JP2016157297A - Transparent conductive laminate and touch panel - Google Patents

Transparent conductive laminate and touch panel Download PDF

Info

Publication number
JP2016157297A
JP2016157297A JP2015035070A JP2015035070A JP2016157297A JP 2016157297 A JP2016157297 A JP 2016157297A JP 2015035070 A JP2015035070 A JP 2015035070A JP 2015035070 A JP2015035070 A JP 2015035070A JP 2016157297 A JP2016157297 A JP 2016157297A
Authority
JP
Japan
Prior art keywords
transparent conductive
film layer
thin film
layer
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015035070A
Other languages
Japanese (ja)
Inventor
梓 大城
Azusa Oshiro
梓 大城
佐藤 啓一
Keiichi Sato
啓一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015035070A priority Critical patent/JP2016157297A/en
Publication of JP2016157297A publication Critical patent/JP2016157297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive laminate which, when used in a touch panel or the like, is less susceptible to separation between a thin film layer and a transparent conductive film layer caused by pen inputting, and to provide a touch panel having the same.SOLUTION: A transparent conductive laminate comprises a transparent substrate, a thin film layer formed at least on one surface of the substrate and made of silicon oxide or silicon nitride, and a transparent conductive film layer, where the thin film layer and the transparent conductive film layer are disposed adjacent to each other. An adhesive layer principally made of indium oxide, containing silicon, and having a thickness of 1-30 nm, inclusive, is provided between the thin film layer and the transparent conductive film layer. The transparent conductive film layer is constituted of a thin film principally made of indium oxide and having a thickness of 4-100 nm, inclusive. Since the adhesive layer is principally made of indium oxide and contains silicon, the adhesive layer has strong chemical affinity to the thin film layer and the transparent conductive film layer, which prevents separation between the thin film layer and the transparent conductive film layer.SELECTED DRAWING: None

Description

本発明は、透明基材と透明導電膜層を備えかつ該透明基材と透明導電膜層間に酸化珪素若しくは窒化珪素から成る薄膜層が介在された透明導電性積層体に係り、特に、タッチパネル等に組み込んで使用された場合に、ペン入力に起因し発生する薄膜層と透明導電膜層間の剥離が起こり難い透明導電性積層体とタッチパネルの改良に関するものである。   The present invention relates to a transparent conductive laminate including a transparent base material and a transparent conductive film layer, and a thin film layer made of silicon oxide or silicon nitride interposed between the transparent base material and the transparent conductive film layer. The present invention relates to an improvement in a transparent conductive laminate and a touch panel in which peeling between a thin film layer and a transparent conductive film layer caused by pen input is difficult to occur when incorporated into a touch panel.

透明導電膜層を有する透明導電性フィルムや透明導電性ガラス等の透明導電性積層体は、高い導電性と可視光領域での高い透過率を有するため、従来、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ等の表示素子における電極、太陽電池、その他の各種受光素子における電極等に利用されている。また、自動車や建築物の窓ガラス等の熱線反射膜、各種の帯電防止膜、冷凍ショーケース等の防曇用の透明発熱体としても広く利用されている。   Since transparent conductive laminates such as transparent conductive films and transparent conductive glass having a transparent conductive film layer have high conductivity and high transmittance in the visible light region, conventionally, liquid crystal displays, electroluminescence displays, etc. It is used for electrodes in display elements, solar cells, electrodes in various other light receiving elements, and the like. Further, it is also widely used as a transparent heating element for anti-fogging such as heat ray reflective film such as window glass of automobiles and buildings, various antistatic films and refrigeration showcases.

透明で電気を通す材料として各種の金属酸化物が知られているが、その中で、透明性が良好でかつ比抵抗が低いことから、一般にITOと呼ばれるインジウムとスズの酸化物が広く用いられている。特に、プラスチックフィルム上にITOを成膜した透明導電性フィルムは、低コストでかつ大面積の透明電極を形成できると共に耐衝撃性にも優れていることから、携帯用途の表示機器、調光液晶シート、タッチパネル等に用いられている。   Various metal oxides are known as transparent and conductive materials. Among them, indium and tin oxides commonly called ITO are widely used because of their good transparency and low specific resistance. ing. In particular, a transparent conductive film with ITO deposited on a plastic film can form a transparent electrode with a low cost and a large area and has excellent impact resistance. Used for sheets, touch panels, etc.

そして、上記タッチパネルには、位置検出の方法により、光学方式、超音波方式、静電容量方式、抵抗膜方式等がある。この内、抵抗膜方式のタッチパネルは、その構造が単純でコストパフォーマンスに優れているため、近年、急速に普及しており、例えば、銀行の現金自動受払機(ATM)や交通機関の切符販売機等の表示板に用いられている。   The touch panel includes an optical method, an ultrasonic method, a capacitance method, a resistance film method, and the like depending on a position detection method. Among these, the resistive touch panel has a simple structure and is excellent in cost performance, and has rapidly spread in recent years. For example, an automatic teller machine (ATM) of a bank or a ticket machine for transportation It is used for display boards.

上記抵抗膜方式のタッチパネルは、透明導電性積層体と透明導電性薄膜付ガラスがスペーサーを介し対向配置されており、透明導電性積層体に電流を流し透明導電性薄膜付ガラスに於ける電圧を計測するような構造となっている。そして、指やペン等による押圧操作を介して上記透明導電性積層体を透明導電性薄膜付きガラスに接触させ、その接触部分が通電されることで接触部分の位置が検知される。   In the above resistive film type touch panel, the transparent conductive laminate and the glass with the transparent conductive thin film are arranged to face each other via a spacer, and a voltage is applied to the glass with the transparent conductive thin film by passing an electric current through the transparent conductive laminate. It has a structure to measure. And the position of a contact part is detected by making the said transparent conductive laminated body contact glass with a transparent conductive thin film through pressing operation with a finger, a pen, etc., and that contact part is energized.

ところで、抵抗膜方式のタッチパネルにおいては、指やペン等の押圧操作による度重なる接触のため、上記透明導電性積層体が劣化し、その電気抵抗が上昇することでタッチパネルが正常に動作しなくなる問題が存在した。   By the way, in the resistive film type touch panel, due to repeated contact with the pressing operation of a finger, a pen, etc., the transparent conductive laminate is deteriorated, and the electrical resistance is increased so that the touch panel does not operate normally. Existed.

