JP2016154619A - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2016154619A
JP2016154619A JP2015033318A JP2015033318A JP2016154619A JP 2016154619 A JP2016154619 A JP 2016154619A JP 2015033318 A JP2015033318 A JP 2015033318A JP 2015033318 A JP2015033318 A JP 2015033318A JP 2016154619 A JP2016154619 A JP 2016154619A
Authority
JP
Japan
Prior art keywords
region
imaging
application
application region
setting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015033318A
Other languages
English (en)
Inventor
健輔 篠田
Kensuke Shinoda
健輔 篠田
拓哉 藤巻
Takuya Fujimaki
拓哉 藤巻
吉勝 板田
Yoshikatsu Itada
吉勝 板田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Medical Systems Corp filed Critical Toshiba Medical Systems Corp
Priority to JP2015033318A priority Critical patent/JP2016154619A/ja
Publication of JP2016154619A publication Critical patent/JP2016154619A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】精度良く横隔膜などの部位の動きを検出することができるMRI装置を提供する。【解決手段】MRI装置100において、設定部26aは、呼吸時相を検出するための励起パルス及びリフォーカスパルスの双方が印加される領域の体積が所定の体積値となるように、前記励起パルスが印加される第1印加領域と、前記リフォーカスパルスが印加される第2印加領域とを設定する。制御部10は、前記励起パルス及び前記リフォーカスパルスそれぞれを前記第1印加領域及び前記第2印加領域に印加しながら、前記領域から得られた第1撮像データに基づいて呼吸時相を検出する第1撮像と、前記第1撮像により得られた呼吸時相に基づいて、対象を含む範囲の第2撮像データを収集する第2撮像とを実行する。【選択図】図1

Description

本発明の実施形態は、磁気共鳴イメージング装置に関する。
磁気共鳴イメージング(MRI:Magnetic Resonance Imaging)は、静磁場中に置かれた被検体の原子核スピンをラーモア周波数(Larmor frequency)のRF(Radio Frequency)パルスで磁気的に励起し、この励起に伴って発生するNMR(Nuclear Magnetic Resonance)信号から画像を再構成する撮像法である。
磁気共鳴イメージングにおいては、呼吸動に対応する横隔膜の動きに追従して心臓を撮像する撮像法がある。この場合、横隔膜の動きを検出する動き検出パルスの印加領域が横隔膜に設定され、心臓の撮像領域から磁気共鳴信号が収集される直前に、動き検出パルスの印加領域から磁気共鳴信号が収集される。動き検出パルスの印加領域から収集された磁気共鳴信号は、心臓の撮像領域の補正に用いられたり、心臓の撮像のタイミング決めに用いられたりする。
特開2011−147561号公報
本発明が解決しようとする課題は、精度良く横隔膜などの部位の動きを検出することができる磁気共鳴イメージング装置を提供することである。
実施形態の磁気共鳴イメージング装置は、設定部は、呼吸時相を検出するための励起パルス及びリフォーカスパルスの双方が印加される領域の体積が所定の体積値となるように、前記励起パルスが印加される第1印加領域と、前記リフォーカスパルスが印加される第2印加領域とを設定する。制御部は、前記励起パルス及び前記リフォーカスパルスそれぞれを前記第1印加領域及び前記第2印加領域に印加しながら、前記領域から得られた第1撮像データに基づいて呼吸時相を検出する第1撮像と、前記第1撮像により得られた呼吸時相に基づいて、対象を含む範囲の第2撮像データを収集する第2撮像とを実行する。
図1は、第1の実施形態に係るMRI装置の構成を示す機能ブロック図である。 図2は、第1の実施形態における心臓の撮像を説明するための図である。 図3は、第1の実施形態における撮像の処理手順を示すフローチャートである。 図4は、第1の実施形態における最大FOVボリュームデータを説明するための図である。 図5は、第1の実施形態におけるステップS104における処理を示すフローチャートである。 図6Aは、暫定的に特定された心臓の領域の一例を示す図である。 図6Bは、最終的に特定された心臓の領域の一例を示す図である。 図6Cは、最終的に特定された心臓の領域の一例を示す図である。 図7は、第1の実施形態におけるプローブの印加領域の一例について説明するための図である。 図8は、第1の実施形態において、印加領域の向きの算出方法の一例を説明するための図である。 図9Aは、第1の実施形態において、印加領域の向きの算出方法の一例を説明するための図である。 図9Bは、第1の実施形態において、印加領域の向きの算出方法の一例を説明するための図である。 図10は、第1の実施形態におけるスライス厚みAの算出方法の一例について説明するための図である。 図11は、第1の実施形態に係るマルチスライスデータの収集範囲の設定方法の一例を説明するための図である。 図12は、第2の実施形態におけるステップS104における処理を示すフローチャートである。 図13は、第3の実施形態におけるステップS104における処理を示すフローチャートである。 図14は、第4の実施形態におけるステップS104における処理を示すフローチャートである。 図15は、第4の実施形態に係る表示例の一例を示す図である。
以下、図面を参照しながら、実施形態に係る磁気共鳴イメージング装置(以下、適宜「MRI(Magnetic Resonance Imaging)装置」)を説明する。なお、実施形態は、以下の実施形態に限られるものではない。また、各実施形態において説明する内容は、原則として、他の実施形態においても同様に適用することができる。
(第1の実施形態)
図1は、第1の実施形態に係るMRI装置100の構成を示す機能ブロック図である。図1に示すように、MRI装置100は、静磁場磁石1と、傾斜磁場コイル2と、傾斜磁場電源3と、寝台4と、寝台制御部5と、送信コイル6と、送信部7と、受信コイル8と、受信部9と、シーケンス制御部10と、計算機20とを備える。なお、MRI装置100に、図1において点線の枠内に示す被検体P(例えば、人体)は含まれない。また、図1に示す構成は一例に過ぎない。例えば、シーケンス制御部10及び計算機20内の各部は、適宜統合若しくは分離して構成されてもよい。
静磁場磁石1は、中空の円筒形状(円筒の軸に直交する断面が楕円状となるものを含む)に形成された磁石であり、内部の空間に静磁場を発生する。静磁場磁石1は、例えば、永久磁石である。なお、静磁場磁石1は、超伝導磁石でもよい。静磁場磁石1が超伝導磁石である場合、MRI装置100は、図示しない静磁場電源を備え、この静磁場電源が、静磁場磁石1に電流を供給する。このとき、静磁場磁石1は、静磁場電源から電流の供給を受けて励磁する。また、静磁場電源は、MRI装置100とは別に備えられてもよい。
