JP2016142673A - Remaining life assessment device and method for power storage medium - Google Patents

Remaining life assessment device and method for power storage medium Download PDF

Info

Publication number
JP2016142673A
JP2016142673A JP2015020051A JP2015020051A JP2016142673A JP 2016142673 A JP2016142673 A JP 2016142673A JP 2015020051 A JP2015020051 A JP 2015020051A JP 2015020051 A JP2015020051 A JP 2015020051A JP 2016142673 A JP2016142673 A JP 2016142673A
Authority
JP
Japan
Prior art keywords
capacitor
remaining life
cell
voltage
measurement cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015020051A
Other languages
Japanese (ja)
Inventor
祐輔 中島
Yusuke Nakajima
祐輔 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2015020051A priority Critical patent/JP2016142673A/en
Publication of JP2016142673A publication Critical patent/JP2016142673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem in which it is difficult to assess a remaining life when a load is small and a capacitor has a small internal resistance.SOLUTION: A cell for measurement is arranged at an arbitrary position of an arbitrary capacitor module in a capacitor bank. A DC power source which outputs a DC voltage different from a DC supply voltage applied to the capacitor bank is connected to the cell for measurement. A resistance for charging, a selector switch and a resistance for discharging are connected between the DC power source and cell for measurement. The selector switch is switched by a control circuit. The cell for measurement is so switched that the DC power source is on the side of the cell for measurement normally or in charging and that energy stored in the cell for measurement is discharged through the resistance for discharging in remaining life assessment or momentary voltage compensation.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電媒体の余寿命診断装置とその方法に関するものである。   The present invention relates to a storage medium remaining life diagnosis apparatus and method.

一般に電気二重層キャパシタなどの蓄電媒体の経年変化は、蓄電媒体の内部温度と印加電圧が条件であることが知られている。このため、充放電による温度上昇も特性劣化の要因になっている。   In general, it is known that the aging of an electric storage medium such as an electric double layer capacitor depends on the internal temperature and applied voltage of the electric storage medium. For this reason, the temperature rise due to charging / discharging is also a factor of characteristic deterioration.

従来、充放電により特性変化が生じるキャパシタ、電解コンデンサおよび2次電池における寿命診断の技術としては数多く公知となっている。例えば、特許文献1では、単電池である蓄電池セルを複数積層して蓄電池を構成し、この蓄電池を複数並設した蓄電パックとしたものにおいて、各蓄電池の各蓄電池セルの電圧を測定する電圧測定器を設け、そのうちの特定の電池群を寿命事前検知用とし、他の電池群よりも過酷な条件で充放電させて寿命事前検知用の電池群の劣化を推定し、その推定結果に基づいて他の電池群の寿命を事前に検知している。   Conventionally, many techniques for diagnosing the life of capacitors, electrolytic capacitors, and secondary batteries whose characteristics change due to charge / discharge are well known. For example, in Patent Document 1, a storage battery is configured by stacking a plurality of storage battery cells, each of which is a single battery, and in a storage pack in which a plurality of storage batteries are arranged side by side, voltage measurement is performed to measure the voltage of each storage battery cell of each storage battery. A specific battery group is used for pre-life detection, and the battery group for pre-life detection is estimated for deterioration by charging and discharging under severer conditions than other battery groups. The life of other battery groups is detected in advance.

特開2013−142630JP2013-142630A

キャパシタ特性の経年による劣化状態は、内部抵抗の増加と容量の低減で現れる。例えば、電気二重層キャパシタを電力系統に設けられる瞬時補償装置に使用した場合、瞬時補償装置の放電時の直流電圧・直流電流・温度から余寿命診断を実施すると、以下の問題が存在する。
(1)電気二重層キャパシタは内部抵抗が小さいため、負荷が小さい場合には余寿命診断が難しくなる。
(2)瞬時補償装置が動作しないと余寿命診断を実施できない。
(3)仮に強制的に実施したとしても、実施中に放電が終了するために瞬時補償装置による系統電圧の補償ができない。
(4)電力系統などのように大規模なシステムに余寿命診断を実施した場合、装置における温度分布が異なるため測定誤差が発生し、最悪条件に至るまで劣化が不明となる虞が生じる。
The deterioration of capacitor characteristics due to aging appears due to an increase in internal resistance and a decrease in capacitance. For example, when an electric double layer capacitor is used in an instantaneous compensator provided in an electric power system, the following problems exist when the remaining life diagnosis is performed from the direct current voltage, direct current, and temperature when the instantaneous compensator is discharged.
(1) Since the electric double layer capacitor has a small internal resistance, the remaining life diagnosis becomes difficult when the load is small.
(2) The remaining life diagnosis cannot be performed unless the instantaneous compensator operates.
(3) Even if it is forcibly carried out, the system voltage cannot be compensated by the instantaneous compensator because the discharge ends during the implementation.
(4) When the remaining life diagnosis is performed on a large-scale system such as an electric power system, a temperature error in the apparatus is different, so that a measurement error occurs, and there is a possibility that the deterioration becomes unknown until the worst condition is reached.