そこで、特許文献1においては、上記透明基材(透明高分子フィルム)と透明導電膜層(透明導電膜)間にSiOx層(薄膜層)を介在させることで透明導電性積層体の耐摩擦性を向上させる方法を提案し、特許文献2においては、上記タッチパネルにおける狭額縁化の要請に対処するため透明基材(透明なフィルム基材)と透明導電膜層(透明な導電性薄膜)間にSiOx層とSiO2層(薄膜層)を介在させてタッチパネルの周縁部近傍でのペン入力耐久性を向上させる方法を提案している。更に、特許文献3においては、透明基材(透明なフィルム基材)上に、高屈折率層、低屈折率層(SiO2層等の薄膜層)および透明導電膜層(透明導電性薄膜層)が順に積層された透明導電性フィルムにおいて、上記高屈折率層に用いるITO膜を非晶質な膜にすることでタッチパネルのペン入力耐久性を向上させる方法を提案している。 Therefore, in Patent Document 1, the friction resistance of the transparent conductive laminate is obtained by interposing an SiO x layer (thin film layer) between the transparent base material (transparent polymer film) and the transparent conductive film layer (transparent conductive film). In order to cope with the demand for narrowing the frame in the touch panel, Patent Document 2 proposes a method between a transparent substrate (transparent film substrate) and a transparent conductive film layer (transparent conductive thin film). Has proposed a method of improving pen input durability in the vicinity of the peripheral portion of the touch panel by interposing a SiO x layer and a SiO 2 layer (thin film layer) on the touch panel. Furthermore, in Patent Document 3, a high refractive index layer, a low refractive index layer (a thin film layer such as a SiO 2 layer) and a transparent conductive film layer (a transparent conductive thin film layer) are formed on a transparent substrate (transparent film substrate). ) Are sequentially laminated, and a method of improving the pen input durability of the touch panel is proposed by making the ITO film used for the high refractive index layer an amorphous film.

しかしながら、特許文献1〜3で提案された上述の方法を採用しても、度重なるペン入力に起因して酸化珪素等の薄膜層と透明導電膜層間に発生する剥離を防止することが困難なため、依然として透明導電性積層体の劣化を回避できない問題が存在した。   However, even if the above-described methods proposed in Patent Documents 1 to 3 are adopted, it is difficult to prevent peeling that occurs between a thin film layer such as silicon oxide and a transparent conductive film layer due to repeated pen input. For this reason, there still remains a problem that the deterioration of the transparent conductive laminate cannot be avoided.

特開平8−132554号公報JP-A-8-132554 特許第4508074号公報Japanese Patent No. 4508074 特開2009−283348号公報JP 2009-283348 A

本発明はこのような問題点に着目してなされたもので、その課題とするところは、タッチパネル等に組み込んで使用された場合にペン入力に起因し発生する薄膜層(酸化珪素等から成る薄膜層)と透明導電膜層間の剥離が起こり難い透明導電性積層体を提供し、合わせて該透明導電性積層体が組み込まれたタッチパネルを提供することにある。   The present invention has been made paying attention to such problems, and the problem is that a thin film layer (thin film made of silicon oxide or the like) generated due to pen input when used in a touch panel or the like is used. Layer) and a transparent conductive layer between the transparent conductive layers are provided, and a touch panel in which the transparent conductive layer is incorporated is provided.

すなわち、本発明に係る第1の発明は、
透明基材と、該透明基材の少なくとも片面に設けられた酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層を備え、上記薄膜層と透明導電膜層が隣接して設けられる透明導電性積層体において、
上記薄膜層と透明導電膜層との間に、酸化インジウムを主成分としかつシリコンを含有する膜厚1nm以上30nm以下の密着層が設けられると共に、上記透明導電膜層が、酸化インジウムを主成分とする膜厚4nm以上100nm以下の薄膜により構成されていることを特徴とするものである。
That is, the first invention according to the present invention is:
A transparent conductive material comprising a transparent base material, a thin film layer made of silicon oxide or silicon nitride provided on at least one surface of the transparent base material, and a transparent conductive film layer, wherein the thin film layer and the transparent conductive film layer are provided adjacent to each other In the laminate,
Between the thin film layer and the transparent conductive film layer, there is provided an adhesion layer containing indium oxide as a main component and containing silicon and having a thickness of 1 nm to 30 nm, and the transparent conductive film layer is mainly composed of indium oxide. The thin film has a thickness of 4 nm to 100 nm.

また、本発明に係る第2の発明は、
第1の発明に記載の透明導電性積層体において、
上記密着層におけるシリコンの含有量がSi/(In+Si)原子数比で0.02以上0.6以下であることを特徴とし、
第3の発明は、
第1の発明に記載の透明導電性積層体において、
上記透明導電膜層がスズ若しくはチタンを含有することを特徴とし、
第4の発明は、
第3の発明に記載の透明導電性積層体において、
上記透明導電膜層におけるスズの含有量がSn/(In+Sn)原子数比で0.01以上0.4以下、チタンの含有量がTi/(In+Ti)原子数比で0.002以上0.08以下であることを特徴とする。
Further, the second invention according to the present invention is:
In the transparent conductive laminate according to the first invention,
The silicon content in the adhesion layer is 0.02 or more and 0.6 or less in Si / (In + Si) atomic ratio,
The third invention is
In the transparent conductive laminate according to the first invention,
The transparent conductive film layer contains tin or titanium,
The fourth invention is:
In the transparent conductive laminate according to the third invention,
The tin content in the transparent conductive film layer is 0.01 to 0.4 in terms of Sn / (In + Sn) atomic ratio, and the titanium content is in the range of 0.002 to 0.08 in terms of Ti / (In + Ti) atomic ratio. It is characterized by the following.

次に、本発明に係る第5の発明は、
第1の発明〜第4の発明のいずれかに記載の透明導電性積層体において、
上記透明基材が高分子フィルム若しくはガラスで構成され、かつ、酸化珪素若しくは窒化珪素から成る薄膜層の上記密着層とは反対側に位置する面上に、膜厚1〜20nmでかつ酸化二オブ、酸化タンタル、酸化チタンから選択された少なくとも1種の高屈折率層が設けられていることを特徴とし、
第6の発明は、
タッチパネルにおいて、
第1の発明〜第5の発明のいずれかに記載の透明導電性積層体を有することを特徴とするものである。
Next, the fifth invention according to the present invention is:
In the transparent conductive laminate according to any one of the first to fourth inventions,
The transparent base material is made of a polymer film or glass, and has a film thickness of 1 to 20 nm and niobium oxide on the surface of the thin film layer made of silicon oxide or silicon nitride located on the side opposite to the adhesion layer. , At least one high refractive index layer selected from tantalum oxide and titanium oxide is provided,
The sixth invention is:
On the touch panel,
It has the transparent conductive laminated body in any one of 1st invention-5th invention, It is characterized by the above-mentioned.

