JP2016151298A - Exciter and active vibration control device using the same - Google Patents

Exciter and active vibration control device using the same Download PDF

Info

Publication number
JP2016151298A
JP2016151298A JP2015028148A JP2015028148A JP2016151298A JP 2016151298 A JP2016151298 A JP 2016151298A JP 2015028148 A JP2015028148 A JP 2015028148A JP 2015028148 A JP2015028148 A JP 2015028148A JP 2016151298 A JP2016151298 A JP 2016151298A
Authority
JP
Japan
Prior art keywords
vibration
mover
vibrator
exciter
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015028148A
Other languages
Japanese (ja)
Inventor
弘樹 高橋
Hiroki Takahashi
弘樹 高橋
有坂 寿洋
Toshihiro Arisaka
寿洋 有坂
高志 三枝
Takashi Saegusa
高志 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015028148A priority Critical patent/JP2016151298A/en
Publication of JP2016151298A publication Critical patent/JP2016151298A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized and light-weight exciter enabling excitation in multiple directions, and an active vibration control device using the exciter and capable of being easily mounted.SOLUTION: An exciter utilizes drive reaction force in vibrating a movable element to a stator, as excitation force. The exciter includes a drive unit provided between the movable element and the stator, and configured to excite the movable element in orthogonal multiple directions. The drive unit comprises an actuator configured to generate thrust, and a displacement adsorption unit configured to absorb displacement to an orthogonal excitation direction of the drive unit.SELECTED DRAWING: Figure 1

Description

本発明は,振動源を有する装置の振動を低減するための,加振器及びそれを用いたアクティブ制振装置に関する.
The present invention relates to a vibration exciter and an active vibration damping device using the same for reducing vibration of a device having a vibration source.

一般に,モータ等の振動源を有する装置において,この振動が装置の動作や性能に悪影響を及ぼすことがある.この振動を低減するため,対象の振動を検出し,その振動を抑制するような制御信号により加振器を駆動させて,対象の振動を低減するアクティブ制振技術が知られている.
本技術分野の背景技術として,特許文献1が知られている.
In general, in a device having a vibration source such as a motor, this vibration may adversely affect the operation and performance of the device. In order to reduce this vibration, there is known an active vibration suppression technology that detects vibration of the object and drives the vibrator with a control signal that suppresses the vibration to reduce the vibration of the object.
Patent Document 1 is known as a background art in this technical field.

特開2007-285429号公報JP 2007-285429 A

前記特許文献1には,付加質量部材をアクチュエータにより駆動した場合の反力を用いて振動抑制するアクティブ制振装置が記載されている.
振動が装置の動作や性能に影響を与え,アクティブ制振装置による制振が期待される装置としては,例えば精密な位置決めが要求される製造・検査装置などが挙げられる.製造・検査装置においては,XY方向の2方向やそれ以上の位置決め機構を有するものが多く,この場合,アクティブ制振装置も2方向以上の振動を対象とする必要がある.前記特許文献に記載される様な1方向の加振力を発生する加振器を使用する場合,2方向以上の振動を制振するためには2つ以上の加振器が異なる方向に向けて設置される.そのため,多くの付加質量が設置されることとなり,アクティブ制振装置が全体として大型になり,総重量も増加する.また,制振対象の装置の同一箇所に複数方向の加振器を設置する場合,広い取付けスペースが必要となることや,その取付方法が課題となる.
本発明の目的は,複数方向の加振が可能な小型軽量な加振器と,その加振器を用いた,実装が容易なアクティブ制振装置を提供することである.
Patent Document 1 describes an active vibration damping device that suppresses vibration using a reaction force when an additional mass member is driven by an actuator.
For example, a manufacturing / inspection device that requires precise positioning is an example of a device that is expected to be controlled by an active vibration control device because vibration affects the operation and performance of the device. Many manufacturing / inspection devices have positioning mechanisms in two or more directions in the X and Y directions. In this case, the active vibration control device must also target vibrations in two or more directions. When using a vibration generator that generates a vibration force in one direction as described in the above-mentioned patent document, in order to suppress vibration in two or more directions, the two or more vibration generators must be directed in different directions. Installed. As a result, a large amount of additional mass is installed, and the active vibration control device becomes larger as a whole and the total weight increases. In addition, when installing vibrators in multiple directions at the same location of the device to be controlled, a large mounting space is required and the mounting method becomes a problem.
An object of the present invention is to provide a compact and lightweight vibrator capable of oscillating in multiple directions, and an active vibration damper using the vibrator, which is easy to mount.

本発明では,上記課題を解決するために,固定子に対して可動子を振動させた際の駆動反力を加振力として利用する加振器において,
前記可動子と前記固定子の間に,前記可動子を直交する複数方向に加振する駆動部を備え,前記駆動部が,推力を発生するアクチュエータと,直交する前記駆動部の加振方向への変形を吸収する変位吸収部から構成される加振器とそれを用いたアクティブ制振装置を提供する.
In the present invention, in order to solve the above-described problem, in a vibrator using a driving reaction force as a vibration force when a mover is vibrated with respect to a stator,
A drive unit for exciting the mover in a plurality of directions orthogonal to each other is provided between the mover and the stator, and the drive unit is arranged in an excitation direction of the actuator for generating a thrust and the drive unit orthogonal to each other. We provide an exciter composed of a displacement absorber that absorbs deformations and an active damping device using it.

