JP2016157708A - Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof - Google Patents

Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof Download PDF

Info

Publication number
JP2016157708A
JP2016157708A JP2013143479A JP2013143479A JP2016157708A JP 2016157708 A JP2016157708 A JP 2016157708A JP 2013143479 A JP2013143479 A JP 2013143479A JP 2013143479 A JP2013143479 A JP 2013143479A JP 2016157708 A JP2016157708 A JP 2016157708A
Authority
JP
Japan
Prior art keywords
silver
emitting device
aliphatic hydrocarbon
monoamine
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013143479A
Other languages
Japanese (ja)
Inventor
由紀 井口
Yuki Iguchi
由紀 井口
和樹 岡本
Kazuki Okamoto
和樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2013143479A priority Critical patent/JP2016157708A/en
Priority to TW103123621A priority patent/TW201513137A/en
Priority to PCT/JP2014/068271 priority patent/WO2015005373A1/en
Publication of JP2016157708A publication Critical patent/JP2016157708A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device with a circuit pattern which has a glossy surface and is superior in electrically conducting property and thermally conducting property without the need for plating or etching; and a manufacturing method by which such a light-emitting device can be obtained with stability simply and conveniently without thermally damaging an optical semiconductor element.SOLUTION: Provided are a light-emitting device and a manufacturing method thereof. The light-emitting device comprises: an optical semiconductor element 1; a circuit pattern 2; and an insulative substrate 4. In the light-emitting device, the optical semiconductor element 1 is electrically and/or thermally connected with the circuit pattern 2; the circuit pattern 2 is provided on the insulative substrate 4; the circuit pattern 2 is formed by baking a composition 3 including silver nanoparticles; and the silver nanoparticles are produced as a result of a thermal decomposition of a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group, and a silver compound (B).SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオード(LED、Light Emitting Diode)に代表される光半導体素子等を搭載した発光装置及びその製造方法に関する。   The present invention relates to a light emitting device including an optical semiconductor element typified by a light emitting diode (LED) and a method for manufacturing the same.

特許文献1に例示されるように、従来、回路基板に光半導体素子を搭載することにより発光装置が形成されている。回路基板の回路パターンは、リソグラフィー等、レジストパターンを用いる方法により、絶縁基板の表面にラミネートやめっき等で形成された銅箔をエッチングした後、その銅箔のパターンの表面に金メッキ等を施すことによって光沢面に形成している。この回路パターンの表面の光沢面により、回路基板に搭載された光半導体素子からの発光が回路パターンの表面で反射され、より多くの光が得られる。   As exemplified in Patent Document 1, conventionally, a light emitting device is formed by mounting an optical semiconductor element on a circuit board. The circuit pattern of the circuit board is obtained by etching the copper foil formed by lamination or plating on the surface of the insulating substrate by a method using a resist pattern such as lithography, and then applying gold plating or the like to the surface of the copper foil pattern. Is formed on the glossy surface. Due to the glossy surface of the surface of the circuit pattern, light emitted from the optical semiconductor element mounted on the circuit board is reflected by the surface of the circuit pattern, and more light is obtained.

しかし、リソグラフィー法を用いて回路パターンを形成する場合、めっき加工やレジストパターン形成をしなければならず、発光装置の製造工程が多くなるという問題があった。また、回路基板に凹凸部が存在する場合や、高密度の回路パターンを形成する必要がある場合、回路パターン形成が困難であるという問題があった。更に、回路パターンの表面を光沢面にする際、金めっき等のめっき加工が必要であり、更に製造工程が多くて複雑になり、製造効率が落ちるという問題があった。   However, when a circuit pattern is formed by using a lithography method, there is a problem that a plating process or a resist pattern must be formed, which increases the number of manufacturing steps of the light emitting device. In addition, there is a problem that it is difficult to form a circuit pattern when there are uneven portions on the circuit board or when it is necessary to form a high-density circuit pattern. Furthermore, when making the surface of the circuit pattern a glossy surface, a plating process such as gold plating is required, and the manufacturing process is complicated and complicated, resulting in a decrease in manufacturing efficiency.

特許文献2には、光半導体素子とこれに電気的に接続される回路パターンとを有する発光装置において、上記回路パターンは金属ペーストを絶縁基板の表面に塗布することにより形成され、且つ上記回路パターンを形成する金属ペースト自体の表面が光半導体素子から発せられる光を反射可能な光沢面として形成されて成る発光装置が開示されている。これにより、工程を数少なくして簡略化し、高密度の回路パターンを容易に形成することができ、効率よく回路パターンの表面を光沢面に形成することができる、とされている。   In Patent Document 2, in a light-emitting device having an optical semiconductor element and a circuit pattern electrically connected thereto, the circuit pattern is formed by applying a metal paste to the surface of an insulating substrate, and the circuit pattern. A light-emitting device is disclosed in which the surface of the metal paste itself forming the surface is formed as a glossy surface capable of reflecting the light emitted from the optical semiconductor element. Thereby, it is said that the number of steps can be reduced and simplified, a high-density circuit pattern can be easily formed, and the surface of the circuit pattern can be efficiently formed on a glossy surface.

しかし、金属ペーストについては、ほとんどの金属を用いる事ができるとしている一方、銅等のように参加性が高くナノサイズの金属粒子は不適とする等、具体的な金属の選定基準につき開示がない。また、低温(150〜220℃)でも互いに融着する性質を有する金属粒子を要求しており、銀粒子、アクリル樹脂、アルコール、トルエン等の成分を例示しているが、どのような組合せや配合比率なら、低温(150〜220℃)にて互いに融着して光沢面や鏡面が得られるのか、具体的な開示がない。更に、ディスペンサやインクジェットプリンタによる塗布を簡単に記載しているが、金属ペーストの分散状態や保存安定性を保持しつつ塗布する方法については開示がない。以上より、金属ペーストを塗布する方法を実現するためには、非常に多くの試行錯誤が要求される。   However, for metal pastes, it is said that most metals can be used, but there is no disclosure regarding specific metal selection criteria, such as high participation and nano-sized metal particles such as copper. . In addition, metal particles having the property of being fused to each other even at low temperatures (150 to 220 ° C.) are required, and examples of components such as silver particles, acrylic resin, alcohol, toluene, etc. If it is a ratio, there is no specific disclosure as to whether a glossy surface or a mirror surface can be obtained by fusing each other at a low temperature (150 to 220 ° C.). Furthermore, although application by a dispenser or an ink jet printer is simply described, there is no disclosure about a method of application while maintaining the dispersion state and storage stability of the metal paste. As described above, in order to realize the method of applying the metal paste, a great deal of trial and error is required.

特許文献3には、銀ナノ粒子を安定化するために、脂肪族アミン化合物として、炭素数18のオレイルアミンと炭素数1〜18の飽和脂肪族アミンとの組合せが開示されている。しかし、オレイルアミンを保護剤の主成分として用いると、低温における銀ナノ粒子の焼結が妨げられる。   Patent Document 3 discloses a combination of an oleylamine having 18 carbon atoms and a saturated aliphatic amine having 1 to 18 carbon atoms as an aliphatic amine compound in order to stabilize silver nanoparticles. However, when oleylamine is used as the main component of the protective agent, sintering of silver nanoparticles at low temperatures is hindered.

特許文献4には、銀ナノ粒子を安定化するために、脂肪族アミン化合物として、沸点100℃〜250℃の中短鎖アルキルアミン(段落0061)と沸点100℃〜250℃の中短鎖アルキルジアミン(段落0062)との組合せが開示されている。この方法によれば、オレイルアミンを保護剤の主成分として用いることに起因する問題は改善されるが、低温における銀ナノ粒子の焼結により発現される導電性は未だ満足できる水準にはない。   In Patent Document 4, in order to stabilize silver nanoparticles, a medium-short chain alkylamine having a boiling point of 100 ° C. to 250 ° C. (paragraph 0061) and a medium / short chain alkyl having a boiling point of 100 ° C. to 250 ° C. are used as an aliphatic amine compound. Combinations with diamines (paragraph 0062) are disclosed. According to this method, the problem caused by using oleylamine as a main component of the protective agent is improved, but the conductivity expressed by the sintering of silver nanoparticles at a low temperature is not yet satisfactory.

特開平8−32119号公報JP-A-8-32119 特開2009−65219号公報JP 2009-65219 A 特開2008−214695号公報JP 2008-214695 A 特開2010−265543号公報JP 2010-265543 A

本発明は、めっき加工やエッチング加工を行うことなく、導電性や熱伝導性に優れ且つ光沢面を有する回路パターンを有する発光装置、及び、その発光装置を、光半導体素子に熱的ダメージを与える事なく、簡便且つ安定的に得る事ができる製造方法を提供する事を目的とする。   The present invention relates to a light emitting device having a circuit pattern having a glossy surface and excellent conductivity and thermal conductivity without performing plating or etching, and the light emitting device causes thermal damage to an optical semiconductor element. An object is to provide a production method that can be obtained easily and stably.

本発明者らは、保存安定性、分散性、導電性、熱伝導性に優れた銀ナノ粒子を用いる事により、導電性や熱伝導性に優れ且つ光沢面を有する回路パターンを有する発光装置を、光半導体素子に熱的ダメージを与える事なく、簡便且つ安定的に得られる事を見出し、本発明を完成させた。   By using silver nanoparticles having excellent storage stability, dispersibility, conductivity, and thermal conductivity, the present inventors have developed a light-emitting device having a circuit pattern having a glossy surface with excellent conductivity and thermal conductivity. The present invention was completed by finding that it can be obtained simply and stably without causing thermal damage to the optical semiconductor element.

即ち、本発明は、光半導体素子、回路パターン、及び絶縁基板を有する発光装置であって、光半導体素子と回路パターンが電気的及び/又は熱的に接続され、且つ回路パターンが絶縁基板の上に設けられ、且つ回路パターンが銀ナノ粒子を含む組成物を焼結する事により形成され、且つ銀ナノ粒子が脂肪族炭化水素基及びアミノ基を有するアミン(A)及び銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子である発光装置を提供する。   That is, the present invention is a light emitting device having an optical semiconductor element, a circuit pattern, and an insulating substrate, wherein the optical semiconductor element and the circuit pattern are electrically and / or thermally connected, and the circuit pattern is formed on the insulating substrate. And an amine (A) and a silver compound (B) having a circuit pattern formed by sintering a composition containing silver nanoparticles, and the silver nanoparticles having an aliphatic hydrocarbon group and an amino group. Provided is a light-emitting device which is silver nanoparticles obtained by thermally decomposing a mixture containing the same.

また、本発明は、前記アミン(A)が、炭素数6以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A1)、炭素数5以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A2)、及び、炭素数8以下の脂肪族炭化水素基と2つのアミノ基とからなる脂肪族炭化水素ジアミン(A3)を含むアミンである前記発光装置を提供する。   In the present invention, the amine (A) is an aliphatic hydrocarbon monoamine (A1) composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and one amino group, an aliphatic hydrocarbon group having 5 or more carbon atoms. And an aliphatic hydrocarbon monoamine (A2) composed of one amino group and an aliphatic hydrocarbon diamine (A3) composed of an aliphatic hydrocarbon group having 8 or less carbon atoms and two amino groups. The light emitting device is provided.

また、本発明は、前記アミン(A)が、炭素数6以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A1)、及び炭素総数5以下の脂肪族炭化水素モノアミン(A2)を含むアミンであって、前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1)5モル%以上20モル%未満、及び前記モノアミン(A2)80モル%を超えて95モル%以下の割合で含むアミンである前記発光装置を提供する。   In the present invention, the amine (A) is an aliphatic hydrocarbon monoamine (A1) composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and one amino group, and an aliphatic hydrocarbon having 5 or less carbon atoms. An amine containing a monoamine (A2), wherein the monoamine (A1) is 5 mol% or more and less than 20 mol% and the monoamine (A2) is 80 mol based on the total of the monoamine (A1) and the monoamine (A2). The light-emitting device is an amine that is contained in an amount of more than 95% and not more than 95% by mole.

また、本発明は、前記アミン(A)が、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分枝脂肪族炭化水素モノアミン(A4)を含むアミンである前記発光装置を提供する。   In the light-emitting device according to the present invention, the amine (A) is an amine containing a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group. I will provide a.

また、本発明は、前記銀化合物(B)が、シュウ酸銀である前記発光装置を提供する。   Moreover, this invention provides the said light-emitting device whose said silver compound (B) is silver oxalate.

また、本発明は、前記銀ナノ粒子の平均粒径が0.5nm〜100nmである前記発光装置を提供する。   The present invention also provides the light emitting device, wherein the silver nanoparticles have an average particle size of 0.5 nm to 100 nm.

また、本発明は、光半導体素子及び回路パターンの全部又は一部が透明な保護材料で被覆されている前記発光装置を提供する。   Moreover, this invention provides the said light-emitting device by which all or one part of an optical semiconductor element and a circuit pattern is coat | covered with the transparent protective material.

また、本発明は、保護材料が、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂、カーボネート系樹脂、ノルボルネン系樹脂、シクロオレフィン系樹脂、及びポリアミド樹脂から選ばれるひとつ以上の材料からなる前記発光装置を提供する。   Further, the present invention provides the light emitting device, wherein the protective material is one or more materials selected from an epoxy resin, a silicone resin, an acrylic resin, a carbonate resin, a norbornene resin, a cycloolefin resin, and a polyamide resin. I will provide a.

