JP2016144129A - Sound field reproducing device, sound field reproducing method and program - Google Patents

Sound field reproducing device, sound field reproducing method and program Download PDF

Info

Publication number
JP2016144129A
JP2016144129A JP2015020201A JP2015020201A JP2016144129A JP 2016144129 A JP2016144129 A JP 2016144129A JP 2015020201 A JP2015020201 A JP 2015020201A JP 2015020201 A JP2015020201 A JP 2015020201A JP 2016144129 A JP2016144129 A JP 2016144129A
Authority
JP
Japan
Prior art keywords
sound
sound field
omnidirectional
control surface
predetermined space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020201A
Other languages
Japanese (ja)
Other versions
JP6228945B2 (en
Inventor
圭吾 若山
Keigo Wakayama
圭吾 若山
英明 高田
Hideaki Takada
英明 高田
義昭 黒川
Yoshiaki Kurokawa
義昭 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015020201A priority Critical patent/JP6228945B2/en
Publication of JP2016144129A publication Critical patent/JP2016144129A/en
Application granted granted Critical
Publication of JP6228945B2 publication Critical patent/JP6228945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Stereophonic System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sound field reproducing device capable of reducing the number of speakers to be used for sound field reproduction.SOLUTION: The sound field reproducing device includes: a reflection member which is positioned in one area separated by a control face that is a virtual plane, and is shaped to surround a predetermined space and of which the inner surface is defined as a reflection plane and the side opposite to the control face is open; a plurality of directional variable speakers arrayed within the predetermined space and each configured by including a plurality of non-directional sound sources. The other area separated by the control face is defined as a listening area and on the assumption that virtual sound sources to reproduce a desired sound field within the listening area are arrayed within the predetermined space, weights of the non-directional sound sources are set in such a manner that a sound pressure to be observed on the control face is reproduced and based on the weights, the non-directional sound sources are driven.SELECTED DRAWING: Figure 1

Description

本発明は、スピーカアレイを駆動して空間に音場を再生する音場再生装置、音場再生方法、プログラムに関する。   The present invention relates to a sound field reproduction device, a sound field reproduction method, and a program for reproducing a sound field in a space by driving a speaker array.

音場再生とは、スピーカアレイを駆動することで、空間に音場を再生する技術である。広帯域・広範囲で音場を再現するには膨大な数のスピーカが必要になる。従来の音場再生システムの例として、例えば非特許文献1がある。   Sound field reproduction is a technique for reproducing a sound field in space by driving a speaker array. An enormous number of speakers are required to reproduce the sound field over a wide band and wide range. For example, Non-Patent Document 1 is an example of a conventional sound field reproduction system.

Koyama, et al. "Analytical Approach to Wave Field Reconstruction Filtering in Spatio-Temporal Frequency Domain" Audio, Speech, And Language Processing, IEEE Transactions on 21.1 (2013): 1-11.Koyama, et al. "Analytical Approach to Wave Field Reconstruction Filtering in Spatio-Temporal Frequency Domain" Audio, Speech, And Language Processing, IEEE Transactions on 21.1 (2013): 1-11.

従来技術では、広範囲の音場を再現するため、再現領域の境界に等間隔に配置された直線状のスピーカアレイを用いている。しかし、直線状スピーカアレイによって、周波数fまで正確に音場を再現するには、c/(2f)[m]間隔(fは周波数、cは音速)でスピーカを配置する必要があり、広帯域・広範囲で音場を再現するには、膨大な数のスピーカが必要になるため、コストの観点から課題があった。また、液晶やELディスプレイ、LEDディスプレイ、特殊光学スクリーンなどの前面に音場を再現することにより、映像と音場を高精度で再現するシステムを構築しようとする場合に、スピーカアレイによって映像面が遮られる場合があり、ユーザの視野という観点で課題があった。そこで本発明では、音場再生に用いるスピーカ数を削減することができる音場再生装置を提供することを目的とする。   In the prior art, in order to reproduce a wide sound field, a linear speaker array arranged at equal intervals on the boundary of the reproduction region is used. However, in order to accurately reproduce the sound field up to the frequency f by the linear speaker array, it is necessary to arrange the speakers at intervals of c / (2f) [m] (f is the frequency and c is the speed of sound). In order to reproduce a sound field in a wide range, a huge number of speakers are required, and thus there is a problem from the viewpoint of cost. In addition, when reproducing a sound field on the front surface of a liquid crystal display, EL display, LED display, special optical screen, etc., to create a system that reproduces the image and sound field with high accuracy, the image surface is displayed by a speaker array. In some cases, there is a problem in view of the user's field of view. Therefore, an object of the present invention is to provide a sound field reproduction device that can reduce the number of speakers used for sound field reproduction.

