JP2016140870A - Method for forming a solder bump - Google Patents

Method for forming a solder bump Download PDF

Info

Publication number
JP2016140870A
JP2016140870A JP2015017178A JP2015017178A JP2016140870A JP 2016140870 A JP2016140870 A JP 2016140870A JP 2015017178 A JP2015017178 A JP 2015017178A JP 2015017178 A JP2015017178 A JP 2015017178A JP 2016140870 A JP2016140870 A JP 2016140870A
Authority
JP
Japan
Prior art keywords
pressure
solder
temperature
workpiece
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015017178A
Other languages
Japanese (ja)
Other versions
JP6506035B2 (en
Inventor
坂本 伊佐雄
Isao Sakamoto
伊佐雄 坂本
正訓 柴▲崎▼
Masanori Shibasaki
正訓 柴▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2015017178A priority Critical patent/JP6506035B2/en
Publication of JP2016140870A publication Critical patent/JP2016140870A/en
Application granted granted Critical
Publication of JP6506035B2 publication Critical patent/JP6506035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a solder bump capable of reducing voids efficiently.SOLUTION: A method for forming a solder bump on a workpiece comprises: the step of printing a solder paste to a predetermined position on said workpiece, heating the solder paste under a first pressure, and depressing the pressure around said workpiece to a second pressure lower than said first pressure when and after the temperature becomes near or higher a liquid phase temperature of said solder alloy; and the step of raising the pressure of said work surrounding to a third pressure higher than said second pressure while said heating temperature being kept at or higher than the liquid phase temperature of said solder alloy The steps are repeated by a plurality of times.SELECTED DRAWING: Figure 1

Description

本発明は、ワーク上に形成されるはんだバンプの形成方法に関する。   The present invention relates to a method for forming solder bumps formed on a workpiece.

従来より、電子機器や半導体の製造には、複数の被接合部、例えば電子部品と基板やシリコンウエハといったワークとを接合した接合構造体が用いられている。このような接合構造体は複数の被接合部間にはんだ層が形成されており、このはんだ層を介して各被接合部が接合されている。そしてこのような接合構造体を製造する際にワーク上にはんだバンプを形成し、このはんだバンプを介して複数の被接合部を接合する方法が用いられている。   Conventionally, in the manufacture of electronic devices and semiconductors, a joined structure in which a plurality of joined parts, for example, electronic components and a workpiece such as a substrate or a silicon wafer are joined is used. In such a bonded structure, a solder layer is formed between a plurality of bonded portions, and the bonded portions are bonded via the solder layer. And when manufacturing such a joining structure, a solder bump is formed on a work and a method of joining a plurality of joined parts via this solder bump is used.

このようなはんだバンプの形成に際して、ソルダペースト等のはんだ材料の濡れ性が不十分な場合、形成されるはんだバンプの中にボイド(気泡)が発生することがある。このようなボイドは被接合部間の接合性の低下や放熱性の低下を生じさせ、電子機器や半導体の信頼性の低下に繋がる。   When forming such solder bumps, if the wettability of solder material such as solder paste is insufficient, voids (bubbles) may be generated in the formed solder bumps. Such voids cause a decrease in bondability between the bonded portions and a decrease in heat dissipation, leading to a decrease in the reliability of electronic devices and semiconductors.

このようなボイドの発生を抑制する方法として、例えば水素ガス等の還元性の高い雰囲気下で加熱してはんだ材料の濡れ性を向上させる方法や、はんだ材料を介した被接合部を加熱してはんだ合金を溶融させ、その後これを収納した容器内を真空雰囲気下とすることで、はんだ合金内の空気を脱泡する方法が用いられてきた。   As a method for suppressing the generation of such voids, for example, a method of improving the wettability of the solder material by heating in a highly reducing atmosphere such as hydrogen gas, or heating a bonded portion via the solder material. A method has been used in which the solder alloy is melted, and then the air in the solder alloy is degassed by placing the container containing the solder alloy in a vacuum atmosphere.

また、はんだを溶融させた状態で減圧と加圧を複数回繰り返すことによりボイドの大きさを狭小化する方法(特許文献1)、一旦大気圧より低い第1圧力に減圧した後にハンダを溶融させ、昇温したまま第1圧力より高く大気圧を超えない第2圧力まで昇圧し、昇温したまま第1圧力より高く第2圧力より低い第3圧力まで減圧し、その後大気圧を超えない圧力に戻した後にハンダの融点以下に降温させる方法(特許文献2)、ほぼ大気圧下において半田を溶融させた後にこれを減圧し、その後にほぼ大気圧に戻す圧力変化過程を複数回繰り返す方法(特許文献3)等が開示されている。   In addition, a method of narrowing the size of the void by repeating the pressure reduction and pressurization a plurality of times while the solder is melted (Patent Document 1), once the pressure is reduced to the first pressure lower than the atmospheric pressure, the solder is melted The pressure is increased to a second pressure that is higher than the first pressure and does not exceed atmospheric pressure while the temperature is increased, and is reduced to a third pressure that is higher than the first pressure and lower than the second pressure while the temperature is increased, and then the pressure that does not exceed atmospheric pressure (Patent Document 2), after melting the solder at approximately atmospheric pressure, depressurizing the solder, and then repeating the pressure changing process to return to approximately atmospheric pressure a plurality of times (Patent Document 2) Patent Document 3) and the like are disclosed.

