルムアルデヒド等の除去を目的として、様々な吸着剤の検討がなされている。   Conventionally, various adsorbents have been studied for the purpose of removing acetaldehyde, which is a main component of tobacco odor, in buildings and in automobiles, or formaldehyde, which is known to cause sick house syndrome. ing.

その中でも活性炭は、VOC(Volatile Organic Compounds)等を吸着する材料として知られているが、低分子で極性の高い有機物(例えばアセトアルデヒド、ホルムアルデヒド等)を除去することは困難とされている。そこで、上記用途に用いる際は、活性炭にアミン類を担持させて吸着性能を高めることが知られている(特許文献1)。   Among them, activated carbon is known as a material that adsorbs VOC (Volatile Organic Compounds) and the like, but it is difficult to remove organic substances having a low molecular weight and high polarity (for example, acetaldehyde and formaldehyde). Then, when using for the said use, it is known to carry | support an amine on activated carbon and to improve adsorption | suction performance (patent document 1).

しかしながら、上述のアミン類を担持する技術は、担持アミン類の状態が不安定であることから、熱的および経時的な化学変化による失活が起こりやすく、長期的に高い除去性能を保持することは困難であるという問題がある。   However, the above-described technology for supporting amines is unstable in the state of the supported amines, so that it tends to be deactivated due to thermal and chemical changes over time, and maintains high removal performance over the long term. There is a problem that is difficult.

一方、VOC除去を目的として、酸化触媒を用いる方法が近年注目されている。前記酸化触媒として、例えば白金を担持した活性炭やアルミナが挙げられる(特許文献2、非特許文献1)。このような白金を担持した酸化触媒は、活性が高く、アルデヒド類の除去にも高い性能を示す。しかし、白金等の貴金属はコストが高く、より安価な触媒または金属の使用が求められているのが現状である。   On the other hand, for the purpose of removing VOCs, a method using an oxidation catalyst has recently attracted attention. Examples of the oxidation catalyst include activated carbon and alumina carrying platinum (Patent Document 2, Non-Patent Document 1). Such an oxidation catalyst supporting platinum has high activity and high performance in removing aldehydes. However, noble metals such as platinum are expensive and currently require the use of cheaper catalysts or metals.

その白金代替として、ルテニウム(Ru)が用いられるようになってきた。Ruは白金等よりも安価であり、酸化触媒としても活性があることわかっているが、通常、六方最密充填構造(hcp)を取るルテニウムの活性を出すには、高温での使用が必要となってくる。   Ruthenium (Ru) has come to be used as an alternative to platinum. Ru is cheaper than platinum and is known to be active as an oxidation catalyst, but normally it needs to be used at a high temperature in order to produce ruthenium having a hexagonal close-packed structure (hcp). It becomes.

特開昭56−53744号公報JP 56-53744 A 特開2006−68591号公報JP 2006-68591 A

Applied Catalysis B: Environmental, 1996, 8, pp. 405-415Applied Catalysis B: Environmental, 1996, 8, pp. 405-415

本発明は、六方最密充填構造(hcp)を取るルテニウム粒子担持体よりも低い温度で、アルデヒド類を効率よく除去できるRu担持体を用いたアルデヒド類除去材の提供を課題として掲げた。   An object of the present invention is to provide a material for removing aldehydes using a Ru carrier that can efficiently remove aldehydes at a temperature lower than that of a ruthenium particle carrier having a hexagonal close-packed structure (hcp).

本発明者らは上記の課題を解決するために鋭意研究した結果、遂に本発明を完成するに到った。すなわち本発明は、以下の通りである。
1.面心立方格子構造を取るRu(fcc)粒子と担体とから構成されるRu(fcc)担持体を用いたことを特徴とするアルデヒド類除去材。
2.前記担体が、活性炭、活性炭素繊維、アルミナ、シリカ、ゼオライト、複合酸化物および多孔性金属錯体よりなる群から選択される担体である上記1に記載のアルデヒド類除去材。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. An aldehyde removal material characterized by using a Ru (fcc) carrier comprising Ru (fcc) particles having a face-centered cubic lattice structure and a carrier.
2. 2. The aldehyde removing material according to 1 above, wherein the carrier is a carrier selected from the group consisting of activated carbon, activated carbon fiber, alumina, silica, zeolite, composite oxide and porous metal complex.

