JP2016127262A - Feedthrough multilayer ceramic capacitor - Google Patents

Feedthrough multilayer ceramic capacitor Download PDF

Info

Publication number
JP2016127262A
JP2016127262A JP2015203774A JP2015203774A JP2016127262A JP 2016127262 A JP2016127262 A JP 2016127262A JP 2015203774 A JP2015203774 A JP 2015203774A JP 2015203774 A JP2015203774 A JP 2015203774A JP 2016127262 A JP2016127262 A JP 2016127262A
Authority
JP
Japan
Prior art keywords
external electrode
capacitor
capacitor body
length
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015203774A
Other languages
Japanese (ja)
Inventor
知彦 財満
Tomohiko Zaima
知彦 財満
伸 中安
Shin Nakayasu
伸 中安
隆 笹木
Takashi Sasaki
隆 笹木
不器男 木下
Fukio Kinoshita
不器男 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to KR1020150149306A priority Critical patent/KR101736718B1/en
Priority to TW104136719A priority patent/TWI581284B/en
Priority to US14/973,666 priority patent/US9922770B2/en
Priority to CN201811610389.6A priority patent/CN110010349B/en
Priority to CN201510994297.2A priority patent/CN105742059B/en
Publication of JP2016127262A publication Critical patent/JP2016127262A/en
Priority to HK16110184.7A priority patent/HK1222038A1/en
Priority to JP2018100457A priority patent/JP6901996B2/en
Priority to JP2018100456A priority patent/JP6929245B2/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a feedthrough multilayer ceramic capacitor, the strength of which can be enhanced when mounting on a circuit board.SOLUTION: In addition to a first external electrode 12 provided at one end of a capacitor body 11 in the length direction, and a second external electrode 13 provided at the other end of the capacitor body 11 in the length direction, a feedthrough multilayer ceramic capacitor 10-1 is provided, in the central part of the capacitor body 11 in the length direction, with a square cylindrical third external electrode 14 so as to cover a part of the opposite sides in the height direction, and a part of the opposite sides in the width direction of the capacitor body 11, in non-contact with the first external electrode 12 and second external electrode 13.SELECTED DRAWING: Figure 2

Description

本発明は、貫通型積層セラミックコンデンサに関する。   The present invention relates to a feedthrough multilayer ceramic capacitor.

前記貫通型積層セラミックコンデンサに関連し、後記特許文献1には、図1に示したような貫通型積層セラミックコンデンサ100(以下単に貫通型コンデンサ100と言う)が開示されている。   In relation to the feedthrough multilayer ceramic capacitor, Patent Document 1 described below discloses a feedthrough multilayer ceramic capacitor 100 (hereinafter simply referred to as a feedthrough capacitor 100) as shown in FIG.

この貫通型コンデンサ100は、長さL11>幅W11>高さH11の条件を満足する略直方体状を成しており、これら長さL11、幅W11及び高さH11よりも僅かに小さな長さ、幅及び高さで規定された略直方体状のコンデンサ本体101と、コンデンサ本体101の長さ方向一端部に設けられた第1外部電極102と、コンデンサ本体101の長さ方向他端部に設けられた第2外部電極103と、コンデンサ本体101の幅方向一端部の略中央に設けられた第3外部電極104と、コンデンサ本体101の幅方向他端部の略中央に設けられた第4外部電極105とを有している。   The feedthrough capacitor 100 has a substantially rectangular parallelepiped shape that satisfies the condition of length L11> width W11> height H11, and has a length slightly smaller than these length L11, width W11, and height H11. A substantially rectangular parallelepiped capacitor main body 101 defined by the width and height, the first external electrode 102 provided at one end in the length direction of the capacitor main body 101, and the other end in the length direction of the capacitor main body 101. The second external electrode 103, the third external electrode 104 provided at the approximate center of the one end of the capacitor body 101 in the width direction, and the fourth external electrode provided at the approximate center of the other end of the capacitor body 101 in the width direction. 105.

また、コンデンサ本体101内には、複数の第1内部電極層(図示省略)と複数の第2内部電極層(図示省略)とが誘電体層(図示省略)を介して高さ方向に交互に積層された容量部が設けられている。複数の第1内部電極層の一端部は第1外部電極102に接続され、且つ、他端部は第2外部電極103に接続されており、複数の第2内部電極層の一端部は第3外部電極104に接続され、且つ、他端部は第4外部電極105に接続されている。   In the capacitor main body 101, a plurality of first internal electrode layers (not shown) and a plurality of second internal electrode layers (not shown) are alternately arranged in the height direction via dielectric layers (not shown). Stacked capacitor portions are provided. One end portions of the plurality of first internal electrode layers are connected to the first external electrode 102, the other end portion is connected to the second external electrode 103, and one end portions of the plurality of second internal electrode layers are third. It is connected to the external electrode 104 and the other end is connected to the fourth external electrode 105.