特開平6−69387号公報JP-A-6-69387 特許第4404000号公報Japanese Patent No. 4404000 特開2007−915号公報JP 2007-915 A

特許文献1および特許文献3に開示される方法の場合、減圧と加圧を複数回行う過程で脱泡の際にボイドが破裂したり、はんだ(半田)の濡れ性が悪化して十分にボイドを脱泡できなくなる虞がある。
また特許文献2に開示される方法の場合、減圧状態下ではんだ合金の溶融温度以上に昇温するため、ソルダペーストを用いた場合にはこれに含まれるフラックスが揮発し易くなり、はんだ合金の溶融性が低下する虞がある。
In the case of the methods disclosed in Patent Document 1 and Patent Document 3, voids are ruptured during defoaming in the process of depressurization and pressurization a plurality of times, or the wettability of solder (solder) is deteriorated, resulting in sufficient voids. May not be able to degas.
Further, in the case of the method disclosed in Patent Document 2, since the temperature is raised to the melting temperature of the solder alloy or higher under reduced pressure, the solder contained in the solder alloy is likely to volatilize when the solder paste is used. There is a possibility that the meltability is lowered.

本発明は、効率よくはんだバンプ中のボイドを低減することのできるはんだバンプの形成方法を提供することをその目的とする。   An object of the present invention is to provide a method for forming a solder bump that can efficiently reduce voids in the solder bump.

(1)本発明のはんだバンプの形成方法は、フラックスおよびはんだ合金からなるソルダペーストをワーク上の所定の位置に印刷する工程と、前記ワークを大気圧の近傍である第1の圧力下にて加熱する工程と、前記ワークを加熱する加熱温度が前記はんだ合金の液相温度近傍以上になった以降に前記ワーク周囲の圧力を前記第1の圧力よりも低い第2の圧力まで減圧する工程と、前記加熱温度が前記はんだ合金の液相温度以上の状態で前記ワーク周囲の圧力を前記第2の圧力よりも高い第3の圧力まで加圧する工程と、前記加熱温度が前記はんだ合金の液相温度以上の状態で前記ワーク周囲の圧力を前記第1の圧力まで加圧する工程と、前記ワーク周囲の圧力が前記第1の圧力に到達した以降に前記加熱温度を前記はんだ合金の液相温度以下にして前記ワーク上にはんだバンプを形成する工程とを含み、前記第2の圧力まで減圧する工程と前記第3の圧力まで加圧する工程とを複数回行うことをその特徴とする。 (1) The method for forming a solder bump of the present invention includes a step of printing a solder paste made of a flux and a solder alloy at a predetermined position on a workpiece, and the workpiece under a first pressure that is near atmospheric pressure. A step of heating, and a step of reducing the pressure around the workpiece to a second pressure lower than the first pressure after the heating temperature for heating the workpiece becomes near the liquidus temperature of the solder alloy. Pressurizing the pressure around the workpiece to a third pressure higher than the second pressure in a state where the heating temperature is equal to or higher than the liquid phase temperature of the solder alloy, and the heating temperature is a liquid phase of the solder alloy. Pressurizing the pressure around the workpiece to the first pressure in a state of temperature or higher, and after the pressure around the workpiece reaches the first pressure, the heating temperature is less than the liquid phase temperature of the solder alloy. And forming a solder bump on the workpiece in the, and its characterized in that said second plurality of times and a step of pressurizing to said third pressure and a step of pressure reduction to a pressure.

(2)上記(1)に記載の構成にあって、前記第2の圧力は、50Paから100Paであることをその特徴とする。 (2) In the configuration described in (1) above, the second pressure is 50 Pa to 100 Pa.

(3)上記(1)または(2)に記載の構成にあって、前記第3の圧力まで加圧する工程において、前記ワーク周囲の圧力が前記第3の圧力に到達した時点の前記加熱温度は前記はんだ合金の液相温度より10℃以上であることをその特徴とする。 (3) In the configuration described in (1) or (2) above, in the step of pressurizing to the third pressure, the heating temperature at the time when the pressure around the workpiece reaches the third pressure is It is characterized by being 10 ° C. or higher than the liquidus temperature of the solder alloy.

(4)上記(1)から(3)のいずれか1つに記載の構成にあって、前記第3の圧力は、10,000Paから50,000Paであることをその特徴とする。 (4) In the configuration described in any one of (1) to (3) above, the third pressure is 10,000 Pa to 50,000 Pa.

(5)上記(1)から(3)のいずれか1つに記載の構成にあって、前記第2の圧力まで減圧する工程と前記第3の圧力まで加圧する工程とを2回から4回行うことをその特徴とする。 (5) In the configuration according to any one of (1) to (3) above, the step of reducing the pressure to the second pressure and the step of pressurizing to the third pressure are performed twice to four times. It is characterized by what it does.

(6)上記(4)に記載の構成にあって、前記第2の圧力まで減圧する工程と前記第3の圧力まで加圧する工程とを2回から6回行うことをその特徴とする。 (6) In the configuration described in (4) above, the step of reducing the pressure to the second pressure and the step of pressurizing to the third pressure are performed twice to six times.

(7)上記(1)から(6)のいずれか1つに記載の構成にあって、前記第1の圧力から第2の圧力まで減圧してからこれを前記第3の圧力まで加圧するまでにかかる1回のサイクルタイムは、10秒間から40秒間であることをその特徴とする。 (7) In the configuration according to any one of (1) to (6) above, from depressurization from the first pressure to the second pressure and then pressurizing it to the third pressure One cycle time for the above is characterized in that it is 10 seconds to 40 seconds.

上記構成により、本発明に係るはんだバンプの形成方法は、効率よくはんだバンプ中のボイドを脱泡することができる。   With the above configuration, the solder bump forming method according to the present invention can efficiently degas voids in the solder bump.