本発明によれば,複数方向の加振が可能な小型軽量な加振器を提供することが可能となる.そのため,複数方向の制振が必要な場合にも,アクティブ制振装置全体の大型化,重量増加を防ぐことができる.また,加振器が省スペースで取付可能であり,アクティブ制振装置の実装を容易とすることが期待できる.
According to the present invention, it is possible to provide a small and lightweight vibrator capable of exciting in a plurality of directions. Therefore, even when vibration control in multiple directions is required, the overall size and weight increase of the active vibration control device can be prevented. In addition, the vibration exciter can be installed in a small space, and it can be expected that the active vibration control device can be easily mounted.

実施例1における加振器の例を示す斜視図である.2 is a perspective view showing an example of a vibrator in Example 1. FIG. 実施例1における加振器の例を示す斜視図である.2 is a perspective view showing an example of a vibrator in Example 1. FIG. 実施例1における加振器の例を示す平面図である.FIG. 3 is a plan view showing an example of a vibrator in the first embodiment. 実施例1におけるアクティブ制振装置の搭載例を示す模式図である.It is a schematic diagram which shows the example of mounting of the active damping device in Example 1. 実施例1の効果の説明図である.It is explanatory drawing of the effect of Example 1. FIG. 実施例1の効果の説明図である.It is explanatory drawing of the effect of Example 1. FIG. 実施例1における加振器の変形例を示す斜視図である.FIG. 6 is a perspective view showing a modification of the vibrator in the first embodiment. 実施例1における加振器の変形例を示す斜視図である.FIG. 6 is a perspective view showing a modification of the vibrator in the first embodiment. 実施例1における加振器の変形例を示す斜視図である.FIG. 6 is a perspective view showing a modification of the vibrator in the first embodiment. 実施例1における加振器の変形例を示す斜視図である.FIG. 6 is a perspective view showing a modification of the vibrator in the first embodiment. 実施例2における加振器の例を示す斜視図である.FIG. 6 is a perspective view showing an example of a vibrator in the second embodiment. 実施例2における加振器の例を示す斜視図である.FIG. 6 is a perspective view showing an example of a vibrator in the second embodiment. 実施例2における加振器の例を示す平面である.It is a plane which shows the example of the vibrator in Example 2. 実施例3における加振器の例を示す斜視図である.6 is a perspective view showing an example of a vibrator in Example 3. FIG. 実施例3における加振器の例を示す斜視図である.6 is a perspective view showing an example of a vibrator in Example 3. FIG. 実施例3における加振器の例を示す平面図である.6 is a plan view showing an example of a vibrator in Example 3. FIG. 実施例4における加振器の例を示す斜視図である.FIG. 10 is a perspective view showing an example of a vibrator in the fourth embodiment. 実施例4における加振器の例を示す斜視図である.FIG. 10 is a perspective view showing an example of a vibrator in the fourth embodiment. 実施例4におけるアクティブ制振装置の搭載例を示す模式図である.It is a schematic diagram which shows the example of mounting of the active damping device in Example 4. 実施例4の効果の説明図である.It is explanatory drawing of the effect of Example 4. FIG.

以下,本発明を実施するための形態について,添付図を参照しながら詳細に説明する. Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