傾斜磁場コイル2は、中空の円筒形状(円筒の軸に直交する断面が楕円状となるものを含む)に形成されたコイルであり、静磁場磁石1の内側に配置される。傾斜磁場コイル2は、互いに直交するX、Y、及びZの各軸に対応する3つのコイルが組み合わされて形成されており、これら3つのコイルは、傾斜磁場電源3から個別に電流の供給を受けて、X、Y、及びZの各軸に沿って磁場強度が変化する傾斜磁場を発生する。傾斜磁場コイル2によって発生するX、Y、及びZの各軸の傾斜磁場は、例えば、スライス用傾斜磁場Gs、位相エンコード用傾斜磁場Ge、及び読み出し用傾斜磁場Grである。傾斜磁場電源3は、傾斜磁場コイル2に電流を供給する。
寝台4は、被検体Pが載置される天板4aを備え、寝台制御部5による制御の下、天板4aを、被検体Pが載置された状態で、傾斜磁場コイル2の空洞(撮像口)内へ挿入する。通常、寝台4は、長手方向が静磁場磁石1の中心軸と平行になるように設置される。寝台制御部5は、計算機20による制御の下、寝台4を駆動して天板4aを長手方向及び上下方向へ移動する。
送信コイル6は、傾斜磁場コイル2の内側に配置され、送信部7からRFパルスの供給を受けて、高周波磁場を発生する。送信部7は、対象とする原子の種類及び磁場強度で定まるラーモア周波数に対応するRFパルスを送信コイル6に供給する。
受信コイル8は、傾斜磁場コイル2の内側に配置され、高周波磁場の影響によって被検体Pから発せられる磁気共鳴信号(以下、適宜「MR信号」)を受信する。受信コイル8は、MR信号を受信すると、受信したMR信号を受信部9へ出力する。
なお、上述した送信コイル6及び受信コイル8は一例に過ぎない。送信機能のみを備えたコイル、受信機能のみを備えたコイル、若しくは送受信機能を備えたコイルのうち、1つ若しくは複数を組み合わせることによって構成されればよい。
受信部9は、受信コイル8から出力されるMR信号を検出し、検出したMR信号に基づいてMRデータを生成する。具体的には、受信部9は、受信コイル8から出力されるMR信号をデジタル変換することによってMRデータを生成する。また、受信部9は、生成したMRデータをシーケンス制御部10へ送信する。なお、受信部9は、静磁場磁石1や傾斜磁場コイル2等を備える架台装置側に備えられてもよい。
シーケンス制御部10は、計算機20から送信されるシーケンス情報に基づいて、傾斜磁場電源3、送信部7及び受信部9を駆動することによって、被検体Pの撮像を行う。ここで、シーケンス情報は、撮像を行うための手順を定義した情報である。シーケンス情報には、傾斜磁場電源3が傾斜磁場コイル2に供給する電流の強さや電流を供給するタイミング、送信部7が送信コイル6に供給するRFパルスの強さやRFパルスを印加するタイミング、受信部9がMR信号を検出するタイミング等が定義される。例えば、シーケンス制御部10は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等の集積回路、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等の電子回路である。
なお、シーケンス制御部10は、傾斜磁場電源3、送信部7及び受信部9を駆動して被検体Pを撮像した結果、受信部9からMRデータを受信すると、受信したMRデータを計算機20へ転送する。
計算機20は、MRI装置100の全体制御や、画像の生成等を行う。計算機20は、インタフェース部21と、画像生成部22と、記憶部23と、入力部24と、表示部25と、制御部26とを備える。
インタフェース部21は、シーケンス情報をシーケンス制御部10へ送信し、シーケンス制御部10からMRデータを受信する。また、インタフェース部21は、MRデータを受信すると、受信したMRデータを記憶部23に格納する。記憶部23に格納されたMRデータは、制御部26によってk空間に配置される。この結果、記憶部23は、k空間データを記憶する。
画像生成部22は、k空間データを記憶部23から読み出し、読み出したk空間データにフーリエ変換等の再構成処理を施すことで、画像を生成する。
記憶部23は、インタフェース部21によって受信されたMRデータや、制御部26によってk空間に配置されたk空間データ、画像生成部22によって生成された画像データ等を記憶する。また、記憶部23は、プローブ撮像条件23aを記憶する。プローブ撮像条件23aについては、後述する。記憶部23は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等である。
入力部24は、操作者からの各種指示や情報入力を受け付ける。入力部24は、例えば、マウスやトラックボール等のポインティングデバイス、キーボード等の入力デバイスである。表示部25は、制御部26による制御の下、各種GUI(Graphical User Interface)や、画像生成部22によって生成された画像等を表示する。表示部25は、例えば、液晶ディスプレイ等の表示デバイスである。
制御部26は、MRI装置100の全体制御を行い、撮像や画像の生成、画像の表示等を制御する。例えば、制御部26は、撮像条件の入力をGUI上で受け付け、受け付けた撮像条件に従ってシーケンス情報を生成し、生成したシーケンス情報をシーケンス制御部10へ送信する。制御部26は、撮像条件設定部26aを備える。例えば、制御部26は、ASIC、FPGA等の集積回路、CPU、MPU等の電子回路である。
続いて、図2は、第1の実施形態における心臓の撮像を説明するための図である。第1の実施形態においては、呼吸動に対応する横隔膜の動きに追従して心臓を撮像する撮像法を適用する。この撮像法には、横隔膜の動きを検出して、心臓の撮像領域自体を補正する手法(以下、「体動補正法」と呼ぶ)と、心臓の撮像領域は固定のまま撮像タイミングを決める手法(以下、「体動トリガ法」と呼ぶ)とがある。
図2の(A)は、体動補正法を適用した際のタイミングチャートを示す図であり、図2の(B)は、体動トリガ法を適用した際のタイミングチャートを示す図である。まず、図2の(A)と図2の(B)とに共通の点を説明する。図2に示す波形は、被検体Pの呼吸動に伴って上下動する横隔膜の位置を示す。息を吸って吐いてを繰り返す呼吸時相のうち、息を吸った際には横隔膜の位置は下がり、息を吐いた際には横隔膜の位置は上がる。図2の(A)及び図2の(B)のいずれの場合も、横隔膜の動きを検出する動き検出パルスの印加領域が横隔膜に設定され、心臓の撮像領域から各エコー分や各セグメント分のMRデータが収集される直前に、動き検出パルスの印加領域からMRデータが収集される。図2において、「本スキャン」と記載されたボックスが、心臓の撮像領域からのMRデータの収集に相当し、「本スキャン」の直前に複数個並ぶ「トレーススキャン」のボックスが、動き検出パルスの印加領域からのMRデータの収集に相当する。
図2の(A)を用いて体動補正法の一例を説明する。体動補正法は、横隔膜の動きを検出し、心臓の撮像領域自体を補正する手法である。例えば、体動補正法では、図2の(A)に示すように、本スキャンと本スキャンとの間隔であるTR(Repetition Time)が概ね一定に保たれ、本スキャンの直前に行われるトレーススキャンの繰り返し回数も一定である。即ち、体動補正法では、TRを概ね一定に保ちながら、トレーススキャンを一定回数行った後、本スキャンに切り替え、最終回のトレーススキャンで検出された横隔膜の位置が、閾値の範囲内(上限値と下限値との間の範囲内)であれば、本スキャンで収集されたMRデータを画像生成に用いる(図2において「Correct」)。一方、横隔膜の位置が、閾値の範囲外であれば、本スキャンでMRデータを収集するものの、画像生成には用いない(図2において「Correct&Reject」)。