また、本発明は、絶縁基板に銀ナノ粒子を含む組成物を塗布する工程(a)、前記組成物に含まれる銀ナノ粒子を焼結させる工程(b)、前記絶縁基板に光半導体素子を搭載する工程(c)、前記光半導体素子と回路パターンを電気的及び/又は熱的に接続する工程(d)、及び、前記回路パターンを覆うようにして保護材料を形成する工程(e)を含む前記発光装置の製造方法を提供する。   The present invention also includes a step (a) of applying a composition containing silver nanoparticles to an insulating substrate, a step (b) of sintering silver nanoparticles contained in the composition, and an optical semiconductor element on the insulating substrate. A step (c) of mounting, a step (d) of electrically and / or thermally connecting the optical semiconductor element and the circuit pattern, and a step (e) of forming a protective material so as to cover the circuit pattern. A method for manufacturing the light emitting device is provided.

また、本発明は、前記工程(b)及び前記工程(d)を同時に行う工程を含む前記発光装置の製造方法を提供する。   Moreover, this invention provides the manufacturing method of the said light-emitting device including the process of performing the said process (b) and the said process (d) simultaneously.

本発明によれば、めっき加工やエッチング加工を行うことなく、導電性や熱伝導性に優れ且つ光沢面を有する回路パターンを有する発光装置を得る事ができる。また、光半導体素子に熱的ダメージを与える事なく、簡便且つ安定的に発光装置を製造する事ができる。   According to the present invention, it is possible to obtain a light-emitting device having a circuit pattern having a glossy surface with excellent conductivity and thermal conductivity without performing plating or etching. In addition, the light emitting device can be manufactured easily and stably without causing thermal damage to the optical semiconductor element.

本発明の発光装置における実施態様の一例を示す。(a)から(e)は本発明の発光装置の製造工程における断面図を示す。An example of the embodiment in the light-emitting device of this invention is shown. (A) to (e) are cross-sectional views in the manufacturing process of the light emitting device of the present invention. 本発明の発光装置における実施態様の一例を示す。(a)から(e)は本発明の発光装置の製造工程における断面図を示す。An example of the embodiment in the light-emitting device of this invention is shown. (A) to (e) are cross-sectional views in the manufacturing process of the light emitting device of the present invention. 本発明の発光装置における実施態様の一例を示す。(a)から(e)は本発明の発光装置の製造工程における断面図を示す。An example of the embodiment in the light-emitting device of this invention is shown. (A) to (e) are cross-sectional views in the manufacturing process of the light emitting device of the present invention.

以下、本発明を実施するための形態を例示して説明するが、本発明はこれらに限られるものではない。   Hereinafter, although the form for implementing this invention is illustrated and demonstrated, this invention is not limited to these.

[発光装置]
本発明の発光装置は、光半導体素子、回路パターン、及び絶縁基板を有する発光装置であって、光半導体素子と回路パターンが電気的及び/又は熱的に接続され、且つ回路パターンが絶縁基板の上に設けられ、且つ回路パターンが銀ナノ粒子を含む組成物を焼結する事により形成され、且つ銀ナノ粒子が脂肪族炭化水素基及びアミノ基を有するアミン(A)及び銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子である発光装置である。
[Light emitting device]
The light emitting device of the present invention is a light emitting device having an optical semiconductor element, a circuit pattern, and an insulating substrate, wherein the optical semiconductor element and the circuit pattern are electrically and / or thermally connected, and the circuit pattern is an insulating substrate. An amine (A) and a silver compound (B) provided on the substrate and having a circuit pattern formed by sintering a composition containing silver nanoparticles, and the silver nanoparticles have an aliphatic hydrocarbon group and an amino group It is the light-emitting device which is the silver nanoparticle obtained by thermally decomposing the mixture containing this.

[光半導体素子]
本発明における光半導体素子としては、通電により光を発するものであれば特に限定されず、例えば、発光ダイオード(LED、Light Emitting Diode)等の光半導体素子を挙げる事ができる。本発明の半導体素子における端子を形成する材料としては、任意の金属を用いる事ができ、例えば、金、銀、銅、若しくはアルミニウム、又はそれらの合金を用いる事ができる。前記任意の金属の中でも、接合性や耐酸化性の観点からは、金若しくは金合金、又は、表面を金若しくは金合金により被覆された金属が好ましい。前記端子を形成する材料としては、銀ナノ粒子を含む組成物を用いても良い。
[Optical semiconductor device]
The optical semiconductor element in the present invention is not particularly limited as long as it emits light when energized, and examples thereof include an optical semiconductor element such as a light emitting diode (LED). As a material for forming the terminal in the semiconductor element of the present invention, any metal can be used. For example, gold, silver, copper, aluminum, or an alloy thereof can be used. Among the arbitrary metals, gold or a gold alloy, or a metal whose surface is coated with gold or a gold alloy is preferable from the viewpoint of bondability and oxidation resistance. As a material for forming the terminal, a composition containing silver nanoparticles may be used.

[回路パターン]
本発明の回路パターンは、光半導体素子と電気的及び/又は熱的に接続され、且つ絶縁基板の上に設けられる。本発明の回路パターンは、銀ナノ粒子を含む組成物を焼結する事により形成される。
[Circuit pattern]
The circuit pattern of the present invention is electrically and / or thermally connected to the optical semiconductor element and provided on the insulating substrate. The circuit pattern of the present invention is formed by sintering a composition containing silver nanoparticles.

[絶縁基板]
本発明における絶縁基板としては、電気的な絶縁性を有する平板等であれば特に限定されず、例えば、ガラス製基板;エポキシ樹脂やシリコーン樹脂等の硬化性樹脂を含有するガラス布基材(プリプレグ)を硬化させて得られる積層板、ポリイミド系フィルムのような耐熱性プラスチック基板;ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム等のポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルム等の耐熱性の低い汎用プラスチック基板;セラミック板;樹脂や無機フィラーが混入された樹脂やセラミック等で表面が絶縁処理された金属板等を挙げる事ができる。
[Insulated substrate]
The insulating substrate in the present invention is not particularly limited as long as it is a flat plate having electrical insulation, for example, a glass substrate; a glass cloth substrate (prepreg containing a curable resin such as an epoxy resin or a silicone resin) ), Heat-resistant plastic substrates such as polyimide films; polyester films such as polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films; heat resistance such as polyolefin films such as polypropylene Examples thereof include general-purpose plastic substrates having low properties; ceramic plates; metal plates whose surfaces are insulated with a resin or ceramic mixed with a resin or an inorganic filler.

[銀ナノ粒子を含む組成物]
本発明における銀ナノ粒子を含む組成物としては、例えば、導電性や熱伝導性を発揮する成分である多数の銀ナノ粒子と、銀ナノ粒子を分散した状態に保持するための有機溶剤や分散剤からなる構成が挙げられる。前記組成物は、特に制限される事なく、種々の形態をとり得る。例えば、銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させる事により、いわゆる銀インクと呼ばれる銀塗料組成物を作製する事ができる。あるいは、銀ナノ粒子を有機溶剤中に混練された状態で分散させる事により、いわゆる銀ペーストと呼ばれる銀塗料組成物を作製する事ができる。塗料組成物を得るための有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n−ブタノール、n−ペンタノール、n−ヘキサノール、n−ヘプタノール、n−オクタノール、n−ノナノール、n−デカノール、テルピネオール等のようなアルコール溶剤等が挙げられる。所望の銀塗料組成物の濃度や粘性に応じて、有機溶剤の種類や量を適宜定めると良い。後述する金属ナノ粒子についても同様である。
[Composition containing silver nanoparticles]
Examples of the composition containing silver nanoparticles in the present invention include, for example, a large number of silver nanoparticles, which are components that exhibit electrical conductivity and thermal conductivity, and an organic solvent or dispersion for maintaining the silver nanoparticles in a dispersed state. The structure which consists of an agent is mentioned. The composition is not particularly limited and can take various forms. For example, a silver coating composition called silver ink can be prepared by dispersing silver nanoparticles in a suitable organic solvent (dispersion medium) in a suspended state. Alternatively, a silver coating composition called a so-called silver paste can be produced by dispersing silver nanoparticles in a state of being kneaded in an organic solvent. Examples of the organic solvent for obtaining the coating composition include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; aromatics such as toluene, xylene, and mesitylene Hydrocarbon solvents; alcohol solvents such as methanol, ethanol, propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol, terpineol, etc. . The type and amount of the organic solvent may be appropriately determined according to the concentration and viscosity of the desired silver coating composition. The same applies to metal nanoparticles described later.

銀ナノ粒子の平均粒径は、0.5nm〜100nmである事が好ましく、0.5nm〜50nmである事がより好ましく、0.5nm〜25nmである事が更に好ましく、0.5nm〜10nmである事が特に好ましい。   The average particle size of the silver nanoparticles is preferably 0.5 nm to 100 nm, more preferably 0.5 nm to 50 nm, still more preferably 0.5 nm to 25 nm, and 0.5 nm to 10 nm. It is particularly preferred that there is.

本発明の銀ナノ粒子は、脂肪族炭化水素基及びアミノ基を有するアミン(A)及び銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子である。前記銀ナノ粒子は、アミン(A)を含む保護剤によって表面が被覆された状態となっており、安定性に優れ、200℃未満(例えば150℃以下、好ましくは120℃以下)の低温且つ2時間以下(例えば1時間以下、好ましくは30分間以下)の短い時間での焼結によって、例えば1μm以上の比較的厚膜である銀被膜を形成した場合でも優れた導電性(低い抵抗値)が発現する銀ナノ粒子である。   The silver nanoparticles of the present invention are silver nanoparticles obtained by thermally decomposing a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B). The silver nanoparticles are in a state where the surface is coated with a protective agent containing an amine (A), are excellent in stability, have a low temperature of less than 200 ° C. (for example, 150 ° C. or less, preferably 120 ° C. or less), and 2 Excellent conductivity (low resistance value) even when a relatively thick film of, for example, 1 μm or more is formed by sintering in a short period of time (for example, 1 hour or less, preferably 30 minutes or less). Silver nanoparticles that develop.

[アミンの実施態様1]
前記アミン(A)としては、炭素数6以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A1)、炭素数5以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A2)、及び、炭素数8以下の脂肪族炭化水素基と2つのアミノ基とからなる脂肪族炭化水素ジアミン(A3)を含むアミンの混合物が挙げられる。
[Amine embodiment 1]
Examples of the amine (A) include an aliphatic hydrocarbon monoamine (A1) composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and one amino group, an aliphatic hydrocarbon group having 5 or more carbon atoms and one amino group. And a mixture of amines including an aliphatic hydrocarbon monoamine (A2) consisting of and an aliphatic hydrocarbon diamine (A3) consisting of an aliphatic hydrocarbon group having 8 or less carbon atoms and two amino groups.

前記モノアミン(A1)は、その炭化水素鎖によって、生成する銀ナノ粒子表面への保護剤(安定化剤)としての高い機能を有する。前記モノアミン(A1)としては、好ましくは、炭素数6以上12以下のアルキルモノアミンが挙げられる。前記モノアミン(A1)としては、第一級アミン、第二級アミン、及び第三級アミンが含まれる。   The monoamine (A1) has a high function as a protective agent (stabilizer) on the surface of the silver nanoparticles produced by the hydrocarbon chain. The monoamine (A1) is preferably an alkyl monoamine having 6 to 12 carbon atoms. Examples of the monoamine (A1) include primary amines, secondary amines, and tertiary amines.

第一級アミンとしては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。飽和脂肪族炭化水素モノアミンとして、上記の直鎖脂肪族モノアミンの他に、イソヘキシルアミン、2−エチルヘキシルアミン、tert−オクチルアミン等の分枝脂肪族炭化水素アミンが挙げられる。また、シクロヘキシルアミンも挙げられる。さらに、オレイルアミン等の不飽和脂肪族炭化水素モノアミン(すなわち、アルケニルモノアミン)が挙げられる。   Examples of primary amines include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine Examples thereof include saturated aliphatic hydrocarbon monoamines such as amines (that is, alkyl monoamines). Examples of the saturated aliphatic hydrocarbon monoamine include branched aliphatic hydrocarbon amines such as isohexylamine, 2-ethylhexylamine, and tert-octylamine, in addition to the above-mentioned linear aliphatic monoamine. Also included is cyclohexylamine. Furthermore, unsaturated aliphatic hydrocarbon monoamines (namely, alkenyl monoamines) such as oleylamine can be mentioned.

第二級アミンとしては、N,N−ジプロピルアミン、N,N−ジブチルアミン、N,N−ジペンチルアミン、N,N−ジヘキシルアミン、N,N−ジペプチルアミン、N,N−ジオクチルアミン、N,N−ジノニルアミン、N,N−ジデシルアミン、N,N−ジウンデシルアミン、N,N−ジドデシルアミン、N−メチル−N−プロピルアミン、N−エチル−N−プロピルアミン、N−プロピル−N−ブチルアミン等のジアルキルモノアミンが挙げられる。第三級アミンとしては、トリブチルアミン、トリヘキシルアミン等が挙げられる。   Secondary amines include N, N-dipropylamine, N, N-dibutylamine, N, N-dipentylamine, N, N-dihexylamine, N, N-dipeptylamine, N, N-dioctylamine, N , N-dinonylamine, N, N-didecylamine, N, N-diundecylamine, N, N-didodecylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine, N-propyl-N -Dialkyl monoamines such as butylamine. Examples of the tertiary amine include tributylamine and trihexylamine.