本実施例では,2方向の加振が可能な小型軽量な加振器を用いたアクティブ制振装置の例を説明する.
図1,2は本実施例における加振器30の例を示す斜視図,図3は平面図である.加振器30の座標系は図1〜3に示す様に定めるものとする.説明のため,図1では図2に対して,可動子2を省略して図示している.加振器30は,柱状の固定子1と,固定子1の周囲に概略環状の可動子2を備える.固定子1と可動子2の間には,X方向駆動部20と,Y方向駆動部21を備える.X方向駆動部20とY方向駆動部21は,アクチュエータである積層圧電素子3a,3bと,変位吸収部である弾性ヒンジ4a,4bから構成される.弾性ヒンジ4a,4bは1方向への剛性が低くなっており,弾性ヒンジ4aはY方向に対して低剛性であり,弾性ヒンジ4bはX方向に対して低剛性である.積層圧電素子3a,3bは中央に貫通穴を有する円筒形に形成されており,ボルト5により,弾性ヒンジ4a,4bと固定子1との間で予圧を加えられた状態で固定子1の側面に,それぞれ直交する様に固定される.可動子2はボルト6により,弾性ヒンジ4a,4bに固定される.積層圧電素子3a,3bへの配線7は固定子1に這わせる様に固定される.また,固定子1の中央には,加振器30を取り付けるためのザグリ穴8が設けられている.
積層圧電素子3a,3bは電圧を加えるとそれぞれX,Y方向に変形する.弾性ヒンジ4a,4bは,それぞれX,Y方向に対しては剛性が高く,Y,X方向に対しては剛性が低いため,積層圧電素子3a,3bにせん断方向の負荷が加わることを防止している.従って,積層圧電素子3a,3bに電圧を加えることにより,可動子2をX,Y方向に独立に加振することができる.
図4は本実施例における加振器30を用いたアクティブ制振装置を搭載した例を示す図である.加振器30は,制振対象31に対して制振力を加えたい個所に設置される.制振したい固有振動モードの腹など,振幅が大きい箇所に設置すると効果的である.加振器30は,ザグリ穴8を用いて図示しないボルトにより制振対象31に固定される.または,固定子1を制振対象31に接着しても良いし,制振対象31の表面が磁性体であるならば,固定子1に磁石を内蔵しておき,磁力により固定しても良い.もしくは,制振対象31の表面にオネジを設けておき,固定子1にメネジを設けて制振対象31に固定しても良い.本実施例では加振器30を1つ設置しているが,複数箇所に設置しても構わない.加振器30の積層圧電素子3a,3bはそれぞれ配線7を介して駆動電源32と接続され,駆動電源32はコントローラ33と接続されている.制振対象31の他の部位には振動センサ34が複数設置されており,振動センサ34はコントローラ33と接続されている.振動センサ34には,加速度センサやひずみを検出するセンサ,変位計などを用いる.制振対象31に振動が発生すると,振動センサ34が振動の大きさに応じた出力をコントローラ33に出力する.コントローラ33は,振動センサ34で検出される振動を抑える様な制御出力を駆動電源32に出力する.駆動電源32はコントローラ33からの制御出力に応じて加振器30の積層圧電素子3a,3bに電圧を印加し,可動子2を2方向に振動させ,その駆動反力が制振対象31の振動を抑えるための加振力として作用する.
本実施例の効果について説明する.図5,6は1方向の加振器35を用いたアクティブ制振装置の例を示す図である.1方向の加振器35は,可動子10とアクチュエータ11から構成され,アクチュエータ11により可動子10を振動させた際の駆動反力を加振力として用いる.2方向の振動を制振するため,制振対象31に対して,2つの加振器35が設置される.図5の例では,固定子9を介して制振対象31の1箇所に設置されており,図6の例では制振対象31の2箇所に設置されている.加振器30,35の発生する加振力は,可動子2,10の質量と,可動子2,10の振動加速度の積で求まる.実現できる振動加速度は積層圧電素子3a,3bやアクチュエータ11により決まり,振動加速度を同じとすれば,可動子2,10に要求 される質量も同じとなる.1方向の加振器35では可動子10を合計で2つ用いるのに対し,本実施例の加振器30では可動子2を1つ用いるため,可動子の総重量が半分で済み,アクティブ制振装置全体の小型化,軽量化が図れる.また,図6の例と比較すれば,取付けスペースを小さくすることが可能であり,アクティブ制振装置の導入が容易となる.
本実施例では,可動子2として概略環状の例を示した.これは,可動子2の重心が加振器30の略中心に位置し,積層圧電素子3a,3bの推力線が可動子2の略重心を通ることにより,可動子2がXY方向の力以外のモーメントを受けることを防ぎ,加振器30の発生する加振力が余計なモーメントを含まない様にするためである.従って,可動子2の形状は必ずしも円形でなくても良く,図7,8に示す様な多角形でも構わない.または,環の一部が欠けた様な形状でも構わなく,積層圧電素子3a,3bの推力線の交点上に可動子2の重心が略位置していれば良い.加振器30の加振力が不足,または加振力が過剰である場合は,可動子2をより重いもの,またはより軽いものに交換することで,加振力の調整が可能である.
また,本実施例では,変位吸収部として弾性ヒンジ4a,4bを用いた例を示した.これは積層圧電素子3a,3bの駆動方向に直交する方向への変形を吸収することで,積層圧電素子3a,3bの破損を防ぎ,可動子2を独立にX,Y方向に振動させるためである.従って,変位吸収部は必ずしも弾性ヒンジ4a,4bでなくてもよく,図9,10に示す様な直動案内機構12a,12bを用いても構わない.説明のため,図10では図9に対して,可動子2を省略して図示している.直動案内機構12aは,X方向には剛性が高く,Y方向に摺動が可能である.また,直動案内機構12bは,Y方向に剛性が高く,X方向に摺動が可能である.そのため,弾性ヒンジ4a,4bと同様に積層圧電素子3a,3bにせん断方向の負荷が加わることを防止し,可動子2をX,Y方向に独立に加振することを可能とする.
In this example, an example of an active vibration control device using a small and lightweight vibration exciter capable of exciting in two directions will be described.
1 and 2 are perspective views showing an example of a vibrator 30 in this embodiment, and FIG. 3 is a plan view. The coordinate system of the vibrator 30 is determined as shown in Figs. For the sake of explanation, the mover 2 is omitted from FIG. The vibrator 30 includes a columnar stator 1 and a substantially annular movable element 2 around the stator 1. Between the stator 1 and the mover 2, an X-direction drive unit 20 and a Y-direction drive unit 21 are provided. The X-direction drive unit 20 and the Y-direction drive unit 21 are composed of laminated piezoelectric elements 3a and 3b that are actuators and elastic hinges 4a and 4b that are displacement absorption units. The elastic hinges 4a and 4b have low rigidity in one direction, the elastic hinge 4a has low rigidity in the Y direction, and the elastic hinge 4b has low rigidity in the X direction. The laminated piezoelectric elements 3a and 3b are formed in a cylindrical shape having a through-hole in the center, and the side surface of the stator 1 with a preload applied between the elastic hinges 4a and 4b and the stator 1 by bolts 5. Are fixed so that they are orthogonal to each other. The mover 2 is fixed to the elastic hinges 4a and 4b by bolts 6. The wiring 7 to the laminated piezoelectric elements 3a and 3b is fixed so as to pass over the stator 1. A counterbore hole 8 is provided in the center of the stator 1 for mounting the vibrator 30.
The laminated piezoelectric elements 3a and 3b are deformed in the X and Y directions, respectively, when a voltage is applied. The elastic hinges 4a and 4b have high rigidity in the X and Y directions and low rigidity in the Y and X directions, respectively, so that a load in the shear direction is not applied to the multilayer piezoelectric elements 3a and 3b. ing. Therefore, the movable element 2 can be vibrated independently in the X and Y directions by applying a voltage to the laminated piezoelectric elements 3a and 3b.