本発明の音場再生装置は、仮想の平面である制御面で区分された一方の領域に位置し、所定の空間を囲む形状であってその内面が反射面とされ、制御面と対向する側が開口した反射部材と、所定の空間内に複数配列され、複数の無指向性音源を含んで構成された指向性可変スピーカを含み、制御面で区分された他方の領域を受聴領域とし、受聴領域内で所望の音場を再現する仮想音源が所定の空間内に配列されたと仮定した場合に制御面上で観測される音圧が再現されるように無指向性音源それぞれの重みが設定され、重みに基づいて無指向性音源が駆動される。   The sound field reproducing device of the present invention is located in one region divided by a control plane that is a virtual plane, has a shape surrounding a predetermined space, has an inner surface as a reflection surface, and a side facing the control surface is A plurality of directional variable speakers arranged in a predetermined space and including a plurality of omnidirectional sound sources, the other region divided by the control surface as a listening region, and a listening region The weight of each omnidirectional sound source is set so that the sound pressure observed on the control surface is reproduced when it is assumed that the virtual sound source that reproduces the desired sound field is arranged in a predetermined space in An omnidirectional sound source is driven based on the weight.

本発明の音場再生装置によれば、音場再生に用いるスピーカ数を削減することができる。   According to the sound field reproducing apparatus of the present invention, the number of speakers used for sound field reproduction can be reduced.

実施例1の音場再生装置の幾何学的配置を示す断面図。Sectional drawing which shows the geometric arrangement of the sound field reproducing | regenerating apparatus of Example 1. FIG. 実施例1の音場再生装置の指向性可変スピーカおよび無指向性音源の位置を表すパラメータ(ローカル座標系)について説明する図。The figure explaining the parameter (local coordinate system) showing the position of the directivity variable speaker of the sound field reproducing | regenerating apparatus of Example 1, and an omnidirectional sound source. 実施例1の音場再生装置が実行する音場再生方法を示すフローチャート。5 is a flowchart illustrating a sound field reproduction method executed by the sound field reproduction device according to the first embodiment.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same number is attached | subjected to the structure part which has the same function, and duplication description is abbreviate | omitted.

以下、実施例1の音場再生装置について説明する。本実施例の音場再生装置は、指向性を制御できる指向性可変スピーカ(2次元モノポール素子で構成されるアレイで実現)と反射部材による音響反射を利用して仮想音源を生成することで、音場再現に用いるスピーカの総数を削減するものである。特定の領域に正確な音場を再現する際、指向性可変スピーカ(次数N)の必要数が、直線状スピーカアレイを構成する際の必要数に対して、一定の割合で削減可能である。また、副次的な効果として、指向性可変スピーカが空間的に疎になり、ユーザの視野が遮られにくくなる。   Hereinafter, the sound field reproduction apparatus of Example 1 will be described. The sound field reproduction apparatus of the present embodiment generates a virtual sound source by using sound reflection by a directivity variable speaker (realized by an array composed of two-dimensional monopole elements) that can control directivity and a reflecting member. The total number of speakers used for sound field reproduction is reduced. When reproducing an accurate sound field in a specific region, the required number of directional variable speakers (order N) can be reduced at a constant rate with respect to the required number when configuring a linear speaker array. Further, as a secondary effect, the variable directivity speaker is spatially sparse, and the user's field of view is not easily blocked.

以下、本実施例の音場再生装置の具体的な構成について図1を参照して説明する。図1は、本実施例の音場再生装置1の幾何学的配置を示す断面図である。本実施例では、連続する2次元空間領域、それに対応する所望の音場を想定する。図1に示すように、音場再生装置1は、L個(Lは1以上の整数)の指向性可変スピーカ11−1、…、11−l、…、11−L(lは1以上L以下の整数)と、反射部材12を含んで構成される。なお、L個の指向性可変スピーカを総称する場合には、指向性可変スピーカ11と呼称する。   Hereinafter, a specific configuration of the sound field reproducing apparatus according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view showing the geometrical arrangement of the sound field reproducing apparatus 1 according to this embodiment. In this embodiment, a continuous two-dimensional space region and a desired sound field corresponding to the two-dimensional space region are assumed. As shown in FIG. 1, the sound field reproduction apparatus 1 includes L (L is an integer of 1 or more) directivity variable speakers 11-1, ..., 11-l, ..., 11-L (where l is 1 or more L). The following integer) and the reflecting member 12 are included. Note that the L directional variable speakers are collectively referred to as the directional variable speakers 11.

指向性可変スピーカ11は、M個(Mは2以上の整数)の無指向性音源(モノポール)を含んで構成される。M個(Mは2以上の整数)の無指向性音源(モノポール)の符号は以下のように付される。指向性可変スピーカ11―lを構成する無指向性音源は無指向性音源11−l−1、…、11−l−Mと呼称される。従って、指向性可変スピーカ11―1を構成する無指向性音源は、11−1−1、…、11−1−m、…、11−1−M(mは1以上M以下の整数)、指向性可変スピーカ11―2を構成する無指向性音源は、11−2−1、…、11−2−m、…、11−2−Mと呼称される。   The directional variable speaker 11 includes M (M is an integer of 2 or more) omnidirectional sound sources (monopoles). The code | symbol of M omnidirectional sound source (monopole) (M is an integer greater than or equal to 2) is attached | subjected as follows. The omnidirectional sound source constituting the variable directivity speaker 11-l is referred to as an omnidirectional sound source 11-1-1, ..., 11-l-M. Therefore, the omnidirectional sound source constituting the directivity variable speaker 11-1 is 11-1-1, ..., 11-1-m, ..., 11-1-M (m is an integer of 1 to M), The omnidirectional sound source constituting the directivity variable speaker 11-2 is referred to as 11-2-1, ..., 11-2-m, ..., 11-2-M.

