JP2016144322A - Rotor for rotary electric machine and manufacturing method for the same - Google Patents

Rotor for rotary electric machine and manufacturing method for the same Download PDF

Info

Publication number
JP2016144322A
JP2016144322A JP2015019035A JP2015019035A JP2016144322A JP 2016144322 A JP2016144322 A JP 2016144322A JP 2015019035 A JP2015019035 A JP 2015019035A JP 2015019035 A JP2015019035 A JP 2015019035A JP 2016144322 A JP2016144322 A JP 2016144322A
Authority
JP
Japan
Prior art keywords
magnet
rotor
mounting hole
magnetic
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015019035A
Other languages
Japanese (ja)
Inventor
洸史 舘
Koji Tachi
洸史 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015019035A priority Critical patent/JP2016144322A/en
Publication of JP2016144322A publication Critical patent/JP2016144322A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotor for a rotary electric machine that can improve magnetization rates of a permanent magnet buried in a rotor core and a manufacturing method for the same.SOLUTION: A permanent magnet 3 is constituted of: a first magnet 8 that is formed in a plate-shape extending approximately linearly to the outside in a radial direction of a rotor core 2 and formed to be curved in an approximately circular arc shape as going toward inside in a radial direction near an insertion hole 11; and a second magnet 9 adjacent to inside in a circumference direction of the first magnet 8. The first and second magnets 8 and 9 are injection-molded of magnetic molding materials; magnetized so that magnetization directions of straight parts thereof are nearly parallel with the circumference direction of the rotor core 2; and magnetized so that magnetization directions of the circular arc parts thereof are parallel with the circumference direction and then gradually parallel with the radial direction as approaching the end parts inside in the radial direction thereof. The first and second magnets 8 and 9 are magnetized so that magnetization directions thereof are nearly parallel with respective plate thickness directions thereof, and the first and second magnets 8 and 9 are configured so that magnetic resistance in the magnetization directions thereof becomes respectively uniform in the radial direction.SELECTED DRAWING: Figure 2

Description

本発明は、電動モータおよび発電機として用いられる回転電機用ロータおよびその製造方法に関するものである。   The present invention relates to a rotor for a rotating electrical machine used as an electric motor and a generator and a method for manufacturing the same.

従来、回転電機には、ロータコアに永久磁石を埋め込み固定した、いわゆる埋込磁石型のロータを備えたものがある。この回転電機用ロータは、例えば電磁鋼板を積層したロータコアに形成された軸線方向に延出する一字形やU字形の磁石取付孔(スロット)に、永久磁石を成形または挿入し径方向と直交するように配置したものが知られている。こうした埋込磁石型のロータを備えた回転電機(以下、IPMモータという)では、永久磁石によるマグネットトルクのみならず、リラクタンストルクが発生するため、ロータコアの表面に永久磁石を固着した、いわゆる表面磁石型のロータを備えた回転電機(SPMモータ)に比べ、高いトルクが得られる。   Conventionally, some rotary electric machines have a so-called embedded magnet type rotor in which a permanent magnet is embedded and fixed in a rotor core. In this rotor for rotating electrical machines, for example, a permanent magnet is formed or inserted into a single-letter or U-shaped magnet mounting hole (slot) formed in a rotor core formed by laminating electromagnetic steel plates and perpendicular to the radial direction. Such an arrangement is known. In a rotating electrical machine (hereinafter referred to as an IPM motor) having such an embedded magnet type rotor, reluctance torque is generated as well as magnet torque generated by a permanent magnet. High torque can be obtained as compared with a rotating electrical machine (SPM motor) provided with a rotor of a type.

そして、IPMモータのロータに用いる永久磁石として、形状の自由度や加工のし易さなどの観点からボンド磁石を用いる場合がある。ボンド磁石では、フェライト系や希土類系などの磁性材料が樹脂材料に分散された磁性成形材料を磁場中で射出成形することで磁性材料の配向を揃えつつ着磁を行ない、永久磁石として製造される方法が提案されている(例えば、特許文献1参照)。   And as a permanent magnet used for the rotor of an IPM motor, a bond magnet may be used from a viewpoint of freedom of shape and ease of processing. Bonded magnets are manufactured as permanent magnets by magnetizing while aligning the orientation of the magnetic material by injection molding in a magnetic field a magnetic molding material in which a magnetic material such as ferrite or rare earth is dispersed in a resin material. A method has been proposed (see, for example, Patent Document 1).

特開2014−143906号公報JP 2014-143906 A

上記のような射出成形を用いた方法では、磁性成形材料を射出成形により磁石取付孔に埋設後、ロータコアの外周側径方向から着磁機により着磁を行なう。ところが、例えばU字形に成形されたボンド磁石の場合、ロータコアの径方向内側のU字底部は着磁機からの距離がロータコアの外周側のU字先端部に比べて長いことから、径方向内側に向かうにつれて磁束密度が低くなり着磁機で発生させた磁束がU字底部に到達し難い。このため、ボンド磁石のU字底部の着磁率(または磁化率、例えば印加される着磁磁界の強さに対する着磁後の磁化の強さの比率を表す)は低くなる。   In the method using injection molding as described above, the magnetic molding material is embedded in the magnet mounting hole by injection molding, and then magnetized by a magnetizer from the outer peripheral side radial direction of the rotor core. However, for example, in the case of a U-shaped bonded magnet, the U-shaped bottom portion on the radially inner side of the rotor core has a longer distance from the magnetizer than the U-shaped tip portion on the outer peripheral side of the rotor core. The magnetic flux density decreases as it goes to, and the magnetic flux generated by the magnetizer hardly reaches the U-shaped bottom. For this reason, the magnetic susceptibility (or magnetic susceptibility, for example, the ratio of the strength of magnetization after magnetization to the strength of the applied magnetic field) at the bottom of the U-shape of the bonded magnet is low.

また、U字の磁石内側の表面積は着磁機で発生した磁束を受けるロータコアの外周側の表面積より大きい。このことから、着磁機で発生した一定の磁束が磁石内側の表面積の大きさに応じて分配されるため、磁石内側の表面積が大きくなる程U字底部の着磁率が低下する。これにより、トルクに寄与する永久磁石の利用効率が低下し、ボンド磁石を用いたIPMモータから高いトルクを得ることが難しい。   Further, the surface area inside the U-shaped magnet is larger than the surface area on the outer peripheral side of the rotor core that receives the magnetic flux generated by the magnetizer. From this, since the fixed magnetic flux generated by the magnetizer is distributed according to the size of the surface area inside the magnet, the magnetization rate at the bottom of the U-shape decreases as the surface area inside the magnet increases. Thereby, the utilization efficiency of the permanent magnet which contributes to torque falls, and it is difficult to obtain a high torque from the IPM motor using a bonded magnet.

本発明は、上記課題を解決するためになされたものであり、その目的は、ロータコアに埋め込まれた永久磁石の着磁率を向上させることができる回転電機用ロータおよびその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotor for a rotating electrical machine capable of improving the magnetization rate of a permanent magnet embedded in a rotor core and a method for manufacturing the same. is there.