FIG. 4 is a diagram showing an example in which an active vibration damping device using the vibrator 30 in this embodiment is mounted. The vibration exciter 30 is installed at a location where it is desired to apply a vibration suppression force to the vibration control target 31. It is effective to install it in a place with a large amplitude, such as the belly of the natural vibration mode you want to control. The vibration exciter 30 is fixed to the vibration control target 31 by a bolt (not shown) using a counterbore hole 8. Alternatively, the stator 1 may be bonded to the vibration control target 31, or if the surface of the vibration control target 31 is a magnetic material, a magnet may be built in the stator 1 and fixed by a magnetic force. . Alternatively, a male screw may be provided on the surface of the vibration suppression target 31, and a female screw may be provided on the stator 1 to fix it to the vibration suppression target 31. In this embodiment, one vibrator 30 is installed, but it may be installed at multiple locations. The laminated piezoelectric elements 3a and 3b of the vibration exciter 30 are connected to a driving power source 32 via wirings 7, respectively, and the driving power source 32 is connected to a controller 33. A plurality of vibration sensors 34 are installed in other parts of the vibration control target 31, and the vibration sensors 34 are connected to the controller 33. As the vibration sensor 34, an acceleration sensor, a strain detection sensor, a displacement meter, or the like is used. When vibration occurs in the vibration suppression target 31, the vibration sensor 34 outputs an output corresponding to the magnitude of the vibration to the controller 33. The controller 33 outputs a control output that suppresses vibration detected by the vibration sensor 34 to the drive power supply 32. The drive power supply 32 applies a voltage to the laminated piezoelectric elements 3a and 3b of the vibration exciter 30 according to the control output from the controller 33, vibrates the mover 2 in two directions, and the drive reaction force is applied to the vibration control target 31. Acts as an excitation force to suppress vibration.
The effect of this embodiment will be described. 5 and 6 are diagrams showing an example of an active vibration control device using a unidirectional vibrator 35. FIG. The unidirectional vibrator 35 includes a mover 10 and an actuator 11, and uses a driving reaction force when the mover 10 is vibrated by the actuator 11 as an excitation force. In order to control vibrations in two directions, two vibrators 35 are installed for the object 31 to be controlled. In the example of FIG. 5, it is installed at one location of the vibration suppression target 31 via the stator 9, and in the example of FIG. 6, it is installed at two locations of the vibration suppression target 31. The excitation force generated by the vibrators 30 and 35 is obtained by the product of the mass of the movers 2 and 10 and the vibration acceleration of the movers 2 and 10. The vibration acceleration that can be realized is determined by the laminated piezoelectric elements 3a and 3b and the actuator 11. If the vibration acceleration is the same, the mass required for the movers 2 and 10 is the same. Whereas the one-way vibrator 35 uses two movers 10 in total, the vibrator 30 of this embodiment uses one mover 2, so the total weight of the mover can be halved and active. The whole vibration control device can be reduced in size and weight. Compared with the example in Fig. 6, the installation space can be reduced, and the introduction of the active vibration control device becomes easier.
In this embodiment, an example of a generally annular shape is shown as the mover 2. This is because the center of gravity of the mover 2 is located at the approximate center of the vibrator 30, and the thrust lines of the laminated piezoelectric elements 3a and 3b pass through the approximate center of gravity of the mover 2, so that the mover 2 has a force other than the force in the XY direction. This is to prevent the moment of the moment from being received and to prevent the excitation force generated by the shaker 30 from including an extra moment. Therefore, the shape of the mover 2 does not necessarily have to be a circle, and may be a polygon as shown in FIGS. Alternatively, the shape may be such that a part of the ring is missing, and it is sufficient that the center of gravity of the mover 2 is substantially located on the intersection of the thrust lines of the laminated piezoelectric elements 3a and 3b. When the excitation force of the shaker 30 is insufficient or excessive, it is possible to adjust the excitation force by replacing the mover 2 with a heavier or lighter one.
In this example, elastic hinges 4a and 4b were used as the displacement absorbing parts. This is to absorb the deformation in the direction perpendicular to the driving direction of the laminated piezoelectric elements 3a and 3b, thereby preventing the laminated piezoelectric elements 3a and 3b from being damaged and causing the movable element 2 to vibrate independently in the X and Y directions. is there. Therefore, the displacement absorbing portion does not necessarily have to be the elastic hinges 4a and 4b, and linear motion guide mechanisms 12a and 12b as shown in FIGS. 9 and 10 may be used. For the sake of explanation, the mover 2 is omitted from FIG. 9 in FIG. The linear guide mechanism 12a has high rigidity in the X direction and can slide in the Y direction. The linear motion guide mechanism 12b has high rigidity in the Y direction and can slide in the X direction. For this reason, as in the case of the elastic hinges 4a and 4b, it is possible to prevent the laminated piezoelectric elements 3a and 3b from being applied with a load in the shear direction and to vibrate the mover 2 independently in the X and Y directions.