以下に指向性可変スピーカ11と、反射部材12の配置について説明する。まず図1に示すように仮想の平面である制御面14を考える。この制御面14で区分された一方の領域に、指向性可変スピーカ11と、反射部材12が位置するものとする。反射部材12は、所定の空間を囲む形状であってその内面が反射面とされ、制御面14と対向する側が開口している。反射部材12を一面が開口した直方体形状として構成する場合、反射部材12は複数の反射板を組み合わせることで構成できる。反射部材12は半円筒形状であってもよい。また反射部材12は他の任意の形状とすることができる。反射部材12をディスプレイとすることもできる。指向性可変スピーカ11−1、…、11−Lは、反射部材12によって囲まれる所定の空間内に配列される。また、制御面14で区分された他方の領域を受聴領域16とし、以下の説明に用いる。受聴領域16は自由空間、あるいは反射係数が0に近い壁面で覆われているものとする。   The arrangement of the directivity variable speaker 11 and the reflecting member 12 will be described below. First, consider a control surface 14 which is a virtual plane as shown in FIG. It is assumed that the directivity variable speaker 11 and the reflecting member 12 are located in one area divided by the control surface 14. The reflecting member 12 has a shape surrounding a predetermined space, and its inner surface is a reflecting surface, and the side facing the control surface 14 is open. In the case where the reflecting member 12 is configured as a rectangular parallelepiped shape with one surface opened, the reflecting member 12 can be configured by combining a plurality of reflecting plates. The reflecting member 12 may have a semicylindrical shape. Further, the reflecting member 12 can have any other shape. The reflecting member 12 can be a display. The directivity variable speakers 11-1 to 11 -L are arranged in a predetermined space surrounded by the reflecting member 12. The other area divided by the control surface 14 is defined as a listening area 16, which is used in the following description. The listening area 16 is assumed to be covered with free space or a wall surface with a reflection coefficient close to zero.

<プレッシャーマッチング>
本実施例の音場再生装置1はプレッシャーマッチングの手法を用いる。プレッシャーマッチングでは、興味のある領域(本実施例において受聴領域16に該当)の境界(本実施例において制御面14に該当)に位置する有限個の点において所望の音圧と現状の音圧とを一致させることで、興味のある領域(本実施例において受聴領域16)における所望の音場を再現する。境界に位置する有限個の点をマッチング点と呼ぶ。上述した通り、本実施例においてマッチング点は制御面14上に位置する。本実施例ではマッチング点はQ個(Qは1以上の整数)設定されるものとする。各マッチング点には仮想上の点センサ15−1、…、15−q、…、15−Q(qは1以上Q以下の整数)が配置されているものとする。仮想上の各点センサ15−1、…、15−q、…、15−Qが音圧を観測することから、マッチング点は観測点とも呼ぶ。点センサ15−1、…、15−q、…、15−Qの座標(マッチング点の座標、観測点の座標)は、二次元座標を表すベクトル(x1,...,xq,...,xQ)∈R2で表現されるものとする。同様に、l番目の指向性可変スピーカ11−l内のm番目の無指向性音源11−l−mの座標は、二次元座標を表すベクトルylm∈R2で表現されるものとする。
<Pressure matching>
The sound field reproducing apparatus 1 of the present embodiment uses a pressure matching technique. In the pressure matching, the desired sound pressure and the current sound pressure at a finite number of points located at the boundary (corresponding to the control surface 14 in the present embodiment) of the region of interest (corresponding to the listening region 16 in the present embodiment). Are matched, the desired sound field in the region of interest (listening region 16 in this embodiment) is reproduced. A finite number of points located at the boundary are called matching points. As described above, the matching point is located on the control surface 14 in this embodiment. In this embodiment, Q matching points (Q is an integer of 1 or more) are set. Assume that virtual point sensors 15-1,..., 15-q,. Since the virtual point sensors 15-1, ..., 15-q, ..., 15-Q observe sound pressure, the matching points are also called observation points. Point sensor 15-1, ..., 15-q, ..., 15-Q coordinates (matching point coordinate, the observation point coordinates) are vectors representing the two-dimensional coordinates (x 1, ..., x q ,. .., x Q ) ∈R 2 Likewise, m-th coordinate of the non-directional sound source 11-lm of l-th variable directivity loudspeaker in 11-l is assumed to be represented by a vector y lm ∈R 2 representing the two-dimensional coordinates.