そこで、本発明が目的とするところは、瞬時補償装置の可動中でも使用できる蓄電媒体の余寿命診断装置とその方法を提供することにある。   Accordingly, an object of the present invention is to provide a power storage medium remaining life diagnosis apparatus and method that can be used even when the instantaneous compensator is moving.

本発明は、複数のキャパシタモジュールからなるキャパシタバンクであって、
このキャパシタバンクを構成する蓄電媒体の余寿命診断を行うものにおいて、
前記キャパシタモジュールのうち、周囲温度が高くなるキャパシタモジュールで、且つ周囲温度が高くなる当該キャパシタモジュールの任意の位置に温度センサーを有する計測用セルを配設し、
前記キャパシタバンクに印加される直流電源電圧とは異なる直流電圧を出力する直流電源を設け、
直流電源を、充電用の抵抗,切替えスイッチ,放電用の抵抗を介して前記計測用セルに接続すると共に、
前記切替えスイッチを切替える制御回路を設け、
制御回路は、前記計測用セルに対して常時若しくは充電時に前記直流電源を計測用セル側に、余寿命診断時若しくは電圧の瞬時低下時には計測用セルに蓄積されたエネルギーを前記放電用の抵抗を介して放電するよう切替え制御することを特徴としたものである。
The present invention is a capacitor bank comprising a plurality of capacitor modules,
In what performs the remaining life diagnosis of the storage medium constituting this capacitor bank,
Among the capacitor modules, a measurement module having a temperature sensor is disposed at an arbitrary position of the capacitor module in which the ambient temperature is high and the ambient temperature is high,
A DC power supply that outputs a DC voltage different from the DC power supply voltage applied to the capacitor bank is provided,
A DC power source is connected to the measurement cell via a charging resistor, a changeover switch, and a discharging resistor,
A control circuit for switching the changeover switch is provided,
The control circuit uses the DC power supply to the measurement cell side at all times or when the measurement cell is charged, and uses the discharge resistance to store the energy accumulated in the measurement cell at the time of remaining life diagnosis or when the voltage drops momentarily. The switching control is performed so that the electric discharge is performed.

本発明の直流電源から出力される電圧値は、前記キャパシタモジュール1セルに印加される電圧に相当する電圧値であることを特徴としたものである。   The voltage value output from the DC power supply according to the present invention is a voltage value corresponding to a voltage applied to one cell of the capacitor module.

本発明のキャパシタバンクは電圧の瞬時補償装置に適用され、前記制御回路は電圧の瞬時低下時の補償時と余寿命診断時に、計測用セルに蓄積されたエネルギーを前記放電用の抵抗を介して放電するよう切替え制御することを特徴としたものである。   The capacitor bank of the present invention is applied to an instantaneous voltage compensation device, and the control circuit transfers the energy stored in the measurement cell through the discharge resistor during compensation at the time of instantaneous voltage drop and during remaining life diagnosis. It is characterized by switching control so as to discharge.

本発明の放電用の抵抗の値を、前記計測用セルのキャパシタ内部抵抗の消費電力量と、放電用の抵抗を通して放電したときの計測用セルのキャパシタ内部抵抗による消費電力量とが略同一になるよう選定したことを特徴としたものである。   The value of the discharge resistance of the present invention is such that the amount of power consumed by the capacitor internal resistance of the measurement cell is substantially the same as the amount of power consumed by the capacitor internal resistance of the measurement cell when discharged through the discharge resistor. It is characterized by having been selected.

本発明の制御回路は、予め計測用セルのキャパシタ内部抵抗値と容量値を規定値として記憶し、規定値と計測された計測用セルの電圧、電流に基づく消費電力量との比較によって余寿命診断を行うことを特徴としたものである。   The control circuit of the present invention stores in advance the capacitor internal resistance value and capacitance value of the measurement cell as specified values, and compares the specified value with the power consumption based on the measured voltage and current of the measurement cell, thereby remaining life. It is characterized by making a diagnosis.