第1の発明〜第4の発明に記載の透明導電性積層体は、
透明基材と、該透明基材の少なくとも片面に設けられた酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層を備え、上記薄膜層と透明導電膜層が隣接して設けられる透明導電性積層体において、
酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層との間に、酸化インジウムを主成分としかつシリコンを含有する膜厚1nm以上30nm以下の密着層が設けられると共に、上記透明導電膜層が、酸化インジウムを主成分とする膜厚4nm以上100nm以下の薄膜により構成されていることを特徴としている。
The transparent conductive laminate according to any of the first to fourth inventions,
A transparent conductive material comprising a transparent base material, a thin film layer made of silicon oxide or silicon nitride provided on at least one surface of the transparent base material, and a transparent conductive film layer, wherein the thin film layer and the transparent conductive film layer are provided adjacent to each other In the laminate,
Between the thin film layer made of silicon oxide or silicon nitride and the transparent conductive film layer, an adhesion layer containing indium oxide as a main component and containing silicon and having a thickness of 1 nm to 30 nm is provided. It is characterized in that it is composed of a thin film having a thickness of 4 nm to 100 nm and containing indium oxide as a main component.

そして、上記薄膜層と透明導電膜層との間に設けられる密着層は酸化インジウムを主成分としかつシリコンを含有するため、酸化珪素若しくは窒化珪素から成る薄膜層と親和性を有し、かつ、酸化インジウムを主成分とする透明導電膜層とも親和性を有している。   And since the adhesion layer provided between the thin film layer and the transparent conductive film layer is mainly composed of indium oxide and contains silicon, it has an affinity for the thin film layer made of silicon oxide or silicon nitride, and It also has an affinity for a transparent conductive film layer containing indium oxide as a main component.

このため、第1の発明〜第4の発明に記載の透明導電性積層体がタッチパネル等に組み込んで使用された場合、酸化インジウムを主成分としかつシリコンを含有する密着層の作用により上記薄膜層と透明導電膜層間の剥離を回避することが可能となる。   For this reason, when the transparent conductive laminate described in the first to fourth inventions is used by being incorporated in a touch panel or the like, the thin film layer is formed by the action of an adhesion layer containing indium oxide as a main component and containing silicon. And peeling between the transparent conductive film layers can be avoided.

また、第5の発明に記載の透明導電性積層体は、
上記透明基材が高分子フィルム若しくはガラスで構成され、かつ、酸化珪素若しくは窒化珪素から成る薄膜層の上記密着層とは反対側に位置する面上に、膜厚1〜20nmでかつ酸化二オブ、酸化タンタル、酸化チタンから選択された少なくとも1種の高屈折率層が設けられていることを特徴としている。
Moreover, the transparent conductive laminate according to the fifth invention is
The transparent base material is made of a polymer film or glass, and has a film thickness of 1 to 20 nm and niobium oxide on the surface of the thin film layer made of silicon oxide or silicon nitride located on the side opposite to the adhesion layer. Further, at least one high refractive index layer selected from tantalum oxide and titanium oxide is provided.

そして、第5の発明に記載の透明導電性積層体によれば、酸化二オブ、酸化タンタル、酸化チタンから選択された高屈折率層に対して酸化珪素若しくは窒化珪素から成る上記薄膜層は低屈折率層として作用するため、光の干渉効果による反射防止機能を具備させることが可能となる。   According to the transparent conductive laminate of the fifth invention, the thin film layer made of silicon oxide or silicon nitride is low relative to the high refractive index layer selected from niobium oxide, tantalum oxide, and titanium oxide. Since it acts as a refractive index layer, it is possible to provide an antireflection function due to the light interference effect.

更に、第6の発明に記載のタッチパネルによれば、
第1の発明〜第5の発明のいずれかに記載の透明導電性積層体を有していることから酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層間の剥離が回避されるため、タッチパネルにおける周縁部近傍でのペン入力耐久性を向上させることが可能となる。
Furthermore, according to the touch panel as described in 6th invention,
Since the transparent conductive laminate according to any one of the first to fifth aspects of the invention is included, peeling between the thin film layer made of silicon oxide or silicon nitride and the transparent conductive film layer is avoided. It is possible to improve pen input durability in the vicinity of the peripheral edge.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る透明導電性積層体は、透明基材と、該透明基材の少なくとも片面に設けられた酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層を備え、上記薄膜層と透明導電膜層が隣接して設けられる透明導電性積層体において、
酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層との間に、酸化インジウムを主成分としかつシリコンを含有する膜厚1nm以上30nm以下の密着層が設けられると共に、上記透明導電膜層が、酸化インジウムを主成分とする膜厚4nm以上100nm以下の薄膜により構成されていることを特徴とするものである。
A transparent conductive laminate according to the present invention includes a transparent base material, a thin film layer made of silicon oxide or silicon nitride provided on at least one side of the transparent base material, and a transparent conductive film layer. In the transparent conductive laminate in which the film layer is provided adjacently,
Between the thin film layer made of silicon oxide or silicon nitride and the transparent conductive film layer, an adhesion layer containing indium oxide as a main component and containing silicon and having a thickness of 1 nm to 30 nm is provided. The thin film is mainly composed of indium oxide and has a thickness of 4 nm to 100 nm.

そして、上記薄膜層と透明導電膜層との間に設けられる密着層は酸化インジウムを主成分としかつシリコンを含有し、酸化珪素若しくは窒化珪素から成る薄膜層と上記密着層はシリコンを共通成分とするため親和性を有し、かつ、酸化インジウムを主成分とする透明導電膜層とも酸化インジウムを共通成分とするため親和性を有している。   The adhesion layer provided between the thin film layer and the transparent conductive film layer contains indium oxide as a main component and contains silicon, and the thin film layer made of silicon oxide or silicon nitride and the adhesion layer contain silicon as a common component. Therefore, the transparent conductive film layer containing indium oxide as a main component has affinity because indium oxide is a common component.

従って、本発明に係る透明導電性積層体がタッチパネル等に組み込んで使用された場合、酸化インジウムを主成分としかつシリコンを含有する密着層の作用により薄膜層と透明導電膜層間の剥離を回避することが可能となる。   Therefore, when the transparent conductive laminate according to the present invention is incorporated in a touch panel or the like, peeling between the thin film layer and the transparent conductive film layer is avoided by the action of the adhesion layer containing indium oxide as a main component and containing silicon. It becomes possible.

1.透明基材
(1)透明な高分子フィルムまたはガラスから成る透明基材
本発明に係る透明基材としては透明な高分子フィルムまたはガラスが挙げられる。
1. Transparent substrate (1) Transparent substrate made of transparent polymer film or glass The transparent substrate according to the present invention includes a transparent polymer film or glass.