本発明によるアルデヒド類除去材は、面心立方格子構造を取るRu(fcc)粒子と担体とから構成されるRu(fcc)担持体を用いるため、通常、六方最密充填構造(hcp)を取るRu(hcp)担持体よりも低い温度で、アルデヒド類を効率よく除去することができる。   Since the aldehyde removing material according to the present invention uses a Ru (fcc) carrier composed of Ru (fcc) particles having a face-centered cubic lattice structure and a carrier, it usually has a hexagonal close packed structure (hcp). Aldehydes can be efficiently removed at a temperature lower than that of the Ru (hcp) carrier.

実施例1のRu(fcc)粒子のTEM画像である。2 is a TEM image of Ru (fcc) particles of Example 1. FIG. 実施例1のRu(fcc)粒子の粉末X線回折チャートである。3 is a powder X-ray diffraction chart of Ru (fcc) particles of Example 1. FIG. 比較例1のRu(hcp)粒子のTEM画像である。4 is a TEM image of Ru (hcp) particles of Comparative Example 1. 比較例1のRu(hcp)粒子の粉末X線回折チャートである。4 is a powder X-ray diffraction chart of Ru (hcp) particles in Comparative Example 1. FIG.

以下、本発明を詳細に説明する。
本発明のアルデヒド類除去材は、面心立方格子構造を取るRu(fcc)粒子と担体とから構成されるRu(fcc)担持体を用いることを特徴とする。
Hereinafter, the present invention will be described in detail.
The aldehyde removal material of the present invention is characterized by using a Ru (fcc) carrier composed of Ru (fcc) particles having a face-centered cubic lattice structure and a carrier.

ルテニウム粒子は通常、六方最密充填構造(hcp)を取る。このRu(hcp)粒子では活性を出すための温度が高いが、本発明の面心立方格子構造を取るRu(fcc)粒子は、80℃でも良好なアルデヒド除去率を示す。このRu(fcc)粒子は、原料としてトリス(アセチルアセトナト)ルテニウム(III)を用いることで合成することができる。原料として塩化ルテニウム(III)等のルテニウム塩を用いた場合は、六方最密充填構造を取るRu(hcp)粒子が得られ、面心立方格子構造を取るRu(fcc)粒子は得られない。なお、六方最密充填構造(hcp)か面心立方格子構造(fcc)かは、粉末X線回折で分析することができる。   Ruthenium particles usually have a hexagonal close packed structure (hcp). The Ru (hcp) particles have a high temperature for activation, but the Ru (fcc) particles having the face-centered cubic lattice structure of the present invention show a good aldehyde removal rate even at 80 ° C. The Ru (fcc) particles can be synthesized by using tris (acetylacetonato) ruthenium (III) as a raw material. When a ruthenium salt such as ruthenium (III) chloride is used as a raw material, Ru (hcp) particles having a hexagonal close-packed structure can be obtained, and Ru (fcc) particles having a face-centered cubic lattice structure cannot be obtained. Whether the hexagonal close-packed structure (hcp) or the face-centered cubic lattice structure (fcc) can be analyzed by powder X-ray diffraction.

本発明に用いられる担体としては、活性炭、活性炭素繊維(ACF)、アルミナ、シリカ、ゼオライト、複合酸化物、多孔性金属錯体(Porous Coordination Polymers、或いは、Metal Organic Frameworksとも称される)などが挙げられる。複合酸化物としては、セリウムを含む複合酸化物が好ましく、例えば、セリア−ジルコニア複合酸化物などが挙げられる。   Examples of the carrier used in the present invention include activated carbon, activated carbon fiber (ACF), alumina, silica, zeolite, composite oxide, porous metal complex (also referred to as Porous Coordination Polymers or Metal Organic Frameworks), and the like. It is done. The composite oxide is preferably a composite oxide containing cerium, and examples thereof include ceria-zirconia composite oxide.