ところで、この種の貫通型積層セラミックコンデンサに対しては依然として小型化及び薄型化が要求されており、とりわけ薄型化に関しては回路基板に搭載するときの強度が懸念されている。以下に図1を用いてこの点について説明する。   By the way, this type of through-type multilayer ceramic capacitor is still required to be reduced in size and thickness, and in particular, there is a concern about strength when mounted on a circuit board with respect to reduction in thickness. This point will be described below with reference to FIG.

図1に示した従前の貫通型コンデンサ100は、一般に、部品供給場所において高さ方向一面又は他面の中心(図1(A)の+印を参照)又はその近傍を吸着ノズルによって吸着された後に搬送され、搬送後に回路基板、例えば表面実装を可能とした回路基板(部品実装基板)や、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)等に搭載される。   The conventional feedthrough capacitor 100 shown in FIG. 1 is generally sucked by a suction nozzle at the part supply location at the center of one surface in the height direction or the other surface (see the + mark in FIG. 1A) or its vicinity. It is transported later and mounted on a circuit board such as a circuit board (component mounting board) capable of surface mounting, a circuit board (component built-in board) capable of surface mounting and internal mounting, etc.

しかしながら、図1に示した従前の貫通型コンデンサ100は前記搭載時において吸着ノズルから直接コンデンサ本体101に荷重が加わる構造にあるため、この荷重によってコンデンサ本体101に亀裂が生じる懸念がある。この亀裂は、その大小を問わず、コンデンサ本体101内への水分浸入を許容するものであるため、浸入した水分によって第1内部電極層と第2内部電極層が腐食して能力低下を生じる蓋然性が高くなると共に、第1内部電極層と第2内部電極層とが短絡して機能障害を生じる蓋然性が高くなる。   However, since the conventional feedthrough capacitor 100 shown in FIG. 1 has a structure in which a load is directly applied to the capacitor body 101 from the suction nozzle when mounted, there is a concern that the capacitor body 101 may crack due to this load. Regardless of the size of the crack, the crack allows water intrusion into the capacitor body 101. Therefore, there is a probability that the first internal electrode layer and the second internal electrode layer are corroded by the infiltrated water and the capacity is lowered. And the probability that the first internal electrode layer and the second internal electrode layer are short-circuited to cause functional failure increases.

特開2008−294298号公報JP 2008-294298 A

本発明の課題は、回路基板に搭載するときの強度向上が図れる貫通型積層セラミックコンデンサを提供することにある。   An object of the present invention is to provide a feedthrough multilayer ceramic capacitor capable of improving strength when mounted on a circuit board.

前記課題を解決するため、本発明に係る貫通型積層セラミックコンデンサは、長さ、幅及び高さで規定された略直方体状のコンデンサ本体内に、複数の第1内部電極層と複数の第2内部電極層とが誘電体層を介して高さ方向に交互に積層された容量部が設けられた貫通型積層セラミックコンデンサであって、(1)前記コンデンサ本体の長さ方向一端部に該コンデンサ本体の長さ方向一面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向一端部が接続された第1外部電極と、(2)前記コンデンサ本体の長さ方向他端部に該コンデンサ本体の長さ方向他面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向他端部が接続された第2外部電極と、(3)前記コンデンサ本体の長さ方向中央部に前記第1外部電極及び前記第2外部電極と非接触下で該コンデンサ本体の高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記幅方向両面の一部を覆う部分の一方に前記複数の第2電極層の幅方向一端部が接続され、且つ、他方に前記複数の第2電極層の幅方向他端部が接続された4角筒状の第3外部電極と、を備えており、(4)前記貫通型積層セラミックコンデンサを高さ方向からみたときの前記第1外部電極の前記コンデンサ本体の長さに沿う寸法をE1とし、前記第2外部電極の前記コンデンサ本体の長さに沿う寸法をE2とし、前記第3外部電極の前記コンデンサ本体の長さに沿う寸法をE3としたとき、前記寸法E1と前記寸法E3はE1<E3の条件を満足し、且つ、前記寸法E2と前記寸法E3はE2<E3の条件を満足している。   In order to solve the above-described problems, a through-type multilayer ceramic capacitor according to the present invention includes a plurality of first internal electrode layers and a plurality of second electrodes in a substantially rectangular parallelepiped capacitor body defined by a length, a width, and a height. A through-type multilayer ceramic capacitor provided with a capacitor portion in which internal electrode layers are alternately stacked in a height direction through dielectric layers, wherein (1) the capacitor body is provided at one end in the length direction of the capacitor body. Provided so as to continuously cover one surface in the length direction, part of both sides in the height direction and part of both surfaces in the width direction, and one end in the length direction of the plurality of first internal electrode layers is connected A first external electrode; and (2) the other end in the length direction of the capacitor body is continuously covered with the other surface in the length direction, part of both sides in the height direction, and part of both sides in the width direction. The other end in the length direction of the plurality of first internal electrode layers A third external electrode connected to the capacitor body; and (3) a part of both sides of the capacitor body in the height direction in a non-contact manner with the first external electrode and the second external electrode at the longitudinal center of the capacitor body. And one end of the plurality of second electrode layers are connected to one of the portions covering a part of the both sides of the width direction, and the other A rectangular tube-shaped third external electrode connected to the other end in the width direction of the plurality of second electrode layers, and (4) when the through-type multilayer ceramic capacitor is viewed from the height direction. The dimension of the first external electrode along the length of the capacitor body is E1, the dimension of the second external electrode along the length of the capacitor body is E2, and the length of the capacitor body of the third external electrode is E2. When the dimension along the length is E3, the dimension E1 and the front Dimensions E3 will satisfy the condition of E1 <E3, and the dimension E3 and the dimension E2 is satisfies the condition of E2 <E3.