上記高分子フィルム基材として、特に制限はないが、加工適正や用途等を考慮した場合、高い透明性を有するプラスチックフィルムが好ましく、例えば、三酢酸セルロース(トリアセチルセルロース)、アセテート等のセルロール系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリエチレンメタクレート等のアクリル系樹脂、ポリカーボネート樹脂類、ポリスルフォン樹脂、ポリイミド系樹脂等から成るフィルムが好ましい。これらのフィルムの中で、透明性、耐熱性、強度や伸度等機械的性質等から、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、トリアセチルセルロースフィルムの使用が特に好ましい。   Although there is no restriction | limiting in particular as said polymer film base material, When processing suitability, an application, etc. are considered, the plastic film which has high transparency is preferable, for example, cellulose triacetate (triacetyl cellulose), cellulose, such as an acetate type A film made of a resin, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate, an acrylic resin such as polyethylene methacrylate, a polycarbonate resin, a polysulfone resin, or a polyimide resin is preferable. Among these films, the use of a polyethylene terephthalate film, a polycarbonate film, or a triacetyl cellulose film is particularly preferable from the viewpoints of transparency, heat resistance, mechanical properties such as strength and elongation.

これ等フィルムの厚さは、通常、10μm以上300μm以下のものが用いられる。フィルムの厚さがあまりに薄いと基材としての機械的強度が不足し、逆にあまりに厚くすると可撓性の不足につながる。   The thickness of these films is usually 10 μm or more and 300 μm or less. If the thickness of the film is too thin, the mechanical strength as a substrate is insufficient, and conversely if it is too thick, the flexibility is insufficient.

次に、ガラス基材としては、一般的に石英ガラスや青板ガラスを用いることが好ましく、厚さは、通常、0.3mm以上2.0mm以下のものが用いられる。   Next, as a glass substrate, it is generally preferable to use quartz glass or blue plate glass, and those having a thickness of usually 0.3 mm or more and 2.0 mm or less are used.

(2)アンカーコート層、ハードコート層および防汚層
透明導電膜層が設けられる側の透明基材面には、例えば、ウレタン系硬化樹脂、フェノキシ系硬化樹脂等から選択されるアンカーコート層を設けてもよく、また、透明導電膜層が設けられる側とは反対の透明基材面には、タッチパネルとした際の耐擦傷性を改善させるハードコート層(例えば、メラニン系樹脂、ウレタン系樹脂、アクリル系樹脂、シリコーン系樹脂等)、および、フッ素有機ケイ素化合物から選択される汚れ防止層としての防汚層を設けてもよい。
(2) Anchor coat layer, hard coat layer, and antifouling layer An anchor coat layer selected from, for example, a urethane-based cured resin, a phenoxy-based cured resin, or the like is provided on the transparent substrate surface on which the transparent conductive film layer is provided. A hard coat layer (for example, melanin-based resin, urethane-based resin) that improves scratch resistance when used as a touch panel may be provided on the transparent substrate surface opposite to the side on which the transparent conductive film layer is provided. And an antifouling layer as an antifouling layer selected from fluorinated organic silicon compounds, acrylic resins, silicone resins, etc.).

2.酸化珪素若しくは窒化珪素から成る薄膜層
(1)酸化珪素若しくは窒化珪素から成る薄膜層
上記透明基材の少なくとも片面(透明導電膜層が設けられる側)には酸化珪素若しくは窒化珪素から成る薄膜層が設けられる。尚、酸化珪素若しくは窒化珪素は、酸素欠損や窒素欠損により価数が変化した状態を取り得る。加えて、薄膜層の厚さは1nm以上100nm以下が好ましい。厚さが1nm未満の場合、透明基材に対し十分なガスバリア効果やアンカー効果(薄膜層はアンカーコート層としての機能も有する)が得られないため、ペン耐久性が悪化する。また、100nmを超えた場合、透明性の低下を引き起こすため有効でない。
2. Thin film layer made of silicon oxide or silicon nitride (1) Thin film layer made of silicon oxide or silicon nitride A thin film layer made of silicon oxide or silicon nitride is formed on at least one surface (the side where the transparent conductive film layer is provided) of the transparent substrate. Provided. Silicon oxide or silicon nitride can take a state in which the valence has changed due to oxygen deficiency or nitrogen deficiency. In addition, the thickness of the thin film layer is preferably 1 nm or more and 100 nm or less. When the thickness is less than 1 nm, a sufficient gas barrier effect and anchor effect (the thin film layer also has a function as an anchor coat layer) cannot be obtained with respect to the transparent substrate, so that pen durability is deteriorated. On the other hand, if it exceeds 100 nm, it is not effective because it causes a decrease in transparency.

酸化珪素若しくは窒化珪素から成る薄膜層の形成法は特に限定されず、真空蒸着法、スパッタリング法、イオンプレーティング法といった物理的気相成長法や公知の成膜法が適宜選択される。尚、上記物理的気相成長法の他、プラズマCVD法、ゾルゲル法といった化学的気相形成法を適用し、シラザンポリマーを塗布した後に加熱乾燥させる塗布法を適用することも可能である。但し、後述する密着層と透明導電膜層の成膜は物理的気相成長法が好ましいことから、連続成膜が可能となる観点からは、酸化珪素若しくは窒化珪素から成る薄膜層の成膜に物理的気相成長法を用いることが好適である。   The method for forming the thin film layer made of silicon oxide or silicon nitride is not particularly limited, and a physical vapor deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method or a known film formation method is appropriately selected. In addition to the physical vapor deposition method, a chemical vapor deposition method such as a plasma CVD method or a sol-gel method may be applied, and a coating method in which a silazane polymer is applied and then dried by heating may be applied. However, since the physical vapor deposition method is preferable for the formation of the adhesion layer and the transparent conductive film layer, which will be described later, from the viewpoint of enabling continuous film formation, it is necessary to form a thin film layer made of silicon oxide or silicon nitride. It is preferred to use physical vapor deposition.

尚、アンカーコート層が設けられた透明基材を適用した場合には、該アンカーコート層上に酸化珪素若しくは窒化珪素から成る薄膜層が形成される。   When a transparent substrate provided with an anchor coat layer is applied, a thin film layer made of silicon oxide or silicon nitride is formed on the anchor coat layer.