これらの内でも、炭素数6以上の飽和脂肪族炭化水素モノアミンが好ましい。炭素数6以上とする事により、アミノ基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。炭素数の上限は特に定められないが、入手のし易さ、焼結時の除去のし易さ等を考慮して、通常、炭素数18までの飽和脂肪族モノアミンが好ましい。特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等の炭素数6〜12のアルキルモノアミンが好ましく用いられる。前記モノアミン(A1)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。   Among these, a saturated aliphatic hydrocarbon monoamine having 6 or more carbon atoms is preferable. By setting the number of carbon atoms to 6 or more, when the amino group is adsorbed on the surface of the silver particle, it is possible to secure an interval with other silver particles, and thus the effect of preventing aggregation of the silver particles is improved. The upper limit of the number of carbon atoms is not particularly defined, but saturated aliphatic monoamines having up to 18 carbon atoms are usually preferred in view of availability, ease of removal during sintering, and the like. In particular, alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used. The monoamine (A1) may be used alone or in combination of two or more.

前記モノアミン(A1)は、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計を基準として、10モル%〜65モル%含まれる事が好ましい。   The monoamine (A1) is preferably contained in an amount of 10 mol% to 65 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3).

前記モノアミン(A2)は、炭素数5以下の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミンである。前記モノアミン(A1)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記モノアミン(A1)に比べると極性が高いため、銀化合物(B)の銀への配位能が高く、錯体形成促進に効果があると考えられる。また、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温における焼結の際でも、30分間以下、あるいは20分間以下の短時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温焼結に効果がある。   The monoamine (A2) is an aliphatic hydrocarbon monoamine composed of an aliphatic hydrocarbon group having 5 or less carbon atoms and one amino group. Since the carbon chain length is shorter than that of the monoamine (A1), the function as a protective agent (stabilizer) itself is considered to be low. However, since the polarity is higher than that of the monoamine (A1), the silver compound ( It is considered that B) has a high coordination ability to silver and is effective in promoting complex formation. Further, since the carbon chain length is short, even when sintering at a low temperature of, for example, 120 ° C. or less, or about 100 ° C. or less, it can be removed from the surface of the silver particles in a short time of 30 minutes or less or 20 minutes or less It is effective for low-temperature sintering of the obtained silver nanoparticles.

前記モノアミン(A2)としては、例えば、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、 sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、イソペンチルアミン、tert−ペンチルアミン等の炭素数2〜5の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。また、N,N−ジメチルアミン、N,N−ジエチルアミン等のジアルキルモノアミンが挙げられる。   Examples of the monoamine (A2) include carbon numbers such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, and tert-pentylamine. 2-5 saturated aliphatic hydrocarbon monoamines (ie, alkyl monoamines). Moreover, dialkyl monoamines, such as N, N-dimethylamine and N, N-diethylamine, are mentioned.

これらの内でも、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、イソペンチルアミン、tert−ペンチルアミン等が好ましく、上記ブチルアミン類が特に好ましい。前記モノアミン(A2)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。   Among these, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like are preferable, and the above butylamines are particularly preferable. The monoamine (A2) may be used alone or in combination of two or more.

前記モノアミン(A2)は、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計を基準として、5モル%〜50モル%含まれる事が好ましい。   The monoamine (A2) is preferably contained in an amount of 5 mol% to 50 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3).

前記ジアミン(A3)は、銀化合物(B)の銀への配位能が高く、錯体形成促進に効果がある。脂肪族炭化水素ジアミンは、一般に、脂肪族炭化水素モノアミンと比べて極性が高く、銀化合物の銀への配位能が高くなる。また、前記ジアミン(A3)は、錯化合物の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、銀ナノ粒子製造をより効率的に行うことができる。さらに、前記ジアミン(A3)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。さらに、前記ジアミン(A3)は、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温での焼結においても、30分間以下、あるいは20分間以下の短い時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温且つ短時間での焼結に効果がある。   The diamine (A3) has a high coordination ability to the silver of the silver compound (B), and is effective in promoting complex formation. The aliphatic hydrocarbon diamine generally has a higher polarity than the aliphatic hydrocarbon monoamine, and the coordination ability of silver compounds to silver is increased. Further, the diamine (A3) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex compound, and silver nanoparticles can be produced more efficiently. Furthermore, since the protective film of silver particles containing the diamine (A3) has a high polarity, the dispersion stability of the silver particles in a dispersion medium containing a highly polar solvent is improved. Furthermore, since the diamine (A3) has a short carbon chain length, for example, even when sintered at a low temperature of 120 ° C. or lower, or about 100 ° C. or lower, silver particles can be obtained in a short time of 30 minutes or less or 20 minutes or less. Since it can be removed from the surface, it is effective in sintering the obtained silver nanoparticles at a low temperature in a short time.

前記ジアミン(A3)としては、好ましくは、炭素数2以上8以下のアルキルジアミンが挙げられる。前記ジアミン(A3)としては、例えば、エチレンジアミン、N,N−ジメチルエチレンジアミン、N,N’−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N’−ジエチルエチレンジアミン、1,3−プロパンジアミン、2,2−ジメチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N’−ジメチル−1,3−プロパンジアミン、N,N−ジエチル−1,3−プロパンジアミン、N,N’−ジエチル−1,3−プロパンジアミン、1,4−ブタンジアミン、N,N−ジメチル−1,4−ブタンジアミン、N,N’−ジメチル−1,4−ブタンジアミン、N,N−ジエチル−1,4−ブタンジアミン、N,N’−ジエチル−1,4−ブタンジアミン、1,5−ペンタンジアミン、1,5−ジアミノ−2−メチルペンタン、1,6−ヘキサンジアミン、N,N−ジメチル−1,6−ヘキサンジアミン、N,N’−ジメチル−1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン等が挙げられる。これらはいずれも、2つのアミノ基のうちの少なくとも1つが第一級アミノ基又は第二級アミノ基である炭素総数8以下のアルキレンジアミンであり、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。   As said diamine (A3), Preferably, C2-C8 alkyldiamine is mentioned. Examples of the diamine (A3) include ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1,3-propanediamine, and 2, , 2-Dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N′-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propane Diamine, N, N′-diethyl-1,3-propanediamine, 1,4-butanediamine, N, N-dimethyl-1,4-butanediamine, N, N′-dimethyl-1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N′-diethyl-1,4-butanediamine, 1,5-pentanediamine 1,5-diamino-2-methylpentane, 1,6-hexanediamine, N, N-dimethyl-1,6-hexanediamine, N, N′-dimethyl-1,6-hexanediamine, 1,7-heptane Examples include diamine and 1,8-octanediamine. These are all alkylene diamines having a total carbon number of 8 or less, in which at least one of the two amino groups is a primary amino group or a secondary amino group, and the ability of the silver compound to coordinate to silver is high, Effective in promoting complex formation.

これらの内でも、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N−ジエチル−1,3−プロパンジアミン、N,N−ジメチル−1,4−ブタンジアミン、N,N−ジエチル−1,4−ブタンジアミン、N,N−ジメチル−1,6−ヘキサンジアミン等の2つのアミノ基のうちの1つが第一級アミノ基(−NH2 )であり、他の1つが第三級アミノ基(−NR1R2 )である炭素総数8以下のアルキレンジアミンが好ましい。好ましいアルキレンジアミンは、下記構造式で表される。   Among these, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propanediamine, N, N-dimethyl One of two amino groups such as -1,4-butanediamine, N, N-diethyl-1,4-butanediamine, and N, N-dimethyl-1,6-hexanediamine is a primary amino group ( An alkylenediamine having a total carbon number of 8 or less, wherein -NH2) and the other one is a tertiary amino group (-NR1R2) is preferred. A preferred alkylenediamine is represented by the following structural formula.

12 N−R−NH2
ここで、Rは、2価のアルキレン基を表し、R1 及びR2 は、同一又は異なっていてもよく、アルキル基を表し、ただし、R、R1 及びR2 の炭素数の総和は8以下である。該アルキレン基は、酸素原子又は窒素原子等のヘテロ原子を含まない。また、該アルキル基は、酸素原子又は窒素原子等のヘテロ原子を含まない。
R 1 R 2 N—R—NH 2
Here, R represents a divalent alkylene group, R 1 and R 2 may be the same or different and each represents an alkyl group, provided that the total number of carbon atoms of R, R 1 and R 2 is 8 It is as follows. The alkylene group does not contain a hetero atom such as an oxygen atom or a nitrogen atom. The alkyl group does not contain a hetero atom such as an oxygen atom or a nitrogen atom.

これらの内でも、低温焼結においても短時間で銀粒子表面から除去され得るという観点から、炭素総数6以下のジアミンが好ましく、炭素総数5以下のジアミンがより好ましい。前記ジアミン(A3)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。   Among these, a diamine having a total carbon number of 6 or less is preferable and a diamine having a total carbon number of 5 or less is more preferable from the viewpoint that it can be removed from the silver particle surface in a short time even in low-temperature sintering. The diamine (A3) may be used alone or in combination of two or more.

前記ジアミン(A3)は、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計を基準として、15モル%〜50モル%含まれる事が好ましい。   The diamine (A3) is preferably contained in an amount of 15 mol% to 50 mol% based on the total of the monoamine (A1), the monoamine (A2), and the diamine (A3).

本発明において、前記モノアミン(A1)、前記モノアミン(A2)及び前記ジアミン(A3)の合計量としては、特に限定されないが、原料の前記銀化合物(B)の銀原子1モルに対して、それらアミン成分の合計量[(A1)+(A2)+(A3)]として1〜20モル程度が好ましい。前記アミン成分の合計量が、前記銀原子1モルに対して、1モル未満であると、アミン(A)と銀化合物(B)の錯化合物の生成工程において、錯化合物に変換されない銀化合物(B)が残存する可能性があり、その後の熱分解工程において、銀粒子の均一性が損なわれ、粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する可能性がある。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン成分の合計量を例えば2モル程度以上とする事が好ましい。前記アミン成分の合計量を2モル程度以上とする事により、錯化合物の生成工程及び熱分解工程を良好に行う事ができる。前記アミン成分の合計の量の下限については、前記銀化合物(B)の銀原子1モルに対して、2モル%以上が好ましく、6モル%以上がより好ましい。   In the present invention, the total amount of the monoamine (A1), the monoamine (A2), and the diamine (A3) is not particularly limited. However, with respect to 1 mol of silver atoms of the silver compound (B) as a raw material, The total amount of amine component [(A1) + (A2) + (A3)] is preferably about 1 to 20 mol. When the total amount of the amine component is less than 1 mole relative to 1 mole of the silver atom, a silver compound that is not converted into a complex compound in the step of producing a complex compound of the amine (A) and the silver compound (B) ( B) may remain, and in the subsequent pyrolysis step, the uniformity of the silver particles may be impaired, and the particles may be enlarged, or the silver compound may remain without being thermally decomposed. In order to produce a dispersion of silver nanoparticles substantially in the absence of a solvent, the total amount of the amine components is preferably about 2 mol or more, for example. By setting the total amount of the amine component to about 2 mol or more, the complex compound formation step and the thermal decomposition step can be performed satisfactorily. About the minimum of the total quantity of the said amine component, 2 mol% or more is preferable with respect to 1 mol of silver atoms of the said silver compound (B), and 6 mol% or more is more preferable.

[アミンの実施態様2]
前記アミン(A)の別の実施態様としては、炭素数6以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A1)、炭素数5以下の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A2)を含むアミンの混合物であって、前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1)5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び前記モノアミン(A2)80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)の割合で含むアミンの混合物が挙げられる。
[Amine Embodiment 2]
As another embodiment of the amine (A), an aliphatic hydrocarbon monoamine (A1) composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and one amino group, an aliphatic hydrocarbon group having 5 or less carbon atoms And an amine containing an aliphatic hydrocarbon monoamine (A2) consisting of one amino group, and 5 mol% of the monoamine (A1) based on the total of the monoamine (A1) and the monoamine (A2) More than 20 mol% (for example, 5 mol% or more and 19 mol% or less), and more than 80 mol% of the monoamine (A2), 95 mol% or less (for example, 81 mol% or more and 95 mol% or less) Mention may be made of mixtures of amines.

前記モノアミン(A1)、及び前記モノアミン(A2)の使用割合は、前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1): 5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び前記モノアミン(A2):80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)である。なお、本発明による効果を阻害しない範囲で、本発明のアミン混合液には、前記モノアミン(A1)や前記モノアミン(A2)以外のアミン等を含むことができる。   The use ratio of the monoamine (A1) and the monoamine (A2) is, based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1): 5 mol% or more and less than 20 mol% (for example, 5 mol% or more and 19 mol% or less) and the monoamine (A2): more than 80 mol% and 95 mol% or less (for example, 81 mol% or more and 95 mol% or less). In addition, in the range which does not inhibit the effect by this invention, the amine liquid mixture of this invention can contain amine other than the said monoamine (A1) and the said monoamine (A2).

前記脂肪族モノアミン(A1)の含有量を5モル%以上20モル%未満とすることによって、該(A1)成分の炭素鎖によって、生成する銀粒子表面の保護安定化機能が得られる。前記(A1)成分の含有量が5モル%未満では、保護安定化機能の発現が弱いことがある。一方、前記(A1)成分の含有量が20モル%以上となると、保護安定化機能は十分であるが、膜厚が比較的厚い焼結膜を形成する際の低温焼結によって該(A1)成分が除去され難くなる。前記(A1)成分の含有量の下限については、10モル%以上、例えば13モル%以上が好ましい。前記(A1)成分の含有量の上限については、19モル%以下、例えば17モル%以下が好ましい。   By setting the content of the aliphatic monoamine (A1) to 5 mol% or more and less than 20 mol%, the function of protecting and stabilizing the surface of the silver particles produced can be obtained by the carbon chain of the component (A1). When the content of the component (A1) is less than 5 mol%, the protective stabilization function may be weakly expressed. On the other hand, when the content of the component (A1) is 20 mol% or more, the protective stabilization function is sufficient, but the component (A1) is obtained by low-temperature sintering when forming a relatively thick sintered film. Is difficult to remove. About the minimum of content of the said (A1) component, 10 mol% or more, for example, 13 mol% or more is preferable. About the upper limit of content of the said (A1) component, 19 mol% or less, for example, 17 mol% or less is preferable.