上記課題を解決するために、請求項1に記載の発明は、回転電機用ロータにおいて、回転軸に一体回転可能に固定され、周方向に間隔をおいて複数の磁石取付孔が軸線方向に延びて形成されたロータコアと、前記磁石取付孔内に埋め込まれて固定された永久磁石と、を備え、前記磁石取付孔は、径方向外側の両先端部から周方向に対向して径方向内側に向かうにつれて互いに近接するように延出されて径方向内側の端部が凸となる形状に形成され、前記永久磁石は、前記磁石取付孔の内面に沿って外側に配設された第1の磁石と、前記第1の磁石より内側に配設された第2の磁石とからなり、前記第1の磁石および前記第2の磁石は、磁石表面に沿って直交する方向に隣り合ってそれぞれ同一の極性が現れるように着磁されたことを要旨とする。   In order to solve the above-mentioned problems, the invention described in claim 1 is a rotor for a rotating electrical machine, wherein the rotor is integrally fixed to a rotating shaft, and a plurality of magnet mounting holes extend in the axial direction at intervals in the circumferential direction. And a permanent magnet embedded and fixed in the magnet mounting hole, the magnet mounting hole facing radially inward from both distal ends on the radially outer side and radially inward. The first magnet is formed so as to be close to each other as it goes, and has a radially inner end projecting, and the permanent magnet is disposed outside along the inner surface of the magnet mounting hole. And a second magnet disposed inside the first magnet, wherein the first magnet and the second magnet are adjacent to each other in the direction perpendicular to the magnet surface and are identical to each other. The gist is that it has been magnetized so that the polarity appears. .

上記構成によれば、ロータコアの磁石取付孔内に永久磁石の厚み方向に同一の極性を有して隣り合う外側の第1の磁石と内側の第2の磁石とを配設したことで、それぞれの磁石厚さが低減されることにより磁気抵抗を小さくして磁力を強めて着磁された永久磁石を形成することができる。これにより、磁石表面に沿って全体にわたって磁力を強めて永久磁石の着磁率を高めることができる。この結果、径方向内側の端部および近傍の着磁率を向上させることで永久磁石の利用効率を向上させるとともに、トルク発生に寄与する永久磁石を増やすことによりIPMモータの高トルク化を図ることが可能となる。   According to the above-described configuration, the outer first magnet and the inner second magnet having the same polarity in the thickness direction of the permanent magnet in the magnet mounting hole of the rotor core are disposed, By reducing the thickness of the magnet, it is possible to form a magnetized permanent magnet with a reduced magnetic resistance and an increased magnetic force. Thereby, magnetic force can be strengthened over the whole magnet surface, and the magnetization rate of a permanent magnet can be raised. As a result, it is possible to improve the utilization efficiency of the permanent magnets by improving the magnetization rate in the end portion in the radial direction and in the vicinity thereof, and to increase the torque of the IPM motor by increasing the number of permanent magnets that contribute to torque generation. It becomes possible.

請求項2に記載の発明は、回転電機用ロータの製造方法において、回転軸に一体回転可能に固定され、周方向に間隔をおいて複数の磁石取付孔が軸線方向に延びて形成されたロータコアと、前記磁石取付孔内に埋め込まれて固定された永久磁石と、を備え、前記磁石取付孔は、径方向外側の両先端部から周方向に対向して径方向内側に向かうにつれて互いに近接するように延出されて径方向内側の端部が凸となる形状に形成され、前記永久磁石は、前記磁石取付孔の内面に沿って外側に配設された第1の磁石と、前記第1の磁石より内側に配設された第2の磁石とからなり、前記第1の磁石および前記第2の磁石は、磁石表面に沿って直交する方向に隣り合ってそれぞれ同一の極性が現れるように着磁され、前記ロータコアの外周面外側に着磁手段を配設する第1の工程と、前記磁石取付孔内の磁石材料の磁気抵抗を調整する磁気抵抗調整手段を前記磁石取付孔に配設するとともに、前記着磁手段から生じる磁場が印加された状態で、前記磁石取付孔内に磁石材料を充填し前記第1の磁石を成形する第2の工程と、前記磁気抵抗調整手段を取り外した後の空洞部に前記第2の磁石を形成する第3の工程と、を備えたことを要旨とする。   According to a second aspect of the present invention, in the method for manufacturing a rotor for a rotating electrical machine, the rotor core is fixed to the rotary shaft so as to be integrally rotatable, and a plurality of magnet mounting holes are formed extending in the axial direction at intervals in the circumferential direction. And a permanent magnet embedded and fixed in the magnet mounting hole, the magnet mounting holes facing each other in the circumferential direction from both ends on the radially outer side and approaching each other in the radial direction. The permanent magnet has a first magnet disposed on the outer side along the inner surface of the magnet mounting hole and the first magnet. The first magnet and the second magnet are adjacent to each other in a direction perpendicular to the magnet surface so that the same polarity appears in the first magnet and the second magnet. Magnetized and attached to the outer periphery of the rotor core And a magnetic resistance adjusting means for adjusting the magnetic resistance of the magnet material in the magnet mounting hole is provided in the magnet mounting hole, and a magnetic field generated from the magnetizing means is applied. In this state, the magnet mounting hole is filled with a magnet material to form the first magnet, and the second magnet is formed in the cavity after removing the magnetoresistance adjusting means. A third step is provided.

上記構成によれば、ロータコアの外周面外側に着磁手段を配設し(第1の工程)、磁石取付孔内の内側部分に磁気抵抗調整手段を配設するとともに、磁場を印加した状態で射出成形して第1の磁石を成形する(第2の工程)。そして、磁気抵抗調整手段を取り外した後の磁石取付孔内の空洞部に第2の磁石を形成する(第3の工程)ことで、第1および第2の磁石の磁力が同じ方向に着磁された状態でロータコアの磁石取付孔内全域に永久磁石を形成することができる。これにより、径方向内側の端部および近傍の磁力を強めて永久磁石の着磁率を高めることが可能な回転電機用ロータの製造方法を実現できる。この結果、永久磁石の利用効率を向上させてIPMモータの高トルク化を図ることが可能となる。   According to the above configuration, the magnetizing means is disposed outside the outer peripheral surface of the rotor core (first step), the magnetoresistive adjusting means is disposed in the inner portion of the magnet mounting hole, and the magnetic field is applied. The first magnet is formed by injection molding (second step). Then, by forming the second magnet in the cavity in the magnet mounting hole after removing the magnetic resistance adjusting means (third step), the magnetic forces of the first and second magnets are magnetized in the same direction. In this state, a permanent magnet can be formed throughout the magnet mounting hole of the rotor core. Thereby, the manufacturing method of the rotor for rotary electric machines which can strengthen the magnetism of a permanent magnet by strengthening the magnetic force of the edge part inside radial direction and the vicinity is realizable. As a result, it is possible to improve the utilization efficiency of the permanent magnet and increase the torque of the IPM motor.

請求項3に記載の発明は、請求項2に記載の回転電機用ロータの製造方法において、前記磁気抵抗調整手段は、前記磁石取付孔の内面に沿った形状に形成された着磁冶具が前記磁石取付孔内に配設されることを要旨とする。   According to a third aspect of the present invention, in the method for manufacturing a rotor for a rotating electrical machine according to the second aspect, the magnetic resistance adjusting means includes a magnetizing jig formed in a shape along the inner surface of the magnet mounting hole. The gist is to be disposed in the magnet mounting hole.