また、この体動補正法では、リアルタイムに検出した横隔膜の位置に基づき心臓の移動量がリアルタイムに推定され、推定された心臓の移動量に基づき、本スキャンの撮像領域の位置がリアルタイムに補正される。
図2の(B)を用いて体動トリガ法の一例を説明する。体動トリガ法は、横隔膜の動きを検出し、心臓の撮像領域は固定のまま撮像タイミングを決める手法である。例えば、体動トリガ法では、図2の(B)に示すように、一定期間のTRは確保されるものの、TR自体が一定に保たれるものではない。また、本スキャンの直前に行われるトレーススキャンの繰り返し回数も一定ではない。即ち、体動トリガ法では、トレーススキャンを任意の回数行った後、トレーススキャンで検出された横隔膜の位置が、閾値の範囲内(上限値と下限値との間の範囲内)に入ると、本スキャンに切り替える。なお、仮に、トレーススキャンで検出された横隔膜の位置が閾値の範囲内に入ったとしても、一定期間のTRが確保されていない場合には、本スキャンには切り替えない。
この体動トリガ法では、本スキャンの呼吸時相が概ね一定になるため、体動補正法とは異なり、本スキャンの撮像領域の位置の補正は原則行わない。
なお、体動補正法及び体動トリガ法のいずれの場合も、本スキャンは、心電信号(ECG(Electrocardiogram))に同期しながら行われる場合がある。即ち、この場合には、所望の呼吸時相と心位相とを同時に満たすタイミングで収集されたMRデータのみが、画像生成に用いられる。また、上限値と下限値とで示される閾値の範囲は、所望の画質との関係に応じて、その広狭が適宜調整される。また、図2では、息を吐く期間において本スキャンが行われる例を示したが、実施形態はこれに限られるものではなく、息を吸う期間において本スキャンを行ってもよい。
図3は、第1の実施形態における撮像の処理手順を示すフローチャートである。図3に示すように、第1の実施形態において、まず、撮像条件設定部26aは、操作者から、撮像計画の設定を受け付ける(ステップS101)。例えば、撮像条件設定部26aは、TRやTE(Echo Time)等の撮像パラメータの初期値が設定されたパルスシーケンスの情報を予め保持している。また、パルスシーケンスの情報は、例えば、撮像部位や撮像目的毎に、準備スキャン用やイメージングスキャン用を含む複数のパルスシーケンス群のセットで管理される。撮像条件設定部26aは、GUIを介してパルスシーケンス群のセットを操作者に提示し、操作者から適宜選択や変更を受け付けることで、対象の検査で行われるパルスシーケンス群や撮像パラメータを決定する。
続いて、撮像条件設定部26aによって受け付けられた撮像計画に基づき、シーケンス制御部10は、準備スキャンの実行を開始する(ステップS102)。ここで、準備スキャン(「準備撮像」とも呼ばれる)とは、診断に用いられる画像を収集するイメージングスキャン(「本撮像」とも呼ばれる)に先行して行われるスキャンのことであり、受信コイル8の感度マップを収集するためのスキャンや、シミングのためのスキャン等が含まれる。
続いて、シーケンス制御部10は、最大FOV(Field Of View)のボリュームデータの収集スキャン(最大FOVスキャン)を実行する(ステップS103)。
なお、第1の実施形態においては、呼吸動を検出するための手法として、「1D Motion Probe」を用いるため、動き検出パルスを、「プローブ」と呼ぶ。
ここで、最大FOVのボリュームデータとは、磁場中心を中心に、MRI装置100として設定可能な最大FOV(例えば、静磁場強度の均一性を担保可能な範囲)で収集される3次元のMRデータのことである。なお、このボリュームデータは、プローブ位置及びマルチスライスデータの収集範囲の導出に用いられるため、各位置の導出に用いられるランドマークを含む範囲で収集される必要がある。例えば、第1の実施形態において、ボリュームデータは、肝臓の頂点及び心臓を含む範囲で収集される。
図4は、第1の実施形態における最大FOVボリュームデータを説明するための図である。例えば、シーケンス制御部10は、図4に示すように、頭足方向を読み出し方向に設定し、左右方向を位相エンコード方向に設定し、背腹方向をスライスエンコード方向に設定して、MRI装置100として設定可能な最大FOVで、3次元のMRデータを収集する。なお、頭足方向を読み出し方向に設定することで、頭足方向の分解能を高めることができる。また、横隔膜の位置や心臓の位置は、コロナル断面像上における画像特徴が、自動検出する場合も、検出結果を確認する場合も、最も有効である。また、コロナル断面像上の2方向である頭足方向と左右方向とでは、左右方向の方が、撮像領域外の折り返しの影響が少ない。以上の理由から、ボリュームデータは、上述したエンコード方向の組み合わせで収集することが望ましい。
図3に戻り、続いて、撮像条件設定部26aは、ステップS103で収集された最大FOVボリュームデータを用いて、プローブ位置及びマルチスライスデータの収集範囲を導出する(ステップS104)。
図5は、第1の実施形態におけるステップS104における処理を示すフローチャートである。図5に示すように、撮像条件設定部26aは、モデル画像を用いて、例えば、肝臓の頂点の位置、及び、心臓の領域を検出する(ステップS201)。そして、撮像条件設定部26aは、検出した肝臓の頂点の位置を示す情報と心臓の領域を示す情報を記憶部23に記憶させる。なお、モデル画像とは、予め被検体(例えば、標準的な1人の患者)をMRI装置100によって撮像することで得られた画像(MR画像)である。また、実施形態はこれに限られるものではなく、モデル画像として、例えば、複数の患者を撮像することで得られた画像の平均画像を用いてもよい。また、モデル画像は、画像処理が施された画像でもよい。
モデル画像を用いて、最大FOVボリュームデータから肝臓の頂点の位置及び心臓の領域を検出する手法を説明する。まず、モデル画像上では、肝臓の頂点の位置、及び、心臓の領域が、既知である。例えば、心臓の領域として、3次元の心臓の領域を構成するボクセル群が既知である。そこで、撮像条件設定部26aは、モデル画像に一致するように、最大FOVボリュームデータを剛体変形若しくは非剛体変形する画像処理を行い、変形後の最大FOVボリュームデータ上で、肝臓の頂点の位置、及び、心臓の領域を特定する。例えば、撮像条件設定部26aは、モデル画像内の心臓の領域を構成する各ボクセルに対応する変形後の最大FOVボリュームデータ内の各ボクセルを特定し、特定したボクセル群を心臓の領域として特定する。