本発明によれば、回路基板に搭載するときの強度向上が図れる貫通型積層セラミックコンデンサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the penetration type multilayer ceramic capacitor which can aim at the intensity | strength improvement when mounting in a circuit board can be provided.

図1(A)は従前の貫通型積層セラミックコンデンサの高さ方向一面を示す図、図1(B)は同幅方向一面を示す図である。FIG. 1A is a view showing one surface in the height direction of a conventional through-type multilayer ceramic capacitor, and FIG. 1B is a view showing one surface in the same width direction. 図2(A)は本発明の第1実施形態に係る貫通型積層セラミックコンデンサの高さ方向一面を示す図、図2(B)は同幅方向一面を示す図である。FIG. 2A is a view showing one surface in the height direction of the feedthrough multilayer ceramic capacitor according to the first embodiment of the present invention, and FIG. 2B is a view showing one surface in the same width direction. 図3(A)はコンデンサ本体に内蔵された第1内部電極層の形状を示す図、図3(B)はコンデンサ本体に内蔵された第2内部電極層の形状を示す図である。FIG. 3A is a view showing the shape of the first internal electrode layer built in the capacitor body, and FIG. 3B is a view showing the shape of the second internal electrode layer built in the capacitor body. 図4は図2(A)のS1−S1線に沿う拡大断面図である。FIG. 4 is an enlarged cross-sectional view taken along line S1-S1 in FIG. 図5は図2(B)のS2−S2線に沿う拡大断面図である。FIG. 5 is an enlarged cross-sectional view taken along line S2-S2 of FIG. 図6は図2(B)のS3−S3線に沿う拡大断面図である。FIG. 6 is an enlarged sectional view taken along line S3-S3 of FIG. 図7は図2(A)の拡大図である。FIG. 7 is an enlarged view of FIG. 図8(A)は本発明の第2実施形態に係る貫通型積層セラミックコンデンサの高さ方向一面を示す図、図2(B)は同幅方向一面を示す図である。FIG. 8A is a view showing one surface in the height direction of the feedthrough multilayer ceramic capacitor according to the second embodiment of the present invention, and FIG. 2B is a view showing one surface in the same width direction. 図9(A)はコンデンサ本体に内蔵された第1内部電極層の形状を示す図、図9(B)はコンデンサ本体に内蔵された第2内部電極層の形状を示す図である。FIG. 9A is a diagram showing the shape of the first internal electrode layer built in the capacitor body, and FIG. 9B is a diagram showing the shape of the second internal electrode layer built in the capacitor body. 図10はコンデンサ本体の高さ方向一面を示す図である。FIG. 10 is a view showing one surface of the capacitor main body in the height direction. 図11は図8(B)のS4−S4線に沿う拡大断面図である。FIG. 11 is an enlarged cross-sectional view taken along line S4-S4 in FIG. 図12(A)は図9(A)に示した第1内部電極層の形状変形例を示す図、図12(B)は図9(A)に示した第1内部電極層の代わりに図12(A)に示した第1内部電極層を用いたコンデンサ本体の高さ方向一面を示す図10対応図である。12A is a diagram showing a modification of the shape of the first internal electrode layer shown in FIG. 9A, and FIG. 12B is a diagram instead of the first internal electrode layer shown in FIG. 9A. FIG. 11 is a view corresponding to FIG. 10 showing one surface in the height direction of the capacitor body using the first internal electrode layer shown in FIG.