上記構成によれば、磁気抵抗調整手段は、第2の工程において第1の磁石を形成する冶具として形状を変更することにより所望する磁気特性に応じた第1の磁石を成形することができる。これにより、第1の磁石の磁石厚さを低減し着磁時の磁気抵抗を小さくして着磁率を高めることができる。この結果、第1の磁石の磁力を強めることで永久磁石の利用効率を向上させてIPMモータの高トルク化を図ることが可能となる。   According to the above configuration, the magnetic resistance adjusting means can form the first magnet according to the desired magnetic characteristics by changing the shape as a jig for forming the first magnet in the second step. Thereby, the magnet thickness of a 1st magnet can be reduced, the magnetic resistance at the time of magnetization can be made small, and a magnetization rate can be raised. As a result, by increasing the magnetic force of the first magnet, it is possible to improve the utilization efficiency of the permanent magnet and increase the torque of the IPM motor.

請求項4に記載の発明は、請求項2または請求項3に記載の回転電機用ロータの製造方法において、前記第2の磁石は、前記空洞部内に、前記磁石材料を充填し成形、またはあらかじめ着磁された磁石を挿入して形成されることを要旨とする。   According to a fourth aspect of the present invention, in the method for manufacturing a rotor for a rotating electrical machine according to the second or third aspect, the second magnet is formed by filling the cavity material with the magnet material, The gist is that it is formed by inserting a magnetized magnet.

上記構成によれば、第2の磁石は、第1の磁石を成形後、第3の工程において射出成形または着磁された磁石を挿入することにより形成されるので、第1の磁石と第2の磁石とを合体させ磁力を強めて永久磁石を配設することができる。これにより、着磁時の磁石厚さを低減し磁気抵抗を小さくして永久磁石の着磁率を高めることが可能となる。   According to the above configuration, the second magnet is formed by inserting the magnet that is injection-molded or magnetized in the third step after the first magnet is molded. The permanent magnets can be arranged by combining them with the magnets to increase the magnetic force. Thereby, the magnet thickness at the time of magnetization can be reduced, the magnetic resistance can be reduced, and the magnetization rate of the permanent magnet can be increased.

本発明によれば、ロータコアに埋め込まれた永久磁石の着磁率を向上させることができる回転電機用ロータおよびその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the rotor for rotary electric machines which can improve the magnetization rate of the permanent magnet embedded in the rotor core, and its manufacturing method can be provided.

本発明の一実施形態に係る回転電機用ロータの断面図。Sectional drawing of the rotor for rotary electric machines which concerns on one Embodiment of this invention. 図1の永久磁石の詳細な構成を示す図。The figure which shows the detailed structure of the permanent magnet of FIG. (a)〜(c)は、本発明の第1の実施形態に係る回転電機用ロータの製造方法を示す図。(A)-(c) is a figure which shows the manufacturing method of the rotor for rotary electric machines which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る回転電機用ロータの製造方法を示す図。The figure which shows the manufacturing method of the rotor for rotary electric machines which concerns on the 2nd Embodiment of this invention. (a)、(b)は、本発明の他の実施形態に係る永久磁石の構成を示す図。(A), (b) is a figure which shows the structure of the permanent magnet which concerns on other embodiment of this invention.

以下に、本発明の実施形態の回転電機に用いられる回転電機用ロータ(以下、ロータという)1について、IPMモータのロータの図に基づいて説明する。なお、以下の説明において、径方向および軸線方向とは、ロータ1(ロータコア2)の半径方向および軸方向を指す。   Hereinafter, a rotor for a rotating electrical machine (hereinafter, referred to as a rotor) 1 used for the rotating electrical machine according to the embodiment of the present invention will be described with reference to a rotor diagram of an IPM motor. In the following description, the radial direction and the axial direction refer to the radial direction and the axial direction of the rotor 1 (rotor core 2).

図1は、本発明の一実施形態に係るロータ1の断面図である。
回転電機は、例えば車両に搭載され、ステアリング操作を補助する電動パワーステアリング装置や油圧を発生させる電動オイルポンプ装置の駆動源用の電動モータ(例えば、3相のブラシレスモータなど)として用いられる。
FIG. 1 is a cross-sectional view of a rotor 1 according to an embodiment of the present invention.
The rotating electrical machine is mounted on a vehicle, for example, and is used as an electric motor (for example, a three-phase brushless motor) for a drive source of an electric power steering device that assists steering operation or an electric oil pump device that generates hydraulic pressure.

図1に示すように、ロータ1は、回転電機(本実施形態では、IPMモータ)の回転軸10と一体回転可能に固定される円柱状のロータコア2と永久磁石3とから構成されている。ロータコア2には、複数(本実施形態では、10セット)の永久磁石3がロータコア2内にそれぞれ埋設されて固定されている。すなわち、本実施形態のロータ1は、いわゆる埋込磁石型のロータとして構成されている。このように構成された回転電機は、図示しないステータの各コイルに駆動電力が供給されることにより形成される磁界と、永久磁石3の磁束との間に発生する磁気的な吸引力および反発力によりロータ1が回転する構成となっている。   As shown in FIG. 1, the rotor 1 includes a columnar rotor core 2 and a permanent magnet 3 that are fixed so as to be integrally rotatable with a rotary shaft 10 of a rotating electrical machine (in this embodiment, an IPM motor). A plurality of (10 sets in this embodiment) permanent magnets 3 are embedded in the rotor core 2 and fixed to the rotor core 2. That is, the rotor 1 of the present embodiment is configured as a so-called embedded magnet type rotor. The rotating electrical machine configured as described above has a magnetic attractive force and a repulsive force generated between a magnetic field formed by supplying driving power to each coil of a stator (not shown) and a magnetic flux of the permanent magnet 3. Thus, the rotor 1 is configured to rotate.

ロータコア2は、鉄や珪素鋼などから略円柱状に積層形成されており、回転電機の回転軸10が挿入される挿入孔11を有する。ロータコア2には、永久磁石3がそれぞれ内部に配置される複数(本実施形態では、10個)の略U字状の磁石取付孔4が形成されている。なお、本実施形態の磁石取付孔4は、それぞれ永久磁石3の断面形状と略同一の断面形状を有する孔(空洞)状に形成されている。   The rotor core 2 is formed in a substantially cylindrical shape from iron, silicon steel, or the like, and has an insertion hole 11 into which the rotating shaft 10 of the rotating electrical machine is inserted. The rotor core 2 is formed with a plurality (ten in this embodiment) of substantially U-shaped magnet mounting holes 4 in which the permanent magnets 3 are respectively disposed. In addition, the magnet attachment hole 4 of this embodiment is formed in the hole (cavity) shape which has substantially the same cross-sectional shape as the cross-sectional shape of the permanent magnet 3, respectively.

詳しくは、ロータコア2は、電磁鋼からなる薄板円盤状の強磁性板(以下、ロータプレートという)5が複数枚軸線方向に積層されて構成されている。ここで、ロータコア2は、例えば表面に絶縁処理が施された珪素鋼板などを用いた電磁鋼板を打ち抜いて所定の形状に形成された複数枚の薄板状のロータプレート5がロータ1の軸線方向に積層固定された積層体である。   Specifically, the rotor core 2 is configured by laminating a plurality of thin disc-shaped ferromagnetic plates (hereinafter referred to as rotor plates) 5 made of electromagnetic steel in the axial direction. Here, the rotor core 2 includes a plurality of thin rotor plates 5 formed in a predetermined shape by punching out an electromagnetic steel plate using, for example, a silicon steel plate whose surface is insulated. It is the laminated body fixed by lamination.