本発明は、キャパシタバンクを複数のキャパシタモジュールで構成し、キャパシタモジュールのうち、周囲温度が高くなるキャパシタモジュールで、且つ周囲温度が高くなる当該キャパシタモジュールの任意の位置に温度センサーを有する計測用セルを配設し、
前記キャパシタバンクに印加される直流電源電圧とは異なる直流電圧に、充電用の抵抗,切替えスイッチ,放電用の抵抗を介して前記計測用セルを接続し、
前記計測用セルに対して常時若しくは充電時に前記直流電源を計測用セル側に、余寿命診断時には計測用セルに蓄積されたエネルギーを前記放電用の抵抗を介して放電するよう制御回路を介し切替え制御し、予め設定された計測用セルのキャパシタ内部抵抗値と容量値の規定値と、計測された計測用セルの電圧、電流に基づく消費電力量との比較によって余寿命診断を行うことを特徴としたものである。
The present invention relates to a measurement cell having a capacitor bank composed of a plurality of capacitor modules, a capacitor module having a high ambient temperature, and a temperature sensor at an arbitrary position of the capacitor module having a high ambient temperature. Arrange
The measurement cell is connected to a DC voltage different from the DC power supply voltage applied to the capacitor bank via a charging resistor, a changeover switch, and a discharging resistor,
Switch the DC power supply to the measuring cell side at all times or when charging the measuring cell, and switch the control circuit to discharge the energy stored in the measuring cell via the discharging resistor at the time of remaining life diagnosis Controlling and performing a remaining life diagnosis by comparing the preset values of the internal resistance value and the capacitance value of the measurement cell and the power consumption based on the measured voltage and current of the measurement cell It is what.

本発明は、計測用セルに対し、計測用セルの常時の周囲温度、計測用セル放電時の温度上昇、計測用セルの充電時の温度上昇の温度責務を与えるよう前記充電用の抵抗と放電用の抵抗の値を選定したことを特徴としたものである。   The present invention relates to the charging resistor and discharge so as to give the measurement cell the responsibility of the ambient temperature of the measurement cell, the temperature rise at the time of discharge of the measurement cell, and the temperature rise at the time of charging the measurement cell. This is characterized in that the value of the resistance is selected.

以上のとおり、本発明によれば、少ない部材構成で、システム全体の悪い条件を模擬できて確実な余寿命診断が可能となるものである。また、本発明を電気二重層キャパシタのような内部抵抗の小さいキャパシタを用いて瞬時補償装置を構成した場合でも、瞬時補償装置の稼働中でも余寿命が推定でき、且つ放電(抵抗)が一定であるため余寿命診断が行い易いなどの効果を有するものである。   As described above, according to the present invention, it is possible to perform a reliable remaining life diagnosis by simulating bad conditions of the entire system with a small number of member configurations. Further, even when the instant compensation device is configured using a capacitor having a small internal resistance such as an electric double layer capacitor, the remaining life can be estimated even when the instant compensation device is in operation, and the discharge (resistance) is constant. Therefore, it has an effect that it is easy to perform the remaining life diagnosis.

本発明の実施形態を示すキャパシタバンクの構成図。The block diagram of the capacitor bank which shows embodiment of this invention. 本発明の実施形態を示すキャパシタモジュールの構成図で、(a)は常時若しくは充電時の状態図、(b)は余寿命診断若しくは電圧の瞬低補償時の状態図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the capacitor module which shows embodiment of this invention, (a) is a state figure at the time of always or charge, (b) is a state figure at the time of a remaining life diagnosis or the voltage drop compensation. キャパシタモジュールの1セルのキャパシタ責務波形。Capacitor duty waveform of one cell of capacitor module. 計測用セルの責務波形。Responsibility waveform of measurement cell.

図1はキャパシタバンクの接続状態を示したものである。図1では、キャパシタとして電気二重層キャパシタが用いられ、複数のキャパシタ(1キャパシタ=1セル)を直列に接続して1つのキャパシタモジュール1を構成し、キャパシタモジュール1を複数(1-1〜1-4)並列接続してキャパシタバンク10が構成される。   FIG. 1 shows the connection state of the capacitor bank. In FIG. 1, an electric double layer capacitor is used as a capacitor, and a plurality of capacitors (1 capacitor = 1 cell) are connected in series to constitute one capacitor module 1, and a plurality of capacitor modules 1 (1-1 to 1) are formed. -4) Capacitor bank 10 is configured by parallel connection.

キャパシタバンク10の任意のキャパシタモジュール1には、計側用セル2が組み込まれる。図1ではキャパシタモジュール1-3に計側用セル2が組み込まれてキャパシタバンク10が接続される直流電源とは別の直流電源Eに接続されている。なお、組み込まれたキャパシタモジュール1-3では、他のキャパシタモジュールのキャパシタ数よりも計側用セル数分だけ多くのキャパシタが積層される。   A measuring cell 2 is incorporated in an arbitrary capacitor module 1 of the capacitor bank 10. In FIG. 1, the measuring cell 2 is incorporated in the capacitor module 1-3 and is connected to a DC power source E different from the DC power source to which the capacitor bank 10 is connected. In the built-in capacitor module 1-3, a larger number of capacitors are stacked by the number of measurement side cells than the number of capacitors of other capacitor modules.