その後、撮像条件設定部26aは、最大FOVボリュームデータを元の最大FOVボリュームデータに逆変形する画像処理を行い、逆変形後の最大FOVボリュームデータ上に、肝臓の頂点の位置を最終的に特定するとともに、心臓の領域を暫定的に特定する。例えば、撮像条件設定部26aは、逆変形後の最大FOVボリュームデータ内の心臓の領域を構成するボクセル群を特定することで、心臓の領域を暫定的に特定する。図6Aは、暫定的に特定された心臓の領域の一例を示す図である。例えば、撮像条件設定部26aは、図6Aに示すように、逆変形後の最大FOVボリュームデータ内の心臓の領域を構成するボクセル群を特定することで、心臓の3次元の領域H1を暫定的に特定する。ここで、領域H1の形状は、複雑であるため、領域H1を心臓の領域として扱い、領域H1に対して後段の各種の処理を行うことは、処理が煩雑になる場合がある。図6B、図6Cは、最終的に特定された心臓の領域の一例を示す図である。そこで、撮像条件設定部26aは、図6Bに示すように、領域H1に外接する直方体H2を最終的に特定する。直方体H2の形状は複雑でないため、領域H2を心臓の領域として扱い、領域H2に対して後段の各種の処理を行うことは、処理が煩雑にならない。なお、撮像条件設定部26aは、図6Cに示すように、領域H1に外接する楕円体H3を最終的に特定してもよい。楕円体H3の形状についても、同様に、複雑でないため、領域H3を心臓の領域として扱い、領域H3に対して後段の各種の処理を行うことは、処理が煩雑にならない。上述のような方法によって、肝臓の頂点の最終的な位置及び心臓の領域の最終的な領域を特定することにより、肝臓の頂点の位置及び心臓の領域を検出する。ここで、形状が複雑でない領域H2等を心臓の領域として検出するため、検出された心臓の領域に対して行われる後段の各種の処理を簡易に行うことができる。なお、実施形態はこれに限られるものではなく、撮像条件設定部26aは、最大FOVボリュームデータに一致するように、モデル画像に対して、剛体変形若しくは非剛体変形する画像処理を行ってもよい。
また、撮像条件設定部26aは、他の方法によっても心臓の領域を検出してもよい。例えば、モデル画像上では、心臓の位置(例えば、心臓の上端位置、下端位置、心臓の特徴点である僧帽弁、心尖部、左室中心等)が、既知である。そこで、撮像条件設定部26aは、例えば、モデル画像に一致するように、最大FOVボリュームデータを剛体変形若しくは非剛体変形する画像処理を行い、変形後の最大FOVボリュームデータ上で、心臓の位置を特定する。その後、撮像条件設定部26aは、最大FOVボリュームデータを元の最大FOVボリュームデータに逆変形する画像処理を行い、逆変形後の最大FOVボリュームデータ上に、心臓の位置を特定する。そして、撮像条件設定部26aは、特定された心臓の位置から心臓の領域を推定することにより、心臓の領域を検出する。
なお、撮像条件設定部26aは、同様の方法によって、更に、大血管や脊髄などの位置を検出してもよい。
そして、撮像条件設定部26aは、記憶部23に記憶されたプローブ撮像条件23aを取得する(ステップS202)。プローブ撮像条件23aには、後述の「所定の体積値」が含まれている。また、プローブ撮像条件23aには、後述の領域R3の体積が「所定の体積値」になるような場合における、後述の印加領域P1のスライス厚み、後述の印加領域P2のスライス厚み、後述の印加領域R1の向き、後述の印加領域R2の向き、並びに、印加領域P1及び印加領域P2の読み出し方向の長さを含む各種の印加領域R1及び印加領域R3に関する撮像条件が含まれている。
ここで、所定の体積値について説明する。図7は、第1の実施形態におけるプローブの印加領域の一例について説明するための図である。第1の実施形態では、プローブの印加方式として、SE(Spin Echo)法の励起パルスとリフォーカスパルスとを交差させて四角柱状の領域を励起する2面の交差方式が用いられた場合を例に挙げて説明する。なお、励起パルスは、フリップパルス又は90°パルスとも称される。また、リフォーカスパルスは、フロップパルス又は180°パルスとも称される。図7には、励起パルスが印加される直方体の印加領域R1、及び、リフォーカスパルスが印加される直方体の印加領域R2が示されている。
また、図7には、印加領域R1と印加領域R2とが交差する部分の四角柱状の領域R3が示されている。すなわち、領域R3は、励起パルス及びリフォーカスパルスの双方が印加される領域である。励起パルス及びリフォーカスパルスが印加された結果、領域R3から得られるMRデータが1次元フーリエ変換されて、肺野と肝臓との間のエッジが検出されることにより、横隔膜の頂点の位置が検出される。すなわち、上述のトレーススキャンでは、例えば、呼吸時相を検出するための励起パルス及びリフォーカスパルスの印加を伴いながら、励起パルスが印加される印加領域R1とリフォーカスパルスが印加される印加領域R2とが交差する領域R3から得られたMRデータに基づいて呼吸時相が検出される。また、上述のイメージングスキャンでは、検出された呼吸時相が用いられて心臓を含む範囲のMRデータが収集される。なお、トレーススキャンは、例えば、第1撮像に対応し、イメージングスキャンは、例えば、第2撮像に対応する。
ここで、領域R3の体積が大きいほど、領域R3から得られるMRデータのSNR(signal-to-noise ratio)が良好となるが、エッジがなまる傾向がある。一方、領域R3の体積が小さいほど、得られるエッジが鋭敏なものとなるが、領域R3から得られるMRデータのSNRが悪くなる傾向がある。なお、エッジの検出は、SNRが良好となるほど、または、得られるエッジが鋭敏なものとなるほど、成功しやすくなる。したがって、単純に、領域R3の体積を大きく又は小さくしただけでは、エッジの検出精度を高めることは困難である。
上述の「所定の体積値」とは、例えば、操作者が、領域R3の体積を様々な値に変更しながら各体積におけるエッジの鋭敏さやSNRを測定する実験を行った結果得られた、エッジの鋭敏さやSNRによって定まるエッジの検出精度が所定の基準を超えるような場合の領域R3の体積値である。
図5の説明に戻り、撮像条件設定部26aは、2つの印加領域の向きを算出する(ステップS203)。図8及び図9A〜図9Bは、第1の実施形態において、印加領域の向きの算出方法の一例を説明するための図である。例えば、図8の例に示すように、ステップS201で肝臓の頂点の位置P1、及び、心臓の領域H2が検出された場合には、撮像条件設定部26aは、心臓の領域H2が含まれないように、かつ、領域R3の中心に肝臓の頂点の位置P1が含まれるように、印加領域R1及び印加領域R2を設定した場合の印加領域R1及び印加領域R2の向きを算出する。ここで、向きが算出される印加領域R1及び印加領域R2の大きさは、ステップS202で取得したプローブ撮像条件23aに含まれる撮像条件に基づいた大きさである。
第1の実施形態における印加領域の向きの算出方法の一例について、より詳細に説明する。例えば、心臓の領域H2のアキシャル断面上での領域(例えば、2次元の領域)が、図9Aの例に示すような領域である場合について説明する。この場合には、撮像条件設定部26aは、図9Aの例に示すように、頭足方向から見て、アキシャル断面において、領域H2が含まれないように、かつ、領域R3の中心に肝臓の頂点の位置P1が含まれるように、印加領域R1及び印加領域R2を交差させて設定した場合の印加領域R1及び印加領域R2の向きを算出する。
また、例えば、心臓の領域H3のアキシャル断面上での領域が、図9Bの例に示すような領域である場合について説明する。この場合には、撮像条件設定部26aは、図9Bの例に示すように、頭足方向から見て、アキシャル断面において、領域H3が含まれないように、かつ、領域R3の中心に肝臓の頂点の位置P1が含まれるように、印加領域R1及び印加領域R2を交差させて設定した場合の印加領域R1及び印加領域R2の向きを算出する。
なお、心臓の領域からMRデータが収集される直前に、プローブの印加領域からMRデータが収集される場合、心臓の領域に印加領域が重なってしまうと、縦磁化の回復との関係で、心臓の画像にアーチファクトが生じてしまう場合がある。このため、心臓の領域が含まれないように印加領域R1及び印加領域R2の向きを算出する。
また、先の図8の例における「α」は、印加領域R1の向きの方向と印加領域R2の向きの方向との成す角の角度を示す。また、「L」は、領域R3の読み出し方向(頭足方向)の長さを示す。なお、領域R3の読み出し方向の長さは、印加領域R1の読み出し方向の長さ及び印加領域R2の読み出し方向の長さと等しい。また、「A」は、印加領域R1及び印加領域R2のスライス方向の厚み(スライス厚み)を示す。