本発明の一実施形態に係るはんだバンプの形成方法を用いて形成されたはんだバンプを有する基板の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of board | substrate which has a solder bump formed using the formation method of the solder bump which concerns on one Embodiment of this invention. 同実施形態に係り、容器内における温度プロファイルと圧力の変化を示す図である。It is a figure which concerns on the same embodiment and shows the change of the temperature profile in a container, and a pressure. 本発明の実施例に係り、はんだバンプの形成における温度プロファイルを示す図である。It is a figure which shows the temperature profile in formation of a solder bump concerning the Example of this invention.

以下、本発明のはんだバンプの形成方法の一実施形態について詳細に説明する。なお、本発明が当該実施形態に限定されないのはもとよりである。   Hereinafter, an embodiment of the method for forming solder bumps of the present invention will be described in detail. Of course, the present invention is not limited to this embodiment.

先ず、図1を用いて本実施形態の形成方法により形成されるはんだバンプを説明する。本実施形態においてはワークとして基板11を使用しているが、プリント基板、シリコンウエハ等、電子部品の搭載、実装に用いられる基材であればこれらに限らずワークとして使用することができる。図1に示すように、はんだバンプ10は、基板11上に形成される。   First, solder bumps formed by the forming method of this embodiment will be described with reference to FIG. In the present embodiment, the substrate 11 is used as a workpiece. However, the substrate 11 can be used as a workpiece as long as it is a substrate used for mounting and mounting electronic components such as a printed board and a silicon wafer. As shown in FIG. 1, the solder bump 10 is formed on the substrate 11.

次に本実施形態の形成方法では、先ず基板11上の所定の位置にはんだ合金とフラックスとを混合したソルダペーストを塗布する。このようなフラックスとしては、例えばベース樹脂と溶剤と活性剤とを含むものが挙げられる。
また前記ベース樹脂としては例えばロジン系樹脂、アクリル系樹脂等が、前記活性剤としては例えば有機酸、アミン類又はこれらのハロゲン化物等が挙げられる。またこれらに酸化防止剤、チキソ剤を添加したフラックスも好ましく用いられる。
Next, in the forming method of this embodiment, first, a solder paste in which a solder alloy and a flux are mixed is applied to a predetermined position on the substrate 11. Examples of such flux include those containing a base resin, a solvent, and an activator.
Examples of the base resin include rosin resins and acrylic resins, and examples of the activator include organic acids, amines, and halides thereof. Moreover, the flux which added antioxidant and the thixotropic agent to these is also used preferably.

このようなフラックスを用いることで、はんだ合金の濡れ性を向上し、形成するはんだバンプのボイド発生を抑制することができる。   By using such a flux, the wettability of the solder alloy can be improved and the generation of voids in the solder bumps to be formed can be suppressed.

また前記はんだ合金の組成も特に限定されないが、環境の観点から鉛フリーはんだであることが好ましい。なお、本実施形態においてはSn−3Ag−0.5Cu組成の鉛フリーはんだ合金を使用する。   The composition of the solder alloy is not particularly limited, but is preferably lead-free solder from the viewpoint of environment. In this embodiment, a lead-free solder alloy having a Sn-3Ag-0.5Cu composition is used.

次いで、ソルダペーストを塗布した基板11を例えば真空リフローはんだ付け装置に備え付けられた真空チャンバに収容する。
基板11を収容した前記真空チャンバ内は第1の圧力(P1)となるよう調整される。なおこの調整にあたっては、例えば、一旦室温にて大気圧状態から真空引きを行い前記真空チャンバ内を真空状態とした後、窒素等の不活性ガス、水素等の還元性ガスを供給して第1の圧力(P1)とすることが好ましい。また第1の圧力(P1)は、大気圧近傍であることが好ましい。
Next, the substrate 11 to which the solder paste is applied is accommodated in, for example, a vacuum chamber provided in a vacuum reflow soldering apparatus.
The inside of the vacuum chamber containing the substrate 11 is adjusted to be the first pressure (P1). In this adjustment, for example, after first evacuating from the atmospheric pressure state at room temperature to make the inside of the vacuum chamber into a vacuum state, an inert gas such as nitrogen or a reducing gas such as hydrogen is supplied. The pressure (P1) is preferable. The first pressure (P1) is preferably near atmospheric pressure.

そして前記真空チャンバ内を第1の圧力(P1)下としたまま前記真空チャンバ内を加熱することで基板11を加熱する。本実施形態における温度プロファイルおよび前記容器内(=基板11周囲)の圧力の変化を図2に示す。なお図2に示すように一定時間の予熱温度(図2では150℃)を保っても良い。
また、本実施形態においては第1の圧力(P1)下での加熱を前記真空チャンバ内で行ったが、例えば第1の圧力(P1)下での加熱はリフロー装置の加熱ゾーンにて行い、その後に基板11を前記真空チャンバ内に収容するようにしても良い。
Then, the substrate 11 is heated by heating the inside of the vacuum chamber while keeping the inside of the vacuum chamber under the first pressure (P1). FIG. 2 shows changes in the temperature profile and the pressure in the container (= around the substrate 11) in the present embodiment. In addition, as shown in FIG. 2, you may keep the preheating temperature (150 degreeC in FIG. 2) for a fixed time.
In the present embodiment, the heating under the first pressure (P1) is performed in the vacuum chamber. For example, the heating under the first pressure (P1) is performed in the heating zone of the reflow device, Thereafter, the substrate 11 may be accommodated in the vacuum chamber.