図2は計側用セル2を有するキャパシタモジュール1-3の構成図で、Pは正極導体で積層されたキャパシタの正極端子が接続される。Nは負極導体で積層されたキャパシタの負極端子が接続される。計側用セル2は、このP,N極導体には接続されず、別途設けられた所定の電圧を有する直流電源Eに抵抗R0,切替えスイッチSW,抵抗Rおよび電流計を介して接続される。切替えスイッチSWは、計側用セル2から直流電源Eと抵抗R0を切り離すための機能を備えている。また、Vは電圧計、Aは電流計、Tsは温度センサーである。   FIG. 2 is a block diagram of the capacitor module 1-3 having the measuring cell 2. P is connected to the positive terminal of a capacitor laminated with a positive conductor. N is connected to the negative terminal of a capacitor laminated with a negative conductor. The meter-side cell 2 is not connected to the P and N pole conductors, but is connected to a separately provided DC power source E having a predetermined voltage via a resistor R0, a changeover switch SW, a resistor R, and an ammeter. . The change-over switch SW has a function for disconnecting the DC power source E and the resistor R0 from the meter-side cell 2. V is a voltmeter, A is an ammeter, and Ts is a temperature sensor.

計側用セル2に印加する責務は、温度、定常的な直流電圧、および充放電電流による温度の責務である。この温度責務については次のことが考慮されている。   The duty to be applied to the meter-side cell 2 is the duty of temperature due to temperature, steady DC voltage, and charge / discharge current. The following are considered for this temperature responsibility.

計側用セル2の周囲温度は、他のキャパシタの周囲温度に比べて高くなる位置に配設される。キャパシタバンク10内の位置としては、キャパシタモジュール1-2又はキャパシタモジュール1-3で他のキャパシタバンク1-1と1-4に囲まれたキャパシタモジュール位置あり、且つキャパシタモジュールの中心位置のように、計側用セル2の温度が一般的に最も影響を受けやすい中心位置に配設される。これにより、周囲の蓄電媒体と温度環境を同程度、若しくは厳しい環境になる。   The ambient temperature of the meter-side cell 2 is disposed at a position that is higher than the ambient temperature of other capacitors. The position in the capacitor bank 10 is a capacitor module position surrounded by the capacitor module 1-2 or the capacitor module 1-3 and the other capacitor banks 1-1 and 1-4, and the center position of the capacitor module. The temperature of the meter-side cell 2 is generally arranged at a central position that is most susceptible to the influence. As a result, the ambient power storage medium and the temperature environment become the same or severe environment.

定常的な電圧責務としては、直流電源Eの電圧値は各キャパシタモジュールの1セルに印加される電圧値に相当する値に設定され、計側用セル2には図2(a)で示すように切替えスイッチSWを接点a側に投入されて、抵抗R0,切替えスイッチSWの接点a,抵抗Rを介して印加される。   As a steady voltage duty, the voltage value of the DC power supply E is set to a value corresponding to the voltage value applied to one cell of each capacitor module, and the meter side cell 2 has a value as shown in FIG. The switch SW is applied to the contact a side and applied through the resistor R0, the contact a of the switch SW, and the resistor R.

充放電責務としては、充放電によるキャパシタ内部温度の上昇分を印加するため、キャパシタバンク10が動作した際、または動作後に指定の時間で切替えスイッチSWを接点b側に投入し、抵抗Rを介して計側用セル2内のエネルギーを放電する。この時の放電電流は抵抗Rによって制限される。   As the charge / discharge duty, an increase in the internal temperature of the capacitor due to charge / discharge is applied. Therefore, when the capacitor bank 10 is operated or after the operation, the change-over switch SW is turned on to the contact b side through the resistor R through the resistor R. The energy in the measuring cell 2 is discharged. The discharge current at this time is limited by the resistance R.

キャパシタ特性の測定と余寿命診断については次のように行われる。
キャパシタモジュール1-3内に配設された計側用セル2の特定判定は、抵抗Rを介して短時間でキャパシタ内のエネルギーを放電させ、放電直前から放電終了後までの測定された電圧値と電流値を制御回路20に取り込んで内部抵抗と容量を演算する。その結果からキャパシタバンク10の余寿命診断を行う。なお、切替えスイッチSWの切替えも、予め決められたモードに基づいて制御回路20により行われる。すなわち、常時状態と充電状態時には切替えスイッチSWは図2(a)となり、瞬時補償時と余寿命診断時には図2(b)の状態に所定の時間制御が行われる。
The measurement of capacitor characteristics and the remaining life diagnosis are performed as follows.
The specific determination of the measuring cell 2 disposed in the capacitor module 1-3 is performed by discharging the energy in the capacitor in a short time via the resistor R, and measuring the voltage value immediately before the discharge and after the end of the discharge. And the current value is taken into the control circuit 20 to calculate the internal resistance and capacitance. Based on the result, the remaining life diagnosis of the capacitor bank 10 is performed. The changeover switch SW is also switched by the control circuit 20 based on a predetermined mode. That is, the change-over switch SW is as shown in FIG. 2A during the normal state and the charging state, and a predetermined time control is performed in the state shown in FIG. 2B during the instantaneous compensation and the remaining life diagnosis.