また、ステップS201で、大血管や脊髄の位置が更に検出された場合には、ステップS203において、撮像条件設定部26aは、更に、大血管の位置が含まれないように、かつ、脊髄が含まれるように、印加領域R1及び印加領域R2を設定した場合の印加領域R1及び印加領域R2の向きを算出してもよい。
図5の説明に戻り、撮像条件設定部26aは、領域R3の体積が「所定の体積値」となる場合のスライス厚みAを算出する(ステップS204)。スライス厚みAの算出方法の一例について説明する。図10は、第1の実施形態におけるスライス厚みAの算出方法の一例について説明するための図である。図10は、読み出し方向から、印加領域R1、印加領域R2及び領域R3を見た場合の一例を示す。
図10の例に示す領域R3の菱形の面積Sは、以下の式(1)で表すことができる。
S=A/sinα・・・式(1)
なお、「/」は除算を示す演算子である。
撮像条件設定部26aは、以下の式(2)を満たすようなスライス厚みAを算出することで、領域R3の体積が「所定の体積値」となる場合のスライス厚みAを算出する。
V=S×L
=A/sinα×L・・・式(2)
なお、「×」は乗算を示す演算子である。また、式(2)において、「V」は、ステップS202で取得したプローブ撮像条件23aに含まれる「所定の体積値」である。また、式(2)において、「L」は、ステップS202で取得したプローブ撮像条件23aに含まれる印加領域P1及び印加領域P2の読み出し方向の長さ(領域R3の読み出し方向の長さ)である。また、式(1)及び式(2)において、「α」は、ステップS203で算出された印加領域R1の向きの方向と印加領域R2の向きの方向との成す角の角度である。
すなわち、撮像条件設定部26aは、値が既知である「V」、「α」、「L」を用いて、式(2)より、スライス厚みAを算出する。
そして、撮像条件設定部26aは、算出した印加領域R1及び印加領域R2の向き並びにスライス厚みAと、ステップS202で取得したプローブ撮像条件23aに含まれる印加領域P1及び印加領域P2の読み出し方向の長さとを含む撮像条件をプローブ撮像条件23aに設定する(ステップS205)。
また、ステップS205では、撮像条件設定部26aは、設定した撮像条件を表示部25に表示されたGUI(Graphical User Interface)上に表示させて、操作者に確認させてもよい。更に、撮像条件設定部26aは、表示された撮像条件の操作者による修正を受け付けてもよい。表示された撮像条件が修正された場合には、撮像条件設定部26aは、修正後の撮像条件をプローブ撮像条件23aに設定する。
そして、撮像条件設定部26aは、最大FOVボリュームデータから特定された心臓の上端位置及び下端位置に基づいて、マルチスライスデータの収集範囲を設定する(ステップS206)。図11は、第1の実施形態に係るマルチスライスデータの収集範囲の設定方法の一例を説明するための図である。例えば、撮像条件設定部26aは、スライス方向の収集範囲として、図11の例に示すように、心臓の上端位置から頭方向にオフセットL1を取った位置と、心臓の下端位置から足方向にオフセットL2を取った位置とで定まる範囲を設定する。
図3に戻り、シーケンス制御部10は、心臓の基本断面像を位置決めするためのスキャンを実行する(ステップS105)。
ステップS105において、シーケンス制御部10は、ステップS206で設定された収集範囲に従って、マルチスライスデータを収集する。なお、第1の実施形態において、シーケンス制御部10は、心電信号に同期しながらマルチスライスデータを収集する。即ち、シーケンス制御部10は、心電信号をトリガ信号として励起パルスを印加し、1スライス分のMRデータを収集する動作を複数スライス分行う。この場合、シーケンス制御部10は、1心拍周期(例えば、1RR)内に1スライス分のMRデータを収集し終えることが望ましい。また、シーケンス制御部10は、トリガ信号(例えば、R波)からの遅延時間を同一にして各スライスを収集することが望ましい。
次に、画像生成部22が、マルチスライスデータから、被検体Pの体軸方向に沿った複数のアキシャル像を再構成することで、ボリュームデータを生成する。例えば、ボリュームデータは、20枚のアキシャル像群である。なお、画像生成部22は、ボリュームデータに対して等方化処理(x、y、zの3方向がそれぞれ等距離間隔となるように行う補間処理)を施した上で、後段の処理に提供してもよい。あるいは、画像生成部22は、等方化処理を施さないボリュームデータを後段の処理に提供してもよい。
続いて、撮像条件設定部26aが、ボリュームデータから、複数の種類の基本断面像の断面位置を検出し、検出した位置に従い、ボリュームデータから、複数の種類の基本断面像を生成し、表示する。基本断面像の断面位置とは、3次元画像空間における基本断面像の空間的な位置のことであり、ボリュームデータから基本断面像を一意に特定可能なパラメータで表される。例えば、パラメータは、基本断面像の中心座標点(例えば、左室中心)と基本断面像上の2本のベクトル(例えば、短軸及び長軸)とで表される。また、ここで生成された複数の種類の基本断面像は、後段のイメージングスキャンで収集される画像の位置決め画像として生成されたものである。
続いて、撮像条件設定部26aは、基本断面像上で、操作者から基本断面像の設定を受け付け、全ての基本断面像の設定が終了すると、図3のステップS106の処理に移行する。操作者は、表示された基本断面像を閲覧し、イメージングスキャンで収集する画像として適切な基本断面像が設定されているか否かを確認し、必要に応じて基本断面像の位置を調整する等する。このとき、例えば、撮像条件設定部26aは、設定又は調整された基本断面像の断面位置を示す情報を記憶部23に格納する。
図3に戻り、こうして、一連の準備スキャンの実行が終了すると、シーケンス制御部10は、引き続き、イメージングスキャンの実行を開始する(ステップS106)。なお、以下では、イメージングスキャンにおいて、データ収集を複数のセグメントに分けて行う場合を例に挙げて説明する。
体動補正法と体動トリガ法とで、若干の違いはあるものの、第1の実施形態において、シーケンス制御部10は、本スキャンを実行する直前に、ステップS205で設定された撮像条件の組合せ(印加領域R1及び印加領域R2の向き並びにスライス厚みと、印加領域P1及び印加領域P2の読み出し方向の長さ)に基づいて、トレーススキャンを実行して横隔膜の頂点の位置を検出する(ステップS107)。
ここで、ステップS205で設定された撮像条件の組合せは、エッジの検出精度が所定の基準を超えるようなトレーススキャンを行う際の条件である。したがって、ステップS107では、シーケンス制御部10は、精度良く横隔膜の頂点の位置を検出することができる。この結果、精度良く横隔膜の動きを検出することができる。
また、操作者がトレースキャンを行う際の撮像条件の設定を行う手間が省けるので、検査のスループットが向上する。
また、操作者がトレーススキャンを行う前に、試験的に撮影条件を様々に変更させてトレーススキャンを行って、最適な撮像条件を探すような手間もかけることなく、エッジの検出精度が所定の基準を超えるような撮像条件を自動的に設定することができる。