前記モノアミン(A2)の含有量を80モル%を超えて95モル%以下とすることによって、錯体形成促進効果が得られやすく、また、それ自体で低温且つ短時間焼結に寄与できる。前記(A2)成分の含有量が80モル%以下では、錯体形成促進効果が弱かったり、あるいは、膜厚が比較的厚い焼結膜を形成する際の焼結時において前記(A1)成分が銀粒子表面から除去されにくいことがある。一方、前記(A2)成分の含有量が95モル%を超えると、錯体形成促進効果は得られるが、相対的に前記モノアミン(A1)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られ難い。前記(A2)成分の含有量の下限については、81モル%以上、例えば83モル%以上が好ましい。前記(A2)成分の含有量の上限については、90モル%以下、例えば87モル%以下が好ましい。   By setting the content of the monoamine (A2) to more than 80 mol% and not more than 95 mol%, a complex formation promoting effect can be easily obtained, and itself can contribute to low temperature and short time sintering. When the content of the component (A2) is 80 mol% or less, the effect of promoting complex formation is weak, or the component (A1) is a silver particle during sintering when forming a relatively thick sintered film. May be difficult to remove from the surface. On the other hand, when the content of the component (A2) exceeds 95 mol%, a complex formation promoting effect can be obtained, but the content of the monoamine (A1) is relatively decreased, and the surface of the silver particles to be generated is reduced. It is difficult to achieve protection and stabilization. About the minimum of content of the said (A2) component, 81 mol% or more, for example, 83 mol% or more is preferable. About the upper limit of content of said (A2) component, 90 mol% or less, for example, 87 mol% or less is preferable.

本発明においては、銀化合物(B)の銀への配位能が高い前記モノアミン(A2)を前記の割合で用いるので、前記モノアミン(A1)の銀粒子表面上への付着量は少なくて済む。従って、前記低温短時間での焼結の場合にも、これらアミン類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。   In the present invention, since the monoamine (A2) having a high coordination ability to the silver of the silver compound (B) is used in the above ratio, the amount of the monoamine (A1) deposited on the silver particle surface can be small. . Therefore, even in the case of sintering at a low temperature for a short time, these amines are easily removed from the surface of the silver particles, and the silver particles are sufficiently sintered.

本発明において、前記モノアミン(A1)と前記モノアミン(A2)の合計量としては、特に限定されないが、前記銀化合物(B)の銀原子1モルに対して、前記アミン[(A1)+(A2)]の量を1〜72モル程度とすると良い。前記アミン[(A1)+(A2)]の量が、前記銀原子1モルに対して、1モル未満であると、錯化合物の生成工程において、錯化合物に変換されない銀化合物が残存する可能性があり、その後の熱分解工程において、銀粒子の均一性が損なわれ粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する可能性がある。一方、前記アミン[(A1)+(A2)]の量が、前記銀原子1モルに対して、72モル程度を超えてもあまりメリットはないと考えられる。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン[(A1)+(A2)]を例えば2モル程度以上とするとよい。前記全アミンの量を2〜72モル程度とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン[(A1)+(A2)]の量の下限については、前記銀化合物の銀原子1モルに対して、2モル%以上が好ましく、6モル%以上がより好ましく、10モル%以上がさらに好ましい。   In the present invention, the total amount of the monoamine (A1) and the monoamine (A2) is not particularly limited, but the amine [(A1) + (A2) per 1 mol of silver atoms of the silver compound (B). )] Is preferably about 1 to 72 mol. When the amount of the amine [(A1) + (A2)] is less than 1 mol with respect to 1 mol of the silver atom, a silver compound that cannot be converted into a complex compound may remain in the complex compound formation step. In the subsequent pyrolysis step, the uniformity of the silver particles may be impaired and the particles may be enlarged, or the silver compound may remain without being pyrolyzed. On the other hand, it is considered that there is not much merit even if the amount of the amine [(A1) + (A2)] exceeds about 72 mol with respect to 1 mol of the silver atom. In order to produce a dispersion of silver nanoparticles substantially in the absence of a solvent, the amine [(A1) + (A2)] may be, for example, about 2 mol or more. By setting the amount of all amines to about 2 to 72 mol, the complex compound formation step and the thermal decomposition step can be performed satisfactorily. About the minimum of the quantity of the said amine [(A1) + (A2)], 2 mol% or more is preferable with respect to 1 mol of silver atoms of the said silver compound, 6 mol% or more is more preferable, and 10 mol% or more is preferable. Further preferred.

本発明において、前記アミン混合液は、更に、前記ジアミン(A3)を含んでも良い。   In the present invention, the amine mixed solution may further contain the diamine (A3).

[アミンの実施態様3]
前記アミン(A)の別の実施態様としては、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分岐脂肪族炭化水素モノアミン(A4)を含むアミンの混合物が挙げられる。分枝脂肪族炭化水素アミン化合物を用いると、同じ炭素数の直鎖脂肪族炭化水素アミン化合物を用いた場合と比べ、分枝脂肪族炭化水素基の立体的因子により銀粒子表面上へのより少ない付着量で銀粒子表面のより大きな面積を被覆することができる。そのため、銀粒子表面上へのより少ない付着量で、銀ナノ粒子の適度な安定化が得られる。焼結時において除去すべき保護剤(有機安定剤)の量が少ないので、200℃以下の低温での焼結の場合にも、有機安定剤を効率よく除去でき、銀粒子の焼結が十分に進行する。
[Embodiment 3 of amine]
Another embodiment of the amine (A) includes a mixture of amines including a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group. When a branched aliphatic hydrocarbon amine compound is used, compared with the case of using a straight aliphatic hydrocarbon amine compound having the same carbon number, the steric factor of the branched aliphatic hydrocarbon group causes more A larger area on the surface of the silver particles can be coated with a small amount of adhesion. Therefore, moderate stabilization of the silver nanoparticles can be obtained with a smaller amount of adhesion on the surface of the silver particles. Since the amount of protective agent (organic stabilizer) to be removed at the time of sintering is small, the organic stabilizer can be efficiently removed even in the case of sintering at a low temperature of 200 ° C. or less, and the silver particles are sufficiently sintered. Proceed to.

前記モノアミン(A4)における分枝脂肪族炭化水素基の炭素数は、4以上であり、例えば4〜16である。分枝脂肪族炭化水素基の立体的因子を得るためには、炭素数4以上が必要である。分枝脂肪族炭化水素モノアミン化合物としては、例えば、イソブチルアミン、 sec−ブチルアミン、tert−ブチルアミン、イソペンチルアミン、tert−ペンチルアミン、イソヘキシルアミン、2−エチルヘキシルアミン、tert−オクチルアミン等の炭素数4〜16、好ましくは炭素数4〜8の第一級アミンが挙げられる。   Carbon number of the branched aliphatic hydrocarbon group in the monoamine (A4) is 4 or more, for example, 4 to 16. In order to obtain the steric factor of the branched aliphatic hydrocarbon group, 4 or more carbon atoms are required. Examples of branched aliphatic hydrocarbon monoamine compounds include carbon numbers such as isobutylamine, sec-butylamine, tert-butylamine, isopentylamine, tert-pentylamine, isohexylamine, 2-ethylhexylamine, and tert-octylamine. Primary amines having 4 to 16, preferably 4 to 8 carbon atoms are exemplified.

また、N,N−イソブチルアミン、N,N−イソペンチルアミン、N,N−イソヘキシルアミン、N,N−(2−エチルヘキシル)アミン等の第二級アミンが挙げられる。また、トリイソブチルアミン、トリイソペンチルアミン、トリイソヘキシルアミン、トリ(2−エチルヘキシル)アミン等の第三級アミンが挙げられる。N,N−(2−エチルヘキシル)アミンの場合、2−エチルヘキシル基の炭素数は8であるが、前記モノアミン(A4)に含まれる炭素の総数は16となる。トリ(2−エチルヘキシル)アミンの場合、前記モノアミン(A4)に含まれる炭素の総数は24となる。   Moreover, secondary amines, such as N, N-isobutylamine, N, N-isopentylamine, N, N-isohexylamine, N, N- (2-ethylhexyl) amine, are mentioned. In addition, tertiary amines such as triisobutylamine, triisopentylamine, triisohexylamine, and tri (2-ethylhexyl) amine can be used. In the case of N, N- (2-ethylhexyl) amine, the carbon number of the 2-ethylhexyl group is 8, but the total number of carbons contained in the monoamine (A4) is 16. In the case of tri (2-ethylhexyl) amine, the total number of carbons contained in the monoamine (A4) is 24.

これらの分枝脂肪族炭化水素モノアミンの内でも、イソペンチルアミン、イソヘキシルアミン、2−エチルヘキシルアミン等の主鎖の炭素数4〜6の分枝アルキルモノアミン化合物が好ましい。主鎖の炭素数4〜6であると、銀ナノ粒子の適度な安定化が得られ易い。また、分枝脂肪族基の立体的因子の観点からは、N原子側から2番目の炭素原子において枝分かれしていることが有効である。前記モノアミン(A4)は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。   Among these branched aliphatic hydrocarbon monoamines, branched alkyl monoamine compounds having 4 to 6 carbon atoms in the main chain such as isopentylamine, isohexylamine, and 2-ethylhexylamine are preferable. When the main chain has 4 to 6 carbon atoms, appropriate stabilization of the silver nanoparticles is easily obtained. From the viewpoint of the steric factor of the branched aliphatic group, it is effective that the second carbon atom is branched from the N atom side. The monoamine (A4) may be used alone or in combination of two or more.

本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物として、前記モノアミン(A4)の他に、更に、前記モノアミン(A1)、前記モノアミン(A2)、及び前記ジアミン(A3)から選ばれる脂肪族炭化水素アミン化合物をそれぞれ別個独立に用いることができる。前記モノアミン(A2)、及び前記ジアミン(A3)は、錯体形成促進に効果がある。   In the present invention, as the aliphatic hydrocarbon amine compound that functions as a complex-forming agent and / or a protective agent, in addition to the monoamine (A4), the monoamine (A1), the monoamine (A2), and the diamine ( Aliphatic hydrocarbon amine compounds selected from A3) can be used independently of each other. The monoamine (A2) and the diamine (A3) are effective in promoting complex formation.

[銀化合物]
前記銀化合物(B)としては、加熱により容易に分解して、金属銀を生成する銀化合物を用いる。このような銀化合物としては、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀などのカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀などのハロゲン化銀;硫酸塩、硝酸銀、炭酸銀等を用いる事ができるが、分解により容易に金属銀を生成し且つ銀以外の不純物を生じ難いという観点から、シュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高く、且つ、還元剤を必要とせず熱分解により金属銀がそのまま得られ、還元剤に由来する不純物が残留し難い点で有利である。
[Silver compound]
As the silver compound (B), a silver compound that is easily decomposed by heating to form metallic silver is used. Examples of such silver compounds include silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate, and silver phthalate; silver fluoride, silver chloride, silver bromide, silver iodide, etc. Silver oxalate can be used, but silver oxalate is preferably used from the viewpoint that metal silver is easily generated by decomposition and impurities other than silver are hardly generated. Silver oxalate is advantageous in that it has a high silver content and does not require a reducing agent, so that metallic silver can be obtained by thermal decomposition as it is, and impurities derived from the reducing agent do not easily remain.

銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、加熱により容易に分解して、目的とする金属を生成する金属化合物を用いる。このような金属化合物としては、上記の銀化合物に対応するような金属の塩、例えば、金属のカルボン酸塩;金属ハロゲン化物;金属硫酸塩、金属硝酸塩、金属炭酸塩等の金属塩化合物を用いる事ができる。これらのうち、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという観点から、金属のシュウ酸塩が好ましく用いられる。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。   When producing metal nanoparticles containing a metal other than silver, a metal compound that is easily decomposed by heating to produce the target metal is used instead of the silver compound. As such a metal compound, a metal salt corresponding to the above silver compound, for example, a metal carboxylate; a metal halide; a metal salt compound such as a metal sulfate, a metal nitrate, or a metal carbonate is used. I can do things. Of these, metal oxalate is preferably used from the viewpoint of easily generating metal by decomposition and hardly generating impurities other than metal. Examples of other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.

また、銀との複合物を得るために、上記の銀化合物と、上記の銀以外の他の金属化合物を併用してもよい。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。銀複合物は、銀と1又は2以上の他の金属からなるものであり、Au−Ag、Ag−Cu、Au−Ag−Cu、Au−Ag−Pd等が例示される。金属全体を基準として、銀が少なくとも20重量%、通常は50重量%、例えば80重量%を占める。   Moreover, in order to obtain the composite with silver, you may use together said silver compound and other metal compounds other than said silver. Examples of other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni. The silver composite is composed of silver and one or more other metals, and examples thereof include Au—Ag, Ag—Cu, Au—Ag—Cu, and Au—Ag—Pd. Based on the total metal, silver accounts for at least 20% by weight, usually 50% by weight, for example 80% by weight.

[脂肪族カルボン酸]
本発明において、銀ナノ粒子の分散媒への分散性をさらに向上させるため、安定剤として、さらに脂肪族カルボン酸(C)を用いてもよい。前記脂肪族カルボン酸(C)は、前記アミン混合液中に含ませて用いる事ができる。前記脂肪族カルボン酸(C)を用いる事により、銀ナノ粒子の安定性、特に有機溶剤中に分散された塗料状態での安定性が向上する事がある。
[Aliphatic carboxylic acid]
In the present invention, in order to further improve the dispersibility of the silver nanoparticles in the dispersion medium, an aliphatic carboxylic acid (C) may be further used as a stabilizer. The aliphatic carboxylic acid (C) can be used by being included in the amine mixed solution. By using the aliphatic carboxylic acid (C), the stability of the silver nanoparticles, particularly the stability in a paint state dispersed in an organic solvent may be improved.