次に作用を説明する。
図3はキャパシタ1個の動作波形図を示したものである。瞬時補償装置でのキャパシタは、内部抵抗と容量は経年と共に変化する。経年による特性の変化を考慮することで負荷へ所定の時間、所定の電力を供給することができる。また、この所定の時間後(放電後)に所定の直流電圧値であるようにキャパシタを選定する。
Next, the operation will be described.
FIG. 3 shows an operation waveform diagram of one capacitor. The internal resistance and capacitance of the capacitor in the instantaneous compensator change with time. By taking into account changes in characteristics over time, it is possible to supply predetermined power to the load for a predetermined time. In addition, the capacitor is selected so as to have a predetermined DC voltage value after this predetermined time (after discharge).

ここで、対象とするキャパシタは、常時リップル電流が流れてキャパシタ電圧が略一定の用途ではなく、瞬時補償装置のような放電→充電→キャパシタ電圧を維持する充電(漏れ電流の補充のみの充電)の繰返しで使用されるキャパシタである。
図2で示すように、計側用セル2には専用の直流電源Eから常時キャパシタバンク10内の1キャパシタに印加される電圧に相当する電圧Vが印加される。キャパシタバンク10内の各キャパシタに対する電圧分担に不平衡が生じる場合もあるので、印加電圧は不平衡電圧を考慮して過酷な条件で設定してもよい。
Here, the target capacitor is not used for applications where the ripple current always flows and the capacitor voltage is almost constant. Discharging like the instantaneous compensator → Charging → Charging to maintain the capacitor voltage (charging with only replenishment of leakage current) It is a capacitor used by repeating.
As shown in FIG. 2, a voltage V corresponding to a voltage applied to one capacitor in the capacitor bank 10 is always applied from the dedicated DC power source E to the measuring cell 2. Since there may be an unbalance in voltage sharing for each capacitor in the capacitor bank 10, the applied voltage may be set under severe conditions in consideration of the unbalance voltage.

温度責務は常時の周囲温度、放電時の温度上昇、充電時の温度上昇の3つからなる。常時の周囲温度は前述のように使用されるキャパシタの中で最も温度の高い位置に温度センサーTsが設置される。放電時の温度上昇については、図3で示すキャパシタの放電電力量と略同一の消費電力量を生じさせる抵抗値を以下のように選定する。なお、図4は計側用セル2責務の波形図を示したものである。   The temperature responsibility is composed of the normal ambient temperature, the temperature rise during discharging, and the temperature rise during charging. As described above, the temperature sensor Ts is installed at the highest temperature among the capacitors used as described above. As for the temperature rise during discharge, a resistance value that causes a power consumption amount substantially the same as the discharge power amount of the capacitor shown in FIG. 3 is selected as follows. FIG. 4 shows a waveform diagram of the duty of the measuring cell 2.

抵抗Rの選定
瞬時補償装置における指定の放電・充電責務で、キャパシタバンク10内の一つのセル当たりのキャパシタ内部抵抗の消費電力量と、抵抗Rで放電したときのキャパシタ内部抵抗の消費電力量とを略同一になるよう選定する。例えば、実際に使用される波形が図3であるとすると、放電電力をP1,放電時間をT1とした電力量(=P1×T1)が、抵抗での放電時間と同一のT1通電し、放電用の抵抗Rで消費される電力量を一致させるよう(1)式によって抵抗値を選定する。キャパシタ内部抵抗≪抵抗Rとすれば、
Selection of resistor R With the designated discharge / charge duty in the instantaneous compensation device, the power consumption of the capacitor internal resistance per cell in the capacitor bank 10 and the power consumption of the capacitor internal resistance when discharged by the resistor R Are selected to be approximately the same. For example, if the waveform actually used is FIG. 3, the amount of electric power (= P1 × T1) where the discharge power is P1 and the discharge time is T1 is the same as the discharge time at the resistor, and the discharge is performed. The resistance value is selected according to the equation (1) so that the amount of power consumed by the resistance R is equal. Capacitor internal resistance << resistance R

Figure 2016142673
Figure 2016142673

キャパシタバンク10側のキャパシタの充電は定電流で行い、計側用セル2は抵抗R0を介して充電される。計側用セル2の充電用抵抗R0も放電用抵抗Rと同様にして選定される。 The capacitor on the capacitor bank 10 side is charged with a constant current, and the meter-side cell 2 is charged via the resistor R0. The charging resistor R0 of the measuring cell 2 is also selected in the same manner as the discharging resistor R.