《第1実施形態》
先ず、図2〜図7を用いて、本発明の第1実施形態に係る貫通型積層セラミックコンデンサ10-1(以下単に貫通型コンデンサ10-1と言う)の構造及び効果等について説明する。因みに、図4及び図6には後記第1内部電極層15を5層描き、且つ、後記第2内部電極層16を5層描いているが、これは図示の都合に依るものであって後記第1内部電極層15の層数と後記第2内部電極層16の層数を制限するものではない。
<< First Embodiment >>
First, the structure and effects of the feedthrough multilayer ceramic capacitor 10-1 (hereinafter simply referred to as feedthrough capacitor 10-1) according to the first embodiment of the present invention will be described with reference to FIGS. 4 and 6 illustrate five first internal electrode layers 15 described later and five second internal electrode layers 16 described later. This is for convenience of illustration and is described later. The number of first internal electrode layers 15 and the number of second internal electrode layers 16 to be described later are not limited.

図2(A)及び図2(B)に示したように、貫通型コンデンサ10-1は、長さL1>幅W1>高さH1の条件を満足する略直方体状を成しており、これら長さL1、幅W1及び高さH1よりも僅かに小さな長さ、幅及び高さで規定された略直方体状のコンデンサ本体11と、コンデンサ本体11の長さ方向一端部(図2(A)及び図2(B)の左端部)に設けられた第1外部電極12と、コンデンサ本体11の長さ方向他端部(図2(A)及び図2(B)の右端部)に設けられた第2外部電極13と、コンデンサ本体11の長さ方向中央部(図2(A)及び図2(B)の左右中央部)に第1外部電極12及び第2外部電極13と非接触下で設けられた4角筒状の第3外部電極14とを備えている。また、コンデンサ本体11の高さ方向両面及び幅方向両面のうち、第1外部電極12と第3外部電極14の間の部分11aと、第2外部電極13と第3外部電極14の間の部分11bは、それぞれ露出している(以下露出部分11a及び露出部分11bと言う)。   As shown in FIGS. 2A and 2B, the feedthrough capacitor 10-1 has a substantially rectangular parallelepiped shape that satisfies the condition of length L1> width W1> height H1. A substantially rectangular parallelepiped capacitor main body 11 defined by a length, width and height slightly smaller than the length L1, the width W1 and the height H1, and one end portion in the length direction of the capacitor main body 11 (FIG. 2A) And the first external electrode 12 provided at the left end of FIG. 2B and the other end in the length direction of the capacitor body 11 (the right end of FIGS. 2A and 2B). The first external electrode 12 and the second external electrode 13 are not in contact with the second external electrode 13 and the central portion in the length direction of the capacitor main body 11 (the left and right central portions in FIGS. 2A and 2B). And the third external electrode 14 having a quadrangular cylindrical shape. Further, of both the height direction both surfaces and the width direction both surfaces of the capacitor body 11, a portion 11 a between the first external electrode 12 and the third external electrode 14 and a portion between the second external electrode 13 and the third external electrode 14. 11b is exposed (hereinafter referred to as an exposed portion 11a and an exposed portion 11b).

図4に示したように、コンデンサ本体11は、誘電体製の第1保護部PP1と、複数の第1内部電極層15と複数の第2内部電極層16とが誘電体層17を介して高さ方向に交互に積層された容量部CPと、誘電体製の第2保護部PP2とが、同順序で高さ方向に層状に並ぶように有している。各第1内部電極層15は、図3(A)に示したような略矩形状を成していて、長さ方向一端部(図3(A)の左端部)と長さ方向他端部(図3(A)の右端部)のそれぞれに、長さ方向に延びる幅狭の引出部15aを一体に有している。一方、各第2内部電極層16は、図3(B)に示したような略矩形状を成していて、幅方向一端部(図3(B)の下端部)と幅方向他端部(図3(B)の上端部)のそれぞれに、幅方向に延びる幅狭の引出部16aを一体に有している。   As shown in FIG. 4, the capacitor body 11 includes a dielectric first protective part PP1, a plurality of first internal electrode layers 15 and a plurality of second internal electrode layers 16 with a dielectric layer 17 interposed therebetween. Capacitance portions CP and dielectric second protection portions PP2 alternately stacked in the height direction are arranged in layers in the height direction in the same order. Each first internal electrode layer 15 has a substantially rectangular shape as shown in FIG. 3A, and is one end in the length direction (the left end in FIG. 3A) and the other end in the length direction. Each (right end portion in FIG. 3A) integrally has a narrow drawer portion 15a extending in the length direction. On the other hand, each second internal electrode layer 16 has a substantially rectangular shape as shown in FIG. 3B, and has one end in the width direction (the lower end in FIG. 3B) and the other end in the width direction. Each (upper end portion in FIG. 3B) integrally has a narrow drawer portion 16a extending in the width direction.