本実施例では,実施例1に対して,より信頼性の高い加振器を用いたアクティブ制振装置の例を説明する.
図11,12は本実施例における加振器30の例を示す斜視図,図13は平面図である.説明のため,図12では図11に対して,可動子2を省略して図示している.図11〜13において,図1〜3と同じもの又は同一機能のものは同一の符号を付して重複する説明を省略する.X方向駆動部20は,アクチュエータである積層圧電素子3aと,変位吸収部である弾性ヒンジ4a,4cから構成され,Y方向駆動部21は,積層圧電素子3bと,弾性ヒンジ4b,4dから構成される.弾性ヒンジ4c,4dは2方向への剛性が低く,どちらもXY方向に対して低剛性である.弾性ヒンジ4c,4dはボルト13により固定子1の側面に固定され,ボルト6により可動子2とも接続される.
弾性ヒンジ4c,4dはXY方向に対して低剛性であるため,可動子2のX,Y方向への振動を妨げない.しかし,Z方向に対しては高剛性であるため,弾性ヒンジ4c,4dにより可動子2はZ方向に支持され,可動子2の自重などにより積層圧電素子3a,3bに対してZ方向の荷重が加わることを防ぐ.
本実施例における加振器30を用いたアクティブ制振装置の搭載例と,可動子2の総重量が半分で済み, アクティブ制振装置全体の小型化,軽量化が図れる効果については,実施例1と同じである.
本実施例では,弾性ヒンジ4c,4dが可動子2をZ方向に支持するため,可動子2の自重が積層圧電素子3a,3bにせん断方向の負荷として加わることを防ぎ,加振器30の信頼性を高めることができる.
In this example, an example of an active vibration damping device using a more reliable vibrator is explained with respect to Example 1.
11 and 12 are perspective views showing an example of the vibrator 30 in this embodiment, and FIG. 13 is a plan view. For the sake of explanation, the mover 2 is omitted from FIG. 11 to 13, the same or the same functions as those in FIGS. 1 to 3 are assigned the same reference numerals, and duplicate descriptions are omitted. The X-direction drive unit 20 is composed of a laminated piezoelectric element 3a that is an actuator and elastic hinges 4a and 4c that are displacement absorbing parts, and the Y-direction drive unit 21 is composed of a laminated piezoelectric element 3b and elastic hinges 4b and 4d. It is done. The elastic hinges 4c and 4d have low rigidity in two directions, and both have low rigidity in the XY direction. The elastic hinges 4c and 4d are fixed to the side surface of the stator 1 by bolts 13 and are also connected to the mover 2 by bolts 6.
Since the elastic hinges 4c and 4d have low rigidity in the XY directions, they do not prevent the mover 2 from vibrating in the X and Y directions. However, since it is highly rigid in the Z direction, the movable element 2 is supported in the Z direction by the elastic hinges 4c and 4d, and the load in the Z direction is applied to the laminated piezoelectric elements 3a and 3b due to the weight of the movable element 2 and the like. Is prevented from being added.
Example of mounting an active damping device using the vibrator 30 in this embodiment and the effect that the total weight of the mover 2 can be halved and the active damping device can be reduced in size and weight. Same as 1.
In this embodiment, since the elastic hinges 4c and 4d support the mover 2 in the Z direction, the weight of the mover 2 is prevented from being applied to the laminated piezoelectric elements 3a and 3b as a load in the shear direction. Reliability can be improved.