上述のプレッシャーマッチングにおいて、M個の無指向性音源(2次元モノポール)を要素に持つL個の指向性可変スピーカ11−1、…、11−l、…、11−Lで、制御面14における圧力場を再現するため、下記の方程式を満たす必要がある。   In the pressure matching described above, the control surface 14 is composed of L directional variable speakers 11-1,..., 11-l, ..., 11-L having M omnidirectional sound sources (two-dimensional monopoles) as elements. In order to reproduce the pressure field at, it is necessary to satisfy the following equation:

Figure 2016144129
Figure 2016144129

ここで、H(xq,ylm;f)は、ylmに位置する無指向性音源11−l−mとxqに位置する点センサ15−qの間の周波数fにおける音響伝達関数である。Glm(f)は無指向性音源11−l−mの周波数fにおける重みを表す。Pd(xq;f)は周波数fにおける、マッチング点(観測点)xqにおける所望の音圧を表す。音圧マッチングは、Q個のマッチング点(観測点)(x1,...,xq,...,xQ)で実行される。それを満たすのに必要な方程式の集合は、行列−ベクトル形式で扱われる。すなわち、 Here, H (x q , y lm ; f) is an acoustic transfer function at a frequency f between the omnidirectional sound source 11- lm located at y lm and the point sensor 15-q located at x q. is there. G lm (f) represents a weight at the frequency f of the omnidirectional sound source 11- lm . P d (x q ; f) represents a desired sound pressure at the matching point (observation point) x q at the frequency f. Sound pressure matching is performed at Q matching points (observation points) (x 1 ,..., X q ,..., X Q ). The set of equations necessary to satisfy it is handled in a matrix-vector format. That is,

Figure 2016144129
Figure 2016144129

ここで、H(xq,ylm;f)は音響伝達関数を要素に持つ行列、[g]M(l-1)+m=Glm(f)は無指向性音源11−l−mの重みを要素に持つベクトルである([g]の添え字のM(l-1)+mは、無指向性音源の通し番号を意味する)。[pd]q=Pd(xq;f)はマッチング点xqにおける所望の音圧を要素に持つベクトルである。正則化最小二乗法による解により、二乗誤差平均が小さくなるよう、スピーカの重みg^がロバストに求められる。すなわち、 Here, H (x q , y lm ; f) is a matrix having an acoustic transfer function as an element, and [g] M (l−1) + m = G lm (f) is an omnidirectional sound source 11- lm (The subscript M (l-1) + m of [g] means the serial number of the omnidirectional sound source). [p d ] q = P d (x q ; f) is a vector having a desired sound pressure at the matching point x q as an element. The speaker weight g ^ is robustly determined so that the mean square error is reduced by the solution by the regularized least squares method. That is,

Figure 2016144129
Figure 2016144129

ここで、λはティホノフ(Tikhonov)の正則化法における正則化パラメータ、λIはティホノフ(Tikhonov)の正則化法における正則化項である。HHは音響伝達関数を要素に持つ行列Hのエルミート転置である。上記の信号処理を用いて、K個の仮想音源13−1、…、13−k、…、13−Kが反射部材12によって囲まれる所定の空間内に直線状に配列されてなる仮想スピーカアレイが生成する音場を再現することができる。上記の計算によって、無指向性音源11−1−1、…、11−L−Mそれぞれの重みが計算される。つまり、受聴領域16内で所望の音場を再現するK個の仮想音源13−1、…、13−k、…、13−Kが反射部材12によって囲まれる所定の空間内に直線状に配列されたと仮定した場合(図1参照)の、制御面14上の各観測点(x1,...,xq,...,xQ)で観測される音圧が、各無指向性音源によって再現されるように、各無指向性音源11−1−1、…、11−L−Mの重みが計算されることになる。 Here, λ is a regularization parameter in Tikhonov's regularization method, and λI is a regularization term in Tikhonov's regularization method. H H is a Hermitian transpose of the matrix H having an acoustic transfer function as an element. A virtual speaker array in which K virtual sound sources 13-1,..., 13-k,..., 13-K are linearly arranged in a predetermined space surrounded by the reflecting member 12 using the signal processing described above. The sound field generated by can be reproduced. The weights of the omnidirectional sound sources 11-1-1,..., 11-LM are calculated by the above calculation. That is, K virtual sound sources 13-1,..., 13-k,..., 13-K that reproduce a desired sound field in the listening area 16 are linearly arranged in a predetermined space surrounded by the reflecting member 12. Sound pressure observed at each observation point (x 1 , ..., x q , ..., x Q ) on the control surface 14 when it is assumed (see FIG. 1) The weights of the omnidirectional sound sources 11-1-1, ..., 11-LM are calculated so as to be reproduced by the sound sources.

<指向性可変スピーカ11の設計例>
以下に指向性可変スピーカ11の設計例について説明する。一般的な場合、指向性可変スピーカは、N次(Nは1以上の整数)の指向性パターンでモデル化される。指向性可変スピーカ11−lの、周波数fにおける、遠方音場の指向性パターンDll;f)は、位相モード展開によって、次のように記述される。φlはx軸を基準とした指向性可変スピーカ11―lの中心の角度である。
<Design Example of Directivity Variable Speaker 11>
A design example of the directivity variable speaker 11 will be described below. In a general case, the variable directivity speaker is modeled with a directivity pattern of the Nth order (N is an integer of 1 or more). The directivity pattern D ll ; f) of the far-field sound field at the frequency f of the variable directivity speaker 11-1 is described as follows by phase mode expansion. φ l is the angle of the center of the directivity variable speaker 11-1 with respect to the x axis.