図4〜図6から分かるように、各第1内部電極層15の長さ方向一端部、具体的には図3(A)の左側引出部15aの左端縁は第1外部電極12の後記部分12aに電気的に接続され、各第1内部電極層の長さ方向他端部、具体的には図3(A)の右側引出部15aの右端縁は第2外部電極13の後記部分13aに電気的に接続されている。一方、各第2内部電極層16の幅方向一端部、具体的には図3(B)の下側引出部16aの下端縁は第3外部電極14の後記部分14cに電気的に接続され、各第2内部電極層16の幅方向他端部、具体的には図3(B)の上側引出部16aの上端縁は第3外部電極14の後記部分14dに電気的に接続されている。   As can be seen from FIGS. 4 to 6, one end portion in the length direction of each first internal electrode layer 15, specifically, the left end edge of the left lead portion 15 a in FIG. 3A is a postscript portion of the first external electrode 12. The other end in the length direction of each first internal electrode layer, specifically, the right end edge of the right lead portion 15a in FIG. 3A is connected to a postscript portion 13a of the second external electrode 13. Electrically connected. On the other hand, one end in the width direction of each second internal electrode layer 16, specifically, the lower end edge of the lower lead portion 16 a in FIG. 3B is electrically connected to the postscript portion 14 c of the third external electrode 14, The other end in the width direction of each second internal electrode layer 16, specifically, the upper end edge of the upper lead portion 16 a in FIG. 3B is electrically connected to the postscript portion 14 d of the third external electrode 14.

尚、第1保護部PP1と各誘電体層17と第2保護部PP2は、組成が略同じで誘電率も略同じ誘電体セラミックスから成り、各誘電体層17の厚さは略同じである。この誘電体セラミックスには、好ましくはチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、より好ましくはε>1000又はクラス2(高誘電率系)の誘電体セラミックスを使用できる。ここでの「組成が略同じで誘電率も略同じ誘電体セラミックス」は、組成と誘電率が全く同じ場合の他、焼結度合等の関係から組成と誘電率の少なくとも一方が許容範囲内で若干異なる場合をその意味として含み、「厚さは略同じ」は厚さが全く同じ場合の他、積層時の圧縮度合等の関係から厚さが許容範囲内や製造公差内で若干異なる場合をその意味として含む。   The first protective part PP1, each dielectric layer 17, and the second protective part PP2 are made of dielectric ceramics having substantially the same composition and substantially the same dielectric constant, and the thicknesses of the dielectric layers 17 are substantially the same. . This dielectric ceramic is preferably a dielectric ceramic mainly composed of barium titanate, strontium titanate, calcium titanate, magnesium titanate, calcium zirconate, calcium zirconate titanate, barium zirconate, titanium oxide, etc. More preferably, dielectric ceramics of ε> 1000 or class 2 (high dielectric constant type) can be used. “Dielectric ceramics with substantially the same composition and substantially the same dielectric constant” as used herein means that at least one of the composition and the dielectric constant is within an allowable range due to the degree of sintering, etc. The meaning includes the case where the thickness is almost the same, as well as the case where the thickness is slightly different within the allowable range or manufacturing tolerance due to the degree of compression at the time of lamination. Include as its meaning.

また、各第1内部電極層15と各第2内部電極層16は、組成が略同じ良導体から成り、各第1内部電極層15と各第2内部電極層16の厚さは略同じである。この良導体には、好ましくはニッケル、銅、パラジウム、白金、銀、金、これらの合金等を主成分した良導体を使用できる。ここでの「組成が略同じ良導体」は組成が全く同じ場合の他、焼結度合等の関係から組成が許容範囲内で若干異なる場合をその意味として含み、「厚さは略同じ」は厚さが全く同じ場合の他、積層時の圧縮度合等の関係から厚さが許容範囲内や製造公差内で若干異なる場合をその意味として含む。   Each first internal electrode layer 15 and each second internal electrode layer 16 are made of good conductors having substantially the same composition, and the thickness of each first internal electrode layer 15 and each second internal electrode layer 16 is substantially the same. . As the good conductor, a good conductor mainly composed of nickel, copper, palladium, platinum, silver, gold, an alloy thereof or the like can be used. The term “good conductor having substantially the same composition” as used herein includes not only the case where the composition is exactly the same, but also the case where the composition is slightly different within an allowable range due to the degree of sintering, etc. In addition to the case where the thicknesses are exactly the same, the meaning includes the case where the thickness is slightly different within the allowable range or within the manufacturing tolerance due to the degree of compression during lamination.