(2)高屈折率層
以下に述べる密着層とは反対側に位置する上記酸化珪素若しくは窒化珪素から成る薄膜層の面上に、酸化二オブ、酸化タンタル、酸化チタンから選択された少なくとも1種の高屈折率層を形成してもよい。高屈折率層が設けられた場合、酸化珪素若しくは窒化珪素から成る上記薄膜層は低屈折率層として作用するため、光の干渉効果による反射防止機能を具備させることが可能となる。高屈折率層の膜厚は1nm以上20nm以下が適当であり、シミュレーションを行い最適な値に設定することが好ましい。
(2) High refractive index layer At least one selected from niobium oxide, tantalum oxide, and titanium oxide on the surface of the thin film layer made of silicon oxide or silicon nitride located on the side opposite to the adhesion layer described below. A high refractive index layer may be formed. In the case where a high refractive index layer is provided, the thin film layer made of silicon oxide or silicon nitride functions as a low refractive index layer, so that it is possible to provide an antireflection function due to a light interference effect. The film thickness of the high refractive index layer is suitably 1 nm or more and 20 nm or less, and is preferably set to an optimum value through simulation.

尚、アンカーコート層が設けられた透明基材を適用した場合には、該アンカーコート層上に酸化二オブ、酸化タンタル、酸化チタンから選択された高屈折率層が形成され、該高屈折率層上に酸化珪素若しくは窒化珪素から成る薄膜層が形成される。   When a transparent substrate provided with an anchor coat layer is applied, a high refractive index layer selected from niobium oxide, tantalum oxide, and titanium oxide is formed on the anchor coat layer, and the high refractive index A thin film layer made of silicon oxide or silicon nitride is formed on the layer.

3.密着層
上記薄膜層と透明導電膜層間に設けられる密着層は酸化インジウムを主成分としかつシリコンを含有することから、酸化珪素若しくは窒化珪素から成る上記薄膜層とシリコンを共通成分とするため化学的親和性を有し(すなわち、化学的親和力が強く)、かつ、酸化インジウムを主成分とする上記透明導電膜層とも酸化インジウムを共通成分とするため化学的親和性を有している(すなわち、化学的親和力が強い)。
3. Adhesion layer Since the adhesion layer provided between the thin film layer and the transparent conductive film contains indium oxide as a main component and contains silicon, the thin film layer made of silicon oxide or silicon nitride and the silicon are used as a common component. The transparent conductive film layer that has affinity (that is, chemical affinity is strong) and indium oxide as a main component also has chemical affinity because indium oxide is a common component (that is, Strong chemical affinity).

このため、薄膜層と透明導電膜層間に上記密着層が設けられた本発明に係る透明導電性積層体がタッチパネル等に組み込んで使用された場合、酸化インジウムを主成分としかつシリコンを含有する密着層の作用により薄膜層と透明導電膜層間の剥離を回避することが可能となる。   For this reason, when the transparent conductive laminate according to the present invention in which the adhesion layer is provided between the thin film layer and the transparent conductive film layer is used by being incorporated in a touch panel or the like, the adhesion is mainly composed of indium oxide and contains silicon. It is possible to avoid peeling between the thin film layer and the transparent conductive film layer by the action of the layer.

また、密着層の成膜方法として、真空蒸着法、スパッタリング法、イオンプレーティング法といった物理的気相成長法等、公知の成膜法が適宜採用される。そして、上記スパッタリング法が採用された場合、スパッタリングターゲットにシリコンの含有量がSi/(In+Si)原子数比で0.02以上0.6以下である酸化インジウムを使用し、かつ、スパッタガスにアルゴン等不活性ガスを用いた直流(DC)あるいは高周波(RF)マグネトロンスパッタ法が利用できる。また、密着層の透明性を向上させるため、スパッタガス中に0.1〜20%程度の酸素ガスを混合することが好ましい。尚、スパッタリングターゲットとしてインジウム・シリコン合金を用いることも可能である。   As a method for forming the adhesion layer, a known film formation method such as a physical vapor deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method is appropriately employed. And when the said sputtering method is employ | adopted, indium oxide whose silicon content is 0.02 or more and 0.6 or less by Si / (In + Si) atomic ratio is used for a sputtering target, and argon is used for sputtering gas. Direct current (DC) or radio frequency (RF) magnetron sputtering using an inert gas can be used. In order to improve the transparency of the adhesion layer, it is preferable to mix about 0.1 to 20% oxygen gas in the sputtering gas. It is also possible to use an indium / silicon alloy as a sputtering target.

上記密着層の厚さは1nm以上30nm以下にすることを要する。上記厚さが1nm未満の場合、連続した皮膜の形成が困難で十分な密着性を得ることが難しい。他方、厚さが30nmを超えたとしても密着性に関する効果は一定であるため、生産性の悪化を招くことになり得策でないからである。   The thickness of the adhesion layer is required to be 1 nm or more and 30 nm or less. When the thickness is less than 1 nm, it is difficult to form a continuous film and it is difficult to obtain sufficient adhesion. On the other hand, even if the thickness exceeds 30 nm, the effect on the adhesiveness is constant, so that it is not a good idea to cause a deterioration in productivity.

4.透明導電膜層
(1)透明導電膜層
上記透明導電膜層は酸化インジウムを主成分とする薄膜で構成され、スズ若しくはチタンが含まれていてもよい。特に、密着層との密着性を高めるためには、スズよりも酸素との結合力が高いチタンが含まれていると好ましい。尚、スズ若しくはチタンは酸化物の状態で含まれていてもよく、透明導電膜層としては酸素欠損により価数が変化していてもよい。
4). Transparent conductive layer (1) Transparent conductive layer The transparent conductive layer is composed of a thin film containing indium oxide as a main component, and may contain tin or titanium. In particular, in order to improve the adhesion with the adhesion layer, it is preferable that titanium having a higher binding force with oxygen than tin is contained. Tin or titanium may be contained in the form of an oxide, and the valence of the transparent conductive film layer may change due to oxygen deficiency.