Figure 2016144129
Figure 2016144129

なお、αnlは、n次(n=1,…,N)の位相モードにおける重み係数である。einφl=cos(nφl)+isin(nφl)である。図2を参照して指向性可変スピーカおよび無指向性音源の位置を表すパラメータについて説明する。図2は、本実施例の音場再生装置1の指向性可変スピーカ11−1、…、11−Lおよび無指向性音源11−1−1、…、11−L−Mの位置を表すパラメータ(ローカル座標系)について説明する図である。図2に示すように、指向性可変スピーカ11−lは、M個の無指向性音源11−l−1、…、11−l−m、…、11−l−Mを半径rの等間隔円状アレイに並べることで実現できる。また図2に示すように、dlは等間隔円状アレイ(指向性可変スピーカ11−l)の中心から任意の点までの距離、φlはx軸を基準とした際の任意の位置における角度、ψlは任意の点を表すベクトルと同じ方向の単位ベクトル、すなわちψl=[cosφl,sinφl]T、ψlmはl番目の指向性可変スピーカ11−l内のm番目の無指向性音源11−l−mの中心位置の座標を表すベクトルと同じ方向の単位ベクトル、すなわちψlm=[cosφlm,sinφlm]T、φlmは、l番目の指向性可変スピーカ11−l内のm番目の無指向性音源11−l−mの方位角を表す。 Α nl is a weighting coefficient in the n-th order (n = 1,..., N) phase mode. It is an e inφl = cos (nφ l) + isin (nφ l). The parameters representing the positions of the variable directivity speaker and the omnidirectional sound source will be described with reference to FIG. FIG. 2 shows parameters indicating the positions of the directivity variable speakers 11-1,..., 11-L and the omnidirectional sound sources 11-1-1,. It is a figure explaining (local coordinate system). As shown in FIG. 2, the variable directivity speaker 11-1 includes M omnidirectional sound sources 11-1-1,..., 11-1-m,. This can be achieved by arranging them in a circular array. As shown in FIG. 2, d l is the distance from the center of the equally spaced circular array (directivity variable speaker 11-l) to an arbitrary point, and φ l is at an arbitrary position with respect to the x axis. angle, [psi l same direction of the unit vector a vector representing an arbitrary point, i.e. ψ l = [cosφ l, sinφ l] T, ψ lm is l-th m th absence of variable directivity loudspeaker in 11-l unit vector in the same direction as the vector representing the coordinates of the center position of the directional sound source 11-lm, i.e. ψ lm = [cosφ lm, sinφ lm] T, φ lm is, l-th variable directivity speaker 11-l Represents the azimuth angle of the mth omnidirectional sound source 11-lm.

N次までのスピーカ応答を得ることを保証するため、次のようにrとMを選んで、各指向性可変スピーカを設計する必要がある。
(1)次数Nまでの空間モードを再現するため、r=Nc/(2πf)とする
(2)十分な自由度を持つスピーカ応答を得るため、M≧2N+1とする
上記の設計指針(1)(2)は、周波数fにおける空間エイリアジングを避けるため、無指向性音源(モノポール)がλ/2以下のスペースで配置されることを保証する。このアレイ(指向性可変スピーカ)は、例えば円筒スピーカボックスの側面を周回するようにM個の無指向性音源(モノポール)を1列、あるいは複数列配列することで実現可能である。各無指向性音源(モノポール)の重みは、音場再現の問題に正則化最小二乗によって選択される。パラメータrとMを選べば、指向性可変スピーカは二次の指向特性を持つことが保証される。プレッシャーマッチングの設計による結果による指向性可変スピーカ11−lの近接場指向特性Dは、次のように記述される。
In order to ensure that speaker responses up to the Nth order are obtained, it is necessary to design each directional variable speaker by selecting r and M as follows.
(1) In order to reproduce spatial modes up to order N, r = Nc / (2πf). (2) In order to obtain a speaker response with a sufficient degree of freedom, the above design guideline with M ≧ 2N + 1 ( 1) (2) ensures that the omnidirectional sound source (monopole) is arranged in a space of λ / 2 or less in order to avoid spatial aliasing at the frequency f. This array (directivity variable speaker) can be realized, for example, by arranging M omnidirectional sound sources (monopoles) in one or a plurality of rows so as to go around the side surface of the cylindrical speaker box. The weight of each omnidirectional sound source (monopole) is selected by regularized least squares for the problem of sound field reproduction. If the parameters r and M are selected, it is guaranteed that the variable directivity speaker has a secondary directivity characteristic. Near-field directional characteristics D l of the variable directivity speaker 11-l by results of the design of the pressure matching is described as follows.

Figure 2016144129
Figure 2016144129

なおH0 (2)は次数0の2種のハンケル関数、kは波数である。 H 0 (2) is two kinds of Hankel functions of degree 0, and k is a wave number.