前記脂肪族カルボン酸(C)としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸; オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。   As the aliphatic carboxylic acid (C), a saturated or unsaturated aliphatic carboxylic acid is used. For example, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, Examples thereof include saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid; unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, and palmitoleic acid.

これらの内でも、炭素数8〜18の飽和又は不飽和の脂肪族モノカルボンが好ましい。炭素数8以上とする事により、カルボン酸基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼結時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和の脂肪族モノカルボン酸化合物が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸(C)は、1種のみを用いても良く、2種以上を組み合わせて用いても良い。   Among these, a saturated or unsaturated aliphatic monocarboxylic acid having 8 to 18 carbon atoms is preferable. By setting the number of carbon atoms to 8 or more, when the carboxylic acid group is adsorbed on the surface of the silver particle, it is possible to secure an interval with other silver particles, so that the effect of preventing aggregation of the silver particles is improved. In view of availability, ease of removal during sintering, and the like, a saturated or unsaturated aliphatic monocarboxylic acid compound having up to 18 carbon atoms is usually preferred. In particular, octanoic acid, oleic acid and the like are preferably used. The aliphatic carboxylic acid (C) may be used alone or in combination of two or more.

前記脂肪族カルボン酸(C)の量は、原料の前記銀化合物(B)の銀原子1モルに対して、例えば0.05〜10モルが好ましく、0.1〜5モルがより好ましく、0.5〜2モルが更に好ましい。前記(C)成分の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記(C)成分の添加による分散状態での安定性向上効果は弱い。一方、前記(C)成分の量が10モルに達すると、分散状態での安定性向上効果が飽和するし、また、低温焼結での前記(C)成分の除去がされ難くなる。   The amount of the aliphatic carboxylic acid (C) is, for example, preferably 0.05 to 10 mol, more preferably 0.1 to 5 mol, based on 1 mol of the silver atom of the silver compound (B) as the raw material. More preferably, it is 5 to 2 mol. When the amount of the component (C) is less than 0.05 mol with respect to 1 mol of the silver atom, the effect of improving the stability in the dispersed state due to the addition of the component (C) is weak. On the other hand, when the amount of the component (C) reaches 10 mol, the effect of improving the stability in the dispersed state is saturated, and it is difficult to remove the component (C) during low-temperature sintering.

[発光装置の実施態様1]
発光装置の実施態様を図1に例示する。まず、図1(a)に示す通り、略平坦に形成された絶縁基板4の上面に、銀ナノ粒子を含む組成物3を所定位置に塗布する。前記組成物3は、光沢面を有する回路パターン2を形成するために使用する。前記組成物3の塗布量は、特に限定されないが、0.002〜0.02g/cm2が好ましい。なお、前記組成物3の塗布方法は、特に限定されないが、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷等が挙げられる。
[Embodiment 1 of Light Emitting Device]
An embodiment of a light emitting device is illustrated in FIG. First, as shown in FIG. 1A, a composition 3 containing silver nanoparticles is applied to a predetermined position on the upper surface of an insulating substrate 4 formed substantially flat. The composition 3 is used to form a circuit pattern 2 having a glossy surface. Although the application amount of the composition 3 is not particularly limited, 0.002 to 0.02 g / cm 2 is preferable. The coating method of the composition 3 is not particularly limited, but spin coating, ink jet printing, screen printing, dispenser printing, letterpress printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), Intaglio printing (gravure printing), contact printing, microcontact printing and the like can be mentioned.

次に、図1(b)に示す通り、前記組成物3を塗布した絶縁基板4を加熱炉等で加熱し、前記組成物3に含まれる銀ナノ粒子を焼結させる。加熱条件は前記組成物3の組成や塗布量によって適宜調整する事ができ、例えば、200℃未満(例えば150℃以下、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは80℃以下)且つ2時間以下(例えば1時間以下、好ましくは30分間以下、より好ましくは15分間以下、更に好ましくは10分間以下)に調整する事ができる。これにより、前記組成物3は、表面が緻密な光沢面であり、導電性を有する回路パターン2として形成される。ここで、光沢面における光反射率は、10〜100%である事が好ましい。また、光沢面における光反射率が、50〜100%である場合、光沢面を特に「鏡面」と呼ぶ。   Next, as shown in FIG. 1B, the insulating substrate 4 coated with the composition 3 is heated in a heating furnace or the like to sinter the silver nanoparticles contained in the composition 3. The heating conditions can be appropriately adjusted depending on the composition and the coating amount of the composition 3, for example, less than 200 ° C. (for example, 150 ° C. or less, preferably 120 ° C. or less, more preferably 100 ° C. or less, more preferably 80 ° C. or less). And 2 hours or less (for example, 1 hour or less, preferably 30 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less). Accordingly, the composition 3 is formed as a circuit pattern 2 having a dense glossy surface and having conductivity. Here, the light reflectance on the glossy surface is preferably 10 to 100%. In addition, when the light reflectance on the glossy surface is 50 to 100%, the glossy surface is particularly called a “mirror surface”.

次に、図1(c)に示す通り、回路パターン2を形成した絶縁基板4の上の所定位置に、光半導体素子1を、導電性ペースト5を介して搭載する。これにより、光半導体素子1は回路パターン2と電気的及び熱的に接続される。次に、図1(d)に示す通り、光半導体素子1と他の回路パターン2とを金ワイヤ等のボンディングワイヤ6で電気的に接続する。ここで、導電性ペースト5としては、エポキシ樹脂等の樹脂バインダに銅粉末等の金属粉末を配合したもの等、公知のものを用いる事ができる。   Next, as shown in FIG. 1C, the optical semiconductor element 1 is mounted via a conductive paste 5 at a predetermined position on the insulating substrate 4 on which the circuit pattern 2 is formed. As a result, the optical semiconductor element 1 is electrically and thermally connected to the circuit pattern 2. Next, as shown in FIG. 1D, the optical semiconductor element 1 and another circuit pattern 2 are electrically connected by a bonding wire 6 such as a gold wire. Here, as the conductive paste 5, a publicly known paste such as a resin binder such as an epoxy resin and a metal powder such as copper powder can be used.

次に、図1(e)に示す通り、回路パターン2を覆うようにして保護材料7を形成する。これにより、本発明の発光装置が完成する。ここで、保護材料7は、光半導体素子1や回路パターン2の光沢面を、空気中の塵、水分、腐食性ガスから保護する機能を有する。保護材料7としては、特に限定されないが、例えば、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂、カーボネート系樹脂、ノルボルネン系樹脂、シクロオレフィン系樹脂、ポリアミド樹脂等の透明な樹脂材料を用いて形成する事ができる。保護材料7としては、樹脂材料の他、ガラスや無機めっき等、任意の透明な材料を用いる事ができる。また、保護材料7はレンズ状に形成しても良く、その場合、光半導体素子1からの発光や、回路パターン2の光沢面により反射された発光を、保護材料7にて収束したり発散したりする事ができる。   Next, as shown in FIG. 1E, a protective material 7 is formed so as to cover the circuit pattern 2. Thereby, the light emitting device of the present invention is completed. Here, the protective material 7 has a function of protecting the glossy surface of the optical semiconductor element 1 and the circuit pattern 2 from dust, moisture, and corrosive gas in the air. Although it does not specifically limit as the protective material 7, For example, it forms using transparent resin materials, such as an epoxy resin, a silicone resin, an acrylic resin, a carbonate resin, a norbornene resin, a cycloolefin resin, a polyamide resin. I can do it. As the protective material 7, any transparent material such as glass or inorganic plating can be used in addition to the resin material. Further, the protective material 7 may be formed in a lens shape. In that case, the light emitted from the optical semiconductor element 1 or the light reflected by the glossy surface of the circuit pattern 2 is converged or diffused by the protective material 7. You can do it.

[発光装置の実施態様2]
発光装置の別の実施態様を図2に例示する。まず、図2(a)に示す通り、略平坦に形成された絶縁基板4の上面に、前記組成物3を所定位置に塗布する。前記組成物3の塗布量や塗布方法は、実施態様1と同様である。
[Embodiment 2 of Light Emitting Device]
Another embodiment of the light emitting device is illustrated in FIG. First, as shown in FIG. 2A, the composition 3 is applied to a predetermined position on the upper surface of the insulating substrate 4 formed substantially flat. The application amount and application method of the composition 3 are the same as those in the first embodiment.

次に、図2(b)に示す通り、前記組成物3を塗布した絶縁基板4の上の所定位置に、光半導体素子1を搭載する。次に、図2(c)に示す通り、前記組成物3の塗布及び光半導体素子1の搭載がなされた絶縁基板4を加熱炉等で加熱し、前記組成物3に含まれる銀ナノ粒子を焼結させる。加熱条件は実施態様1と同様である。これにより、前記組成物3は、表面が緻密な光沢面であり、導電性を有する回路パターン2として形成される。併せて、光半導体素子1は回路パターン2と電気的及び熱的に接続される。この場合、実施態様1とは異なり、導電性ペースト5を用いなくとも、光半導体素子1と回路パターン2とが一体化されるため、効率の良い製造方法と言える。   Next, as shown in FIG. 2B, the optical semiconductor element 1 is mounted at a predetermined position on the insulating substrate 4 coated with the composition 3. Next, as shown in FIG. 2C, the insulating substrate 4 on which the composition 3 is applied and the optical semiconductor element 1 is mounted is heated in a heating furnace or the like, and the silver nanoparticles contained in the composition 3 are heated. Sinter. The heating conditions are the same as in the first embodiment. Accordingly, the composition 3 is formed as a circuit pattern 2 having a dense glossy surface and having conductivity. In addition, the optical semiconductor element 1 is electrically and thermally connected to the circuit pattern 2. In this case, unlike Embodiment 1, since the optical semiconductor element 1 and the circuit pattern 2 are integrated without using the conductive paste 5, it can be said to be an efficient manufacturing method.

次に、図2(d)に示す通り、光半導体素子1と他の回路パターン2とを金ワイヤ等のボンディングワイヤ6で電気的に接続する。次に、図2(e)に示す通り、回路パターン2を覆うようにして、実施態様1と同様に保護材料7を形成する。   Next, as shown in FIG. 2D, the optical semiconductor element 1 and another circuit pattern 2 are electrically connected by a bonding wire 6 such as a gold wire. Next, as shown in FIG. 2E, the protective material 7 is formed in the same manner as in the first embodiment so as to cover the circuit pattern 2.

[発光装置の実施態様3]
発光装置の別の実施態様を図3に例示する。まず、図3(a)に示す通り、光半導体素子1を搭載するための凹部を設けた絶縁基板4を準備する。前記凹部の形状は、特に限定されず、すり鉢状、半球状、逆台形状等が挙げられる。前記凹部の形成方法は、特に限定されないが、平板状の絶縁基板4を切削加工しても良いし、絶縁基板4を成形する際に凹部を形成しても良い。また、絶縁基板4が表面を絶縁処理した金属板の場合は、平板状の金属を切削加工等により凹部を形成した後に表面を絶縁処理しても良いし、絶縁基板4を金属鋳造等により成形する際に凹部を形成した後に表面を絶縁処理しても良い。
[Embodiment 3 of Light Emitting Device]
Another embodiment of the light emitting device is illustrated in FIG. First, as shown in FIG. 3A, an insulating substrate 4 provided with a recess for mounting the optical semiconductor element 1 is prepared. The shape of the said recessed part is not specifically limited, A mortar shape, a hemispherical shape, an inverted trapezoid shape, etc. are mentioned. The method for forming the recess is not particularly limited, and the flat insulating substrate 4 may be cut or formed when the insulating substrate 4 is formed. In addition, when the insulating substrate 4 is a metal plate whose surface is insulated, the surface may be insulated after forming a concave portion by cutting a flat plate metal or the insulating substrate 4 is formed by metal casting or the like. In this case, the surface may be insulated after the recess is formed.

次に、図3(b)に示す通り、前記組成物3を所定位置に塗布する。前記組成物3は、凹部の底面だけでなく、側面から凹部の開口周辺に至るまで塗布しても良い。その結果、複雑な形状を有する絶縁基板4に対しても、任意の箇所に回路パターン2を形成する事ができるため、高密度の回路パターン2の形成が容易である。   Next, as shown in FIG. 3B, the composition 3 is applied to a predetermined position. The composition 3 may be applied not only from the bottom surface of the recess but also from the side surface to the periphery of the opening of the recess. As a result, since the circuit pattern 2 can be formed at an arbitrary position even on the insulating substrate 4 having a complicated shape, the high-density circuit pattern 2 can be easily formed.

次に、図3(c)に示す通り、前記組成物3を塗布した絶縁基板4の上の所定位置に、光半導体素子1を搭載する。この実施態様3においては、光半導体素子1として下面にバンプを有するものを使用しており、このバンプを前記組成物3に接触させるようにして搭載する事により、光半導体素子1をフリップチップ実装する。次に、図3(d)に示す通り、前記組成物3の塗布及び光半導体素子1の搭載がなされた絶縁基板4を加熱炉等で加熱し、前記組成物3に含まれる銀ナノ粒子を焼結させる。加熱条件は実施態様1と同様である。これにより、前記組成物3は、表面が緻密な光沢面であり、導電性を有する回路パターン2として形成される。併せて、光半導体素子1は回路パターン2と電気的及び熱的に接続される。   Next, as shown in FIG. 3C, the optical semiconductor element 1 is mounted at a predetermined position on the insulating substrate 4 coated with the composition 3. In this embodiment 3, an optical semiconductor element 1 having a bump on the lower surface is used, and the optical semiconductor element 1 is flip-chip mounted by mounting the bump in contact with the composition 3. To do. Next, as shown in FIG. 3 (d), the insulating substrate 4 on which the composition 3 is applied and the optical semiconductor element 1 is mounted is heated in a heating furnace or the like, and the silver nanoparticles contained in the composition 3 are heated. Sinter. The heating conditions are the same as in the first embodiment. Accordingly, the composition 3 is formed as a circuit pattern 2 having a dense glossy surface and having conductivity. In addition, the optical semiconductor element 1 is electrically and thermally connected to the circuit pattern 2.