抵抗R0の選定
キャパシタバンク10のキャパシタ充電電流I0と放電電流Iの関係は、キャパシタ充電電流I0≪放電電流Iの関係がある。このため、充電するには直流電源と直列に抵抗R0を設ける必要がある。この抵抗R0の抵抗値をR0とする。また、キャパシタ内部抵抗をRi,キャパシタ充電電流I0,充電時間をT0とすると、キャパシタバンク10側のキャパシタの内部抵抗の消費電力量はRi・I02・T0となる。計側用セル2の充電開始時のキャパシタ電圧をV1とすると、計側用セル2の充電電流Icは(2)式となる。
Selection of Resistor R0 The relationship between the capacitor charging current I0 and the discharging current I of the capacitor bank 10 is that of the capacitor charging current I0 << discharge current I. For this reason, it is necessary to provide a resistor R0 in series with the DC power source for charging. The resistance value of the resistor R0 is R0. If the capacitor internal resistance is Ri, the capacitor charging current I0, and the charging time is T0, the power consumption of the internal resistance of the capacitor on the capacitor bank 10 side is Ri · I0 2 · T0. Assuming that the capacitor voltage at the start of charging of the measuring cell 2 is V1, the charging current Ic of the measuring cell 2 is given by equation (2).

Figure 2016142673
Figure 2016142673

ここで、Rx=R+R0+Riである。充電時間をTcとすると、計側用セル2の内部抵抗の消費電力量は(3)式となる。   Here, Rx = R + R0 + Ri. Assuming that the charging time is Tc, the power consumption of the internal resistance of the meter-side cell 2 is expressed by equation (3).

Figure 2016142673
Figure 2016142673

キャパシタバンク10のキャパシタ充電時の内部抵抗の消費電力量と、計側用セル2の充電時の消費電力量の同一から、(4)式で抵抗値Rxが求まる。これのより充電回路に追加する抵抗R0を求めることができる。   The resistance value Rx can be obtained from the equation (4) from the same amount of power consumed by the internal resistor when charging the capacitor of the capacitor bank 10 and the amount of power consumed when charging the measuring cell 2. From this, the resistance R0 added to the charging circuit can be obtained.

Figure 2016142673
Figure 2016142673

上記計算では3倍の時定数で計算しているが、本発明では瞬時補償装置への適用以外でも適用できるが、瞬時補償装置に適用した場合、瞬時補償動作に合わせる必要がないので、時定数は適宜決めればよい。また、計側用セル2の放電・充電動作は、瞬時補償装置の動作があった場合、その動作完了後に行えばよく、同時に特性を計測する。特性計測による寿命判断は、予め設定された内部抵抗値、容量値を制御回路20に設定し、測定値が設定されたどちらかの値を超えたとき寿命とする判断機能を設けるか、若しくは測定値の目視によって判断する。   In the above calculation, the calculation is performed with a time constant of 3 times. However, in the present invention, it can be applied to other than the application to the instantaneous compensator, but when applied to the instantaneous compensator, it is not necessary to match the instantaneous compensation operation. May be determined as appropriate. Further, when the instantaneous compensator operates, the discharging / charging operation of the meter-side cell 2 may be performed after the operation is completed, and the characteristics are measured simultaneously. Life judgment by characteristic measurement is performed by setting a predetermined internal resistance value and capacitance value in the control circuit 20 and providing a judgment function for determining the life when the measured value exceeds one of the set values, or by measuring Judge by visual inspection of the values.

また、瞬時補償装置の負荷は常に装置の安定負荷であることの方が少ないので、充放電の温度上昇については一部過酷な条件で設定することで、余寿命診断における劣化推定を行う条件とすることが出来る。   In addition, since the load of the instantaneous compensator is always less stable, the temperature rise of charging / discharging is set under some severe conditions, and the condition for estimating deterioration in the remaining life diagnosis I can do it.

以上本発明によれば、複数のキャパシタモジュールからなるキャパシタバンクにおいて、任意のキャパシタモジュールに計側用セルを組み込み、この計側用セルに対して所定の温度責務を与えるものである。これにより、少ない部材構成で、システム全体の悪い条件を模擬できて確実な余寿命診断が可能となるものである。また、本発明を電気二重層キャパシタのような内部抵抗の小さいキャパシタを用いて瞬時補償装置を構成した場合でも、瞬時補償装置の稼働中でも余寿命が推定でき、且つ放電(抵抗)が一定であるため余寿命診断が行い易いなどの効果を有するものである。   As described above, according to the present invention, in a capacitor bank composed of a plurality of capacitor modules, a measuring cell is incorporated in an arbitrary capacitor module, and a predetermined temperature responsibility is given to the measuring cell. This makes it possible to simulate a bad condition of the entire system and to perform reliable remaining life diagnosis with a small number of member configurations. Further, even when the instant compensation device is configured using a capacitor having a small internal resistance such as an electric double layer capacitor, the remaining life can be estimated even when the instant compensation device is in operation, and the discharge (resistance) is constant. Therefore, it has an effect that it is easy to perform the remaining life diagnosis.