Ru(fcc)粒子を担体に担持させる方法としては、所望の特性が得られる手法であれば特に制限はされないが、例えばポリビニルピロリドン(PVP)等の保護剤で粒子をコートしながらRu(fcc)ナノ粒子の前駆体であるトリス(アセチルアセトナト)ルテニウム(III)におけるRuイオンを還元性溶媒中で還元処理することにより、Ru(fcc)ナノ粒子を先に合成し、後工程でRu(fcc)粒子を分散させた溶媒中へ担体を加え、溶媒を蒸発乾固させる蒸発乾固法という方法がある。また、Ru(fcc)ナノ粒子の前駆体であるトリス(アセチルアセトナト)ルテニウム(III)におけるRuイオンとそれを担持する担体を、還元性溶媒中に共存させ、Ruイオンを還元処理する方法もある。還元性溶媒としてはトリエチレングリコールが好ましく、150〜250℃で数時間加熱して還元することが好ましい。担体が保護剤と親和性が弱い場合を除いては、すべての担体において前者の蒸発乾固法が使用できる。細孔径の小さな担体(例えば活性炭素繊維、多孔性金属錯体等)に関しては、Ru粒子径よりも細孔径が小さい場合が考えられるので、後者の担体共存下でRuイオンを還元処理する方法が好ましい。得られるRu(fcc)ナノ粒子は、だいたい3〜5nmとなる。   The method for supporting the Ru (fcc) particles on the carrier is not particularly limited as long as the desired characteristics can be obtained. For example, Ru (fcc) while coating the particles with a protective agent such as polyvinylpyrrolidone (PVP). The Ru (fcc) nanoparticles are synthesized first by reducing the Ru ions in the tris (acetylacetonato) ruthenium (III), which is the precursor of the nanoparticles, in a reducing solvent. There is a method called an evaporation-drying method in which a carrier is added to a solvent in which particles are dispersed and the solvent is evaporated to dryness. Also, there is a method in which Ru ions in Tris (acetylacetonato) ruthenium (III), which is a precursor of Ru (fcc) nanoparticles, coexist in a reducing solvent to reduce Ru ions. is there. The reducing solvent is preferably triethylene glycol, and is preferably reduced by heating at 150 to 250 ° C. for several hours. The former evaporation-drying method can be used for all carriers except when the carrier has a weak affinity with the protective agent. For a carrier having a small pore size (for example, activated carbon fiber, porous metal complex, etc.), the pore size may be smaller than the Ru particle size. Therefore, the method of reducing the Ru ions in the presence of the latter carrier is preferable. . The resulting Ru (fcc) nanoparticles are approximately 3-5 nm.

担体へのRu担持量としては、Ru粒子が担体に対して0.1〜10質量%で担持されるように、Ru粒子の量やRuイオンの濃度を調整することが好ましい。より好ましくは1〜5質量%である。10質量%を超える担持量では、担体に対する金属濃度が高すぎるため、担体に担持はされるが、高分散状態で担持されにくくなるため、好ましくない。   As the amount of Ru supported on the carrier, it is preferable to adjust the amount of Ru particles and the concentration of Ru ions so that Ru particles are supported at 0.1 to 10% by mass with respect to the carrier. More preferably, it is 1-5 mass%. When the loading amount exceeds 10% by mass, the metal concentration with respect to the carrier is too high, and thus the carrier is supported. However, it is difficult to carry the carrier in a highly dispersed state, which is not preferable.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、実施例および比較例における評価は、以下のようにして行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range. In addition, evaluation in an Example and a comparative example was performed as follows.