図4〜図6に示したように、第1外部電極12は、コンデンサ本体11の長さ方向一面(図4及び図5の左面)を覆う部分12aと、コンデンサ本体11の高さ方向一面(図4の上面)の一部を覆う部分12bと、コンデンサ本体11の高さ方向他面(図4の下面)の一部を覆う部分12cと、コンデンサ本体11の幅方向一面(図5の下面)の一部を覆う部分12dと、コンデンサ本体11の幅方向他面(図5の上面)の一部を覆う部分12eとを連続して有している。また、第1外部電極12は、コンデンサ本体11の長さ方向一面(図4及び図5の左面)の稜線(4本の稜線を指す)に近い部分12fの厚さが、部分12b〜12eの厚さよりも厚くなっている(以下厚肉部分12fと言う)。   As shown in FIGS. 4 to 6, the first external electrode 12 includes a portion 12 a that covers one surface in the length direction of the capacitor body 11 (left surface in FIGS. 4 and 5), and one surface in the height direction of the capacitor body 11 ( A portion 12b covering a part of the upper surface in FIG. 4, a portion 12c covering a part of the other surface in the height direction of the capacitor body 11 (lower surface in FIG. 4), and one surface in the width direction of the capacitor body 11 (lower surface in FIG. 5). ) And a portion 12e covering a part of the other surface in the width direction of the capacitor main body 11 (upper surface in FIG. 5). The first external electrode 12 has a thickness of a portion 12f near the ridgelines (pointing to four ridgelines) of one surface in the length direction of the capacitor main body 11 (left surface in FIGS. 4 and 5) of the portions 12b to 12e. It is thicker than the thickness (hereinafter referred to as the thick portion 12f).

部分12b〜12eのコンデンサ本体11の長さに沿う寸法は、製造公差を含まない設計上の基準寸法において同じである。また、部分12b〜12eの厚さは、製造公差を含まない設計上の基準寸法において同じである。   The dimensions of the portions 12b to 12e along the length of the capacitor body 11 are the same in the design reference dimensions that do not include manufacturing tolerances. Further, the thicknesses of the portions 12b to 12e are the same in design reference dimensions not including manufacturing tolerances.

図4〜図6に示したように、第2外部電極13は、コンデンサ本体11の長さ方向他面(図4及び図5の右面)を覆う部分13aと、コンデンサ本体11の高さ方向一面(図4の上面)の一部を覆う部分13bと、コンデンサ本体11の高さ方向他面(図4の下面)の一部を覆う部分13cと、コンデンサ本体11の幅方向一面(図5の下面)の一部を覆う部分13dと、コンデンサ本体11の幅方向他面(図5の上面)の一部を覆う部分13eとを連続して有している。また、第2外部電極13は、コンデンサ本体11の長さ方向他面(図4及び図5の右面)の稜線(4本の稜線を指す)に近い部分13fの厚さが、部分13b〜13eの厚さよりも厚くなっている(以下厚肉部分13fと言う)。   As shown in FIGS. 4 to 6, the second external electrode 13 includes a portion 13 a that covers the other surface in the length direction of the capacitor body 11 (the right surface in FIGS. 4 and 5), and one surface in the height direction of the capacitor body 11. (A top surface in FIG. 4), a portion 13 b covering a part of the capacitor body 11, a portion 13 c covering a part of the other surface in the height direction (a bottom surface in FIG. 4), and one surface in the width direction of the capacitor body 11 (in FIG. 5). A portion 13d covering a part of the lower surface and a portion 13e covering a part of the other surface in the width direction of the capacitor body 11 (upper surface in FIG. 5) are continuously provided. The second external electrode 13 has portions 13b to 13e having a thickness of a portion 13f close to a ridgeline (pointing to four ridgelines) on the other surface in the length direction of the capacitor body 11 (the right surface in FIGS. 4 and 5). (Hereinafter, referred to as a thick portion 13f).

部分13b〜13eのコンデンサ本体11の長さに沿う寸法は、製造公差を含まない設計上の基準寸法において同じである。また、部分13b〜13eの厚さは、製造公差を含まない設計上の基準寸法において同じである。   The dimensions of the portions 13b to 13e along the length of the capacitor body 11 are the same in the design reference dimensions that do not include manufacturing tolerances. Moreover, the thickness of the parts 13b-13e is the same in the design reference dimension which does not include a manufacturing tolerance.