本実施例では,実施例1に対して,高精度な加振の可能な加振器を用いたアクティブ制振装置の例を説明する.
図14,15は本実施における加振器30の例を示す斜視図,図16は断面図である.説明のため,図15では図14に対して,可動子2を省略して図示している.図14〜16において,図1〜3と同じもの又は同一機能のものは同一の符号を付して重複する説明を省略する.固定子1と可動子2の間には,X方向駆動部20と,Y方向駆動部21をそれぞれ2つずつ備える.X方向駆動部20とY方向駆動部21は,アクチュエータである積層圧電素子3a,3bと,変位吸収部である弾性ヒンジ4a,4bから構成される.2つの積層圧電素子3aは,固定子1の側面に対向する位置に固定される.2つの積層圧電素子3bも同様に,積層圧電素子3aと直交して,固定子1の側面に対向する位置に固定される.
積層圧電素子3a,3bは電圧を加えるとそれぞれX,Y方向に変形するが,ヒステリシス特性があるため,電圧と変形量が完全な比例関係にならず,昇圧時と降圧時で変形量が異なる.そのため,積層圧電素子3a,3bをそれぞれ1つずつ備えた実施例1の加振器30では,正弦波状の電圧を入力しても,可動子2の変位量は厳密には正弦波状にはならない.本実施例の加振器30では,対向する2つの積層圧電素子3a,3bに逆相の電圧を入力して駆動することで,ヒステリシス特性を低減することができ,精度よく可動子2を加振することができる.
本実施例における加振器30を用いたアクティブ制振装置の搭載例と,可動子2の総重量が半分で済み, アクティブ制振装置全体の小型化,軽量化が図れる効果については,実施例1と同じである.
本実施例では,X方向駆動部20とY方向駆動部21を対向する位置にそれぞれ2つずつ備えるため,圧電素子3a,3bのヒステリシス特性を低減し,高精度な加振が可能である.
In the present embodiment, an example of an active vibration control device using a vibration exciter capable of high-accuracy vibration with respect to the first embodiment will be described.
14 and 15 are perspective views showing examples of the vibrator 30 in this embodiment, and FIG. 16 is a cross-sectional view. For the sake of explanation, the mover 2 is omitted in FIG. 15 from FIG. 14 to 16, those having the same or the same functions as those in FIGS. 1 to 3 are assigned the same reference numerals, and duplicate descriptions are omitted. Between the stator 1 and the mover 2, two X-direction drive units 20 and two Y-direction drive units 21 are provided. The X-direction drive unit 20 and the Y-direction drive unit 21 are composed of laminated piezoelectric elements 3a and 3b that are actuators and elastic hinges 4a and 4b that are displacement absorption units. The two laminated piezoelectric elements 3a are fixed at positions facing the side surfaces of the stator 1. Similarly, the two laminated piezoelectric elements 3b are fixed at a position orthogonal to the laminated piezoelectric element 3a and facing the side surface of the stator 1.
The laminated piezoelectric elements 3a and 3b are deformed in the X and Y directions when a voltage is applied, respectively, but because of the hysteresis characteristics, the voltage and the deformation amount are not completely proportional, and the deformation amount differs at the time of step-up and step-down. . Therefore, in the vibration exciter 30 of Example 1 provided with each one of the laminated piezoelectric elements 3a and 3b, even if a sinusoidal voltage is input, the displacement amount of the mover 2 does not strictly become a sinusoidal waveform. . In the vibration exciter 30 of this embodiment, the hysteresis characteristic can be reduced by driving the two laminated piezoelectric elements 3a and 3b opposite to each other by inputting a reverse phase voltage, and the movable element 2 can be accurately added. You can shake it.
Example of mounting an active damping device using the vibrator 30 in this embodiment and the effect that the total weight of the mover 2 can be halved and the active damping device can be reduced in size and weight. Same as 1.
In this embodiment, two X-direction drive units 20 and two Y-direction drive units 21 are provided at opposing positions, so that the hysteresis characteristics of the piezoelectric elements 3a and 3b are reduced and high-accuracy excitation is possible.