<粉末X線回折測定>
得られた粒子について、粉末X線回折装置(ブルカー・エイエックスエス社製「NEW D8 ADVANCE」を用いて、対称反射法で測定した。測定条件を以下に示す。
1)X線源:CuKα(λ=1.5418Å)40kV 200mA
2)ゴニオメーター:縦型ゴニオメーター
3)検出器:シンチレーションカウンター
4)回折角(2θ)範囲:3〜90°
5)スキャンステップ:0.05°
6)積算時間:0.5秒/ステップ
7)スリット:発散スリット=0.5°、受光スリット=0.15mm、散乱スリット=0.5°
<Powder X-ray diffraction measurement>
The obtained particles were measured by a symmetric reflection method using a powder X-ray diffractometer (“NEW D8 ADVANCE” manufactured by Bruker AXS Inc. Measurement conditions are shown below.
1) X-ray source: CuKα (λ = 1.5418Å) 40 kV 200 mA
2) Goniometer: Vertical goniometer 3) Detector: Scintillation counter 4) Diffraction angle (2θ) range: 3-90 °
5) Scan step: 0.05 °
6) Integration time: 0.5 sec / step 7) Slit: Diverging slit = 0.5 °, Receiving slit = 0.15 mm, Scattering slit = 0.5 °

<透過型電子顕微鏡(TEM)観察>
透過型電子顕微鏡(日立製作所製「HT7700」、または日本電子社製「JEM−2200FS」)を用いて、得られたRu粒子を観察した。
<Transmission electron microscope (TEM) observation>
The obtained Ru particles were observed using a transmission electron microscope (“HT7700” manufactured by Hitachi, Ltd. or “JEM-2200FS” manufactured by JEOL Ltd.).

<アルデヒド類ガス流通系吸着試験>
Ru担持体0.229ccをカラムに充填し、試験ガスを0.2L/minで流通させた。試料の入口・出口でのガス濃度を、ホルムアルデメータhtV(株式会社ジェイエムエス)を用いて測定し、その比から除去率を算出した。具体的には、まず、25℃雰囲気下で測定を開始し、1時間後、入口・出口でのガス濃度を測定し、除去率を算出した。次に続けて、80℃雰囲気下に置き、さらに1時間後、入口・出口でのガス濃度を測定し、除去率を算出した。計2時間の測定を行った。評価条件の詳細を以下に示す。
1)測定雰囲気:25℃または80℃雰囲気下
2)圧力:常圧
3)試験ガス組成:ホルムアルデヒド濃度3ppm(25℃、50%RH空気希釈)
4)空間速度:570,000hr-1
5)平均粒子径(測定サンプルの粒子サイズ):355〜500μm
<Aldehyde gas flow system adsorption test>
The column was filled with 0.229 cc of Ru support and the test gas was circulated at 0.2 L / min. The gas concentration at the inlet / outlet of the sample was measured using a formal demeter htV (JMS Co., Ltd.), and the removal rate was calculated from the ratio. Specifically, first, measurement was started under an atmosphere of 25 ° C., and after 1 hour, the gas concentration at the inlet / outlet was measured, and the removal rate was calculated. Subsequently, it was placed in an atmosphere at 80 ° C., and after another hour, the gas concentration at the inlet / outlet was measured, and the removal rate was calculated. Measurement was performed for a total of 2 hours. Details of the evaluation conditions are shown below.
1) Measurement atmosphere: 25 ° C. or 80 ° C. atmosphere 2) Pressure: normal pressure 3) Test gas composition: Formaldehyde concentration 3 ppm (25 ° C., 50% RH air dilution)
4) Space velocity: 570,000 hr -1
5) Average particle diameter (particle size of measurement sample): 355 to 500 μm