各永久磁石3は、ロータコア2の外周縁の近傍に等間隔で軸線方向に貫通形成された10個の略U字状の磁石取付孔4にそれぞれ収容され、ロータコア2に固定保持されている。磁石取付孔4は、径方向外側の両先端部(U字先端部)から周方向に対向して径方向内側に向かうにつれて互いに近接するように略直線状に延出されて、回転軸10側の径方向内側の端部(U字底部)が凸となる略円弧状に形成されている。   Each permanent magnet 3 is accommodated in each of ten substantially U-shaped magnet mounting holes 4 penetratingly formed in the axial direction in the vicinity of the outer peripheral edge of the rotor core 2 and fixedly held on the rotor core 2. The magnet mounting holes 4 are extended substantially linearly so as to face each other in the circumferential direction from both radially outer tip portions (U-shaped tip portions) toward the radially inner side, and on the rotating shaft 10 side. The end portion (U-shaped bottom portion) on the inner side in the radial direction is formed in a substantially arc shape with a convex shape.

また、永久磁石3は、略U字状の磁石取付孔4の内面に沿ってU字底部が径方向内側に、U字先端部が周方向外側に配設された第1の磁石8と、第1の磁石8より径方向外側かつ周方向内側に配設されて第1の磁石8に隣り合う第2の磁石9とを備えて構成されている。第1および第2の磁石8,9は、磁石表面に沿って直交する方向に隣り合ってそれぞれ同一の極性が現れるように着磁(磁化)されている。なお、本実施形態の第1および第2の磁石8,9には、微小な磁石粉を樹脂(例えば、PA、PPSなど)と混合して成形固化した希土類(例えば、ネオジムなど)系のボンド磁石(例えば、プラスチックマグネット、ゴムマグネットなど)が用いられている。磁性成形材料(磁石材料)が磁界中で磁石取付孔4内に射出成形されつつ、配向、着磁(または、配向と同時に着磁)されるようになっている。さらに、永久磁石3は、周方向において一方の極性(例えば、S極)が対向するように着磁されている。そして、隣り合う永久磁石3と周方向において他方の極性(例えば、N極)が対向するようになっている。   The permanent magnet 3 includes a first magnet 8 having a U-shaped bottom portion disposed radially inward and a U-shaped tip portion disposed circumferentially outside along the inner surface of the substantially U-shaped magnet mounting hole 4; The second magnet 9 is disposed on the radially outer side and the circumferential inner side of the first magnet 8 and is adjacent to the first magnet 8. The first and second magnets 8 and 9 are magnetized (magnetized) so as to be adjacent to each other in the orthogonal direction along the magnet surface and to have the same polarity. In the first and second magnets 8 and 9 of the present embodiment, a rare earth (eg, neodymium) type bond obtained by mixing and solidifying a minute magnet powder with a resin (eg, PA, PPS, etc.). Magnets (for example, plastic magnets, rubber magnets, etc.) are used. A magnetic molding material (magnet material) is oriented and magnetized (or magnetized simultaneously with orientation) while being injection molded into the magnet mounting hole 4 in a magnetic field. Furthermore, the permanent magnet 3 is magnetized so that one polarity (for example, S pole) faces in the circumferential direction. And the other polarity (for example, N pole) opposes the adjacent permanent magnet 3 in the circumferential direction.

次に、図2は、図1の永久磁石3の詳細な構成を示す図である。
図2に示すように、永久磁石3は、ロータコア2の径方向に沿って外側に略直線状に延びて板状に形成され挿入孔11側の径方向内側に向かうにつれて略円弧状に湾曲して形成された第1の磁石8と、第1の磁石8の周方向内側に隣り合う第2の磁石9とからなる。第1および第2の磁石8,9は同じ磁粉(磁石粉)量および同じ粘度を有する磁性成形材料により射出成形される。
Next, FIG. 2 is a diagram showing a detailed configuration of the permanent magnet 3 of FIG.
As shown in FIG. 2, the permanent magnet 3 extends substantially linearly outward along the radial direction of the rotor core 2, is formed in a plate shape, and is curved in a substantially arc shape toward the radially inner side on the insertion hole 11 side. The first magnet 8 formed in this manner and the second magnet 9 adjacent to the inner side in the circumferential direction of the first magnet 8. The first and second magnets 8 and 9 are injection-molded with a magnetic molding material having the same amount of magnetic powder (magnet powder) and the same viscosity.

ここで、永久磁石3の直線部分の磁化方向(図中、矢印実線で示す)は、ロータコア2の周方向に略沿うように着磁されている。また、円弧部分の磁化方向(図中、矢印実線で示す)は、径方向内側の端部に近づくにつれて周方向から徐々に径方向に沿うように着磁されている。すなわち、第1および第2の磁石8,9は、それぞれの板厚(厚み)方向と略沿う方向に着磁されている。   Here, the magnetization direction (indicated by a solid arrow in the figure) of the linear portion of the permanent magnet 3 is magnetized so as to be substantially along the circumferential direction of the rotor core 2. Further, the magnetization direction of the arc portion (indicated by a solid arrow in the figure) is magnetized so as to gradually follow the radial direction from the circumferential direction as it approaches the radially inner end. That is, the first and second magnets 8 and 9 are magnetized in a direction substantially along the plate thickness (thickness) direction.

そして、第1および第2の磁石8,9は、磁化方向の磁気抵抗が径方向にわたりそれぞれ均一になるように構成されている。具体的には、第1および第2の磁石8,9の磁化方向に沿った長さ(厚み)は、等分されてそれぞれ略同一になるように形成されている。また、ボンド磁石は、単位長さ当たりの磁気抵抗が一定となるように磁石粉が樹脂材料内に均一に混ぜられて構成されている。これにより、永久磁石3は、径方向外側の両先端部から径方向内側の端部に向かって磁気抵抗が一定となるように形成されている。   And the 1st and 2nd magnets 8 and 9 are comprised so that the magnetic resistance of a magnetization direction may become uniform over radial direction, respectively. Specifically, the lengths (thicknesses) along the magnetization direction of the first and second magnets 8 and 9 are equally divided and formed to be substantially the same. The bonded magnet is configured by uniformly mixing magnet powder in a resin material so that the magnetic resistance per unit length is constant. Thereby, the permanent magnet 3 is formed so that the magnetic resistance is constant from both radially outer tip portions toward the radially inner end portion.

<第1の実施形態>
次に、本発明の第1の実施形態に係るロータ1の製造方法について説明する。
図3(a)〜(c)は、本発明の第1の実施形態に係るロータ1の製造方法を示す図である。
図3(a)〜(c)に示すように、本実施形態のロータ1(図1参照)の永久磁石3は、ロータコア2の磁石取付孔4内に磁性成形材料を注入し、磁石取付孔4内において磁性成形材料の射出成形、および着磁を行なうことで形成される。
<First Embodiment>
Next, a method for manufacturing the rotor 1 according to the first embodiment of the present invention will be described.
3A to 3C are views showing a method for manufacturing the rotor 1 according to the first embodiment of the present invention.
As shown in FIGS. 3A to 3C, the permanent magnet 3 of the rotor 1 (see FIG. 1) of the present embodiment injects a magnetic molding material into the magnet mounting hole 4 of the rotor core 2, and the magnet mounting hole. 4 is formed by injection molding and magnetizing a magnetic molding material.