本実施例では,実施例1に対して,3方向に加振の可能な加振器を用いたアクティブ制振装置の例を説明する.
図17,18は本実施例における加振器30の例を示す斜視図である.加振器30の座標系は図17,18に示す様に定めるものとする.説明のため,図18では図17に対して,可動子2を半分省略して図示している.加振器30は,柱状の固定子1と,固定子1の上方を覆う形状の可動子2を備える.固定子1と可動子2の間には,X方向駆動部20と,Y方向駆動部21と,Z方向駆動部22を備える.X方向駆動部20,Y方向駆動部21,Z方向駆動部22は,アクチュエータである積層圧電素子3a,3b,3cと,変位吸収部である弾性ヒンジ4e,4f,4gから構成される.弾性ヒンジ4e,4f,4gは2方向への剛性が低くなっており,弾性ヒンジ4eはYZ方向に対して,弾性ヒンジ4fはZX方向に対して,弾性ヒンジ4gはXY方向に対して,それぞれ低剛性である.積層圧電素子3a,3b,3cは中央に貫通穴を有する円筒形に形成されており,ボルト5により,弾性ヒンジ4e,4f,4gと固定子1との間で予圧を加えられた状態で固定子1に,それぞれ直交する様に固定される.可動子2はボルト6により,弾性ヒンジ4e,4f,4gに固定される.積層圧電素子3a,3b,3cへの配線7は固定子1に這わせる様に固定される.
積層圧電素子3a,3b,3cは電圧を加えるとそれぞれX,Y,Z方向に変形する.弾性ヒンジ4e,4f,4gは,それぞれX,Y,Z方向に対しては剛性が高く,それ以外の方向に対しては剛性が低いため,積層圧電素子3a,3b,3cにせん断方向の負荷が加わることを防止している.従って,積層圧電素子3a,3b,3cに電圧を加えることにより,可動子2をX,Y,Z方向に独立に加振することができる.
本実施例の効果について説明する.図19は本実施例の加振器30を用いたアクティブ制振装置の例を,図20は1方向の加振器35を用いたアクティブ制振装置の例を示す図である.3方向の振動を制振するため,制振対象31に対して,1つの加振器30,または,3つの加振器35が設置されている.1方向の加振器35では可動子10を合計で3つ用いるのに対し,本実施例の加振器30では可動子2を1つ用いるため,可動子の総重量が3分の1で済み,アクティブ制振装置全体の小型化,軽量化が図れる.また,取付スペースも全体として小さくすることが可能であり,アクティブ制振装置の導入が容易となる.
本実施例では,可動子2として固定子1の上方を覆う様な,半球殻と円筒を組み合わせた形状の例を示した.これは,可動子2の重心が加振器30の略中心に位置し,積層圧電素子3a,3b,3cの推力線が可動子2の略重心を通ることにより,可動子2がXYZ方向の力以外のモーメントを受けることを防ぎ,加振器30の発生する加振力が余計なモーメントを含まない様にするためである.従って,積層圧電素子3a,3b,3cの推力線の交点上に可動子2の重心が略位置していれば,可動子2の形状は必ずしも固定子1を覆う様な形状でなくても構わない.加振器30の加振力が不足,または加振力が過剰である場合は,可動子2をより重いもの,またはより軽いものに交換することで,加振力の調整が可能である.
In the present embodiment, an example of an active vibration control device using a vibration exciter capable of vibration in three directions will be described with respect to the first embodiment.
17 and 18 are perspective views showing examples of the vibrator 30 in this embodiment. The coordinate system of the vibrator 30 is determined as shown in Figs. For the sake of explanation, in FIG. 18, the mover 2 is omitted in half compared to FIG. 17. The vibration exciter 30 includes a columnar stator 1 and a movable element 2 that covers the stator 1. Between the stator 1 and the mover 2, an X-direction drive unit 20, a Y-direction drive unit 21, and a Z-direction drive unit 22 are provided. The X-direction drive unit 20, Y-direction drive unit 21, and Z-direction drive unit 22 are composed of laminated piezoelectric elements 3a, 3b, and 3c that are actuators and elastic hinges 4e, 4f, and 4g that are displacement absorption units. The elastic hinges 4e, 4f, and 4g have low rigidity in two directions. The elastic hinge 4e is in the YZ direction, the elastic hinge 4f is in the ZX direction, and the elastic hinge 4g is in the XY direction. Low rigidity. The laminated piezoelectric elements 3a, 3b, 3c are formed in a cylindrical shape having a through hole in the center, and are fixed with a preload between the elastic hinges 4e, 4f, 4g and the stator 1 by bolts 5. It is fixed to child 1 so as to be orthogonal to each other. The mover 2 is fixed to the elastic hinges 4e, 4f, and 4g by bolts 6. The wiring 7 to the laminated piezoelectric elements 3a, 3b, and 3c is fixed so as to pass over the stator 1.
The laminated piezoelectric elements 3a, 3b, and 3c are deformed in the X, Y, and Z directions, respectively, when a voltage is applied. The elastic hinges 4e, 4f, and 4g have high rigidity in the X, Y, and Z directions, respectively, and low rigidity in the other directions. Therefore, the laminated piezoelectric elements 3a, 3b, and 3c are loaded in the shear direction. Is prevented from being added. Therefore, the movable element 2 can be vibrated independently in the X, Y, and Z directions by applying a voltage to the laminated piezoelectric elements 3a, 3b, and 3c.
The effect of this embodiment will be described. FIG. 19 is a diagram showing an example of an active damping device using the vibrator 30 of this embodiment, and FIG. 20 is a diagram showing an example of an active damping device using the unidirectional vibrator 35. In order to control vibrations in three directions, one vibration exciter 30 or three vibration exciters 35 are installed for the object 31 to be controlled. A total of three movers 10 are used in the unidirectional vibrator 35, whereas in the vibrator 30 of this embodiment, one mover 2 is used, so the total weight of the mover is one third. The active damping device as a whole can be reduced in size and weight. In addition, the installation space can be reduced as a whole, making it easy to introduce an active vibration control device.
In the present embodiment, an example of a combination of a hemispherical shell and a cylinder that covers the upper part of the stator 1 as the mover 2 was shown. This is because the center of gravity of the mover 2 is located at the approximate center of the vibrator 30, and the thrust lines of the laminated piezoelectric elements 3a, 3b, 3c pass through the approximate center of gravity of the mover 2, so that the mover 2 moves in the XYZ directions. This is to prevent receiving moments other than force, and to prevent the excitation force generated by the vibrator 30 from including unnecessary moments. Therefore, as long as the center of gravity of the movable element 2 is located substantially at the intersection of the thrust lines of the laminated piezoelectric elements 3a, 3b, 3c, the shape of the movable element 2 does not necessarily have to be a shape that covers the stator 1. Absent. When the excitation force of the shaker 30 is insufficient or excessive, it is possible to adjust the excitation force by replacing the mover 2 with a heavier or lighter one.