そして、シーケンス制御部10は、横隔膜の頂点の位置が閾値の範囲内であるか否かを判定する(ステップS108)。横隔膜の頂点の位置が閾値の範囲内の場合(ステップS108;Yes)、シーケンス制御部10は、引き続き本スキャンを実行する(ステップS109)。なお、横隔膜の頂点の位置が閾値の範囲内でない場合(ステップS108;No)には、シーケンス制御部10は、再び、トレーススキャンの実行に戻る。そして、シーケンス制御部10は、次のセグメントが有るか否かを判定する(ステップS110)。次のセグメントが有る場合(ステップS110;Yes)には、シーケンス制御部10は、再び、トレーススキャンの実行に戻る。一方、次のセグメントがない場合(ステップS110;No)には、処理を終了する。
以上、第1の実施形態に係るMRI装置100について説明した。MRI装置100によれば、上述したように、精度良く横隔膜の動きを検出することができる。
なお、第1の実施形態に係るMRI装置100は、印加領域R1及び印加領域R2の向きを算出した後に、領域R3の体積が「所定の体積値」となる場合のスライス厚みを算出する。これは、何らかの理由で、印加領域R1及び印加領域R2の向きの自由度に制限がある場合に有効な方法である。例えば、心臓と肝臓(横隔膜)の位置が近い場合や、経験的に脊柱管を流れる髄液に励起パルスを敢えて印加して信号を落とすとよいことが分かっている場合には、励起パルスの向きが決まってしまうため、有効である。
(第2の実施形態)
第1の実施形態では、上述したように、印加領域R1及び印加領域R2の向きを設定した後に、領域R3の体積が「所定の体積値」となるようにスライス厚みを算出する場合について説明した。しかしながら、MRI装置は、印加領域R1及び印加領域R2のスライス厚みを、プローブ撮像条件23aに予め含まれる撮像条件が示すスライス厚みとした上で、領域R3の体積が「所定の体積値」となるように、印加領域R1及び印加領域R2の向きを算出してもよい。そこで、このような実施形態を第2の実施形態として説明する。
図12は、第2の実施形態におけるステップS104における処理を示すフローチャートである。第2の実施形態に係るMRI装置は、第1の実施形態に係るMRI装置100と比較して、ステップS203〜S205の処理に代えて、ステップS301〜S303の処理を実行する点が異なる。そこで、このような異なる点について説明し、同様の処理及び構成については、同一の符号を付して説明を省略する場合がある。
ステップS201、ステップS202、S206は、第1の実施形態と同様の処理であるため、説明を省略する。
撮像条件設定部26aは、印加領域R1の向きを算出する(ステップS301)。例えば、ステップS201で肝臓の頂点の位置P1、及び、心臓の領域H2が検出された場合には、撮像条件設定部26aは、心臓の領域H2が含まれないように、かつ、中心部分に肝臓の頂点の位置P1が含まれるように、印加領域R1を設定した場合の印加領域R1の向きを算出する。ここで、向きが算出される印加領域R1の大きさは、ステップS202で取得したプローブ撮像条件23aに含まれる撮像条件に基づいた大きさである。例えば、心臓の領域H2のアキシャル断面上での領域(例えば、2次元の領域)が、先の図9Aの例に示すような領域である場合には、撮像条件設定部26aは、頭足方向から見て、アキシャル断面において、領域H2が含まれないように、かつ、中心部分に肝臓の頂点の位置P1が含まれるように、印加領域R1を設定した場合の印加領域R1の向きを算出する。
また、ステップS201で、大血管や脊髄の位置が更に検出された場合には、ステップS301において、撮像条件設定部26aは、更に、大血管の位置が含まれないように、かつ、脊髄が含まれるように、印加領域R1を設定した場合の印加領域R1の向きを算出してもよい。
そして、撮像条件設定部26aは、領域R3の体積が「所定の体積値」となる場合の印加領域R2の向きを算出する(ステップS302)。なお、向きが算出される印加領域R2の大きさも、ステップS202で取得したプローブ撮像条件23aに含まれる撮像条件に基づいた大きさである。印加領域R2の向きの算出方法の一例について説明する。
例えば、撮像条件設定部26aは、上述の式(2)を満たすような角度αを算出することで、領域R3の体積が「所定の体積値」となる場合の印加領域R2の向きを算出する。
なお、第2の実施形態では、式(2)において、「V」は、ステップS202で取得したプローブ撮像条件23aに含まれる「所定の体積値」である。また、式(2)において、「L」は、ステップS202で取得したプローブ撮像条件23aに含まれる印加領域P1及び印加領域P2の読み出し方向の長さ(領域R3の読み出し方向の長さ)である。また、式(2)において、「A」は、ステップS202で取得したプローブ撮像条件23aに含まれる印加領域P1及び印加領域P2のスライス厚みである。
すなわち、撮像条件設定部26aは、値が既知である「V」、「A」、「L」を用いて、式(2)より、角度αを算出する。そして、撮像条件設定部26aは、印加領域R1の向きの方向に対して、角度αとなるような向きの方向に印加領域R2を設定した場合の印加領域R2の向きを算出する。この際、撮像条件設定部26aは、心臓の領域が含まれないように、かつ、中心部分に肝臓の頂点の位置P1が含まれるように、印加領域R2を設定した場合の印加領域R2の向きを算出する。例えば、心臓の領域H2のアキシャル断面上での領域が、先の図9Aの例に示すような領域である場合には、撮像条件設定部26aは、頭足方向から見て、アキシャル断面において、領域H2が含まれないように、かつ、中心部分に肝臓の頂点の位置P1が含まれるように、印加領域R2を設定した場合の印加領域R2の向きを算出する。
そして、撮像条件設定部26aは、算出した印加領域R1及び印加領域R2の向きと、ステップS202で取得したプローブ撮像条件23aに含まれる印加領域P1及び印加領域P2のスライス厚み及び読み出し方向の長さとを含む撮像条件をプローブ撮像条件23aに設定する(ステップS303)。
また、ステップS303では、撮像条件設定部26aは、設定した撮像条件を表示部25に表示されたGUI上に表示させて、操作者に確認させてもよい。更に、撮像条件設定部26aは、表示された撮像条件の操作者による修正を受け付けてもよい。表示された撮像条件が修正された場合には、撮像条件設定部26aは、修正後の撮像条件をプローブ撮像条件23aに設定する。
その後、S107において、シーケンス制御部10は、本スキャンを実行する直前に、ステップS303で設定された撮像条件に基づいて、トレーススキャンを実行して横隔膜の頂点の位置を検出する。
ここで、ステップS303で設定された撮像条件は、エッジの検出精度が所定の基準を超えるようなトレーススキャンを行う際の条件である。したがって、ステップS107では、シーケンス制御部10は、精度良く横隔膜の頂点の位置を検出することができる。この結果、精度良く横隔膜の動きを検出することができる。
なお、印加領域R1の向きを算出した後に、領域R3の体積が「所定の体積値」となる場合の印加領域R2の向きを算出する場合について説明したが、印加領域R2の向きを算出した後に、領域R3の体積が「所定の体積値」となる場合の印加領域R1の向きを算出してもよい。
以上、第2の実施形態に係るMRI装置について説明した。第2の実施形態に係るMRI装置によれば、上述したように、精度良く横隔膜の動きを検出することができる。
なお、上述したように、第2の実施形態に係るMRI装置は、印加領域R1及び印加領域R2のスライス厚みを、プローブ撮像条件23aに予め含まれる撮像条件が示すスライス厚みとした上で、領域R3の体積が「所定の体積値」となるように、印加領域R1及び印加領域R2の向きを算出する。これは、何らかの理由で、印加領域R1及び印加領域R2のスライス厚みの自由度に制限がある場合に有効な方法である。
(第3の実施形態)