図4〜図6に示したように、第3外部電極14は、コンデンサ本体11の高さ方向一面(図4及び図6の上面)の一部を覆う部分14aと、コンデンサ本体11の高さ方向他面(図4及び図6の下面)の一部を覆う部分14bと、コンデンサ本体11の幅方向一面(図5の下面、図6の左面)の一部を覆う部分14cと、コンデンサ本体11の幅方向他面(図5の上面、図6の右面)の一部を覆う部分14dとを連続して有している。また、第3外部電極14は、コンデンサ本体11の高さ方向一面(図4及び図6の上面)の稜線(2本の稜線を指す)に近い部分14eの厚さと、コンデンサ本体11の高さ方向他面(図4及び図6の下面)の稜線(2本の稜線を指す)に近い部分14eの厚さが、部分14a〜14dの厚さよりも厚くなっている(以下厚肉部分14eと言う)。   As shown in FIGS. 4 to 6, the third external electrode 14 includes a portion 14 a that covers a part of one surface in the height direction of the capacitor body 11 (upper surface in FIGS. 4 and 6), and the height of the capacitor body 11. A portion 14b that covers a part of the other surface in the direction (the lower surface in FIGS. 4 and 6), a portion 14c that covers a part of one surface in the width direction of the capacitor body 11 (the lower surface in FIG. 5, the left surface in FIG. 6), and the capacitor body 11 continuously covers a portion 14d covering a part of the other surface in the width direction 11 (the upper surface in FIG. 5 and the right surface in FIG. 6). The third external electrode 14 has a thickness of a portion 14e close to a ridgeline (pointing to two ridgelines) of one surface in the height direction of the capacitor body 11 (upper surface in FIGS. 4 and 6), and the height of the capacitor body 11. The thickness of the portion 14e close to the ridge line (pointing to the two ridge lines) of the other direction surface (the lower surface in FIGS. 4 and 6) is thicker than the thickness of the portions 14a to 14d (hereinafter referred to as the thick portion 14e). say).

部分14a〜14dのコンデンサ本体11の長さに沿う寸法は、製造公差を含まない設計上の基準寸法において同じである。また、部分14a〜14dの厚さは、製造公差を含まない設計上の基準寸法において同じである。   The dimensions of the portions 14a to 14d along the length of the capacitor body 11 are the same in the design reference dimensions that do not include manufacturing tolerances. Moreover, the thickness of the parts 14a-14d is the same in the design standard dimension which does not include a manufacturing tolerance.

尚、第1外部電極12と第2外部電極13と第3外部電極14は、コンデンサ本体11の外面に密着した下地膜と、この下地膜の外面に密着した表面膜との2層構造、或いは、下地膜と表面膜との間に少なくとも1つの中間膜を有する多層構造を有している。下地膜は例えば焼き付け膜から成り、この焼き付け膜には、好ましくはニッケル、銅、パラジウム、白金、銀、金、これらの合金等を主成分した良導体を使用できる。表面膜は例えばメッキ膜から成り、このメッキ膜には、好ましくは銅、スズ、パラジウム、金、亜鉛、これらの合金等を主成分とした良導体を使用できる。中間膜は例えばメッキ膜から成り、このメッキ膜には、好ましくは白金、パラジウム、金、銅、ニッケル、これらの合金等を主成分とした良導体を使用できる。   The first external electrode 12, the second external electrode 13, and the third external electrode 14 are each a two-layer structure of a base film that is in close contact with the outer surface of the capacitor body 11 and a surface film that is in close contact with the outer surface of the base film, or And a multilayer structure having at least one intermediate film between the base film and the surface film. The base film is made of, for example, a baked film, and a good conductor mainly composed of nickel, copper, palladium, platinum, silver, gold, or an alloy thereof can be used for the baked film. The surface film is made of, for example, a plating film, and a good conductor whose main component is preferably copper, tin, palladium, gold, zinc, or an alloy thereof can be used for the plating film. The intermediate film is made of, for example, a plating film, and a good conductor whose main component is preferably platinum, palladium, gold, copper, nickel, an alloy thereof, or the like can be used for the plating film.