次に、図3(e)に示す通り、回路パターン2を覆うようにして、実施態様1と同様に保護材料7を形成する。この場合、実施態様1や実施態様1とは異なり、光半導体素子1と他の回路パターン2とを金ワイヤ等のボンディングワイヤ6で電気的に接続する必要がないため、効率の良い製造方法と言える。   Next, as shown in FIG. 3E, the protective material 7 is formed in the same manner as in the first embodiment so as to cover the circuit pattern 2. In this case, unlike Embodiment 1 and Embodiment 1, there is no need to electrically connect the optical semiconductor element 1 and another circuit pattern 2 with a bonding wire 6 such as a gold wire. I can say that.

なお、発光装置の実施態様1〜3のいずれにおいても、前記組成物3に含まれる銀ナノ粒子が緻密であり且つ分散性や均一性が高い事から、前記組成物3の表面に特許文献2に示すような成形型を押し当てて密着させるような操作を行わなくとも、回路パターン2の表面を鏡面に仕上げる事が可能である。これにより、光半導体素子からの発光を簡便且つ効率的に高める事ができる。得られた回路パターン2の表面粗さRaは、前述の光沢面における光反射率を満たす限り、特に限定されないが、1μm以下である事が好ましく、0.1μm以下である事が更に好ましい。   In any of Embodiments 1 to 3 of the light emitting device, the silver nanoparticles contained in the composition 3 are dense and have high dispersibility and uniformity. It is possible to finish the surface of the circuit pattern 2 to be a mirror surface without performing an operation for pressing the mold as shown in FIG. Thereby, the light emission from an optical semiconductor element can be improved simply and efficiently. The surface roughness Ra of the obtained circuit pattern 2 is not particularly limited as long as the light reflectance on the glossy surface is satisfied, but is preferably 1 μm or less, and more preferably 0.1 μm or less.

また、発光装置の実施態様1〜3のいずれにおいても、前記組成物3に含まれる銀ナノ粒子を低温且つ短時間に焼結させる事ができるため、光半導体素子1に熱的なダメージを与える事なく、発光装置を簡便且つ安定的に得る事ができる。   Further, in any of Embodiments 1 to 3 of the light emitting device, the silver nanoparticles contained in the composition 3 can be sintered at a low temperature and in a short time, so that the optical semiconductor element 1 is thermally damaged. Therefore, the light emitting device can be obtained simply and stably.

更に、発光装置の実施態様1〜3のいずれにおいても、前記組成物3に含まれる銀ナノ粒子は、保存安定性や分散性に優れ、且つ、例えば1μm以上の比較的厚膜の銀焼結膜を低温且つ短時間で焼結して形成した場合であっても、良好な導電性や熱伝導性を付与する事ができる事から、生産安定性や生産効率に優れ、且つ、エネルギー効率や耐久性に優れた発光装置を簡便に得る事ができる。   Furthermore, in any of Embodiments 1 to 3 of the light emitting device, the silver nanoparticles contained in the composition 3 are excellent in storage stability and dispersibility, and have a relatively thick silver sintered film of, for example, 1 μm or more. Even if it is formed by sintering at low temperature for a short time, it can provide good conductivity and thermal conductivity, so it has excellent production stability and production efficiency, and energy efficiency and durability A light-emitting device having excellent properties can be easily obtained.

以下に、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

[銀焼結膜の比抵抗値]
得られた銀焼結膜について、4端子法(ロレスタGP MCP−T610)を用いて測定した。この装置の測定範囲限界は、107 Ωcmである。
[Specific resistance of sintered silver film]
About the obtained silver sintered film, it measured using the 4-terminal method (Loresta GP MCP-T610). The measuring range limit of this device is 10 7 Ωcm.

以下の試薬を各実施例及び比較例で用いた。
N,N−ジメチル−1,3−プロパンジアミン(MW:102.18):東京化成社製
2−エチルヘキシルアミン(MW:129.25):和光純薬社製試薬
n−ブチルアミン(MW:73.14):東京化成社製試薬
n−ヘキシルアミン(MW:101.19):東京化成社製試薬
n−オクチルアミン(MW:129.25):東京化成社製試薬
オレイン酸(MW:282.47):東京化成社製試薬
メタノール:和光純薬社製試薬特級
1−ブタノール:東京化成社製試薬
オクタン:和光純薬社製試薬特級
ジヒドロキシターピネオール:日本テルペン株式会社製
シュウ酸銀(MW:303.78):硝酸銀(和光純薬社製)とシュウ酸二水和物(和光
純薬社製)とから合成したもの
The following reagents were used in each example and comparative example.
N, N-dimethyl-1,3-propanediamine (MW: 102.18): 2-ethylhexylamine (MW: 129.25) manufactured by Tokyo Chemical Industry Co., Ltd. Reagent n-butylamine (MW: 73.25 manufactured by Wako Pure Chemical Industries, Ltd.) 14): Reagent n-hexylamine (MW: 101.19) manufactured by Tokyo Chemical Industry Co., Ltd .: Reagent n-octylamine (MW: 129.25) manufactured by Tokyo Chemical Industry Co., Ltd .: Reagent oleic acid (MW: 282.47 manufactured by Tokyo Chemical Industry Co., Ltd.) ): Tokyo Chemical Co., Ltd. Reagent Methanol: Wako Pure Chemical Industries, Ltd. reagent grade 1-butanol: Tokyo Chemical Industries, Ltd. reagent octane: Wako Pure Chemical Industries, Ltd. reagent special grade dihydroxy terpineol: Nippon Terpene Co., Ltd. silver oxalate (MW: 303. 78): synthesized from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.)

[実施例1]
(銀ナノ粒子の調製)
50mLフラスコに、N,N−ジメチル−1,3−プロパンジアミン1.28g(12.5mmol)、n−ブチルアミン0.91g(12.5mmol)、ヘキシルアミン3.24g(32.0mmol)、オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.09g(0.33mmol)を加えて室温で攪拌し、均一な混合溶液を調製した。
[Example 1]
(Preparation of silver nanoparticles)
In a 50 mL flask, 1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, 3.24 g (32.0 mmol) of hexylamine, octylamine 0.39 g (3.0 mmol) and 0.09 g (0.33 mmol) of oleic acid were added and stirred at room temperature to prepare a uniform mixed solution.

調製した混合溶液にシュウ酸銀3.04g(10mmol)を加え、室温で攪拌して、粘性のある白色の物質への変化が、外見的に終了したと認められる時点で攪拌を終了した。   To the prepared mixed solution, 3.04 g (10 mmol) of silver oxalate was added and stirred at room temperature, and stirring was terminated when it was recognized that the change to a viscous white substance was apparently finished.

次に、得られた反応混合物を105℃〜110℃に加熱攪拌した。攪拌の開始後すぐに二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで攪拌を続けたところ、青色光沢を呈する銀ナノ粒子が懸濁した懸濁液を得た。   Next, the obtained reaction mixture was heated and stirred at 105 ° C to 110 ° C. The reaction with the generation of carbon dioxide started immediately after the start of stirring, and then the stirring was continued until the generation of carbon dioxide was completed. As a result, a suspension in which silver nanoparticles exhibiting a blue luster were suspended was obtained. .

次に、得られた懸濁液にメタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。   Next, 10 mL of methanol was added to the obtained suspension and stirred, and then silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. To the silver nanoparticles, 10 mL of methanol was again added and stirred, and then the silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, wet silver nanoparticles were obtained.

(銀ナノ塗料の調製と焼結)
次に、湿った銀ナノ粒子に、1−ブタノール/オクタン混合溶剤(体積比=1/4)を銀濃度50wt%となるように加えて攪拌し、銀ナノ粒子分散液を調製した。この銀ナノ粒子分散液を、焼結後の膜厚が1μm程度になるようにスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。
(Preparation and sintering of silver nano-paint)
Next, 1-butanol / octane mixed solvent (volume ratio = 1/4) was added to the wet silver nanoparticles so as to have a silver concentration of 50 wt%, and stirred to prepare a silver nanoparticle dispersion. This silver nanoparticle dispersion was applied on a non-alkali glass plate by a spin coating method so that the film thickness after sintering was about 1 μm to form a coating film.

塗膜の形成後、速やかに120℃にて15分間の条件で、送風乾燥炉にて焼結し、約1μmの厚みの銀焼結膜を形成した。得られた銀焼結膜の比抵抗値を4端子法により測定したところ、8.4μΩcmであった。   After the formation of the coating film, it was promptly sintered at 120 ° C. for 15 minutes in a blast drying furnace to form a silver sintered film having a thickness of about 1 μm. The specific resistance value of the obtained silver sintered film was measured by a four-terminal method and found to be 8.4 μΩcm.

また、上記銀ナノ粒子分散液について、次のように[1] 初期分散性評価、[2] 保存安定
性評価を行った。
[1] 調製直後の上記銀ナノ粒子分散液を0.2μmフィルターにてろ過したところ、フィルター目詰まりを起こさなかった。つまり、上記銀ナノ粒子分散液は良好な分散状態を保っていた。
[2] 調製直後の上記銀ナノ粒子分散液を透明ガラス製サンプル瓶中に入れ密閉し、これを暗所において25℃にて7日間保存したところ、銀鏡は認められなかった。保存後の銀ナノ粒子分散液を0.2μmフィルターにてろ過したところ、フィルター目詰まりを起こさなかった。つまり、保存後の銀ナノ粒子分散液は良好な分散状態を保っていた。
In addition, the silver nanoparticle dispersion was subjected to [1] evaluation of initial dispersibility and [2] evaluation of storage stability as follows.
[1] The silver nanoparticle dispersion immediately after preparation was filtered with a 0.2 μm filter, and no filter clogging occurred. That is, the silver nanoparticle dispersion liquid maintained a good dispersion state.
[2] The silver nanoparticle dispersion immediately after preparation was placed in a transparent glass sample bottle and sealed, and stored in the dark at 25 ° C. for 7 days. No silver mirror was observed. When the silver nanoparticle dispersion after storage was filtered with a 0.2 μm filter, the filter was not clogged. That is, the silver nanoparticle dispersion after storage maintained a good dispersion state.

(シュウ酸銀−アミン錯体について)
上記銀ナノ粒子の調製中に得られた粘性のある白色物質について、DSC(示差走査熱量計)測定を行ったところ、熱分解による発熱開始平均温度値は102.5℃であった。一方、原料のシュウ酸銀について、同様に、DSC測定を行ったところ、熱分解による発熱開始平均温度値は218℃であった。このように、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、原料のシュウ酸銀に比べて、熱分解温度が低下していた。このことから、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、シュウ酸銀とアルキルアミンとが結合してなるものであることが示され、シュウ酸銀の銀原子に対してアルキルアミンのアミノ基が配位結合しているシュウ酸銀−アミン錯体であると推察された。
(About silver oxalate-amine complex)
When the viscous white substance obtained during the preparation of the silver nanoparticles was subjected to DSC (Differential Scanning Calorimetry) measurement, the heat generation starting average temperature value due to thermal decomposition was 102.5 ° C. On the other hand, when the DSC measurement was similarly performed on the raw material silver oxalate, the heat generation starting average temperature value due to thermal decomposition was 218 ° C. Thus, the viscous white substance obtained during the preparation of the silver nanoparticles had a lower thermal decomposition temperature than the raw material silver oxalate. This indicates that the viscous white substance obtained during the preparation of the silver nanoparticles is a combination of silver oxalate and alkylamine, and is based on the silver atoms of silver oxalate. Thus, it was presumed to be a silver oxalate-amine complex in which the amino group of alkylamine is coordinated.

DSC測定条件は以下のとおりであった。
装置:DSC 6220−ASD2(エスアイアイ・ナノテクノロジー社製)
試料容器:15μL 金メッキ密封セル(エスアイアイ・ナノテクノロジー社製)
昇温速度:10℃/min (室温〜600℃)
雰囲気ガス:セル内 大気圧 空気封じ込み
セル外 窒素気流(50mL/min)
The DSC measurement conditions were as follows.
Apparatus: DSC 6220-ASD2 (manufactured by SII Nanotechnology)
Sample container: 15 μL gold-plated sealed cell (manufactured by SII Nanotechnology)
Temperature increase rate: 10 ° C / min (room temperature to 600 ° C)
Atmospheric gas: In-cell atmospheric pressure Air-contained Outside cell Nitrogen air flow (50 mL / min)

また、上記銀ナノ粒子の調製中に得られた粘性のある白色物質について、IRスペクトル測定を行ったところ、アルキルアミンのアルキル基に由来する吸収(2900cm-1付近、1000cm-1付近)が観察された。このことからも、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、シュウ酸銀とアルキルアミンとが結合してなるものであることが示され、シュウ酸銀の銀原子に対してアミノ基が配位結合しているシュウ酸銀−アミン錯体であると推察された。   In addition, when the IR spectrum measurement was performed on the viscous white substance obtained during the preparation of the silver nanoparticles, absorption derived from the alkyl group of the alkylamine (around 2900 cm −1, near 1000 cm −1) was observed. It was done. This also shows that the viscous white substance obtained during the preparation of the silver nanoparticles is formed by the combination of silver oxalate and alkylamine, and the silver oxalate has silver atoms. On the other hand, it was guessed that it was a silver oxalate-amine complex in which an amino group was coordinated.