第1の実施形態では、領域R3の体積が「所定の体積値」となる場合のスライス厚みAを算出する場合について説明し、第2の実施形態では、領域R3の体積が「所定の体積値」となる場合の印加領域R1又は印加領域R2の向きを算出する場合について説明したが実施形態はこれに限られない。例えば、操作者による設定に応じて、領域R3の体積が「所定の体積値」となる場合のスライス厚みAを算出する処理と、領域R3の体積が「所定の体積値」となる場合の印加領域R1又は印加領域R2の向きを算出する処理とを切り替えることもできる。例えば、これらの2つの処理のうち、操作者が優先的に算出させたい方の処理に切り替えることもできる。そこで、このような実施形態を第3の実施形態として説明する。
図13は、第3の実施形態におけるステップS104における処理を示すフローチャートである。第3の実施形態に係るMRI装置は、第1の実施形態に係るMRI装置100と比較して、ステップ202の後に、ステップ401の処理を実行するとともに、第2の実施形態におけるステップS301〜S303の処理をも実行する点が異なる。そこで、このような異なる点について説明し、同様の処理及び構成については、同一の符号を付して説明を省略する場合がある。
ステップS202の次のステップS401において、撮像条件設定部26aは、記憶部23に記憶された切替フラグの値が「1」であるか否かを判定する。
切替フラグについて説明する。操作者が、MRI装置に、領域R3の体積が「所定の体積値」となる場合のスライス厚みAを算出させたい場合には、切替フラグには、操作者により、所定値、例えば、「1」が設定される。また、操作者が、MRI装置に、領域R3の体積が「所定の体積値」となる場合の印加領域R1又は印加領域R2の向きを算出させたい場合には、切替フラグには、操作者により、所定値、例えば、「0」が設定される。すなわち、操作者は、切替フラグに所定値を設定することにより、スライス厚みA及び印加領域R1又は印加領域R2の向きのうち、優先的に算出させたいほうを設定することができる。すなわち、切替フラグの値は、操作者により指定された指定内容を表すといえる。
切替フラグの値が「1」であると判定した場合(ステップS401;Yes)には、撮像条件設定部26aは、第1の実施形態と同様に、ステップS203〜206を実行する。
一方、切替フラグの値が「1」でないと判定した場合、すなわち、切替フラグの値が「0」であると判定した場合(ステップS401;No)には、撮像条件設定部26aは、第2の実施形態と同様に、ステップS301〜303、206を実行する。
したがって、第3の実施形態に係るMRI装置によれば、スライス厚みA及び印加領域R1又は印加領域R2の向きのうち、優先的に算出させたいほうを操作者に設定させることができる。
その後、S107において、シーケンス制御部10は、本スキャンを実行する直前に、ステップS205又はS303で設定された各種の条件に基づいて、トレーススキャンを実行して横隔膜の頂点の位置を検出する。
ここで、ステップS205又はS303で設定された各種の条件は、エッジの検出精度が所定の基準を超えるようなトレーススキャンを行う際の条件である。したがって、ステップS107では、シーケンス制御部10は、精度良く横隔膜の頂点の位置を検出することができる。この結果、精度良く横隔膜の動きを検出することができる。
以上、第3の実施形態に係るMRI装置について説明した。第3の実施形態に係るMRI装置によれば、上述したように、精度良く横隔膜の動きを検出することができる。
(第4の実施形態)
実施形態に係るMRI装置は、スライス厚みA、印加領域R1の向き、及び、印加領域R2の向きの撮像条件の組合せを複数生成し、生成した複数の組合せの中から操作者により選択された組合せが示す撮像条件でトレーススキャンを実行してもよい。そこで、このような実施形態を第4の実施形態として説明する。なお、印加領域R1の向き及びスライス厚みは、印加領域R1に関するパラメータの一例であり、印加領域R2の向き及びスライス厚みは、印加領域R2に関するパラメータの一例である。
図14は、第4の実施形態におけるステップS104における処理を示すフローチャートである。第4の実施形態に係るMRI装置は、第1の実施形態に係るMRI装置100と比較して、ステップS203〜S205の処理に代えて、ステップS501〜S506の処理を実行する点が異なる。そこで、このような異なる点について説明し、同様の処理及び構成については、同一の符号を付して説明を省略する場合がある。
ステップS201、S202、S206は、第1の実施形態と同様の処理であるため、説明を省略する。
撮像条件設定部26aは、プローブ撮像条件23aに含まれる撮像条件の組合せが示すスライス厚みA、印加領域R1の向き、及び、印加領域R2の向きのうち、スライス厚みAの大きさだけを変更して、撮像条件の組合せを複数生成する(ステップS501)。なお、これに限らず、ステップS501では、撮像条件設定部26aは、撮像条件の組合せが示すスライス厚みA、印加領域R1の向き、及び、印加領域R2の向きのうち、少なくとも1つを変更して、撮像条件の組合せを複数生成してもよい。
そして、撮像条件設定部26aは、複数の組合せのそれぞれが示す撮像条件でトレーススキャンを実行する(ステップS502)。
そして、撮像条件設定部26aは、トレーススキャンによって得られた領域R3から得られるMRデータのSNRと、このMRデータが1次元フーリエ変換されることにより検出される肺野と肝臓との間のエッジの強度とを、撮像条件の組合せごとに計測する(ステップS503)。
そして、撮像条件設定部26aは、SNRとエッジの強度とを撮像条件の組合せごとに表示部25に表示させる(ステップS504)。図15は、第4の実施形態に係る表示例の一例を示す図である。例えば、図15の例に示すように、撮像条件設定部26aは、プローブ撮像条件23aに含まれる撮像条件の組合せが示すスライス厚みA、印加領域R1の向き、及び、印加領域R2の向きのうち、大きさが変更されるスライス厚みAだけを、SNR及びエッジ強度と対応付けて表示部25に表示させる。この際、撮像条件設定部26aは、スライス厚みを選択可能に表示させる。図15の例に示す表示内容からは、スライス厚みによるSNR及びエッジ強度の変化の傾向が分かる。
そして、撮像条件設定部26aは、操作者が入力部24を介してスライス厚みを選択したか否かを判定する(ステップS505)。スライス厚みを選択していないと判定した場合(ステップS505;No)には、撮像条件設定部26aは、再び、スライス厚みを選択したか否かの判定を行う。一方、スライス厚みを選択したと判定した場合(ステップS505;Yes)には、撮像条件設定部26aは、生成した撮像条件の複数の組合せのうち、選択されたスライス厚みを含む撮像条件の組合せをプローブ撮像条件23aに設定する(ステップS506)。
その後、S107において、シーケンス制御部10は、本スキャンを実行する直前に、ステップS506で設定された各種の条件に基づいて、トレーススキャンを実行して横隔膜の頂点の位置を検出する。
ここで、ステップS506で設定された各種の条件が、エッジの検出精度が所定の基準を超えるようなトレーススキャンを行う際の条件である場合には、ステップS107では、シーケンス制御部10は、精度良く横隔膜の頂点の位置を検出することができる。この結果、精度良く横隔膜の動きを検出することができる。
以上、第4の実施形態に係るMRI装置について説明した。第4の実施形態に係るMRI装置によれば、上述したように、精度良く横隔膜の動きを検出することができる。
(その他の実施形態)
実施形態は、上述した第1の実施形態〜第4の実施形態に限られるものではない。