<実施例1>
トリス(アセチルアセトナト)ルテニウム(III)1.673g(4.2mmol)と保護剤としてのポリビニルピロリドン0.222g(2.0mmol)を還元性溶媒としてのトリエチレングリコール50mlに入れ、撹拌しながら200℃で3時間加熱し、面心立方格子構造を取るRu(fcc)粒子を合成した。そのTEM画像を図1、粉末X線回折チャートを図2に示す。図1のTEM画像から4.1nm〜4.6nm程度の粒子を形成していることが確認できた。また、粉末X線回折のチャートより、面心立方格子構造を取るRu(fcc)粒子が合成されていることが確認できた。
次に上記で合成したRu(fcc)粒子15mgを蒸留水30mlに分散させ、そこに予め、大気中700℃で5時間加熱処理したγ−アルミナ1gを加え、室温で1日撹拌した。その懸濁液を真空下60℃で濃縮乾固させ、1質量%Ru(fcc)担持γ−アルミナを得た。プレスによる加圧とふるいによる分級によって、粒径を355〜500μmに揃えた。その後、アルデヒド類ガス流通系吸着試験を行った。結果を表1に示す。
<Example 1>
1.673 g (4.2 mmol) of tris (acetylacetonato) ruthenium (III) and 0.222 g (2.0 mmol) of polyvinylpyrrolidone as a protective agent were placed in 50 ml of triethylene glycol as a reducing solvent, and the mixture was stirred while stirring. Ru (fcc) particles having a face-centered cubic lattice structure were synthesized by heating at 0 ° C. for 3 hours. The TEM image is shown in FIG. 1, and the powder X-ray diffraction chart is shown in FIG. It was confirmed from the TEM image in FIG. 1 that particles of about 4.1 nm to 4.6 nm were formed. Further, it was confirmed from the powder X-ray diffraction chart that Ru (fcc) particles having a face-centered cubic lattice structure were synthesized.
Next, 15 mg of the Ru (fcc) particles synthesized above were dispersed in 30 ml of distilled water, and 1 g of γ-alumina that had been heat-treated in the atmosphere at 700 ° C. for 5 hours in advance was added thereto, followed by stirring at room temperature for 1 day. The suspension was concentrated to dryness at 60 ° C. under vacuum to obtain 1% by mass Ru (fcc) -carrying γ-alumina. The particle size was adjusted to 355 to 500 μm by pressing with a press and classification by sieving. Thereafter, an aldehyde gas flow system adsorption test was conducted. The results are shown in Table 1.

<比較例1>
塩化ルテニウム1.098g(4.2mmol)と保護剤としてのポリビニルピロリドン0.222g(2.0mmol)を還元性溶媒としてのトリエチレングリコール50mlに入れ、撹拌しながら200℃で3時間加熱し、六方最密充填構造を取るRu(hcp)粒子を合成した。そのTEM画像を図3、粉末X線回折チャートを図4に示す。図3のTEM画像から3.5nm〜4.5nm程度の粒子を形成していることが確認できた。また、粉末X線回折チャートより、六方最密充填構造を取るRu(hcp)粒子が合成されていることが確認できた。
次に上記で合成したRu(hcp)粒子15mgを蒸留水30mlに分散させ、そこに予め、大気中700℃で5時間加熱処理したγ−アルミナ1gを加え、室温で1日撹拌した。その懸濁液を真空下60℃で濃縮乾固させ、1質量%Ru(hcp)担持γ−アルミナを得た。プレスによる加圧とふるいによる分級によって、粒径を355−500μmに揃えた。その後、アルデヒド類ガス流通系吸着試験を行った。結果を表1に示す。
<Comparative Example 1>
Ruthenium chloride (1.098 g, 4.2 mmol) and polyvinylpyrrolidone (0.222 g, 2.0 mmol) as a protective agent were placed in 50 ml of triethylene glycol as a reducing solvent and heated at 200 ° C. with stirring for 3 hours. Ru (hcp) particles having a close packed structure were synthesized. The TEM image is shown in FIG. 3, and the powder X-ray diffraction chart is shown in FIG. It was confirmed from the TEM image of FIG. 3 that particles of about 3.5 nm to 4.5 nm were formed. Moreover, it was confirmed from the powder X-ray diffraction chart that Ru (hcp) particles having a hexagonal close-packed structure were synthesized.
Next, 15 mg of the Ru (hcp) particles synthesized above were dispersed in 30 ml of distilled water, and 1 g of γ-alumina that had been heat-treated in the atmosphere at 700 ° C. for 5 hours in advance was added thereto, followed by stirring at room temperature for 1 day. The suspension was concentrated to dryness at 60 ° C. under vacuum to obtain 1% by mass Ru (hcp) -carrying γ-alumina. The particle size was adjusted to 355-500 μm by pressurization and classification by sieving. Thereafter, an aldehyde gas flow system adsorption test was conducted. The results are shown in Table 1.