以下、図3を参照して音場再生装置1が実行する音場再生方法について説明する。図3は本実施例の音場再生装置1が実行する音場再生方法を示すフローチャートである。図3に示すように、音場再生装置1は、上述の反射部材12と、指向性可変スピーカ11を用い、制御面14で区分された他方の領域である受聴領域16内で所望の音場を再現する仮想音源13−1、…、13−k、…、13−Kが反射部材12で囲まれる所定の空間内に配列されたと仮定した場合に制御面14上で観測される音圧が再現されるように無指向性音源11−1−1、…、11−L−Mそれぞれの重みが設定され、設定された重みに基づいて無指向性音源11−1−1、…、11−L−Mを駆動する(S1)。   Hereinafter, the sound field reproduction method executed by the sound field reproduction device 1 will be described with reference to FIG. FIG. 3 is a flowchart showing a sound field reproduction method executed by the sound field reproduction device 1 of the present embodiment. As shown in FIG. 3, the sound field reproducing device 1 uses the above-described reflecting member 12 and the directivity variable speaker 11, and a desired sound field in the listening area 16 that is the other area divided by the control surface 14. , 13-k,..., 13-K that reproduces the sound pressure observed on the control surface 14 is assumed to be arranged in a predetermined space surrounded by the reflecting member 12. The weights of the omnidirectional sound sources 11-1-1,..., 11-LM are set so as to be reproduced. Based on the set weights, the omnidirectional sound sources 11-1-1,. LM is driven (S1).

<補記>
本発明の装置は、例えば単一のハードウェアエンティティとして、キーボードなどが接続可能な入力部、液晶ディスプレイなどが接続可能な出力部、ハードウェアエンティティの外部に通信可能な通信装置(例えば通信ケーブル)が接続可能な通信部、CPU(Central Processing Unit、キャッシュメモリやレジスタなどを備えていてもよい)、メモリであるRAMやROM、ハードディスクである外部記憶装置並びにこれらの入力部、出力部、通信部、CPU、RAM、ROM、外部記憶装置の間のデータのやり取りが可能なように接続するバスを有している。また必要に応じて、ハードウェアエンティティに、CD−ROMなどの記録媒体を読み書きできる装置(ドライブ)などを設けることとしてもよい。このようなハードウェア資源を備えた物理的実体としては、汎用コンピュータなどがある。
<Supplementary note>
The apparatus of the present invention includes, for example, a single hardware entity as an input unit to which a keyboard or the like can be connected, an output unit to which a liquid crystal display or the like can be connected, and a communication device (for example, a communication cable) capable of communicating outside the hardware entity. Can be connected to a communication unit, a CPU (Central Processing Unit, may include a cache memory or a register), a RAM or ROM that is a memory, an external storage device that is a hard disk, and an input unit, an output unit, or a communication unit thereof , A CPU, a RAM, a ROM, and a bus connected so that data can be exchanged between the external storage devices. If necessary, the hardware entity may be provided with a device (drive) that can read and write a recording medium such as a CD-ROM. A physical entity having such hardware resources includes a general-purpose computer.

ハードウェアエンティティの外部記憶装置には、上述の機能を実現するために必要となるプログラムおよびこのプログラムの処理において必要となるデータなどが記憶されている(外部記憶装置に限らず、例えばプログラムを読み出し専用記憶装置であるROMに記憶させておくこととしてもよい)。また、これらのプログラムの処理によって得られるデータなどは、RAMや外部記憶装置などに適宜に記憶される。   The external storage device of the hardware entity stores a program necessary for realizing the above functions and data necessary for processing the program (not limited to the external storage device, for example, reading a program) It may be stored in a ROM that is a dedicated storage device). Data obtained by the processing of these programs is appropriately stored in a RAM or an external storage device.

ハードウェアエンティティでは、外部記憶装置(あるいはROMなど)に記憶された各プログラムとこの各プログラムの処理に必要なデータが必要に応じてメモリに読み込まれて、適宜にCPUで解釈実行・処理される。その結果、CPUが所定の機能(上記、…部、…手段などと表した各構成要件)を実現する。   In the hardware entity, each program stored in an external storage device (or ROM or the like) and data necessary for processing each program are read into a memory as necessary, and are interpreted and executed by a CPU as appropriate. . As a result, the CPU realizes a predetermined function (respective component requirements expressed as the above-described unit, unit, etc.).

本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記実施形態において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. In addition, the processing described in the above embodiment may be executed not only in time series according to the order of description but also in parallel or individually as required by the processing capability of the apparatus that executes the processing. .

既述のように、上記実施形態において説明したハードウェアエンティティ(本発明の装置)における処理機能をコンピュータによって実現する場合、ハードウェアエンティティが有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記ハードウェアエンティティにおける処理機能がコンピュータ上で実現される。   As described above, when the processing functions in the hardware entity (the apparatus of the present invention) described in the above embodiments are realized by a computer, the processing contents of the functions that the hardware entity should have are described by a program. Then, by executing this program on a computer, the processing functions in the hardware entity are realized on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto-Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only). Memory), CD-R (Recordable) / RW (ReWritable), etc., magneto-optical recording medium, MO (Magneto-Optical disc), etc., semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory), etc. Can be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.

このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。   A computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing the process, the computer reads a program stored in its own recording medium and executes a process according to the read program. As another execution form of the program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer. Each time, the processing according to the received program may be executed sequentially. Also, the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition. It is good. Note that the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).

また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、ハードウェアエンティティを構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   In this embodiment, a hardware entity is configured by executing a predetermined program on a computer. However, at least a part of these processing contents may be realized by hardware.