1…固定子,2…可動子,3a,3b,3c…積層圧電素子,4a,4b,4c,4d,4e,4f,4g…弾性ヒンジ, 9…固定子,10…可動子,11…アクチュエータ,12…直動案内機構,20…X方向駆動部,21…Y方向駆動部,22…Z方向駆動部,30…加振器,31…制振対象,32…駆動電源,33…コントローラ,34…振動センサ,35…加振器 1 ... Stator, 2 ... Movable element, 3a, 3b, 3c ... Multilayer piezoelectric element, 4a, 4b, 4c, 4d, 4e, 4f, 4g ... Elastic hinge, 9 ... Stator, 10 ... Movable element, 11 ... Actuator , 12 ... Linear motion guide mechanism, 20 ... X direction drive unit, 21 ... Y direction drive unit, 22 ... Z direction drive unit, 30 ... Exciter, 31 ... Vibration control target, 32 ... Drive power supply, 33 ... Controller, 34 ... Vibration sensor, 35 ... Exciter

Claims (6)

固定子に対して可動子を振動させた際の駆動反力を加振力として利用する加振器において,
前記可動子と前記固定子の間に,前記可動子を直交する複数方向に加振する駆動部を備え,前記駆動部が,推力を発生するアクチュエータと,直交する前記駆動部の加振方向への変形を吸収する変位吸収部から構成されること
を特徴とする加振器.
In a vibrator that uses the driving reaction force when the mover is vibrated with respect to the stator as the excitation force,
A drive unit for exciting the mover in a plurality of directions orthogonal to each other is provided between the mover and the stator, and the drive unit is arranged in an excitation direction of the actuator for generating a thrust and the drive unit orthogonal to each other. An exciter consisting of a displacement absorber that absorbs deformation of
請求項1に記載の加振器であって,前記可動子の重心が,前記駆動部の推力線の略交点上に位置すること
を特徴とする加振器.
2. The vibration exciter according to claim 1, wherein the center of gravity of the mover is located substantially on the intersection of the thrust lines of the drive unit.
請求項1又は2に記載の加振器であって,前記アクチュエータとして,積層圧電素子を用いること
を特徴とする加振器.
3. The vibrator according to claim 1, wherein a laminated piezoelectric element is used as the actuator.
請求項1ないし3のいずれかに記載の加振器であって,前記変位吸収部として弾性ヒンジを用いること
を特徴とする加振器.
The vibrator according to any one of claims 1 to 3, wherein an elastic hinge is used as the displacement absorbing portion.
請求項1ないし3のいずれかに記載の加振器であって,前記変位吸収部として直動案内機構を用いること
を特徴とする加振器.
The vibrator according to any one of claims 1 to 3, wherein a linear motion guide mechanism is used as the displacement absorbing portion.
構造体の複数箇所に設置された振動検出手段と,前記構造体の複数箇所に設置された,固定子に対して可動子を振動させた際の駆動反力を加振力として利用する加振器と,前記振動検出手段からの信号に応じて前記加振器の加振力を決定する制御信号を出力する制御手段とを備え,前記振動検出手段によって検出された前記構造体の振動を抑える様に前記加振器を駆動するアクティブ制振装置において,
前記加振器として請求項1ないし5のいずれかに記載の加振器を用いること
を特徴とするアクティブ制振装置.
Vibration detecting means installed at a plurality of locations of the structure, and an excitation using a driving reaction force, which is installed at a plurality of locations of the structure, when the mover is vibrated with respect to the stator as an excitation force And a control means for outputting a control signal for determining an excitation force of the vibrator according to a signal from the vibration detection means, and suppresses vibration of the structure detected by the vibration detection means. In the active vibration control device for driving the vibration exciter,
6. An active vibration control device using the vibration exciter according to claim 1 as the vibration exciter.
JP2015028148A 2015-02-17 2015-02-17 Exciter and active vibration control device using the same Pending JP2016151298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028148A JP2016151298A (en) 2015-02-17 2015-02-17 Exciter and active vibration control device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028148A JP2016151298A (en) 2015-02-17 2015-02-17 Exciter and active vibration control device using the same

Publications (1)

Publication Number Publication Date
JP2016151298A true JP2016151298A (en) 2016-08-22

Family

ID=56696347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028148A Pending JP2016151298A (en) 2015-02-17 2015-02-17 Exciter and active vibration control device using the same

Country Status (1)

Country Link
JP (1) JP2016151298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185385A (en) * 2018-10-09 2019-01-11 西安交通大学 Three axial integrated form inertia-type actuating systems and its actuation method
CN116608237A (en) * 2023-07-18 2023-08-18 上海隐冠半导体技术有限公司 Damping vibration attenuation structure and micro-motion stage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185385A (en) * 2018-10-09 2019-01-11 西安交通大学 Three axial integrated form inertia-type actuating systems and its actuation method
CN109185385B (en) * 2018-10-09 2020-04-28 西安交通大学 Three-axial integrated inertia type actuating system and actuating method thereof
CN116608237A (en) * 2023-07-18 2023-08-18 上海隐冠半导体技术有限公司 Damping vibration attenuation structure and micro-motion stage
CN116608237B (en) * 2023-07-18 2023-10-03 上海隐冠半导体技术有限公司 Damping vibration attenuation structure and micro-motion stage

Similar Documents

Publication Publication Date Title
JP5237085B2 (en) Vibration isolation
US7637359B2 (en) Modular interface for damping mechanical vibrations
JP4726893B2 (en) Shear force dissipating interface device for mechanical vibration damping
JP5227449B2 (en) Vibrating transfer device
US9746047B2 (en) Sound reduction or vibration damping apparatus and structural member
JP4820407B2 (en) Vibration isolator
US8408066B1 (en) High force vibration testing with wide frequency range
US20130233998A1 (en) Device for the purpose of influencing the transfer of vibration between two units
WO2014163105A1 (en) Vibrating component conveying device
EP2286110A1 (en) A vibration sensor and a system to isolate vibrations
JP2016151298A (en) Exciter and active vibration control device using the same
CN101378960B (en) Device for the active damping of the vibrations experienced by a fragile part of moving equipment, with autonomous power supply
JP3773106B2 (en) Improvements related to electromagnet control
KR20120001068A (en) Hybrid vibration isolating mount system
JP2008248629A (en) Active damper for building structure
Sohn et al. An active mount using an electromagnetic actuator for vibration control: Experimental investigation
EP0999379A2 (en) Active vibration control
JP2020122571A (en) Coupling that actively stabilizes vibration
JPH01207574A (en) Vibrationproof device for construction
JP2016039686A (en) Vibration generator and active damping device using the same
RU94302U1 (en) VIBRATOR WITH PIEZOACTUATOR VIBRATION BLOCK
JP2010002033A (en) Vibration reducing device and vibration reducing method
JP2012112237A (en) Vibration control device, vibration control method and construction method for vibration control structure
JPH11101300A (en) Vibration control support device of apparatus
Esser et al. Aerospace electronics weight reduction through the use of active mass damping

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112