(対象部位)
上述した第1の実施形態〜第4の実施形態では、対象部位として「心臓」を例に挙げて説明したが、実施形態はこれに限られるものではない。例えば、「肝臓」といった呼吸動によって移動するような内臓、各種の循環器等他の対象部位の検査の場合にも同様に適用することができる。
以上述べた少なくとも1つの実施形態の磁気共鳴イメージング装置によれば、精度良く横隔膜などの部位の動きを検出することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
26a 撮像条件設定部
100 磁気共鳴イメージング装置

Claims (6)

  1. 呼吸時相を検出するための励起パルス及びリフォーカスパルスの双方が印加される領域の体積が所定の体積値となるように、前記励起パルスが印加される第1印加領域と、前記リフォーカスパルスが印加される第2印加領域とを設定する設定部と、
    前記励起パルス及び前記リフォーカスパルスそれぞれを前記第1印加領域及び前記第2印加領域に印加しながら、前記領域から得られた第1撮像データに基づいて呼吸時相を検出する第1撮像と、前記第1撮像により得られた呼吸時相に基づいて、対象を含む範囲の第2撮像データを収集する第2撮像とを実行する制御部と、
    を備える、磁気共鳴イメージング装置。
  2. 前記設定部は、前記領域の体積が所定の体積値となるように、前記第1印加領域の向き及び厚み、並びに、前記第2印加領域の向き及び厚みを設定する、請求項1に記載の磁気共鳴イメージング装置。
  3. 前記設定部は、前記第1印加領域の向き及び前記第2印加領域の向きを算出した後に、前記領域の体積が所定の体積値となるように、前記第1印加領域の厚み及び前記第2印加領域の厚みを算出することで、前記第1印加領域及び前記第2印加領域を設定する、請求項2に記載の磁気共鳴イメージング装置。
  4. 前記設定部は、前記領域の体積が所定の体積値となるように、前記第1印加領域の向き及び前記第2印加領域の向きを算出することで、前記第1印加領域及び前記第2印加領域を設定する、請求項2に記載の磁気共鳴イメージング装置。
  5. 前記設定部は、操作者により指定された指定内容に応じて、前記第1印加領域の向き及び前記第2印加領域の向きを算出した後に、前記領域の体積が所定の体積値となるように、前記第1印加領域の厚み及び前記第2印加領域の厚みを算出するか、又は、前記領域の体積が所定の体積値となるように、前記第1印加領域の向き及び前記第2印加領域の向きを算出することで、前記第1印加領域及び前記第2印加領域を設定する、請求項1に記載の磁気共鳴イメージング装置。
  6. 呼吸時相を検出するための励起パルス及びリフォーカスパルスの双方が印加される領域から得られた撮像データに基づいて呼吸時相を検出する撮像を、前記励起パルスが印加される第1印加領域に関する第1パラメータと前記リフォーカスパルスが印加される第2印加領域に関する第2パラメータとの少なくとも1つを異ならせた複数の組み合わせの撮像条件それぞれにより実行する制御部と、
    前記複数の組み合わせそれぞれで得られた撮像データの特性を、前記複数の組み合わせのいずれかを操作者が選択可能なように表示部に表示させ、前記操作者が選択した組み合わせに対応する第1パラメータ及び第2パラメータを、前記撮像における撮像条件として設定する設定部と、
    を備える、磁気共鳴イメージング装置。
JP2015033318A 2015-02-23 2015-02-23 磁気共鳴イメージング装置 Pending JP2016154619A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033318A JP2016154619A (ja) 2015-02-23 2015-02-23 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033318A JP2016154619A (ja) 2015-02-23 2015-02-23 磁気共鳴イメージング装置

Publications (1)

Publication Number Publication Date
JP2016154619A true JP2016154619A (ja) 2016-09-01

Family

ID=56824129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033318A Pending JP2016154619A (ja) 2015-02-23 2015-02-23 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP2016154619A (ja)

Similar Documents

Publication Publication Date Title
JP5944650B2 (ja) 磁気共鳴イメージング装置
US9626777B2 (en) Method and apparatus to generate image data
US9712789B2 (en) Method and apparatus to generate image data
US20170127972A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP6462286B2 (ja) 磁気共鳴イメージング装置
JP6440980B2 (ja) 磁気共鳴イメージング装置
JP2018094451A (ja) 磁気共鳴イメージング装置、磁気共鳴イメージング方法及び画像処理システム
KR101474757B1 (ko) 자장 측정 방법 및 장치
US11071469B2 (en) Magnetic resonance method and apparatus for determining a characteristic of an organ
JP2006314491A (ja) 磁気共鳴撮影装置
JP2016093494A (ja) 磁気共鳴イメージング装置、画像処理装置及び画像処理方法
JP6615594B2 (ja) 画像処理方法、画像処理装置及び磁気共鳴イメージング装置
JP6943663B2 (ja) 磁気共鳴イメージング装置及び画像処理装置
KR101541290B1 (ko) 자기 공명 신호 측정 방법 및 장치
JP6853328B2 (ja) 磁気共鳴イメージング装置及び医用画像処理方法
US10823800B2 (en) Magnetic resonance imaging apparatus and medical image processing method
US11249154B2 (en) Magnetic resonance imaging apparatus
JP2016154619A (ja) 磁気共鳴イメージング装置
JP6188764B2 (ja) 磁気共鳴イメージング装置
US10481235B2 (en) Magnetic resonance imaging apparatus and image processing apparatus
JP5421600B2 (ja) 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法
JP7382736B2 (ja) 磁気共鳴イメージング装置
JP6320716B2 (ja) 磁気共鳴イメージング装置及び画像処理装置
JP2020178852A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161021