表1から明らかなように、Ru(fcc)粒子を担持させた担持体を用いた実施例1では、80℃でのホルムアルデヒド除去率が44%と高い。比較例1ではより高温にしなければ40%以上の除去率が達成できないことから、本発明の有用性は明らかである。   As can be seen from Table 1, in Example 1 using a support on which Ru (fcc) particles are supported, the formaldehyde removal rate at 80 ° C. is as high as 44%. In Comparative Example 1, since the removal rate of 40% or more cannot be achieved unless the temperature is increased, the usefulness of the present invention is clear.

本発明のアルデヒド類除去材は、室内や車内のアルデヒド類を除去する効果に優れているので、より快適な空間を提供し、シックハウス症候群等の疾病を減少させることができる。また面心立方格子構造を取るRu(fcc)担持体を用いているため、Pt系触媒より安価であり、産業界に大きく寄与することができると考える。   Since the aldehyde removing material of the present invention is excellent in the effect of removing aldehydes in a room or in a vehicle, it can provide a more comfortable space and reduce diseases such as sick house syndrome. Further, since a Ru (fcc) carrier having a face-centered cubic lattice structure is used, it is cheaper than a Pt-based catalyst and can be considered to contribute greatly to the industry.

Claims (2)

面心立方格子構造のRu(fcc)粒子と担体とから構成されるRu(fcc)担持体を用いたことを特徴とするアルデヒド類除去材。   An aldehyde removal material characterized by using a Ru (fcc) carrier comprising Ru (fcc) particles having a face-centered cubic lattice structure and a carrier. 前記担体が、活性炭、活性炭素繊維、アルミナ、シリカ、ゼオライト、複合酸化物および多孔性金属錯体よりなる群から選択される担体である請求項1に記載のアルデヒド類除去材。   The aldehyde removal material according to claim 1, wherein the carrier is a carrier selected from the group consisting of activated carbon, activated carbon fiber, alumina, silica, zeolite, composite oxide, and porous metal complex.
JP2015039671A 2015-02-28 2015-02-28 Aldehyde removal material using Ru (fcc) support Active JP6540990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039671A JP6540990B2 (en) 2015-02-28 2015-02-28 Aldehyde removal material using Ru (fcc) support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039671A JP6540990B2 (en) 2015-02-28 2015-02-28 Aldehyde removal material using Ru (fcc) support

Publications (2)

Publication Number Publication Date
JP2016159225A true JP2016159225A (en) 2016-09-05
JP6540990B2 JP6540990B2 (en) 2019-07-10

Family

ID=56845915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039671A Active JP6540990B2 (en) 2015-02-28 2015-02-28 Aldehyde removal material using Ru (fcc) support

Country Status (1)