透明導電膜層の成膜方法として、真空蒸着法、スパッタリング法、イオンプレーティング法といった物理的気相成長法等、公知の成膜法が適宜採用される。そして、上記スパッタリング法が採用された場合、スパッタリングターゲットにスズの含有量がSn/(In+Sn)原子数比で0.01以上0.4以下である酸化インジウム、若しくは、チタンの含有量がTi/(In+Ti)原子数比で0.002以上0.08以下である酸化インジウムを使用し、かつ、スパッタガスにアルゴン等不活性ガスを用いたDCあるいはRFマグネトロンスパッタ法が利用できる。加えて、透明導電膜層の透明性および導電性を向上させるため、スパッタガス中に0.1〜20%程度の酸素ガスを混合することが好ましい。尚、スパッタリングターゲットとしてインジウム・スズ合金若しくはインジウム・チタン合金を用いることも可能である。   As a method for forming the transparent conductive film layer, a known film forming method such as a physical vapor deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method is appropriately employed. And when the said sputtering method is employ | adopted, content of tin is 0.01 to 0.4 in Sn / (In + Sn) atomic ratio to a sputtering target, or content of titanium is Ti / A DC or RF magnetron sputtering method using indium oxide having an (In + Ti) atomic ratio of 0.002 or more and 0.08 or less and using an inert gas such as argon as a sputtering gas can be used. In addition, in order to improve the transparency and conductivity of the transparent conductive film layer, it is preferable to mix about 0.1 to 20% oxygen gas in the sputtering gas. It is also possible to use indium-tin alloy or indium-titanium alloy as a sputtering target.

上記透明導電膜層の厚さは4nm以上100nm以下にすることを要する。上記厚さが4nm未満の場合、連続した皮膜の形成が困難で十分な導電性を得ることが難しい。他方、厚さが100nmよりも厚い場合、透明性が低下し易くなり得策で無いからである。   The thickness of the transparent conductive film layer needs to be 4 nm or more and 100 nm or less. When the thickness is less than 4 nm, it is difficult to form a continuous film and it is difficult to obtain sufficient conductivity. On the other hand, if the thickness is greater than 100 nm, the transparency tends to decrease, which is not a good idea.

(2)金属透明導電性薄膜層
酸化インジウムを主成分とする薄膜で構成される上記透明導電膜層については、その片面側にAg等から成る金属透明導電性薄膜層を積層してもよく、Ag/ITO、ITO/Ag/ITO等の積層体が例示される。
(2) Metal transparent conductive thin film layer About the transparent conductive film layer composed of a thin film mainly composed of indium oxide, a metal transparent conductive thin film layer made of Ag or the like may be laminated on one side thereof, Examples of the laminate include Ag / ITO and ITO / Ag / ITO.

(3)反射防止層、透明なプラスチック薄膜層
また、本発明に係る透明導電性積層体においては、上記透明基材の透明導電膜層が形成される透明基材側若しくは透明導電膜層より外側に反射防止層が設けられた構成を採用してもよく、また、上記透明導電膜層より外側に透明なプラスチック薄膜層が設けられた構成を採用してもよい。
(3) Antireflection layer, transparent plastic thin film layer Moreover, in the transparent conductive laminate according to the present invention, the transparent base material side on which the transparent conductive film layer of the transparent base material is formed or outside the transparent conductive film layer A structure in which an antireflection layer is provided may be employed, or a structure in which a transparent plastic thin film layer is disposed outside the transparent conductive film layer may be employed.

以下、本発明の実施例について比較例も挙げて具体的に説明する。   Examples of the present invention will be specifically described below with reference to comparative examples.

尚、以下の実施例と比較例では、各実施例と比較例に係る透明導電性積層体の耐摩耗性を次の方法により評価した。   In the following examples and comparative examples, the abrasion resistance of the transparent conductive laminates according to the examples and comparative examples was evaluated by the following method.

(1)擬似タッチパネルの形成
まず、各実施例と比較例に係る透明導電性積層体を10cm×10cmの大きさに切り取り、かつ、上記サイズの透明導電性積層体両端のみを、厚さ80μmの粘着テープを用いてガラス板上にITO膜が形成された基板(透明導電性薄膜付ガラス)のITO面に張り合わせて擬似タッチパネルを形成する。
(1) Formation of pseudo touch panel First, the transparent conductive laminates according to the examples and comparative examples are cut into a size of 10 cm × 10 cm, and only the both ends of the transparent conductive laminate of the above size are 80 μm thick. A pseudo touch panel is formed by sticking to an ITO surface of a substrate (glass with a transparent conductive thin film) having an ITO film formed on a glass plate using an adhesive tape.

(2)往復摺動試験(ペン入力耐久性試験)
そして、各擬似タッチパネルに対して、先端がφ0.8mmのポリアセタールから成るペンを用い、荷重250g、ペンスピード150mm/秒、摺動回数10万回、摺動距離40mmを往復摺動させた後、四端子四探針計(三菱化学製)にて各擬似タッチパネルの抵抗値を測定し、往復摺動前R、往復摺動後R1とした場合のR1/R0を算出した。
(2) Reciprocating sliding test (pen input durability test)
Then, for each pseudo touch panel, using a pen made of polyacetal having a tip of φ0.8 mm, reciprocatingly sliding a load of 250 g, a pen speed of 150 mm / second, a sliding frequency of 100,000 times, and a sliding distance of 40 mm, The resistance value of each pseudo touch panel was measured with a four-terminal four-probe meter (manufactured by Mitsubishi Chemical), and R 1 / R 0 was calculated when R 0 before reciprocating sliding and R 1 after reciprocating sliding were used.

尚、R1/R0の値は1.0に近い程、抵抗値の変化率が小さいためペン入力耐久性が良好であり、タッチパネルとしては1.1以下であることが望ましい。 Note that the closer the value of R 1 / R 0 is to 1.0, the smaller the rate of change of the resistance value, so that the pen input durability is better, and the touch panel is desirably 1.1 or less.

(3)剥離の有無
各透明導電性積層体における剥離(薄膜層と透明導電膜層間の剥離)の有無については次の方法により観察した。
(3) Presence or absence of peeling The presence or absence of peeling (thinning between the thin film layer and the transparent conductive film layer) in each transparent conductive laminate was observed by the following method.

すなわち、各透明導電性積層体の往復摺動部分を横切るように切断し、該断面についてSEM(走査型電子顕微鏡)を用いて観察し、剥離の有無を確認した。   That is, it cut | disconnected so that the reciprocating sliding part of each transparent conductive laminated body might be crossed, and observed the cross section using SEM (scanning electron microscope), and confirmed the presence or absence of peeling.