基板11への加熱温度が前記はんだ合金の液相温度近傍以上となった以降、前記真空チャンバ内の圧力を第1の圧力(P1)よりも低い第2の圧力(P2)まで減圧する。
本実施形態では、図2に示す温度プロファイルがはんだ合金の液相温度近傍以上となった以降、即ち前記真空チャンバ内の温度(D)が前記はんだ合金の液相温度である220℃(D1)になった際に、前記真空チャンバ内の圧力を第1の圧力(P1)よりも低い第2の圧力(P2)まで減圧する。減圧の方法としては、例えば前記真空チャンバに備え付けたポンプ(図示せず)を用いて、前記真空チャンバから気体を排気する方法が挙げられる。なお、特に前記真空チャンバ内が液相温度以上となった以降に前記真空チャンバ内の圧力を第2の圧力(P2)まで減圧することが好ましい。
After the heating temperature to the substrate 11 becomes equal to or higher than the liquid phase temperature of the solder alloy, the pressure in the vacuum chamber is reduced to a second pressure (P2) lower than the first pressure (P1).
In the present embodiment, after the temperature profile shown in FIG. 2 becomes equal to or higher than the liquid phase temperature of the solder alloy, that is, the temperature (D) in the vacuum chamber is 220 ° C. (D1), which is the liquid phase temperature of the solder alloy. The pressure in the vacuum chamber is reduced to a second pressure (P2) lower than the first pressure (P1). As a method for reducing the pressure, for example, a method of exhausting gas from the vacuum chamber using a pump (not shown) provided in the vacuum chamber can be mentioned. In particular, it is preferable that the pressure in the vacuum chamber is reduced to the second pressure (P2) after the inside of the vacuum chamber becomes equal to or higher than the liquid phase temperature.

このように、第2の圧力(P2)への減圧のタイミングを前記真空チャンバ内の温度がその液相温度近傍(本実施形態の場合は液相温度である220℃(D1))になった際に行うことにより、前記ソルダペーストに用いられるフラックス量の減少による前記はんだ合金の溶融性の低下を防ぐことができる。即ち、前記はんだ合金が溶融する前から長時間、前記真空チャンバ内を減圧状態としておくと前記フラックス量が減少し易くなり、前記はんだ合金の溶融性に影響を及ぼす虞がある。
なお本実施形態において液相温度近傍とは、前記はんだ合金の5割以上が溶融する温度を言う。
As described above, the timing of pressure reduction to the second pressure (P2) is such that the temperature in the vacuum chamber is close to the liquidus temperature (in this embodiment, the liquidus temperature is 220 ° C. (D1)) By doing so, it is possible to prevent a decrease in the meltability of the solder alloy due to a decrease in the amount of flux used in the solder paste. That is, if the vacuum chamber is kept in a reduced pressure state for a long time before the solder alloy is melted, the amount of flux tends to decrease, which may affect the meltability of the solder alloy.
In the present embodiment, the vicinity of the liquidus temperature refers to a temperature at which 50% or more of the solder alloy melts.

また本実施形態において、第2の圧力(P2)は、50Paから100Paであることが好ましい。この範囲は、はんだバンプが形成された基板(ワーク)の用途によって適宜選定することができる。   In the present embodiment, the second pressure (P2) is preferably 50 Pa to 100 Pa. This range can be appropriately selected depending on the use of the substrate (workpiece) on which the solder bumps are formed.

第2の圧力(P2)の真空度が高ければ高いほど前記はんだ合金内に含まれているボイドの膨張サイズが大きくなり、またその後の加圧時の圧力の差が大きくなるため、前記はんだ合金からのボイド排出効果は高まる。しかし本実施形態の場合、第2の圧力(P2)の真空度が50Pa以上であっても効率よくボイドの低減効果を発揮することができる。   The higher the degree of vacuum of the second pressure (P2), the larger the expansion size of the voids contained in the solder alloy, and the greater the difference in pressure during subsequent pressurization. The void discharge effect from is increased. However, in the case of this embodiment, even if the degree of vacuum of the second pressure (P2) is 50 Pa or more, the effect of reducing voids can be efficiently exhibited.

次に前記真空チャンバ内の圧力を第2の圧力(P2)よりも高い第3の圧力(P3)まで加圧する。加圧の方法としては、例えば前記真空チャンバ内に窒素等の不活性ガス、水素等の還元性ガスを供給して第3の圧力(P3)まで調整することが好ましい。
ここで第3の圧力(P3)に到達した時点の前記真空チャンバ内の温度(D2)は、前記はんだ合金の液相温度以上であることが好ましい。前記はんだ合金が凝固し始めた状態で第3の圧力(P3)まで加圧すると、ボイドが膨張した状態で前記はんだバンプに閉じ込められる虞がある。
Next, the pressure in the vacuum chamber is increased to a third pressure (P3) higher than the second pressure (P2). As a method of pressurization, for example, it is preferable to adjust the pressure to the third pressure (P3) by supplying an inert gas such as nitrogen or a reducing gas such as hydrogen into the vacuum chamber.
Here, the temperature (D2) in the vacuum chamber when the third pressure (P3) is reached is preferably equal to or higher than the liquidus temperature of the solder alloy. When the solder alloy starts to solidify and is pressurized to the third pressure (P3), the voids may be confined in the solder bumps in an expanded state.