Claims (5)

仮想の平面である制御面で区分された一方の領域に位置し、所定の空間を囲む形状であってその内面が反射面とされ、前記制御面と対向する側が開口した反射部材と、
前記所定の空間内に複数配列され、複数の無指向性音源を含んで構成された指向性可変スピーカを含み、
前記制御面で区分された他方の領域を受聴領域とし、前記受聴領域内で所望の音場を再現する仮想音源が前記所定の空間内に配列されたと仮定した場合に前記制御面上で観測される音圧が再現されるように前記無指向性音源それぞれの重みが設定され、前記重みに基づいて前記無指向性音源が駆動される
音場再生装置。
A reflective member located in one region divided by a control surface that is a virtual plane, surrounding a predetermined space, the inner surface of which is a reflective surface, and the side facing the control surface is open,
A plurality of directional variable speakers arranged in the predetermined space and configured to include a plurality of omnidirectional sound sources;
It is observed on the control surface when it is assumed that the other region divided by the control surface is a listening region, and a virtual sound source that reproduces a desired sound field in the listening region is arranged in the predetermined space. A sound field reproducing apparatus in which a weight of each of the omnidirectional sound sources is set so that sound pressure is reproduced, and the omnidirectional sound source is driven based on the weights.
請求項1に記載の音場再生装置であって、
前記無指向性音源それぞれの重みを要素に持つベクトルが、
前記無指向性音源と前記音圧が観測される点との間の音響伝達関数を要素に持つ行列と、前記音響伝達関数を要素に持つ行列のエルミート転置と、ティホノフの正則化法における正則化項と、前記音圧が観測される点における所望の音圧を要素に持つベクトルを用いて予め計算される
音場再生装置。
The sound field reproducing apparatus according to claim 1,
A vector having the weights of the omnidirectional sound sources as elements,
A matrix having an acoustic transfer function as an element between the omnidirectional sound source and the point at which the sound pressure is observed, a Hermitian transposition of the matrix having the acoustic transfer function as an element, and regularization in the Tihonov regularization method A sound field reproducing device that is calculated in advance using a term and a vector having a desired sound pressure at the point where the sound pressure is observed as an element.
音場再生装置が実行する音場再生方法であって、
仮想の平面である制御面で区分された一方の領域に位置し、所定の空間を囲む形状であってその内面が反射面とされ、前記制御面と対向する側が開口した反射部材と、前記所定の空間内に複数配列され、複数の無指向性音源を含んで構成された指向性可変スピーカを用い、前記制御面で区分された他方の領域を受聴領域とし、前記受聴領域内で所望の音場を再現する仮想音源が前記所定の空間内に配列されたと仮定した場合に前記制御面上で観測される音圧が再現されるように前記無指向性音源それぞれの重みが設定され、前記重みに基づいて前記無指向性音源を駆動するステップを含む
音場再生方法。
A sound field reproduction method executed by the sound field reproduction device,
A reflecting member located in one region divided by a control plane that is a virtual plane, surrounding a predetermined space, having an inner surface as a reflecting surface, and an opening on the side facing the control surface; A plurality of directional variable speakers arranged in a space and including a plurality of omnidirectional sound sources, and the other area divided by the control surface is set as a listening area, and a desired sound is set in the listening area. Weights of the omnidirectional sound sources are set so that sound pressures observed on the control surface are reproduced when it is assumed that virtual sound sources that reproduce a field are arranged in the predetermined space, and the weights A method for reproducing a sound field, comprising: driving the omnidirectional sound source based on the sound field.
請求項3に記載の音場再生方法であって、
前記重みを要素に持つベクトルを、
前記無指向性音源と前記音圧が観測される点との間の音響伝達関数を要素に持つ行列と、前記音響伝達関数を要素に持つ行列のエルミート転置と、ティホノフの正則化法における正則化項と、前記音圧が観測される点における所望の音圧を要素に持つベクトルを用いて予め計算するステップを含む
音場再生方法。
The sound field reproduction method according to claim 3,
A vector having the weight as an element,
A matrix having an acoustic transfer function as an element between the omnidirectional sound source and the point at which the sound pressure is observed, a Hermitian transposition of the matrix having the acoustic transfer function as an element, and regularization in the Tihonov regularization method And a step of calculating in advance using a vector having a desired sound pressure at a point where the sound pressure is observed as an element.
コンピュータを、請求項1又は2に記載の音場再生装置として機能させるプログラム。   A program for causing a computer to function as the sound field reproducing device according to claim 1 or 2.
JP2015020201A 2015-02-04 2015-02-04 Sound field reproduction apparatus, sound field reproduction method, and program Active JP6228945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020201A JP6228945B2 (en) 2015-02-04 2015-02-04 Sound field reproduction apparatus, sound field reproduction method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020201A JP6228945B2 (en) 2015-02-04 2015-02-04 Sound field reproduction apparatus, sound field reproduction method, and program

Publications (2)

Publication Number Publication Date
JP2016144129A true JP2016144129A (en) 2016-08-08
JP6228945B2 JP6228945B2 (en) 2017-11-08

Family

ID=56570928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020201A Active JP6228945B2 (en) 2015-02-04 2015-02-04 Sound field reproduction apparatus, sound field reproduction method, and program