[実施例2]
銀ナノ粒子の調製において、アミン−カルボン酸混合溶液の組成を、N,N−ジメチル−1,3−プロパンジアミン1.28g(12.5mmol)、n−ブチルアミン0.91g(12.5mmol)、ヘキシルアミン3.24g(32.0mmol)、オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製し、塗膜の形成、焼結を行った。
[Example 2]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.28 g (12.5 mmol) of N, N-dimethyl-1,3-propanediamine, 0.91 g (12.5 mmol) of n-butylamine, Silver nanoparticles in the same manner as in Example 1 except that 3.24 g (32.0 mmol) of hexylamine, 0.39 g (3.0 mmol) of octylamine, and 0.13 g (0.45 mmol) of oleic acid were used. A dispersion was prepared, and a coating film was formed and sintered.

得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は11.3μΩcmであった。   The obtained sintered silver film had a thickness of about 1 μm and a specific resistance value of 11.3 μΩcm.

[実施例3]
銀ナノ粒子の調製において、アミン−カルボン酸混合溶液の組成を、N,N−ジメチル−1,3−プロパンジアミン1.53g(15.0mmol)、n−ブチルアミン0.73g(10.0mmol)、ヘキシルアミン3.24g(32.0mmol)、オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製し、塗膜の形成、焼結を行った。
[Example 3]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.53 g (15.0 mmol) of N, N-dimethyl-1,3-propanediamine, 0.73 g (10.0 mmol) of n-butylamine, Silver nanoparticles in the same manner as in Example 1 except that 3.24 g (32.0 mmol) of hexylamine, 0.39 g (3.0 mmol) of octylamine, and 0.13 g (0.45 mmol) of oleic acid were used. A dispersion was prepared, and a coating film was formed and sintered.

得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は14.2μΩcmであった。   The obtained silver sintered film had a thickness of about 1 μm and a specific resistance value of 14.2 μΩcm.

[実施例4]
銀ナノ粒子の調製において、アミン−カルボン酸混合溶液の組成を、N,N−ジメチル−1,3−プロパンジアミン1.02g(10mmol)、n−ブチルアミン1.10g(15.0mmol)、ヘキシルアミン3.24g(32.0mmol)、オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製し、塗膜の形成、焼結を行った。
[Example 4]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 1.02 g (10 mmol) of N, N-dimethyl-1,3-propanediamine, 1.10 g (15.0 mmol) of n-butylamine, hexylamine. A silver nanoparticle dispersion liquid was prepared in the same manner as in Example 1, except that the amount was changed to 3.24 g (32.0 mmol), octylamine 0.39 g (3.0 mmol), and oleic acid 0.13 g (0.45 mmol). The coating film was formed and sintered.

得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は14.5μΩcmであった。   The obtained sintered silver film had a thickness of about 1 μm and a specific resistance value of 14.5 μΩcm.

[実施例5]
(銀ナノ粒子の調製)
50mLフラスコに、n−ブチルアミン10.84g(150mmol)、及びn−ヘキシルアミン3.00g(30mmol)を加えて室温で攪拌し、均一な混合溶液を調製した。
[Example 5]
(Preparation of silver nanoparticles)
To a 50 mL flask, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were added and stirred at room temperature to prepare a uniform mixed solution.

調製した混合溶液にシュウ酸銀3.04g(10mmol)を加え、室温で攪拌して、粘性のある白色の物質への変化が、外見的に終了したと認められる時点で攪拌を終了した。   To the prepared mixed solution, 3.04 g (10 mmol) of silver oxalate was added and stirred at room temperature, and stirring was terminated when it was recognized that the change to a viscous white substance was apparently finished.

次に、得られた反応混合物を85℃〜90℃に加熱攪拌した。加熱攪拌を開始したところ、徐々に茶色へと変色し、2時間加熱攪拌することで、銀ナノ粒子が懸濁した懸濁液を得た。   Next, the obtained reaction mixture was heated and stirred at 85 ° C to 90 ° C. When heating and stirring were started, the color gradually changed to brown, and by stirring for 2 hours, a suspension in which silver nanoparticles were suspended was obtained.

次に、得られた懸濁液にメタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。   Next, 10 mL of methanol was added to the obtained suspension and stirred, and then silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. To the silver nanoparticles, 10 mL of methanol was again added and stirred, and then the silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, wet silver nanoparticles were obtained.

(銀ナノ塗料の調製と焼結)
次に、湿った銀ナノ粒子に、ジヒドロキシターピネオールを銀濃度70wt%となるように加えて攪拌し、銀ナノ粒子含有ペーストを調製した。この銀ナノ粒子含有ペーストをアプリケーターにより無アルカリガラス板上に塗布し、塗膜を形成した。
(Preparation and sintering of silver nano-paint)
Next, dihydroxyterpineol was added to the wet silver nanoparticles so as to have a silver concentration of 70 wt% and stirred to prepare a silver nanoparticle-containing paste. This silver nanoparticle-containing paste was applied onto an alkali-free glass plate with an applicator to form a coating film.

塗膜を次に示す各条件で、送風乾燥炉にて焼結し、各厚みの銀焼結膜を形成した。得られた銀焼結膜の比抵抗値を4端子法により測定した。   The coating film was sintered in a blow drying oven under the following conditions to form a silver sintered film of each thickness. The specific resistance value of the obtained silver sintered film was measured by a four-terminal method.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.77μm
焼結膜の比抵抗値:1.70E−05Ωcm(すなわち、17μΩcm)
[2] 焼結条件:80℃、60分間
焼結後膜厚:4.96μm
焼結膜の比抵抗値:1.00E−05Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:5.42μm
焼結膜の比抵抗値:6.03E−06Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.77 μm
Specific resistance of sintered film: 1.70E-05 Ωcm (ie, 17 μΩcm)
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 4.96 μm
Specific resistance of sintered film: 1.00E-05Ωcm
[3] Sintering condition: 120 ° C., 15 minutes Film thickness after sintering: 5.42 μm
Specific resistance of sintered film: 6.03E-06 Ωcm

[実施例6]
アミン混合溶液の組成において、n−ヘキシルアミン3.00g(30mmol)をn−オクチルアミン3.88g(30mmol)に変更した以外は、実施例5と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼結を行った。
[Example 6]
A silver nanoparticle-containing paste was prepared in the same manner as in Example 5 except that in the composition of the amine mixed solution, 3.00 g (30 mmol) of n-hexylamine was changed to 3.88 g (30 mmol) of n-octylamine. The coating film was formed and sintered.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.38μm
焼結膜の比抵抗値:6.23E−05Ωcm
[2] 焼結条件:80℃、60分間
焼結後膜厚:4.70μm
焼結膜の比抵抗値:2.21E−05Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:4.73μm
焼結膜の比抵抗値:8.34E−06Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.38 μm
Specific resistance of sintered film: 6.23E-05 Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 4.70 μm
Specific resistance of sintered film: 2.21E-05 Ωcm
[3] Sintering conditions: 120 ° C., 15 minutes Film thickness after sintering: 4.73 μm
Specific resistance of sintered film: 8.34E-06Ωcm

[実施例7]
(銀ナノ粒子の調製)
50mLフラスコに、n−ブチルアミン10.84g(150mmol)、及びn−ヘキシルアミン3.00g(30mmol)を加えて室温で攪拌し、均一な混合溶液を調製した。
[Example 7]
(Preparation of silver nanoparticles)
To a 50 mL flask, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were added and stirred at room temperature to prepare a uniform mixed solution.

調製した混合溶液にシュウ酸銀3.04g(10mmol)を加え、室温で攪拌して、粘性のある白色の物質への変化が、外見的に終了したと認められる時点で攪拌を終了した。   To the prepared mixed solution, 3.04 g (10 mmol) of silver oxalate was added and stirred at room temperature, and stirring was terminated when it was recognized that the change to a viscous white substance was apparently finished.

次に、得られた反応混合物を85℃〜90℃に加熱攪拌した。加熱攪拌を開始したところ、徐々に茶色へと変色し、2時間加熱攪拌することで、銀ナノ粒子が懸濁した懸濁液を得た。   Next, the obtained reaction mixture was heated and stirred at 85 ° C to 90 ° C. When heating and stirring were started, the color gradually changed to brown, and by stirring for 2 hours, a suspension in which silver nanoparticles were suspended was obtained.

次に、得られた懸濁液にメタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。   Next, 10 mL of methanol was added to the obtained suspension and stirred, and then silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. To the silver nanoparticles, 10 mL of methanol was again added and stirred, and then the silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, wet silver nanoparticles were obtained.

(銀ナノ塗料の調製と焼結)
次に、湿った銀ナノ粒子に、ジヒドロキシターピネオールを銀濃度70wt%となるように加えて攪拌し、銀ナノ粒子含有ペーストを調製した。この銀ナノ粒子含有ペーストをアプリケーターにより無アルカリガラス板上に塗布し、塗膜を形成した。
(Preparation and sintering of silver nano-paint)
Next, dihydroxyterpineol was added to the wet silver nanoparticles so as to have a silver concentration of 70 wt% and stirred to prepare a silver nanoparticle-containing paste. This silver nanoparticle-containing paste was applied onto an alkali-free glass plate with an applicator to form a coating film.

塗膜を次に示す各条件で、送風乾燥炉にて焼結し、各厚みの銀焼結膜を形成した。得られた銀焼結膜の比抵抗値を4端子法により測定した。   The coating film was sintered in a blow drying oven under the following conditions to form a silver sintered film of each thickness. The specific resistance value of the obtained silver sintered film was measured by a four-terminal method.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.77μm
焼結膜の比抵抗値:1.70E−05Ωcm(すなわち、17μΩcm)
[2] 焼結条件:80℃、60分間
焼結後膜厚:4.96μm
焼結膜の比抵抗値:1.00E−05Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:5.42μm
焼結膜の比抵抗値:6.03E−06Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.77 μm
Specific resistance of sintered film: 1.70E-05 Ωcm (ie, 17 μΩcm)
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 4.96 μm
Specific resistance of sintered film: 1.00E-05Ωcm
[3] Sintering condition: 120 ° C., 15 minutes Film thickness after sintering: 5.42 μm
Specific resistance of sintered film: 6.03E-06 Ωcm

[実施例8]
アミン混合溶液の組成において、n−ヘキシルアミン3.00g(30mmol)をn−オクチルアミン3.88g(30mmol)に変更した以外は、実施例7と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼結を行った。
[Example 8]
A silver nanoparticle-containing paste was prepared in the same manner as in Example 7 except that in the composition of the amine mixed solution, 3.00 g (30 mmol) of n-hexylamine was changed to 3.88 g (30 mmol) of n-octylamine. The coating film was formed and sintered.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.38μm
焼結膜の比抵抗値:6.23E−05Ωcm
[2] 焼結条件:80℃、60分間
焼結後膜厚:4.70μm
焼結膜の比抵抗値:2.21E−05Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:4.73μm
焼結膜の比抵抗値:8.34E−06Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.38 μm
Specific resistance of sintered film: 6.23E-05 Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 4.70 μm
Specific resistance of sintered film: 2.21E-05 Ωcm
[3] Sintering conditions: 120 ° C., 15 minutes Film thickness after sintering: 4.73 μm
Specific resistance of sintered film: 8.34E-06Ωcm

[比較例1]
銀ナノ粒子の調製において、アミン−カルボン酸混合溶液の組成を、N,N−ジメチル−1,3−プロパンジアミン2.55g(25.0mmol)、ヘキシルアミン3.24g(32.0mmol)、オクチルアミン0.39g(3.0mmol)、及びオレイン酸0.13g(0.45mmol)に変更した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。そして、焼結後の膜厚がそれぞれ0.35μm、0.65μm、1μm程度となるように、塗膜の形成、焼結を行った。
[Comparative Example 1]
In the preparation of silver nanoparticles, the composition of the amine-carboxylic acid mixed solution was changed to 2.55 g (25.0 mmol) of N, N-dimethyl-1,3-propanediamine, 3.24 g (32.0 mmol) of hexylamine, octyl. A silver nanoparticle dispersion was prepared in the same manner as in Example 1 except that the amine was changed to 0.39 g (3.0 mmol) and oleic acid 0.13 g (0.45 mmol). Then, the coating film was formed and sintered so that the film thickness after sintering was about 0.35 μm, 0.65 μm, and 1 μm, respectively.

得られた銀焼結膜の膜厚は約1μmであり、比抵抗値は2.0E+08μΩcm程度であった。   The obtained silver sintered film had a thickness of about 1 μm and a specific resistance value of about 2.0E + 08 μΩcm.