なお、前記真空チャンバ内に窒素等のガスを供給する際、これらガスの温度との差異により、一旦前記真空チャンバ内の温度が下がることがある。この場合において、前記真空チャンバ内の温度(D2)と液相温度との差が小さい場合、この内部温度の低下により前記はんだ合金の一部に固相が発生して前記はんだ合金内のボイド排出効果を妨げ、形成したはんだバンプにボイドが膨張した状態で閉じ込められる虞がある。特に固相温度と液相温度の範囲が狭いはんだ合金を使用する場合、このような現象が起きやすくなる。前記真空チャンバ内の温度(D2)を前記はんだ合金の液相温度以上、特に液相温度より10℃以上とすることで、この現象を抑制することができる。   When a gas such as nitrogen is supplied into the vacuum chamber, the temperature in the vacuum chamber may be temporarily lowered due to a difference with the temperature of these gases. In this case, when the difference between the temperature (D2) in the vacuum chamber and the liquid phase temperature is small, a solid phase is generated in a part of the solder alloy due to a decrease in the internal temperature, and voids in the solder alloy are discharged. The effect may be hindered, and the void may be trapped in the formed solder bump. Such a phenomenon is likely to occur particularly when a solder alloy having a narrow range between the solid phase temperature and the liquid phase temperature is used. This phenomenon can be suppressed by setting the temperature (D2) in the vacuum chamber to be equal to or higher than the liquid phase temperature of the solder alloy, particularly 10 ° C. higher than the liquid phase temperature.

また、第3の圧力(P3)は、10,000Paから50,000Paであることが好ましい。この第3の圧力(P3)をこの範囲内とすることにより減圧と加圧のサイクルタイムを短縮することができ、短時間で複数回の減圧と加圧が可能になるため、効率よくはんだバンプのボイド低減を実現できる。またこの場合、前記ソルダペーストに含まれるフラックス量の減少およびこれによる前記はんだ合金表面の再酸化を抑制することができる。
一般的に、前記真空チャンバ内を真空圧に減圧すれば前記はんだ合金内に含まれているボイドの膨張サイズは大きくなり外に排出され易く、またその後に前記真空チャンバ内を大気圧まで加圧すれば前記ボイドが収縮する事ではんだに流動性を与え脱泡効果は向上する。一方、この減圧時と加圧時の圧力の差が大きいと脱泡時にボイドと共に溶融した前記はんだ合金が飛散する現象が起きる可能性がある。しかし第3の圧力(P3)を前記範囲内とした場合、このような飛散現象を抑制することができる。なお、後述のように本実施形態においては減圧と加圧を複数回繰り返すため、前記はんだ合金内のボイドを効率よく低減することができ、且つ、第3の圧力(P3)を前記範囲内とした場合、繰り返しによる前記飛散現象を抑制することもできる。
The third pressure (P3) is preferably 10,000 Pa to 50,000 Pa. By setting the third pressure (P3) within this range, the cycle time of pressure reduction and pressurization can be shortened, and multiple times of pressure reduction and pressurization are possible in a short time. Can be reduced. In this case, it is possible to suppress a decrease in the amount of flux contained in the solder paste and reoxidation of the solder alloy surface due to this.
In general, if the inside of the vacuum chamber is reduced to a vacuum pressure, the expansion size of the voids contained in the solder alloy increases and is easily discharged to the outside, and then the inside of the vacuum chamber is pressurized to atmospheric pressure. In this case, the voids shrink, thereby giving the solder fluidity and improving the defoaming effect. On the other hand, if the difference between the pressure at the time of depressurization and the pressure at the time of pressurization is large, there is a possibility that the solder alloy melted together with the void at the time of defoaming is scattered. However, when the third pressure (P3) is within the above range, such a scattering phenomenon can be suppressed. As will be described later, in this embodiment, since the pressure reduction and the pressurization are repeated a plurality of times, voids in the solder alloy can be efficiently reduced, and the third pressure (P3) is within the above range. In this case, the scattering phenomenon due to repetition can be suppressed.

この第1の圧力(P1)から第2の圧力(P2)への減圧、および第2の圧力(P2)から第3の圧力(P3)への加圧を1サイクルとした場合の1回のサイクルタイムは10秒間から40秒間であることが好ましい。1回のサイクルタイムをこの時間内とすることで、フラックス量の減少およびこれによる前記はんだ合金表面の再酸化を抑制することができる。一方、1回のサイクルタイムが40秒間より長くなると、前記ソルダペーストに含まれるフラックス量が減少し易くなり、前記はんだ合金からボイドを排除し難くなる虞がある。   When the pressure reduction from the first pressure (P1) to the second pressure (P2) and the pressurization from the second pressure (P2) to the third pressure (P3) are one cycle, The cycle time is preferably 10 seconds to 40 seconds. By setting one cycle time within this time, it is possible to suppress a decrease in the amount of flux and reoxidation of the solder alloy surface due to this. On the other hand, if the cycle time of one time is longer than 40 seconds, the amount of flux contained in the solder paste is likely to decrease, and it may be difficult to eliminate voids from the solder alloy.

また第1の圧力(P1)から第2の圧力(P2)までの減圧工程、および第2の圧力(P2)から第3の圧力(P3)までの加圧工程は複数回行われる。このように減圧と加圧を複数回繰り返すことにより溶融した前記はんだ合金内のボイドの脱泡を促し、形成したはんだバンプ内に残存するボイドを低減することが可能となる。   The depressurization step from the first pressure (P1) to the second pressure (P2) and the pressurization step from the second pressure (P2) to the third pressure (P3) are performed a plurality of times. In this way, by repeating the depressurization and pressurization a plurality of times, it is possible to promote the defoaming of the voids in the molten solder alloy, and it is possible to reduce the voids remaining in the formed solder bumps.