まず、図3(a)に示すように、着磁機(着磁手段)12がロータコア2の外周面外側に磁石取付孔4に対向して配設される(第1の工程)。ここで、着磁機12は永久磁石または電磁コイル(電磁石)により構成されている。棒状に形成された図示しない着磁磁石または軸線方向に巻回された図示しない着磁コイルが永久磁石3の個数分(本実施形態では、10個)ロータコア2の外周に軸線方向に沿って配置される。これにより、着磁機12によって磁石取付孔4内に磁場が発生している。なお、磁性体(本実施形態では、第1および第2の磁石8,9)に外部磁場を加えて磁化させて飽和点まで着磁を行なうには大きな着磁磁場強度が必要とされる。   First, as shown in FIG. 3 (a), a magnetizer (magnetizing means) 12 is disposed outside the outer peripheral surface of the rotor core 2 so as to face the magnet mounting hole 4 (first step). Here, the magnetizer 12 is composed of a permanent magnet or an electromagnetic coil (electromagnet). Magnetized magnets (not shown) formed in a rod shape or magnetized coils (not shown) wound in the axial direction are arranged along the axial direction on the outer periphery of the rotor core 2 by the number of permanent magnets 3 (10 in this embodiment). Is done. Thereby, a magnetic field is generated in the magnet mounting hole 4 by the magnetizer 12. In order to magnetize the magnetic material (in the present embodiment, the first and second magnets 8 and 9) by applying an external magnetic field and magnetizing them to the saturation point, a large magnetic field strength is required.

次に、図3(b)に示すように、磁石取付孔4内の周方向内側部分(第2の磁石成形孔7)に第1の着磁冶具(磁気抵抗調整手段)13を配置し、周方向外側部分の空洞(第1の磁石成形孔6)に磁性形成材料(例えば、プラスチックやゴムにネオジム磁石などの粉末を混ぜた磁石材料)が注入され射出成形によりボンド磁石が成形される。第1の着磁冶具13は、軟磁性材料(例えば、鉄、珪素鋼など)により形成されている。着磁機12が配設された後に図示しない射出機から供給される溶融された磁性成形材料がロータコア2の第1の磁石成形孔6内に注入される。このとき、磁性成形材料は着磁機12で発生した磁場によって配向されながら充填され、射出成形中に第1の磁石(ボンド磁石)8は、着磁機12により配向、着磁される(第2の工程、本実施形態では、径方向外側がS極)。上記磁場配向を行なうことにより磁気特性を高め強い磁力を持ったボンド磁石を得ることができるようになる。   Next, as shown in FIG. 3 (b), the first magnetizing jig (magnetic resistance adjusting means) 13 is arranged in the circumferentially inner portion (second magnet forming hole 7) in the magnet mounting hole 4, A magnetic forming material (for example, a magnet material in which a powder such as a neodymium magnet is mixed into plastic or rubber) is injected into a cavity (first magnet forming hole 6) in the outer circumferential direction, and a bonded magnet is formed by injection molding. The first magnetizing jig 13 is made of a soft magnetic material (for example, iron, silicon steel, etc.). After the magnetizer 12 is disposed, a molten magnetic molding material supplied from an injection machine (not shown) is injected into the first magnet molding hole 6 of the rotor core 2. At this time, the magnetic molding material is filled while being oriented by the magnetic field generated by the magnetizer 12, and the first magnet (bond magnet) 8 is oriented and magnetized by the magnetizer 12 during the injection molding (first magnet). Step 2, in the present embodiment, the radially outer side is the S pole). By performing the magnetic field orientation, it becomes possible to obtain a bonded magnet having improved magnetic characteristics and strong magnetic force.

ここで、着磁機12は、第1の磁石8の径方向外側部分に磁場を印加するものであり、N極から延びる磁力線(図中、矢印破線で示す)は第1の磁石8を通過しロータコア2に回り込んでS極に向かう閉ループとなる。これにより、第1の磁石8の径方向外側部分は径方向内側の端部に比べて高磁力で着磁される。   Here, the magnetizer 12 applies a magnetic field to the radially outer portion of the first magnet 8, and the magnetic lines of force extending from the N pole (shown by broken arrows in the figure) pass through the first magnet 8. Then, a closed loop is formed which goes around the rotor core 2 toward the south pole. Thereby, the radially outer portion of the first magnet 8 is magnetized with a higher magnetic force than the radially inner end.

続いて、図3(c)に示すように、第1の磁石8が着磁された後に第1の着磁冶具13を抜き取った後の第2の磁石成形孔(空洞部)7内に第1の磁石8と同じ磁性成形材料が注入され射出成形によりボンド磁石が成形される。磁性成形材料は着磁機12で発生した磁場によって配向されながら充填され、射出成形中に第2の磁石(ボンド磁石)9が着磁機12により第1の磁石8と磁極が一致する方向に配向、着磁される(第3の工程、本実施形態では、径方向外側がS極)。   Subsequently, as shown in FIG. 3C, the first magnet 8 is magnetized in the second magnet forming hole (cavity) 7 after the first magnetizing jig 13 is extracted after the first magnet 8 is magnetized. The same magnetic molding material as the one magnet 8 is injected, and a bonded magnet is formed by injection molding. The magnetic molding material is filled while being oriented by the magnetic field generated by the magnetizer 12, and the second magnet (bond magnet) 9 is injected by the magnetizer 12 in the direction in which the magnetic poles coincide with the first magnet 8 during the injection molding. Oriented and magnetized (third step, in the present embodiment, the radially outer side is the S pole).

ここで、第1の磁石8の径方向外側の両先端部において、ロータ1の回転時に第1の磁石8の磁化方向とは反対方向の磁界が加わることによって減磁が発生する場合がある。このため、着磁率を高め減磁に抗し得る大きな保磁力を有した第1の磁石8を配置することにより、径方向外側部分が減磁することが抑制される。   Here, demagnetization may occur due to the application of a magnetic field in the opposite direction to the magnetization direction of the first magnet 8 at the time of rotation of the rotor 1 at both tips on the radially outer side of the first magnet 8. For this reason, by arranging the first magnet 8 having a large coercive force that can increase the magnetization rate and resist demagnetization, demagnetization of the radially outer portion is suppressed.