[実施例1]
厚さ100μmのポリエチレンテレフタレートフィルムに厚さ10nm分の酸化二オブ膜(高屈折率層)が形成されている透明基材の酸化二オブ膜側の面にDCスパッタリング法を用いて50nmの酸化珪素から成る薄膜層を形成し、かつ、DCスパッタリング法を用いて上記薄膜層上にシリコンの含有量がSi/(In+Si)原子数比で0.5である酸化インジウムから成る密着層を形成すると共に、DCスパッタリング法を用いて上記密着層上にチタンの含有量がTi/(In+Ti)原子数比で0.009である酸化インジウムから成る透明導電膜層を形成して膜厚4nmの密着層と膜厚15nmの透明導電膜層を有する実施例1に係る透明導電膜積層体を得た。
[Example 1]
A 100 nm thick polyethylene terephthalate film with a 10 nm thick niobium oxide film (high refractive index layer) is formed on the surface of the transparent substrate on the niobium oxide film side using a DC sputtering method to form 50 nm silicon oxide. And an adhesion layer made of indium oxide having a silicon content of 0.5 in terms of Si / (In + Si) atomic ratio is formed on the thin film layer by DC sputtering. A transparent conductive film layer made of indium oxide having a titanium content of 0.009 in terms of Ti / (In + Ti) atomic ratio is formed on the adhesion layer by using a DC sputtering method, The transparent conductive film laminated body which concerns on Example 1 which has a transparent conductive film layer with a film thickness of 15 nm was obtained.

往復摺動試験の結果、R1/R0は1.03(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.03 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[実施例2]
密着層の膜厚を2nmにした以外は実施例1と同様の方法で実施例2に係る透明導電性積層体を得た。
[Example 2]
A transparent conductive laminate according to Example 2 was obtained in the same manner as in Example 1 except that the thickness of the adhesion layer was 2 nm.

往復摺動試験の結果、R1/R0は1.05(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.05 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[実施例3]
密着層の膜厚を30nmにした以外は実施例1と同様の方法で実施例3に係る透明導電性積層体を得た。
[Example 3]
A transparent conductive laminate according to Example 3 was obtained in the same manner as in Example 1 except that the thickness of the adhesion layer was changed to 30 nm.

往復摺動試験の結果、R1/R0は1.01(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.01 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[実施例4]
密着層の膜厚を30nm、スズの含有量がSn/(In+Sn)原子数比で0.03である酸化インジウムから成る透明導電膜層とした以外は実施例1と同様の方法で実施例4に係る透明導電性積層体を得た。
[Example 4]
Example 4 was carried out in the same manner as in Example 1 except that a transparent conductive film layer made of indium oxide having an adhesion layer thickness of 30 nm and a tin content of 0.03 in terms of Sn / (In + Sn) atomic number was used. A transparent conductive laminate was obtained.

往復摺動試験の結果、R1/R0は1.09(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.09 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[実施例5]
厚さ100μmのポリエチレンテレフタレートフィルムに厚さ10nm分の酸化チタン膜(高屈折率層)が形成されている透明基材を使用した以外は実施例1と同様の方法で実施例5に係る透明導電性積層体を得た。
[Example 5]
Transparent conductive material according to Example 5 in the same manner as in Example 1 except that a transparent substrate in which a titanium oxide film (high refractive index layer) having a thickness of 10 nm is formed on a polyethylene terephthalate film having a thickness of 100 μm is used. A conductive laminate was obtained.

往復摺動試験の結果、R1/R0は1.02(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.02 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[実施例6]
厚さ100μmのポリエチレンテレフタレートフィルムに厚さ10nm分の酸化二オブ膜(高屈折率層)が形成されている透明基材の該酸化二オブ膜側の面にRFスパッタリング法を用いて80nmの窒化珪素から成る薄膜層を形成した以外は実施例1と同様の方法で実施例6に係る透明導電性積層体を得た。
[Example 6]
Nitrogen oxide having a thickness of 10 nm is formed on a surface of the transparent substrate on which the niobium oxide film having a thickness of 10 nm (high refractive index layer) is formed on a polyethylene terephthalate film having a thickness of 100 μm by RF sputtering. A transparent conductive laminate according to Example 6 was obtained in the same manner as in Example 1 except that a thin film layer made of silicon was formed.

往復摺動試験の結果、R1/R0は1.02(表1参照)、窒化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.02 (see Table 1), and peeling between the thin film layer made of silicon nitride and the transparent conductive film layer was not confirmed.

[実施例7]
厚さ1.1mmの石英ガラスに厚さ10nm分の酸化二オブ膜(高屈折率層)が形成されている透明基材を使用した以外は実施例1と同様の方法で実施例7に係る透明導電性積層体を得た。
[Example 7]
Example 7 is performed in the same manner as in Example 1 except that a transparent substrate in which a 10 nm thick niobium oxide film (high refractive index layer) is formed on quartz glass having a thickness of 1.1 mm is used. A transparent conductive laminate was obtained.

往復摺動試験の結果、R1/R0は1.04(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.04 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[実施例8]
透明基材として、高屈折率層が形成されていない厚さ100μmのポリエチレンテレフタレートフィルムを使用した以外は実施例1と同様の方法で実施例8に係る透明導電性積層体を得た。
[Example 8]
A transparent conductive laminate according to Example 8 was obtained in the same manner as in Example 1 except that a 100 μm thick polyethylene terephthalate film on which no high refractive index layer was formed was used as the transparent substrate.

往復摺動試験の結果、R1/R0は1.03(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離は確認されなかった。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.03 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was not confirmed.

[比較例1]
酸化珪素から成る薄膜層と透明導電膜層との間に上記密着層を形成しない以外は実施例1と同様の方法で比較例1に係る透明導電性積層体を得た。
[Comparative Example 1]
A transparent conductive laminate according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the adhesion layer was not formed between the thin film layer made of silicon oxide and the transparent conductive film layer.

往復摺動試験の結果、R1/R0は1.55(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離が確認された。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.55 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was confirmed.

[比較例2]
酸化珪素から成る薄膜層と透明導電膜層との間に上記密着層を形成しない以外は実施例4と同様の方法で比較例2に係る透明導電性積層体を得た。
[Comparative Example 2]
A transparent conductive laminate according to Comparative Example 2 was obtained in the same manner as in Example 4 except that the adhesion layer was not formed between the thin film layer made of silicon oxide and the transparent conductive film layer.

往復摺動試験の結果、R1/R0は1.60(表1参照)、酸化珪素から成る薄膜層と透明導電膜層間の剥離が確認された。 As a result of the reciprocating sliding test, R 1 / R 0 was 1.60 (see Table 1), and peeling between the thin film layer made of silicon oxide and the transparent conductive film layer was confirmed.

Figure 2016157297
Figure 2016157297

[評 価]
(1)実施例1〜8に係る透明導電性積層体の往復摺動試験の結果、R1/R0の値が全て1.1以下、かつ、酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層間の剥離も発生していないことが確認され、従来の透明導電性積層体と較べてペン入力耐久性が著しく改善されていることが確認される。
[Evaluation]
(1) As a result of the reciprocating sliding test of the transparent conductive laminates according to Examples 1 to 8, all the values of R 1 / R 0 are 1.1 or less, and the thin film layer made of silicon oxide or silicon nitride is transparent It is confirmed that no peeling between the conductive film layers occurs, and it is confirmed that the pen input durability is remarkably improved as compared with the conventional transparent conductive laminate.