Country Link
JP (1) JP6540990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160311028A1 (en) * 2014-07-09 2016-10-27 Honda Motor Co., Ltd. Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures
US9969006B2 (en) 2014-07-09 2018-05-15 Honda Motor Co., Ltd. Method for production of indium nanoparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239161A (en) * 2000-02-29 2001-09-04 Toyota Central Res & Dev Lab Inc Catalyst for cleaning up noxious gas at low temperature
JP2004148173A (en) * 2002-10-29 2004-05-27 Toyota Central Res & Dev Lab Inc Harmful substance cleaning catalyst and its manufacturing process
JP2012041581A (en) * 2010-08-17 2012-03-01 Sony Corp Fine particle of core-shell structure and functional device incorporated therewith
WO2013038674A1 (en) * 2011-09-16 2013-03-21 独立行政法人科学技術振興機構 Ruthenium microparticles having essentially face-centered cubic structure and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239161A (en) * 2000-02-29 2001-09-04 Toyota Central Res & Dev Lab Inc Catalyst for cleaning up noxious gas at low temperature
JP2004148173A (en) * 2002-10-29 2004-05-27 Toyota Central Res & Dev Lab Inc Harmful substance cleaning catalyst and its manufacturing process
JP2012041581A (en) * 2010-08-17 2012-03-01 Sony Corp Fine particle of core-shell structure and functional device incorporated therewith
WO2013038674A1 (en) * 2011-09-16 2013-03-21 独立行政法人科学技術振興機構 Ruthenium microparticles having essentially face-centered cubic structure and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUSADA, KOHEI, ET AL.: "Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, JPN6018041035, 2013, pages 5493 - 5496, ISSN: 0003901434 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160311028A1 (en) * 2014-07-09 2016-10-27 Honda Motor Co., Ltd. Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures
US9957168B2 (en) * 2014-07-09 2018-05-01 Honda Motor Co., Ltd. Method for synthesis of ruthenium nanoparticles with face-centered cubic and hexagonal close-packed structures
US9969006B2 (en) 2014-07-09 2018-05-15 Honda Motor Co., Ltd. Method for production of indium nanoparticles
US10195668B2 (en) 2014-07-09 2019-02-05 Honda Motor Co., Ltd. Method for continuous and controllable production of single walled carbon nanotubes
US10933471B2 (en) 2014-07-09 2021-03-02 Honda Motor Co., Ltd. Method for continuous and controllable production of single walled carbon nanotubes

Also Published As

Publication number Publication date
JP6540990B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6284197B2 (en) Method for producing metal nanoparticle composite and metal nanoparticle composite produced by the method
Yin et al. Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support
Venezia et al. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts
JP5306655B2 (en) Heterogeneous, composite, carbonaceous catalyst systems and methods using catalytically active gold
Rodrigues et al. Gold supported on carbon nanotubes for the selective oxidation of glycerol
Lamoth et al. Supported Ag nanoparticles and clusters for CO oxidation: size effects and influence of the silver–oxygen interactions
RU2013144578A (en) ALLOY CONTAINING CATALYST, METHOD OF MANUFACTURE AND USE
JP6617384B2 (en) Ethylene decomposing agent
JP6126145B2 (en) Exhaust gas purification catalyst and method for producing the same
JPWO2017010472A1 (en) Odor reducing agent
JP6540990B2 (en) Aldehyde removal material using Ru (fcc) support
JP6737435B2 (en) Method for producing fine particles carrying a noble metal solid solution
JP2011083693A (en) Material for adsorbing/decomposing volatile organic compound
WO2017110856A1 (en) Ethylene decomposition agent
JP5786621B2 (en) Selective hydrogenation catalyst, process for producing the same, and selective hydrogenation process using the same.
JP2006297348A (en) Catalyst for clarifying exhaust gas
JP5503155B2 (en) Carbon monoxide removal filter
CN103285903B (en) Hydrogenation catalyst, and preparation method and application thereof
JP2021527555A (en) Composition containing platinum nanoparticle clusters with improved thermal stability
JP2008207161A (en) Method of manufacturing air purification material, air purification material, and apparatus and method of purifying air
JP2013034937A (en) Method for producing platinum particle, method for producing platinum particle carrying catalyst, and purifying catalyst
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP2016160477A (en) Method for producing alloy carrying material
JP2015066483A (en) Aldehydes decomposition material
RU2603777C1 (en) Palladium catalyst, preparation method thereof and method for producing succinic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190529

R150 Certificate of patent or registration of utility model

Ref document number: 6540990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250