<第2の実施形態>
次に、本発明の第2の実施形態に係るロータ1の製造方法について説明する。
図4は、本発明の第2の実施形態に係るロータ1の製造方法を示す図である。
図4に示すように、本実施形態のロータ1(図1参照)の永久磁石3は、ロータコア2の磁石取付孔4内に磁性成形材料を注入し、磁石取付孔4内で磁性成形材料の射出成形、およびあらかじめ着磁された磁石を挿入することで形成される。なお、上記第1の実施形態と同一の構成(図3(a),(b)参照)については同一の符号を付してその説明を省略する。
<Second Embodiment>
Next, a method for manufacturing the rotor 1 according to the second embodiment of the present invention will be described.
FIG. 4 is a diagram showing a method for manufacturing the rotor 1 according to the second embodiment of the present invention.
As shown in FIG. 4, the permanent magnet 3 of the rotor 1 (see FIG. 1) of the present embodiment injects a magnetic molding material into the magnet mounting hole 4 of the rotor core 2, and the magnetic molding material is injected into the magnet mounting hole 4. It is formed by injection molding and inserting a pre-magnetized magnet. In addition, about the structure (refer FIG. 3 (a), (b)) same as the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

第1の実施形態と同様に、第1の磁石8が着磁された後に第1の着磁冶具13(図3(b)参照)を抜き取る。そして、図4に示すように、磁石取付孔4の第2の磁石成形孔7内に第1の磁石8と磁極が一致する方向に着磁された第2の磁石9を挿入し(本実施形態では、径方向外側がS極)、隣り合う第1の磁石8と接合または圧入固定する(第3の工程)。なお、第2の磁石9には、焼結磁石(例えば、ネオジム焼結磁石など)が用いられており、先に着磁したものを配置固定する。   Similarly to the first embodiment, after the first magnet 8 is magnetized, the first magnetizing jig 13 (see FIG. 3B) is extracted. Then, as shown in FIG. 4, a second magnet 9 magnetized in the direction in which the first magnet 8 and the magnetic pole coincide with each other is inserted into the second magnet forming hole 7 of the magnet mounting hole 4 (this embodiment). In the embodiment, the radially outer side is the S pole), and is joined or press-fitted and fixed to the adjacent first magnet 8 (third step). Note that a sintered magnet (for example, a neodymium sintered magnet) is used for the second magnet 9, and the first magnetized one is arranged and fixed.

次に、上記のように構成された本発明の実施形態に係るロータ1の作用および効果について説明する。   Next, operations and effects of the rotor 1 according to the embodiment of the present invention configured as described above will be described.

上記第1の実施形態によれば、永久磁石3を形成するロータコア2の磁石取付孔4内に永久磁石3の板厚(厚み)方向に隣り合う第1の磁石8と第2の磁石9とを配設したことで、それぞれの磁石厚さが低減されることにより磁気抵抗を小さくして永久磁石3の磁力を強めて着磁することができる。   According to the first embodiment, the first magnet 8 and the second magnet 9 that are adjacent to each other in the plate thickness (thickness) direction of the permanent magnet 3 in the magnet mounting hole 4 of the rotor core 2 that forms the permanent magnet 3. Since the magnet thickness is reduced, the magnetic resistance of the permanent magnet 3 can be increased and the magnetic force of the permanent magnet 3 can be increased.

また、ロータコア2の外周面外側に着磁機12を配設し(第1の工程)、磁石取付孔4内の周方向内側部分に第1の着磁冶具13を配設するとともに、磁場を印加した状態で射出成形して周方向外側部分の第1の磁石成形孔6内に第1の磁石8が成形される(第2の工程)。そして、第1の着磁冶具13を取り外した後の周方向内側部分の第2の磁石成形孔7内に射出成形して第2の磁石9が成形される(第3の工程)ことで、第1および第2の磁石8,9の磁力が同じ方向に着磁されてロータコア2の磁石取付孔4内全域に永久磁石3を形成することができる。したがって、第1の磁石8と第2の磁石9とを合体させ磁力を強めて永久磁石3を配設することができる。   Further, the magnetizer 12 is disposed outside the outer peripheral surface of the rotor core 2 (first step), the first magnetizing jig 13 is disposed in the circumferentially inner portion of the magnet mounting hole 4, and the magnetic field is applied. The first magnet 8 is formed in the first magnet forming hole 6 in the outer circumferential portion by injection molding in the applied state (second step). Then, the second magnet 9 is formed by injection molding into the second magnet forming hole 7 in the circumferential inner portion after removing the first magnetizing jig 13 (third step). The magnetic forces of the first and second magnets 8 and 9 are magnetized in the same direction, and the permanent magnet 3 can be formed in the entire region of the magnet mounting hole 4 of the rotor core 2. Therefore, the permanent magnet 3 can be disposed by combining the first magnet 8 and the second magnet 9 to increase the magnetic force.

ここで、第1の着磁冶具13は、第2の工程において第1の磁石8を形成する冶具として形状を変更することにより所望する磁気特性に応じた第1の磁石8を成形することができる。   Here, the 1st magnetizing jig 13 can shape | mold the 1st magnet 8 according to the desired magnetic characteristic by changing a shape as a jig which forms the 1st magnet 8 in a 2nd process. it can.

さらに、上記第2の実施形態によれば、第2の磁石9は、第1の磁石8を成形後、着磁された磁石を挿入することにより形成されるので、第1の磁石8と第2の磁石9とを合体させ磁力を強めて永久磁石3を配設することができる。   Furthermore, according to the second embodiment, since the second magnet 9 is formed by inserting the magnetized magnet after the first magnet 8 is formed, the first magnet 8 and the second magnet 9 are formed. The permanent magnet 3 can be disposed by combining the two magnets 9 and strengthening the magnetic force.

これにより、磁石表面に沿って全体にわたって磁力を強めて永久磁石3の着磁率を高めることができる。この結果、径方向内側の端部および近傍の着磁率を向上させることで永久磁石3の利用効率を向上させるとともに、トルク発生に寄与する永久磁石3を増やすことによりIPMモータの高トルク化を図ることが可能となる。   Thereby, magnetic force can be strengthened over the whole magnet surface, and the magnetization rate of the permanent magnet 3 can be raised. As a result, the utilization efficiency of the permanent magnet 3 is improved by improving the magnetization rate in the radially inner end and the vicinity, and the torque of the IPM motor is increased by increasing the number of permanent magnets 3 that contribute to torque generation. It becomes possible.

以上のように、本発明の第1,2の実施形態によれば、ロータコアに埋め込まれた永久磁石の着磁率を向上させることができる回転電機用ロータおよびその製造方法を提供することができる。   As described above, according to the first and second embodiments of the present invention, it is possible to provide a rotor for a rotating electrical machine that can improve the magnetization rate of a permanent magnet embedded in a rotor core and a method for manufacturing the same.

以上、本発明に係る実施形態について説明したが、本発明はさらに他の形態で実施することも可能である。   As mentioned above, although embodiment which concerns on this invention was described, this invention can also be implemented with another form.

上記第1の実施形態では、同じ磁粉量および同じ粘度を有する磁性成形材料により第1および第2の磁石8,9を射出成形する例を示したが、これに限定されるものでなく、異なる磁性成形材料を用いてもよい。   In the first embodiment, the example in which the first and second magnets 8 and 9 are injection-molded with the magnetic molding material having the same magnetic powder amount and the same viscosity has been described. A magnetic molding material may be used.

上記実施形態では、第1の磁石8の成形において、射出成形する工程と着磁する工程とが同時に行なわれる場合について説明したが、成形工程後に着磁工程が行われるものでもよい。また、上記第1の実施形態において、第2の磁石9の成形工程後に着磁工程が行われるものでもよい。   In the above embodiment, the case where the injection molding process and the magnetizing process are performed simultaneously in the molding of the first magnet 8 has been described. However, the magnetizing process may be performed after the molding process. In the first embodiment, the magnetizing process may be performed after the molding process of the second magnet 9.