なお、この減圧工程と加圧工程の回数は2回から4回であることが好ましい。この減圧工程と加圧工程の回数は多い方が好ましいものの、回数を増やすために前記真空チャンバ内の加熱時間、特にピークの加熱時間が延びてしまうと、前記ソルダペーストに含まれるフラックス量が減少し、前記はんだ合金の表面が再酸化してしまう虞がある。
なお、前述のように第3の圧力(P3)を10,000Paから50,000Paの範囲内とした場合、短時間で減圧および加圧を行うことができるため、前記減圧工程と前記加圧工程の回数は2回から6回までとすることができる。
In addition, it is preferable that the frequency | count of this pressure reduction process and a pressurization process is 2 to 4 times. Although it is preferable that the number of times of the depressurization step and the pressurization step is large, if the heating time in the vacuum chamber, particularly the peak heating time, is increased to increase the number of times, the amount of flux contained in the solder paste decreases. However, the surface of the solder alloy may be reoxidized.
In addition, since the pressure reduction and pressurization can be performed in a short time when the third pressure (P3) is in the range of 10,000 Pa to 50,000 Pa as described above, the pressure reduction step and the pressure step The number of times can be from 2 to 6.

最後の減圧が終わった後、前記真空チャンバ内の圧力を第3の圧力(P3)まで加圧し、更にこれを第1の圧力(P1)まで加圧する。なお、図2に示された第1の圧力(P1)は最初の第1の圧力(P1)と同一値で表されているが、大気圧近傍の圧力であれば両者は同一でなくとも良い。また図2に示すように第3の圧力(P3)までの加圧と第1の圧力(P1)までの加圧は連続して行っても良く、また一旦第3の圧力(P3)に加圧した後に第1の圧力(P1)まで加圧しても良い。前述のように前記真空チャンバ内の加熱時間を延ばさないようにするためには、前者の連続しての加圧が好ましい。   After the final pressure reduction, the pressure in the vacuum chamber is increased to the third pressure (P3), and further increased to the first pressure (P1). In addition, although the 1st pressure (P1) shown by FIG. 2 is represented by the same value as the first 1st pressure (P1), both may not be the same as long as it is a pressure near atmospheric pressure. . In addition, as shown in FIG. 2, the pressurization up to the third pressure (P3) and the pressurization up to the first pressure (P1) may be performed continuously, and once applied to the third pressure (P3). After pressing, the pressure may be increased to the first pressure (P1). As described above, the former continuous pressurization is preferable in order not to extend the heating time in the vacuum chamber.

そして前記真空チャンバ内の圧力が第1の圧力(P1)にまで到達した以降、前記真空チャンバ内の温度を前記はんだ合金の液相温度以下にまで冷却し、その温度が室温近傍にまで戻った後、基板11を前記真空チャンバ内より取り出す。
その後、基板11上に残存するフラックス残渣(図示せず)を洗浄液等で除去し、図1に示すはんだバンプ10が形成された基板11が完成する。
Then, after the pressure in the vacuum chamber reaches the first pressure (P1), the temperature in the vacuum chamber is cooled to below the liquidus temperature of the solder alloy, and the temperature returns to near room temperature. Thereafter, the substrate 11 is taken out from the vacuum chamber.
Thereafter, the flux residue (not shown) remaining on the substrate 11 is removed with a cleaning solution or the like, and the substrate 11 on which the solder bumps 10 shown in FIG. 1 are formed is completed.

なお、本実施形態においては、特に図2に示す時間(T)、即ち第1の圧力(P1)から第2の圧力(P2)への減圧と第2の圧力(P2)から第3の圧力(P3)への加圧、および加圧により第1の圧力(P1)への復圧までに要する時間を短くし、またこの間に複数回減圧と加圧を繰り返すことにより、前記はんだ合金の濡れ性等に影響を与えることなく効率よくそのボイドを低減することができる。この時間(T)は、例えば120秒間から210秒間程度であることが好ましい。   In the present embodiment, in particular, the time (T) shown in FIG. 2, that is, the pressure reduction from the first pressure (P1) to the second pressure (P2) and the second pressure (P2) to the third pressure are shown. By shortening the time required for pressurization to (P3) and returning to the first pressure (P1) by pressurization, and repeating the depressurization and pressurization several times during this time, wetting of the solder alloy The voids can be efficiently reduced without affecting the properties and the like. This time (T) is preferably about 120 seconds to 210 seconds, for example.

以下、実施例および比較例を挙げて本発明を詳述する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.

<ソルダペーストの調製>
ベース樹脂、活性剤および溶剤を適宜混合してフラックスを作製し、これを12重量%とSn−3Ag−0.5Cuはんだ合金粉末88重量%(液相温度220℃)とをそれぞれ混合し、実施例および比較例に係るソルダペーストを得た。
<Preparation of solder paste>
A base resin, an activator, and a solvent are appropriately mixed to produce a flux, which is mixed with 12 wt% and Sn-3Ag-0.5Cu solder alloy powder 88 wt% (liquid phase temperature 220 ° C.). Solder pastes according to examples and comparative examples were obtained.

バンプ(実施例1から実施例7、比較例1から比較例3、参考例1から参考3)
FR4基板(Cu−OSP処理、基板レジスト膜20μm、電極ピッチ130μm、電極開口直径75μm)を使用した。前記FR4基板に対応するするパターンを有するメタルマスク(マスク厚30μm)を用いて各ソルダペーストを手刷りで印刷した。
Bump (Example 1 to Example 7, Comparative Example 1 to Comparative Example 3, Reference Example 1 to Reference 3)
An FR4 substrate (Cu-OSP treatment, substrate resist film 20 μm, electrode pitch 130 μm, electrode opening diameter 75 μm) was used. Each solder paste was printed by hand printing using a metal mask (mask thickness 30 μm) having a pattern corresponding to the FR4 substrate.