[比較例2]
アミン混合溶液の組成において、n−ブチルアミン10.84g(150mmol)及
びn−ヘキシルアミン3.00g(30mmol)を、n−ブチルアミン8.67g(1
20mmol)及びn−ヘキシルアミン6.00g(60mmol)にそれぞれ変更した
以外は、実施例5と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼結を
行った。
[Comparative Example 2]
In the composition of the amine mixed solution, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were mixed with 8.67 g (1
20 mmol) and n-hexylamine were changed to 6.00 g (60 mmol), respectively, and a silver nanoparticle-containing paste was prepared, and a coating film was formed and sintered in the same manner as in Example 5.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.14μm
焼結膜の比抵抗値:3.21E−05Ωcm
[2] 焼結条件:80℃、60分間
焼結後膜厚:5.11μm
焼結膜の比抵抗値:1.72E−05Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:4.63μm
焼結膜の比抵抗値:7.42E−06Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.14 μm
Specific resistance of sintered film: 3.21E-05 Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 5.11 μm
Specific resistance of sintered film: 1.72E-05 Ωcm
[3] Sintering conditions: 120 ° C., 15 minutes Film thickness after sintering: 4.63 μm
Specific resistance of sintered film: 7.42E-06 Ωcm

[比較例3]
アミン混合溶液の組成において、n−ブチルアミン10.84g(150mmol)及びn−オクチルアミン3.88g(30mmol)を、n−ブチルアミン8.67g(120mmol)及びn−オクチルアミン7.66g(60mmol)にそれぞれ変更した以外は、実施例6と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼結を行った。
[Comparative Example 3]
In the composition of the amine mixed solution, 10.84 g (150 mmol) of n-butylamine and 3.88 g (30 mmol) of n-octylamine were converted into 8.67 g (120 mmol) of n-butylamine and 7.66 g (60 mmol) of n-octylamine. A silver nanoparticle-containing paste was prepared in the same manner as in Example 6 except that each was changed, and a coating film was formed and sintered.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.04μm
焼結膜の比抵抗値:2.17E−02Ωcm
[2] 焼結条件:80℃、60分間
焼結後膜厚:6.45μm
焼結膜の比抵抗値:2.88E−04Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:7.15μm
焼結膜の比抵抗値:1.10E−04Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.04 μm
Specific resistance of sintered film: 2.17E-02Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 6.45 μm
Specific resistance of sintered film: 2.88E-04 Ωcm
[3] Sintering condition: 120 ° C., 15 minutes Film thickness after sintering: 7.15 μm
Specific resistance of sintered film: 1.10E-04Ωcm

[比較例4]
アミン混合溶液の組成において、n−ブチルアミン10.84g(150mmol)及びn−ヘキシルアミン3.00g(30mmol)を、n−ブチルアミン8.67g(120mmol)及びn−ヘキシルアミン6.00g(60mmol)にそれぞれ変更した以外は、実施例7と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼結を行った。
[Comparative Example 4]
In the composition of the amine mixed solution, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were converted into 8.67 g (120 mmol) of n-butylamine and 6.00 g (60 mmol) of n-hexylamine. A silver nanoparticle-containing paste was prepared in the same manner as in Example 7 except that each was changed, and a coating film was formed and sintered.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.14μm
焼結膜の比抵抗値:3.21E−05Ωcm
[2] 焼結条件:80℃、60分間
焼結後膜厚:5.11μm
焼結膜の比抵抗値:1.72E−05Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:4.63μm
焼結膜の比抵抗値:7.42E−06Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.14 μm
Specific resistance of sintered film: 3.21E-05 Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 5.11 μm
Specific resistance of sintered film: 1.72E-05 Ωcm
[3] Sintering conditions: 120 ° C., 15 minutes Film thickness after sintering: 4.63 μm
Specific resistance of sintered film: 7.42E-06 Ωcm

[比較例5]
アミン混合溶液の組成において、n−ブチルアミン10.84g(150mmol)及びn−オクチルアミン3.88g(30mmol)を、n−ブチルアミン8.67g(120mmol)及びn−オクチルアミン7.66g(60mmol)にそれぞれ変更した以外は、実施例8と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼結を行った。
[Comparative Example 5]
In the composition of the amine mixed solution, 10.84 g (150 mmol) of n-butylamine and 3.88 g (30 mmol) of n-octylamine were converted into 8.67 g (120 mmol) of n-butylamine and 7.66 g (60 mmol) of n-octylamine. A silver nanoparticle-containing paste was prepared in the same manner as in Example 8 except that each was changed, and a coating film was formed and sintered.

[1] 焼結条件:80℃、30分間
焼結後膜厚:6.04μm
焼結膜の比抵抗値:2.17E−02Ωcm
[2] 焼結条件:80℃、60分間
焼結後膜厚:6.45μm
焼結膜の比抵抗値:2.88E−04Ωcm
[3] 焼結条件:120℃、15分間
焼結後膜厚:7.15μm
焼結膜の比抵抗値:1.10E−04Ωcm
[1] Sintering conditions: 80 ° C., 30 minutes Film thickness after sintering: 6.04 μm
Specific resistance of sintered film: 2.17E-02Ωcm
[2] Sintering conditions: 80 ° C., 60 minutes Film thickness after sintering: 6.45 μm
Specific resistance of sintered film: 2.88E-04 Ωcm
[3] Sintering condition: 120 ° C., 15 minutes Film thickness after sintering: 7.15 μm
Specific resistance of sintered film: 1.10E-04Ωcm

本発明の発光装置及びその製造方法は、導電性や放熱性に優れ、発光効率の高い、発光ダイオード(LED、Light Emitting Diode)装置等の発光装置及びその製造に対して有用である。   INDUSTRIAL APPLICABILITY The light emitting device and the manufacturing method thereof according to the present invention are useful for a light emitting device such as a light emitting diode (LED) device that is excellent in conductivity and heat dissipation and has high light emission efficiency, and the manufacture thereof.

1 光半導体素子
2 回路パターン
3 銀ナノ粒子を含む組成物
4 絶縁基板
5 導電性ペースト
6 ボンディングワイヤ
7 保護材料
1 Optical semiconductor device
2 circuit pattern 3 composition containing silver nanoparticles 4 insulating substrate 5 conductive paste 6 bonding wire 7 protective material

Claims (10)

光半導体素子、回路パターン、及び絶縁基板を有する発光装置であって、光半導体素子と回路パターンが電気的及び/又は熱的に接続され、且つ回路パターンが絶縁基板の上に設けられ、且つ回路パターンが銀ナノ粒子を含む組成物を焼結する事により形成され、且つ銀ナノ粒子が脂肪族炭化水素基及びアミノ基を有するアミン(A)及び銀化合物(B)を含む混合物を熱分解して得られる銀ナノ粒子である発光装置。   A light emitting device having an optical semiconductor element, a circuit pattern, and an insulating substrate, wherein the optical semiconductor element and the circuit pattern are electrically and / or thermally connected, the circuit pattern is provided on the insulating substrate, and the circuit A mixture is formed by sintering a composition containing silver nanoparticles, and the silver nanoparticles thermally decomposes a mixture containing an amine (A) having an aliphatic hydrocarbon group and an amino group and a silver compound (B). A light emitting device which is a silver nanoparticle obtained by the above. 前記アミン(A)が、炭素数6以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A1)、炭素数5以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A2)、及び、炭素数8以下の脂肪族炭化水素基と2つのアミノ基とからなる脂肪族炭化水素ジアミン(A3)を含むアミンである請求項1に記載の発光装置。   The amine (A) is an aliphatic hydrocarbon monoamine (A1) composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and one amino group, an aliphatic hydrocarbon group having 5 or more carbon atoms and one amino group; 2. The amine comprising an aliphatic hydrocarbon monoamine (A2) comprising: and an aliphatic hydrocarbon diamine (A3) comprising an aliphatic hydrocarbon group having 8 or less carbon atoms and two amino groups. Light emitting device. 前記アミン(A)が、炭素数6以上の脂肪族炭化水素基と1つのアミノ基とからなる脂肪族炭化水素モノアミン(A1)、及び炭素総数5以下の脂肪族炭化水素モノアミン(A2)を含むアミンであって、
前記モノアミン(A1)と前記モノアミン(A2)の合計を基準として、前記モノアミン(A1)5モル%以上20モル%未満、及び前記モノアミン(A2)80モル%を超えて95モル%以下の割合で含むアミンである請求項1に記載の発光装置。
The amine (A) includes an aliphatic hydrocarbon monoamine (A1) composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and one amino group, and an aliphatic hydrocarbon monoamine (A2) having 5 or less carbon atoms. An amine,
Based on the total of the monoamine (A1) and the monoamine (A2), the monoamine (A1) is 5 mol% or more and less than 20 mol%, and the monoamine (A2) is more than 80 mol% and 95 mol% or less. The light emitting device according to claim 1, wherein the light emitting device comprises an amine.
前記アミン(A)が、炭素数4以上の分岐脂肪族炭化水素基と1つのアミノ基とからなる分枝脂肪族炭化水素モノアミン(A4)を含むアミンである請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the amine (A) is an amine containing a branched aliphatic hydrocarbon monoamine (A4) composed of a branched aliphatic hydrocarbon group having 4 or more carbon atoms and one amino group. 前記銀化合物(B)が、シュウ酸銀である請求項1〜4のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the silver compound (B) is silver oxalate. 前記銀ナノ粒子の平均粒径が0.5nm〜100nmである請求項1〜5のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the silver nanoparticles have an average particle diameter of 0.5 nm to 100 nm. 光半導体素子及び回路パターンの全部又は一部が透明な保護材料で被覆されている請求項1〜6のいずれか1項に記載の発光装置。   The light-emitting device according to claim 1, wherein all or part of the optical semiconductor element and the circuit pattern are covered with a transparent protective material. 保護材料が、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂、カーボネート系樹脂、ノルボルネン系樹脂、シクロオレフィン系樹脂、及びポリアミド樹脂から選ばれるひとつ以上の材料からなる請求項7に記載の発光装置。   The light emitting device according to claim 7, wherein the protective material is made of one or more materials selected from an epoxy resin, a silicone resin, an acrylic resin, a carbonate resin, a norbornene resin, a cycloolefin resin, and a polyamide resin. 絶縁基板に銀ナノ粒子を含む組成物を塗布する工程(a)、前記組成物に含まれる銀ナノ粒子を焼結させる工程(b)、前記絶縁基板に光半導体素子を搭載する工程(c)、前記光半導体素子と回路パターンを電気的及び/又は熱的に接続する工程(d)、及び、前記回路パターンを覆うようにして保護材料を形成する工程(e)を含む請求項1〜8のいずれか1項に記載の発光装置の製造方法。   A step of applying a composition containing silver nanoparticles to an insulating substrate (a), a step of sintering silver nanoparticles contained in the composition (b), and a step of mounting an optical semiconductor element on the insulating substrate (c) 9. A step (d) of electrically and / or thermally connecting the optical semiconductor element and the circuit pattern, and a step (e) of forming a protective material so as to cover the circuit pattern. The manufacturing method of the light-emitting device of any one of these. 前記工程(b)及び前記工程(d)を同時に行う工程を含む請求項9に記載の発光装置の製造方法。
The method for manufacturing a light emitting device according to claim 9, comprising a step of simultaneously performing the step (b) and the step (d).
JP2013143479A 2013-07-09 2013-07-09 Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof Pending JP2016157708A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013143479A JP2016157708A (en) 2013-07-09 2013-07-09 Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof
TW103123621A TW201513137A (en) 2013-07-09 2014-07-09 Light-emitting device using silver nanoparticles and method for producing same
PCT/JP2014/068271 WO2015005373A1 (en) 2013-07-09 2014-07-09 Light-emitting device using silver nanoparticles and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143479A JP2016157708A (en) 2013-07-09 2013-07-09 Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016157708A true JP2016157708A (en) 2016-09-01

Family

ID=52280051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143479A Pending JP2016157708A (en) 2013-07-09 2013-07-09 Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2016157708A (en)
TW (1) TW201513137A (en)
WO (1) WO2015005373A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038534A1 (en) * 2015-07-10 2017-01-13 Commissariat Energie Atomique ASSEMBLING AN ELEMENT WITH AN ELECTRICALLY ISOLATED, LOW HEAT RESISTANCE SUBSTRATE, IN PARTICULAR FOR HIGH TEMPERATURE APPLICATIONS, AN ASSEMBLY COMPRISING SAID ASSEMBLY AND A THERMAL DRAIN, AND A METHOD OF MANUFACTURING THE SAME
WO2020215097A1 (en) * 2019-04-19 2020-10-22 Luxel Corporation Freestanding ultrathin film doped with nanoparticles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978242B2 (en) * 2007-03-05 2012-07-18 昭栄化学工業株式会社 Method for producing silver ultrafine particles
JP5416136B2 (en) * 2008-12-26 2014-02-12 株式会社応用ナノ粒子研究所 Wire bonding method, electronic component, light emitting electronic component, composite light emitting electronic component, and light emitting device
JP5574761B2 (en) * 2009-04-17 2014-08-20 国立大学法人山形大学 Coated silver ultrafine particles and method for producing the same
JP2011091213A (en) * 2009-10-22 2011-05-06 Toshiba Lighting & Technology Corp Light-emitting module and lighting device
JP6241908B2 (en) * 2011-02-04 2017-12-06 国立大学法人山形大学 Coated fine metal particles and production method thereof
JP5847439B2 (en) * 2011-05-31 2016-01-20 株式会社ダイセル Method for producing silver-containing nanoparticles, silver-containing nanoparticles, and silver coating composition

Also Published As

Publication number Publication date
WO2015005373A1 (en) 2015-01-15
TW201513137A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP6001861B2 (en) Silver nanoparticle production method, silver nanoparticle, and silver coating composition
JP6037494B2 (en) Silver nanoparticle production method, silver nanoparticle, and silver coating composition
JP5986636B2 (en) Method for producing silver nanoparticles, method for producing silver coating composition, and method for producing silver conductive material
JP5923608B2 (en) Method for producing ink containing silver nanoparticles and ink containing silver nanoparticles
KR102100289B1 (en) Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
JP6026565B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP6151893B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP6664373B2 (en) Silver particle paint composition
JPWO2016052036A1 (en) Silver particle coating composition
TWI744372B (en) Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle
WO2015005372A1 (en) Semiconductor device using silver nanoparticles and method for manufacturing same
JP6564385B2 (en) Silver particle coating composition
JP6370936B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP2016157708A (en) Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof
JP6378880B2 (en) Method for producing silver nanoparticles and silver nanoparticles
JP2017197658A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate and device