上記実施形態では、永久磁石3(磁石取付孔4)の径方向の断面形状が略U字状の場合について説明したが、これに限定されるものでなく、略逆円弧状あるいは略コの字状に形成された永久磁石でもよい。また、略V字状や略W字状に形成された永久磁石であってもよい。すなわち、ロータコア2の径方向に延びて対向する磁極を有する形状であれば、永久磁石3の形状は適宜変更可能である。   In the above embodiment, the case where the radial cross-sectional shape of the permanent magnet 3 (magnet mounting hole 4) is substantially U-shaped has been described. However, the present invention is not limited to this, and is substantially reverse arc-shaped or substantially U-shaped. Permanent magnets formed in a shape may be used. Moreover, the permanent magnet formed in the substantially V shape or the substantially W shape may be sufficient. That is, the shape of the permanent magnet 3 can be appropriately changed as long as it has a shape that extends in the radial direction of the rotor core 2 and has opposing magnetic poles.

ここで、図5(a),(b)は、本発明の他の実施例に係る永久磁石3の構成を示す図である。
図5(a),(b)に示すように、それぞれロータコア2の磁石取付孔4内の径方向外側部分に板状の軟磁性材料からなる第2の着磁冶具14を配置し、径方向内側部分の空洞に磁性成形材料が注入され射出成形により着磁された(磁化方向を図中、矢印実線で示す)第1の磁石8が成形される。その後、第2の着磁冶具14を抜き取った後の空洞部に射出成形、またはあらかじめ着磁された磁石を挿入して図示しない第2の磁石が形成される。
Here, FIGS. 5A and 5B are views showing the configuration of a permanent magnet 3 according to another embodiment of the present invention.
As shown in FIGS. 5A and 5B, a second magnetizing jig 14 made of a plate-like soft magnetic material is disposed on the radially outer portion in the magnet mounting hole 4 of the rotor core 2, and the radial direction. A magnetic molding material is injected into the cavity of the inner part and magnetized by injection molding (the magnetization direction is indicated by a solid arrow in the figure), thereby forming a first magnet 8. Thereafter, a second magnet (not shown) is formed by inserting an injection-molded or pre-magnetized magnet into the cavity after extracting the second magnetizing jig 14.

上記実施形態では、周方向において互いに隣り合う永久磁石3の極性が異なるようにN極とS極が交互に配置する例を示したが、図5(a)に示す同じ極性で対に形成された略V字状、または図5(b)に示す一字状の永久磁石3を配置したものであってもよい。この場合、第2の磁石9も周方向にN極とS極が交互に逆になるように配置される。   In the above embodiment, an example in which N poles and S poles are alternately arranged so that the polarities of the permanent magnets 3 adjacent to each other in the circumferential direction are different has been described. However, the permanent magnets 3 are formed in pairs with the same polarity shown in FIG. Alternatively, a substantially V-shaped or one-shaped permanent magnet 3 shown in FIG. 5B may be arranged. In this case, the second magnet 9 is also arranged so that the north and south poles are alternately reversed in the circumferential direction.

さらに、着磁冶具の形状を変更することにより各種磁気回路に対応して磁気特性を向上させることができる。例えば、周方向に互いに異なる磁極が隣り合うように一字状の永久磁石が配置されたロータコアにおいて、磁極端部の漏れ磁束を低減してコギングトルクを抑えるように磁束を発生させるような磁石形状に適用することも可能となる。   Furthermore, by changing the shape of the magnetizing jig, it is possible to improve the magnetic characteristics corresponding to various magnetic circuits. For example, in a rotor core in which a single-shaped permanent magnet is arranged so that different magnetic poles are adjacent to each other in the circumferential direction, a magnet shape that generates magnetic flux so as to reduce the leakage magnetic flux at the magnetic pole end and suppress the cogging torque It is also possible to apply to.

上記実施形態では、永久磁石3の第1の磁石8として成形し易い希土類系のネオジムボンド磁石を用いる例を示したが、これに限定されるものでなく、他のボンド磁石を用いてもよい。また、ボンド磁石に限らず、例えば、着磁されたネオジム焼結磁石を挿入して第1の磁石8を形成するようにしてもよい。   In the above-described embodiment, an example in which a rare earth-based neodymium bonded magnet that can be easily formed as the first magnet 8 of the permanent magnet 3 has been described. However, the present invention is not limited to this, and other bonded magnets may be used. . In addition, the first magnet 8 may be formed by inserting a magnetized neodymium sintered magnet, not limited to the bond magnet.

上記実施形態では、ロータコア2は、永久磁石3の形状に合わせて珪素鋼板を用いた電磁鋼板を積層して形成されていたが、これに限定されるものでなく、例えば、圧粉磁心を用いてもよい。   In the said embodiment, although the rotor core 2 was formed by laminating | stacking the electromagnetic steel plate which used the silicon steel plate according to the shape of the permanent magnet 3, it is not limited to this, For example, a dust core is used. May be.

上記実施形態では、第1および第2の磁石8,9からなる10セットの永久磁石3を備えたIPMモータに適用する例を示したが、これに限定されるものでなく、任意の数の永久磁石3を任意の位置に配置したIPMモータに適用することが可能である。また、永久磁石の板厚方向に隣り合う磁石の数も適宜変更可能である。   In the above-described embodiment, an example is shown in which the present invention is applied to an IPM motor including 10 sets of permanent magnets 3 including the first and second magnets 8 and 9, but the present invention is not limited to this, and an arbitrary number of The present invention can be applied to an IPM motor in which the permanent magnet 3 is disposed at an arbitrary position. Further, the number of magnets adjacent to each other in the plate thickness direction of the permanent magnet can be changed as appropriate.

上記実施形態では、本発明を電動パワーステアリング装置や電動オイルポンプ装置などの駆動源に用いられる電動モータ(IPMモータ)に具体化したが、これに限定されるものでなく、他の装置の駆動源用モータとして用いてもよい。また、発電機として用いてもよい。   In the above embodiment, the present invention is embodied in an electric motor (IPM motor) used as a drive source such as an electric power steering device or an electric oil pump device. However, the present invention is not limited to this, and driving of other devices is possible. It may be used as a source motor. Moreover, you may use as a generator.

1:回転電機用ロータ、2:ロータコア、3:永久磁石、4:磁石取付孔、
5:ロータプレート、6:第1の磁石成形孔、7:第2の磁石成形孔(空洞部)、
8:第1の磁石、9:第2の磁石、10:回転軸、11:挿入孔、
12:着磁機(着磁手段)、13:第1の着磁冶具(磁気抵抗調整手段)、
14:第2の着磁冶具
1: rotor for rotating electrical machine, 2: rotor core, 3: permanent magnet, 4: magnet mounting hole,
5: rotor plate, 6: first magnet molding hole, 7: second magnet molding hole (cavity),
8: first magnet, 9: second magnet, 10: rotating shaft, 11: insertion hole,
12: Magnetizer (magnetizing means), 13: First magnetizing jig (magnetic resistance adjusting means),
14: Second magnetizing jig

Claims (4)