次いで、前記各基板をリフロー装置(製品名:SMT Scope SK−5000 山陽精工株式会社製)を用い、減圧および加圧時以外は大気圧で窒素雰囲気下(酸素濃度100ppm)、図3に示す温度プロファイル、並びに表1および表2に示す条件にてリフローを行い、各試験基板を作製した。 また前記各試験基板について、X線観察装置(製品名:XD7600 Diamond、Nordson Corporation社製)を用い、形成されたはんだバンプに占めるボイドの面積率を評価した。その結果を表1および表2に表す。
なお、表1および表2において第2の圧力への減圧タイミングは、いずれも昇温時の前記リフロー装置内の温度到達時を表す。
Next, each substrate was subjected to a reflow apparatus (product name: SMT Scope SK-5000, manufactured by Sanyo Seiko Co., Ltd.) under a nitrogen atmosphere at atmospheric pressure (oxygen concentration 100 ppm) except during decompression and pressurization, and the temperature shown in FIG. Reflow was performed under the conditions shown in Table 1 and Table 2 to prepare each test substrate. Moreover, about each said test board | substrate, the area ratio of the void which occupies for the formed solder bump was evaluated using the X-ray observation apparatus (Product name: XD7600 Diamond, Nordson Corporation company make). The results are shown in Tables 1 and 2.
In Tables 1 and 2, the depressurization timing to the second pressure represents the time when the temperature in the reflow apparatus reaches the temperature when the temperature is raised.

Figure 2016140870
Figure 2016140870

Figure 2016140870
Figure 2016140870

表1および表2に表されるように、実施例1から実施例7のいずれもボイド面積率は10%未満となり、ボイド低減効果のあることが分かる。
また実施例6および実施例7のように、第3の圧力を10,000Paから50,000Paとした場合、短時間に減圧−加圧回数を6回行っても良好なボイド低減効果を発揮することができる。
更に特に実施例4のように第3の圧力を10,000Paとし、減圧−加圧回数を4回とすると、前記基板上に塗布されたソルダペーストが第1の圧力よりも低圧力下且つ高温下(はんだ合金の溶融温度以上)に曝される時間を少なくしつつ減圧−加圧を繰り返すことにより、フラックス量の減少を防ぎつつよりよいボイド低減効果を発揮することができることが分かる。
As shown in Table 1 and Table 2, in all of Examples 1 to 7, the void area ratio is less than 10%, indicating that there is an effect of reducing voids.
Further, as in Example 6 and Example 7, when the third pressure is set to 10,000 Pa to 50,000 Pa, a good void reduction effect is exhibited even if the number of times of decompression-pressurization is performed six times in a short time. be able to.
Further, in particular, when the third pressure is 10,000 Pa and the number of times of pressure reduction and pressurization is 4 times as in Example 4, the solder paste applied on the substrate has a lower pressure and a higher temperature than the first pressure. It can be seen that a better void reduction effect can be exhibited while preventing a decrease in the flux amount by repeating the reduced pressure-pressurization while reducing the time of exposure to below (the melting temperature of the solder alloy or higher).

10…はんだバンプ
11…基板
10 ... Solder bump 11 ... Substrate

Claims (7)

ワーク上にはんだバンプを形成する方法であって、
フラックスおよびはんだ合金からなるソルダペーストを前記ワーク上の所定の位置に印刷する工程と、
前記ワークを大気圧の近傍である第1の圧力下にて加熱する工程と、
前記ワークを加熱する加熱温度が前記はんだ合金の液相温度近傍以上になった以降に前記ワーク周囲の圧力を前記第1の圧力よりも低い第2の圧力まで減圧する工程と、
前記加熱温度が前記はんだ合金の液相温度以上の状態で前記ワーク周囲の圧力を前記第2の圧力よりも高い第3の圧力まで加圧する工程と、
前記加熱温度が前記はんだ合金の液相温度以上の状態で前記ワーク周囲の圧力を前記第1の圧力まで加圧する工程と、
前記ワーク周囲の圧力が前記第1の圧力に到達した以降に前記加熱温度を前記はんだ合金の液相温度以下にして前記ワーク上にはんだバンプを形成する工程とを含み、
前記第2の圧力まで減圧する工程と前記第3の圧力まで加圧する工程とを複数回行うことを特徴とするはんだバンプの形成方法。
A method of forming solder bumps on a workpiece,
Printing a solder paste made of a flux and a solder alloy at a predetermined position on the workpiece;
Heating the workpiece under a first pressure that is near atmospheric pressure;
Reducing the pressure around the workpiece to a second pressure lower than the first pressure after the heating temperature for heating the workpiece has reached or exceeded the liquid phase temperature of the solder alloy;
Pressurizing the pressure around the workpiece to a third pressure higher than the second pressure in a state where the heating temperature is equal to or higher than the liquid phase temperature of the solder alloy;
Pressurizing the pressure around the workpiece to the first pressure in a state where the heating temperature is equal to or higher than the liquid phase temperature of the solder alloy;
Forming a solder bump on the workpiece by setting the heating temperature to be equal to or lower than the liquid phase temperature of the solder alloy after the pressure around the workpiece reaches the first pressure,
A method for forming a solder bump, wherein the step of reducing the pressure to the second pressure and the step of increasing the pressure to the third pressure are performed a plurality of times.
前記第2の圧力は、50Paから100Paであることを特徴とする請求項1に記載のはんだバンプの形成方法。   2. The method of forming a solder bump according to claim 1, wherein the second pressure is 50 Pa to 100 Pa. 3. 前記第3の圧力まで加圧する工程において、前記ワーク周囲の圧力が前記第3の圧力に到達した時点の前記加熱温度は前記はんだ合金の液相温度より10℃以上であることを特徴とする請求項1または請求項2に記載のはんだバンプの形成方法。   In the step of pressurizing to the third pressure, the heating temperature at the time when the pressure around the workpiece reaches the third pressure is 10 ° C or higher than the liquidus temperature of the solder alloy. Item 3. A method for forming a solder bump according to item 1 or item 2. 前記第3の圧力は、10,000Paから50,000Paであることを特徴とする請求項1から請求項3のいずれか1項に記載のはんだバンプの形成方法。   4. The method of forming a solder bump according to claim 1, wherein the third pressure is 10,000 Pa to 50,000 Pa. 5. 前記第2の圧力まで減圧する工程と前記第3の圧力まで加圧する工程とを2回から4回行うことを特徴とする請求項1から請求項3のいずれか1項に記載のはんだバンプの形成方法。   4. The solder bump according to claim 1, wherein the step of reducing the pressure to the second pressure and the step of increasing the pressure to the third pressure are performed twice to four times. 5. Forming method. 前記第2の圧力まで減圧する工程と前記第3の圧力まで加圧する工程とを2回から6回行うことを特徴とする請求項4に記載のはんだバンプの形成方法。   5. The method for forming solder bumps according to claim 4, wherein the step of reducing the pressure to the second pressure and the step of increasing the pressure to the third pressure are performed twice to six times. 前記第1の圧力から第2の圧力まで減圧してからこれを前記第3の圧力まで加圧するまでにかかる1回のサイクルタイムは、10秒間から40秒間であることを特徴とする請求項1から請求項6のいずれか1項に記載のはんだバンプの形成方法。