1(1-1〜1-4)… キャパシタモジュール
2… 計測用セル
10… キャパシタバンク
20… 制御回路
E… 直流電源
SW… 切替えスイッチ
Ts… 温度センサー
1 (1-1 to 1-4) ... Capacitor module 2 ... Measuring cell 10 ... Capacitor bank 20 ... Control circuit E ... DC power supply SW ... Changeover switch Ts ... Temperature sensor

Claims (7)

複数のキャパシタモジュールからなるキャパシタバンクであって、
このキャパシタバンクを構成する蓄電媒体の余寿命診断を行うものにおいて、
前記キャパシタモジュールのうち、周囲温度が高くなるキャパシタモジュールで、且つ周囲温度が高くなる当該キャパシタモジュールの任意の位置に温度センサーを有する計測用セルを配設し、
前記キャパシタバンクに印加される直流電源電圧とは異なる直流電圧を出力する直流電源を設け、
直流電源を、充電用の抵抗,切替えスイッチ,放電用の抵抗を介して前記計測用セルに接続すると共に、
前記切替えスイッチを切替える制御回路を設け、
制御回路は、前記計測用セルに対して常時若しくは充電時に前記直流電源を計測用セル側に、余寿命診断時若しくは電圧の瞬時低下時には計測用セルに蓄積されたエネルギーを前記放電用の抵抗を介して放電するよう切替え制御することを特徴とした蓄電媒体の余寿命診断装置。
A capacitor bank comprising a plurality of capacitor modules,
In what performs the remaining life diagnosis of the storage medium constituting this capacitor bank,
Among the capacitor modules, a measurement module having a temperature sensor is disposed at an arbitrary position of the capacitor module in which the ambient temperature is high and the ambient temperature is high,
A DC power supply that outputs a DC voltage different from the DC power supply voltage applied to the capacitor bank is provided,
A DC power source is connected to the measurement cell via a charging resistor, a changeover switch, and a discharging resistor,
A control circuit for switching the changeover switch is provided,
The control circuit uses the DC power supply to the measurement cell side at all times or when charging the measurement cell, and uses the discharge resistance to store the energy stored in the measurement cell at the time of remaining life diagnosis or when the voltage drops momentarily. The remaining life diagnosis device for a power storage medium, characterized in that switching control is performed so as to discharge through the storage medium.
前記直流電源から出力される電圧値は、前記キャパシタモジュール1セルに印加される電圧に相当する電圧値であることを特徴とした請求項1記載の蓄電媒体の余寿命診断装置。 The apparatus for diagnosing the remaining life of a storage medium according to claim 1, wherein the voltage value output from the DC power supply is a voltage value corresponding to a voltage applied to the cell of the capacitor module. 前記キャパシタバンクは電圧の瞬時補償装置に適用され、前記制御回路は電圧の瞬時低下時の補償時と余寿命診断時に、計測用セルに蓄積されたエネルギーを前記放電用の抵抗を介して放電するよう切替え制御することを特徴とした請求項1又は2記載の蓄電媒体の余寿命診断装置。 The capacitor bank is applied to an instantaneous voltage compensation device, and the control circuit discharges energy stored in the measurement cell via the discharge resistor at the time of compensation at the time of instantaneous voltage drop and at the time of remaining life diagnosis. 3. The storage medium remaining life diagnosis apparatus according to claim 1, wherein the switching control is performed as described above. 前記放電用の抵抗の値を、前記計測用セルのキャパシタ内部抵抗の消費電力量と、放電用の抵抗を通して放電したときの計測用セルのキャパシタ内部抵抗による消費電力量とが略同一になるよう選定したことを特徴とした請求項1乃至3の何れか1項に記載の蓄電媒体の余寿命診断装置。 With respect to the value of the discharge resistance, the power consumption amount of the internal resistance of the capacitor of the measurement cell is substantially the same as the power consumption amount of the internal resistance of the measurement cell when discharged through the discharge resistance. The remaining life diagnosis apparatus for a power storage medium according to any one of claims 1 to 3, wherein the remaining life diagnosis apparatus is selected. 前記制御回路は、予め計測用セルのキャパシタ内部抵抗値と容量値を規定値として記憶し、規定値と計測された計測用セルの電圧、電流に基づく消費電力量との比較によって余寿命診断を行うことを特徴とした請求項1乃至4の何れか1項に記載の蓄電媒体の余寿命診断装置。 The control circuit stores in advance the capacitor internal resistance value and capacitance value of the measurement cell as specified values, and performs a remaining life diagnosis by comparing the specified value with the measured power consumption based on the voltage and current of the measurement cell. The remaining life diagnosis apparatus for a power storage medium according to any one of claims 1 to 4, wherein the remaining life diagnosis apparatus is performed. キャパシタバンクを複数のキャパシタモジュールで構成し、キャパシタモジュールのうち、周囲温度が高くなるキャパシタモジュールで、且つ周囲温度が高くなる当該キャパシタモジュールの任意の位置に温度センサーを有する計測用セルを配設し、
前記キャパシタバンクに印加される直流電源電圧とは異なる直流電圧に、充電用の抵抗,切替えスイッチ,放電用の抵抗を介して前記計測用セルを接続し、
前記計測用セルに対して常時若しくは充電時に前記直流電源を計測用セル側に、余寿命診断時には計測用セルに蓄積されたエネルギーを前記放電用の抵抗を介して放電するよう制御回路を介し切替え制御し、予め設定された計測用セルのキャパシタ内部抵抗値と容量値の規定値と、計測された計測用セルの電圧、電流に基づく消費電力量との比較によって余寿命診断を行うことを特徴とした蓄電媒体の余寿命診断方法。
A capacitor bank is composed of a plurality of capacitor modules. Among the capacitor modules, a capacitor module having a high ambient temperature, and a measurement cell having a temperature sensor disposed at an arbitrary position of the capacitor module having a high ambient temperature. ,
The measurement cell is connected to a DC voltage different from the DC power supply voltage applied to the capacitor bank via a charging resistor, a changeover switch, and a discharging resistor,
Switch the DC power supply to the measuring cell side at all times or when charging the measuring cell, and switch the control circuit to discharge the energy stored in the measuring cell via the discharging resistor at the time of remaining life diagnosis Controlling and performing a remaining life diagnosis by comparing the preset values of the internal resistance value and the capacitance value of the measurement cell and the power consumption based on the measured voltage and current of the measurement cell A method for diagnosing the remaining life of a storage medium.
前記計測用セルに対し、計測用セルの常時の周囲温度、計測用セル放電時の温度上昇、計測用セルの充電時の温度上昇の温度責務を与えるよう前記充電用の抵抗と放電用の抵抗の値を選定したことを特徴とした請求項6記載の蓄電媒体の余寿命診断方法。
The charging resistor and the discharging resistor so as to give the measuring cell the responsibility of the ambient temperature of the measuring cell, the temperature rise at the time of discharging the measuring cell, and the temperature rise at the time of charging the measuring cell. 7. The method for diagnosing the remaining life of an electric storage medium according to claim 6, wherein the value of is selected.
JP2015020051A 2015-02-04 2015-02-04 Remaining life assessment device and method for power storage medium Pending JP2016142673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020051A JP2016142673A (en) 2015-02-04 2015-02-04 Remaining life assessment device and method for power storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020051A JP2016142673A (en) 2015-02-04 2015-02-04 Remaining life assessment device and method for power storage medium