(2)これに対し、比較例1〜2に係る透明導電性積層体においては、R1/R0の値が全て1.1を超えており、かつ、酸化珪素から成る薄膜層と透明導電膜層間の剥離も発生していることが確認される。 (2) On the other hand, in the transparent conductive laminates according to Comparative Examples 1 and 2, all the values of R 1 / R 0 exceed 1.1, and the thin film layer made of silicon oxide and the transparent conductive layer It is confirmed that peeling between the film layers also occurs.

本発明に係る透明導電性積層体によれば、酸化インジウムを主成分としかつシリコンを含有する密着層の作用により薄膜層と透明導電膜層間の剥離が回避されるため、タッチパネル等に組み込んで使用される産業上の利用可能性を有している。   According to the transparent conductive laminate of the present invention, peeling between the thin film layer and the transparent conductive film layer is avoided by the action of the adhesion layer containing indium oxide as a main component and containing silicon. Has industrial applicability.

Claims (6)

透明基材と、該透明基材の少なくとも片面に設けられた酸化珪素若しくは窒化珪素から成る薄膜層と透明導電膜層を備え、上記薄膜層と透明導電膜層が隣接して設けられる透明導電性積層体において、
上記薄膜層と透明導電膜層との間に、酸化インジウムを主成分としかつシリコンを含有する膜厚1nm以上30nm以下の密着層が設けられると共に、上記透明導電膜層が、酸化インジウムを主成分とする膜厚4nm以上100nm以下の薄膜により構成されていることを特徴とする透明導電性積層体。
A transparent conductive material comprising a transparent base material, a thin film layer made of silicon oxide or silicon nitride provided on at least one surface of the transparent base material, and a transparent conductive film layer, wherein the thin film layer and the transparent conductive film layer are provided adjacent to each other In the laminate,
Between the thin film layer and the transparent conductive film layer, there is provided an adhesion layer containing indium oxide as a main component and containing silicon and having a thickness of 1 nm to 30 nm, and the transparent conductive film layer is mainly composed of indium oxide. A transparent conductive laminate comprising a thin film having a thickness of 4 nm to 100 nm.
上記密着層におけるシリコンの含有量がSi/(In+Si)原子数比で0.02以上0.6以下であることを特徴とする請求項1に記載の透明導電性積層体。   2. The transparent conductive laminate according to claim 1, wherein the silicon content in the adhesion layer is 0.02 or more and 0.6 or less in terms of Si / (In + Si) atomic ratio. 上記透明導電膜層がスズ若しくはチタンを含有することを特徴とする請求項1に記載の透明導電性積層体。   The transparent conductive laminate according to claim 1, wherein the transparent conductive film layer contains tin or titanium. 上記透明導電膜層におけるスズの含有量がSn/(In+Sn)原子数比で0.01以上0.4以下、チタンの含有量がTi/(In+Ti)原子数比で0.002以上0.08以下であることを特徴とする請求項3に記載の透明導電性積層体。   The tin content in the transparent conductive film layer is 0.01 to 0.4 in terms of Sn / (In + Sn) atomic ratio, and the titanium content is in the range of 0.002 to 0.08 in terms of Ti / (In + Ti) atomic ratio. The transparent conductive laminate according to claim 3, wherein: 上記透明基材が高分子フィルム若しくはガラスで構成され、かつ、酸化珪素若しくは窒化珪素から成る薄膜層の上記密着層とは反対側に位置する面上に、膜厚1〜20nmでかつ酸化二オブ、酸化タンタル、酸化チタンから選択された少なくとも1種の高屈折率層が設けられていることを特徴とする請求項1〜4のいずれかに記載の透明導電性積層体。   The transparent base material is made of a polymer film or glass, and has a film thickness of 1 to 20 nm and niobium oxide on the surface of the thin film layer made of silicon oxide or silicon nitride located on the side opposite to the adhesion layer. The transparent conductive laminate according to claim 1, wherein at least one high refractive index layer selected from tantalum oxide and tantalum oxide is provided. 請求項1〜5のいずれかに記載の透明導電性積層体を有することを特徴とするタッチパネル。   A touch panel comprising the transparent conductive laminate according to claim 1.
JP2015035070A 2015-02-25 2015-02-25 Transparent conductive laminate and touch panel Pending JP2016157297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035070A JP2016157297A (en) 2015-02-25 2015-02-25 Transparent conductive laminate and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035070A JP2016157297A (en) 2015-02-25 2015-02-25 Transparent conductive laminate and touch panel

Publications (1)

Publication Number Publication Date
JP2016157297A true JP2016157297A (en) 2016-09-01

Family

ID=56826110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035070A Pending JP2016157297A (en) 2015-02-25 2015-02-25 Transparent conductive laminate and touch panel

Country Status (1)

Country Link
JP (1) JP2016157297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238523A1 (en) * 2022-06-08 2023-12-14 国立研究開発法人産業技術総合研究所 Ferromagnetic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238523A1 (en) * 2022-06-08 2023-12-14 国立研究開発法人産業技術総合研究所 Ferromagnetic capacitor

Similar Documents

Publication Publication Date Title
JP5872064B2 (en) Transparent conductive film with excellent electrical characteristics and touch panel using the same
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
CN105473756A (en) Transparent conductive film
JP6292225B2 (en) Transparent conductor
JPH11110110A (en) Transparent conductive film for touch panel
JP6048529B2 (en) Transparent conductive film and touch panel
JP6319302B2 (en) Transparent conductor and method for producing the same
KR101114028B1 (en) Touch panel
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JP2016157297A (en) Transparent conductive laminate and touch panel
JP6394064B2 (en) Cu alloy target material, Cu alloy target, Cu alloy film, and touch panel
JP2013228782A (en) Conductive substrate, touch panel and method for manufacturing conductive substrate
JP4214063B2 (en) Transparent conductive laminate and touch panel
JP2015219690A (en) Transparent conductive device and touch panel
JP6446209B2 (en) Transparent electrode pattern laminate and touch screen panel provided with the same
JP2012246570A (en) Transparent conductive film, method of manufacturing the same, and touch panel with the same
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JP2004296140A (en) Transparent conductive thin film laminate
JP4316868B2 (en) Transparent conductive laminate
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
WO2014181538A1 (en) Transparent conductor and method for producing same
JPH0294322A (en) Transparent electrically conductive layered film
JP3544878B2 (en) Transparent conductive thin film laminate
JP2016144884A (en) Transparent conductor and touch panel including the same