2. The cycle time of one cycle from depressurization from the first pressure to the second pressure to pressurization to the third pressure is 10 seconds to 40 seconds. The method for forming a solder bump according to claim 6.

JP2015017178A 2015-01-30 2015-01-30 Method of forming solder bumps Active JP6506035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015017178A JP6506035B2 (en) 2015-01-30 2015-01-30 Method of forming solder bumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017178A JP6506035B2 (en) 2015-01-30 2015-01-30 Method of forming solder bumps

Publications (2)

Publication Number Publication Date
JP2016140870A true JP2016140870A (en) 2016-08-08
JP6506035B2 JP6506035B2 (en) 2019-04-24

Family

ID=56569241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017178A Active JP6506035B2 (en) 2015-01-30 2015-01-30 Method of forming solder bumps

Country Status (1)

Country Link
JP (1) JP6506035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943047A (en) * 2018-09-21 2020-03-31 富士电机株式会社 Method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024017A (en) * 1999-07-05 2001-01-26 Japan Rec Co Ltd Electronic parts manufacturing apparatus and method therefor
JP2007000915A (en) * 2005-06-27 2007-01-11 Shinko Seiki Co Ltd Soldering method and soldering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024017A (en) * 1999-07-05 2001-01-26 Japan Rec Co Ltd Electronic parts manufacturing apparatus and method therefor
JP2007000915A (en) * 2005-06-27 2007-01-11 Shinko Seiki Co Ltd Soldering method and soldering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943047A (en) * 2018-09-21 2020-03-31 富士电机株式会社 Method for manufacturing semiconductor device
JP2020053422A (en) * 2018-09-21 2020-04-02 富士電機株式会社 Manufacturing method for semiconductor device
JP7322369B2 (en) 2018-09-21 2023-08-08 富士電機株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP6506035B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6281157B2 (en) Solder paste for reducing gas, manufacturing method of soldered product
JP6447782B2 (en) Soldering method
JP5166261B2 (en) Conductive filler
JPWO2019172410A1 (en) Flux, solder paste, soldering process, soldering product manufacturing method, BGA package manufacturing method
TWI666086B (en) Solder bump forming method
JP6506047B2 (en) Method of manufacturing solder joint structure
WO2015178374A1 (en) Method for forming solder bump, and solder paste for fixing solder ball
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JPWO2016039057A1 (en) Method for producing intermetallic compound
JP6506035B2 (en) Method of forming solder bumps
JP2008068311A (en) Void removing device, method for removing void, and method for producing electronic component
KR102122166B1 (en) Flux for solder paste, solder paste, method of forming solder bumps using solder paste, and method of manufacturing joined body
CN109530977B (en) Flux and solder paste
JP6506046B2 (en) Solder bump reflow method
JP2006165336A (en) Solder paste for forming bump
WO2019022193A1 (en) Solder paste flux, solder paste, method for forming solder bump using solder paste, and method for producing joined body
JP4008799B2 (en) Lead-free solder paste composition and soldering method
TWI825188B (en) Method for manufacturing joined structure
JP7474797B2 (en) Solder Alloy
WO2022210271A1 (en) Solder alloy
WO2022254819A1 (en) Method for producing electronic component mounted substrate
JP2008027588A (en) Conductive filler, and intermediate-temperature soldering material
JP2009233686A (en) POWDERY Pb-Sn SOLDER ALLOY FOR PASTE, AND Pb-Sn SOLDER ALLOY BALL
JP2016087606A (en) Au-Sn ALLOY SOLDER PASTE, PRODUCTION METHOD OF Au-Sn ALLOY SOLDER PASTE, PRODUCTION METHOD OF Au-Sn ALLOY SOLDER LAYER AND Au-Sn ALLOY SOLDER LAYER
JP2022129960A (en) Flux, solder paste, and joint structure manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150