回転軸に一体回転可能に固定され、周方向に間隔をおいて複数の磁石取付孔が軸線方向に延びて形成されたロータコアと、
前記磁石取付孔内に埋め込まれて固定された永久磁石と、を備え、
前記磁石取付孔は、径方向外側の両先端部から周方向に対向して径方向内側に向かうにつれて互いに近接するように延出されて径方向内側の端部が凸となる形状に形成され、
前記永久磁石は、前記磁石取付孔の内面に沿って外側に配設された第1の磁石と、前記第1の磁石より内側に配設された第2の磁石とからなり、前記第1の磁石および前記第2の磁石は、磁石表面に沿って直交する方向に隣り合ってそれぞれ同一の極性が現れるように着磁されたことを特徴とする回転電機用ロータ。
A rotor core fixed to the rotary shaft so as to be integrally rotatable, and having a plurality of magnet mounting holes extending in the axial direction at intervals in the circumferential direction;
A permanent magnet embedded and fixed in the magnet mounting hole,
The magnet mounting hole is formed in a shape in which the radially inner end protrudes from the both ends of the radially outer side so as to be opposed to each other in the circumferential direction and toward the radially inner side,
The permanent magnet includes a first magnet disposed on the outer side along the inner surface of the magnet mounting hole, and a second magnet disposed on the inner side of the first magnet. The rotor for a rotating electrical machine, wherein the magnet and the second magnet are magnetized so as to be adjacent to each other in a direction perpendicular to the magnet surface so that the same polarity appears.
回転軸に一体回転可能に固定され、周方向に間隔をおいて複数の磁石取付孔が軸線方向に延びて形成されたロータコアと、
前記磁石取付孔内に埋め込まれて固定された永久磁石と、を備え、
前記磁石取付孔は、径方向外側の両先端部から周方向に対向して径方向内側に向かうにつれて互いに近接するように延出されて径方向内側の端部が凸となる形状に形成され、
前記永久磁石は、前記磁石取付孔の内面に沿って外側に配設された第1の磁石と、前記第1の磁石より内側に配設された第2の磁石とからなり、前記第1の磁石および前記第2の磁石は、磁石表面に沿って直交する方向に隣り合ってそれぞれ同一の極性が現れるように着磁され、
前記ロータコアの外周面外側に着磁手段を配設する第1の工程と、
前記磁石取付孔内の磁石材料の磁気抵抗を調整する磁気抵抗調整手段を前記磁石取付孔に配設するとともに、前記着磁手段から生じる磁場が印加された状態で、前記磁石取付孔内に磁石材料を充填し前記第1の磁石を成形する第2の工程と、
前記磁気抵抗調整手段を取り外した後の空洞部に前記第2の磁石を形成する第3の工程と、を備えたことを特徴とする回転電機用ロータの製造方法。
A rotor core fixed to the rotary shaft so as to be integrally rotatable, and having a plurality of magnet mounting holes extending in the axial direction at intervals in the circumferential direction;
A permanent magnet embedded and fixed in the magnet mounting hole,
The magnet mounting hole is formed in a shape in which the radially inner end protrudes from the both ends of the radially outer side so as to be opposed to each other in the circumferential direction and toward the radially inner side,
The permanent magnet includes a first magnet disposed on the outer side along the inner surface of the magnet mounting hole, and a second magnet disposed on the inner side of the first magnet. The magnet and the second magnet are magnetized so that the same polarity appears adjacent to each other in a direction perpendicular to the magnet surface,
A first step of arranging a magnetizing means on the outer peripheral surface of the rotor core;
Magnet resistance adjusting means for adjusting the magnetic resistance of the magnet material in the magnet mounting hole is disposed in the magnet mounting hole, and a magnet is applied to the magnet mounting hole in a state where a magnetic field generated from the magnetizing means is applied. A second step of filling the material and forming the first magnet;
And a third step of forming the second magnet in the cavity after removing the magnetic resistance adjusting means.
請求項2に記載の回転電機用ロータの製造方法において、
前記磁気抵抗調整手段は、前記磁石取付孔の内面に沿った形状に形成された着磁冶具が前記磁石取付孔内に配設されることを特徴とする回転電機用ロータの製造方法。
In the manufacturing method of the rotor for rotary electric machines according to claim 2,
The method for manufacturing a rotor for a rotating electrical machine, wherein the magnetic resistance adjusting means includes a magnetizing jig formed in a shape along an inner surface of the magnet mounting hole.
請求項2または請求項3に記載の回転電機用ロータの製造方法において、
前記第2の磁石は、前記空洞部内に、前記磁石材料を充填し成形、またはあらかじめ着磁された磁石を挿入して形成されることを特徴とする回転電機用ロータの製造方法。
In the manufacturing method of the rotor for rotary electric machines according to claim 2 or 3,
The method of manufacturing a rotor for a rotating electric machine, wherein the second magnet is formed by inserting a magnet that is filled with the magnet material into the hollow portion and molded or magnetized in advance.
JP2015019035A 2015-02-03 2015-02-03 Rotor for rotary electric machine and manufacturing method for the same Pending JP2016144322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019035A JP2016144322A (en) 2015-02-03 2015-02-03 Rotor for rotary electric machine and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019035A JP2016144322A (en) 2015-02-03 2015-02-03 Rotor for rotary electric machine and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2016144322A true JP2016144322A (en) 2016-08-08

Family

ID=56571039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019035A Pending JP2016144322A (en) 2015-02-03 2015-02-03 Rotor for rotary electric machine and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2016144322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167233A1 (en) * 2018-03-01 2019-09-06 三菱電機株式会社 Electric motor mounted with drive circuit
DE112021002092T5 (en) 2020-03-30 2023-02-09 Denso Corporation Apparatus for manufacturing a rotor, method for manufacturing a rotor and rotor
JP7476679B2 (en) 2020-06-09 2024-05-01 株式会社デンソー Rotor manufacturing apparatus, rotor manufacturing method and rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167233A1 (en) * 2018-03-01 2019-09-06 三菱電機株式会社 Electric motor mounted with drive circuit
DE112021002092T5 (en) 2020-03-30 2023-02-09 Denso Corporation Apparatus for manufacturing a rotor, method for manufacturing a rotor and rotor
JP7476679B2 (en) 2020-06-09 2024-05-01 株式会社デンソー Rotor manufacturing apparatus, rotor manufacturing method and rotor

Similar Documents

Publication Publication Date Title
US9893571B2 (en) Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
JP5891089B2 (en) Permanent magnet synchronous machine
JP2015133839A (en) Magnet-embedded rotor
CN108475972B (en) Rotor, magnetizing method, motor, and scroll compressor
KR102069537B1 (en) Magnetizing method, rotor, electric motor and scroll compressor
WO2008023413A1 (en) Permanent magnetic type electric motor
JP2013143791A (en) Magnet-inclusion type synchronous machine and rotor thereof
CN102801237A (en) Rotor core, module used for rotor core, rotor and motor
US20140001910A1 (en) Electric motor and production method for the electric motor
US10566859B2 (en) Rotor
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
US10122230B2 (en) Permanent-field armature with guided magnetic field
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP4029679B2 (en) Bond magnet for motor and motor
JP2010193587A (en) Magnet magnetization device for rotors, and motor
JP2016144322A (en) Rotor for rotary electric machine and manufacturing method for the same
JP2017070031A (en) Rotor
JP2016096665A (en) Rotor for rotary electric machine and method of manufacturing the same
JP2013121262A (en) Rotor of rotary electric machine and method for manufacturing the same
JP2021083221A (en) IPM rotor manufacturing method
JP5692105B2 (en) Manufacturing method of rotor for IPM motor
JP4569139B2 (en) Rotor for IPM motor, method for manufacturing rotor for IPM motor using the same, and IPM motor therefor.
JP2015133825A (en) Rotor for rotary electric machine
JP2016123143A (en) Rotor, manufacturing method thereof, and rotary electric machine with the same