Country Status (1)

Country Link
JP (1) JP6228945B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211984A1 (en) * 2017-05-16 2018-11-22 ソニー株式会社 Speaker array and signal processor
CN114386296A (en) * 2021-11-29 2022-04-22 哈尔滨工程大学 Numerical calculation method for three-dimensional sound field in reverberation pool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078132A1 (en) * 2004-10-12 2006-04-13 Sony Corporation Method and apparatus for reproducing audio signal
JP2007110455A (en) * 2005-10-14 2007-04-26 Yamaha Corp Acoustic reproduction system
JP2007312034A (en) * 2006-05-17 2007-11-29 Solid Acoustics Co Ltd Installation method of dodecahedron speaker and acoustic space using dodecahedron speaker
JP2012147413A (en) * 2010-12-21 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> Narrow directional sound reproduction processing method, device, and program
US20130223658A1 (en) * 2010-08-20 2013-08-29 Terence Betlehem Surround Sound System
JP2014007543A (en) * 2012-06-25 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Sound field reproduction apparatus, method and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078132A1 (en) * 2004-10-12 2006-04-13 Sony Corporation Method and apparatus for reproducing audio signal
JP2006114945A (en) * 2004-10-12 2006-04-27 Sony Corp Reproduction method of audio signal, and reproducing apparatus thereof
JP2007110455A (en) * 2005-10-14 2007-04-26 Yamaha Corp Acoustic reproduction system
JP2007312034A (en) * 2006-05-17 2007-11-29 Solid Acoustics Co Ltd Installation method of dodecahedron speaker and acoustic space using dodecahedron speaker
US20130223658A1 (en) * 2010-08-20 2013-08-29 Terence Betlehem Surround Sound System
JP2013538512A (en) * 2010-08-20 2013-10-10 インダストリアル リサーチ リミテッド Surround sound system
JP2012147413A (en) * 2010-12-21 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> Narrow directional sound reproduction processing method, device, and program
JP2014007543A (en) * 2012-06-25 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Sound field reproduction apparatus, method and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211984A1 (en) * 2017-05-16 2018-11-22 ソニー株式会社 Speaker array and signal processor
CN110637466A (en) * 2017-05-16 2019-12-31 索尼公司 Loudspeaker array and signal processing device
JPWO2018211984A1 (en) * 2017-05-16 2020-03-19 ソニー株式会社 Speaker array and signal processing device
EP3627850A4 (en) * 2017-05-16 2020-05-06 Sony Corporation Speaker array and signal processor
US11076230B2 (en) 2017-05-16 2021-07-27 Sony Corporation Speaker array, and signal processing apparatus
CN110637466B (en) * 2017-05-16 2021-08-06 索尼公司 Loudspeaker array and signal processing device
JP7099456B2 (en) 2017-05-16 2022-07-12 ソニーグループ株式会社 Speaker array and signal processing equipment
CN114386296A (en) * 2021-11-29 2022-04-22 哈尔滨工程大学 Numerical calculation method for three-dimensional sound field in reverberation pool
CN114386296B (en) * 2021-11-29 2023-03-24 哈尔滨工程大学 Numerical calculation method for three-dimensional sound field in reverberation pool

Also Published As

Publication number Publication date
JP6228945B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US8406436B2 (en) Microphone array
CN102089634B (en) Reconstructing an acoustic field
Parra Steerable frequency-invariant beamforming for arbitrary arrays
Gauthier et al. Beamforming regularization matrix and inverse problems applied to sound field measurement and extrapolation using microphone array
Bertet et al. 3D sound field recording with higher order ambisonics-objective measurements and validation of spherical microphone
Klippel et al. Holographic nearfield measurement of loudspeaker directivity
JP6228945B2 (en) Sound field reproduction apparatus, sound field reproduction method, and program
US9497561B1 (en) Wave field synthesis by synthesizing spatial transfer function over listening region
Kujawski et al. A framework for generating large-scale microphone array data for machine learning
JP5986966B2 (en) Sound field recording / reproducing apparatus, method, and program
JP2018077139A (en) Sound field estimation device, sound field estimation method and program
JP6345634B2 (en) Sound field reproducing apparatus and method
JP6087856B2 (en) Sound field recording and reproducing apparatus, system, method and program
JP5337189B2 (en) Reflector arrangement determination method, apparatus, and program for filter design
JP6285881B2 (en) Sound field reproduction apparatus, sound field reproduction method, and program
JP2019075616A (en) Sound field recording apparatus and sound field recording method
CN110637466B (en) Loudspeaker array and signal processing device
Koyano et al. Infinite-dimensional SVD for revealing microphone array’s characteristics
JP2017130899A (en) Sound field estimation device, method therefor and program
JP2018093379A (en) Sound field estimation device, sound field estimation method, and program
JP2018120129A (en) Sound field estimation device, method and program
Gao et al. The microphone array arrangement method for high order ambisonics recordings
Sanalatii et al. Assessment of the radiation mode method for in situ measurements of loudspeaker systems
JP6345633B2 (en) Sound field reproducing apparatus and method
WO2021024806A1 (en) Speaker array, signal processing device, signal processing method, and signal processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6228945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150