Publications (1)

Publication Number Publication Date
JP2016142673A true JP2016142673A (en) 2016-08-08

Family

ID=56570342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020051A Pending JP2016142673A (en) 2015-02-04 2015-02-04 Remaining life assessment device and method for power storage medium

Country Status (1)

Country Link
JP (1) JP2016142673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621610A (en) * 2017-10-18 2018-01-23 国网河北能源技术服务有限公司 A kind of devices and methods therefor for being used to measure accumulator internal resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621610A (en) * 2017-10-18 2018-01-23 国网河北能源技术服务有限公司 A kind of devices and methods therefor for being used to measure accumulator internal resistance
CN107621610B (en) * 2017-10-18 2020-04-24 国网河北能源技术服务有限公司 Device and method for measuring internal resistance of storage battery

Similar Documents

Publication Publication Date Title
US8635038B2 (en) System for monitoring the state of a battery
JP6056730B2 (en) Power storage system
RU2603260C2 (en) Method for increasing service life of capacitors in sequential units and device for its implementation
JP5804523B2 (en) System and method for determining battery state of charge
JP5397679B2 (en) Secondary battery deterioration diagnosis method and secondary battery deterioration diagnosis device
US9291681B2 (en) Monitoring apparatus and method of battery contact point in charge/discharge system with batteries connected in series
JP6101714B2 (en) Battery control device, battery system
US10236695B2 (en) Connectivity check between cells and wiring control electronics with only one switch
US20190004115A1 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP5743634B2 (en) Deterioration measuring device, secondary battery pack, deterioration measuring method, and program
JP2008151526A (en) Apparatus for determining degradation of secondary cell and backup power supply
JP5910889B2 (en) Power storage system
US20160266211A1 (en) Remaining battery life prediction device and battery pack
JP7167062B2 (en) Rechargeable battery abnormality detection device and rechargeable battery abnormality detection method
JPWO2017043238A1 (en) Battery monitoring device
KR20150045600A (en) Battery tester and its control method
KR20220041045A (en) Battery performance evaluation method and device
AU2015359509B2 (en) Method and device for detecting an overcharging of an accumulator of a battery
JP2016011916A (en) Battery state monitoring circuit and battery device
TW201803242A (en) Battery internal resistance detection device with electricity recharge, and application method thereof capable of recovering energy consumed during battery internal resistance measurement
JPWO2015133401A1 (en) Control unit, storage battery system, battery cell balance method and program
KR101734724B1 (en) Apparatus for detecting electric leakage of electric vehicle
JP2016142673A (en) Remaining life assessment device and method for power storage medium
JP2013210348A (en) Method for diagnosing deterioration of battery pack and charge/discharge monitoring control system
JP2010246214A (en) Device for regulating and monitoring battery voltage