前述の貫通型コンデンサ10-1は、図2(A)に示したように、貫通型コンデンサ10-1を高さ方向からみたときの第1外部電極12のコンデンサ本体11の長さに沿う寸法をE1とし、第2外部電極13のコンデンサ本体11の長さに沿う寸法をE2とし、第3外部電極14のコンデンサ本体11の長さに沿う寸法をE3としたとき、寸法E1と寸法E3はE1<E3の条件を満足し、且つ、寸法E2と寸法E3はE2<E3の条件を満足している。因みに、寸法E1と寸法E2は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。   As shown in FIG. 2A, the feedthrough capacitor 10-1 described above has a dimension along the length of the capacitor body 11 of the first external electrode 12 when the feedthrough capacitor 10-1 is viewed from the height direction. Is E1, the dimension of the second external electrode 13 along the length of the capacitor body 11 is E2, and the dimension of the third external electrode 14 along the length of the capacitor body 11 is E3, the dimensions E1 and E3 are The condition E1 <E3 is satisfied, and the dimension E2 and the dimension E3 satisfy the condition E2 <E3. Incidentally, the dimension E1 and the dimension E2 may be the same or slightly different in the design standard dimension not including the manufacturing tolerance.

前掲のE1<E3の条件とE2<E3の条件は、「搭載時の強度向上」に有効であるため、以下にその有効性(効果)について説明する。   The above-mentioned conditions of E1 <E3 and E2 <E3 are effective for “improvement of strength at the time of mounting”, and the effectiveness (effect) will be described below.

前述の貫通型コンデンサ10-1は、部品供給場所において高さ方向一面又は他面の中心(図2(A)の+印を参照)又はその近傍を吸着ノズルによって吸着された後に搬送され、搬送後に回路基板、例えば表面実装を可能とした回路基板(部品実装基板)や、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)等に搭載される。   The feedthrough capacitor 10-1 is transported after being sucked by a suction nozzle at the center of one surface in the height direction or the other surface (refer to the + sign in FIG. 2A) or its vicinity at the part supply location. It is mounted on a circuit board, for example, a circuit board (component mounting board) that enables surface mounting, a circuit board (component built-in board) that enables surface mounting and internal mounting, and the like.

図1に示した従前の貫通型コンデンサ100は、前記搭載時において吸着ノズルから直接コンデンサ本体101に荷重が加わる構造にあるため、この荷重によってコンデンサ本体101に亀裂が生じる懸念がある。これに対し、前述の貫通型コンデンサ10-1は、コンデンサ本体11の長さ方向中央部に4角筒状の第3外部電極14が存在し、しかも、前掲のE1<E3の条件とE2<E3の条件を満足しているため、前記搭載時における吸着ノズルからの荷重を第3外部電極14で受けることができ、しかも、この荷重を4角筒状の第3外部電極14に分散して緩和することができ、これにより、前記搭載時にコンデンサ本体11に亀裂が生じることを防止して、搭載時の強度向上を図ることができる。第3外部電極14の寸法E3は可能な限り大きく設計することが望ましく、このようにすれば前記緩和作用をより確実に得られるし、第3外部電極14に対する吸着ノズルの接触位置がずれた場合でも前記同様の恩恵が得られる。   Since the conventional feedthrough capacitor 100 shown in FIG. 1 has a structure in which a load is directly applied to the capacitor body 101 from the suction nozzle when mounted, there is a concern that the capacitor body 101 may crack due to this load. On the other hand, the feedthrough capacitor 10-1 described above has the third external electrode 14 in the shape of a square tube at the center in the length direction of the capacitor body 11, and the above-described conditions of E1 <E3 and E2 < Since the condition of E3 is satisfied, the load from the suction nozzle at the time of mounting can be received by the third external electrode 14, and this load is distributed to the third external electrode 14 having a rectangular tube shape. Accordingly, the capacitor main body 11 can be prevented from cracking at the time of mounting, and the strength at the time of mounting can be improved. Desirably, the dimension E3 of the third external electrode 14 is designed to be as large as possible. In this way, the relaxation action can be obtained more reliably, and the contact position of the suction nozzle with respect to the third external electrode 14 is shifted. But you can get the same benefits.

また、前述の貫通型コンデンサ10-1は、図7に示したように、貫通型コンデンサ10-1を高さ方向から見たときの平面輪郭の総面積をTARとし、第1外部電極12の平面輪郭の面積をAR1とし、第2外部電極13の平面輪郭の面積をAR2とし、第3外部電極14の平面輪郭の面積をAR3としたとき、総面積TARと面積AR1と面積AR2と面積AR3は0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している。因みに、面積AR1と面積AR2は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。   In addition, as shown in FIG. 7, the feedthrough capacitor 10-1 described above has a total area of a planar contour when the feedthrough capacitor 10-1 is viewed from the height direction as TAR, and the first external electrode 12. When the area of the planar outline is AR1, the area of the planar outline of the second external electrode 13 is AR2, and the area of the planar outline of the third external electrode 14 is AR3, the total area TAR, area AR1, area AR2, and area AR3 Satisfies the condition of 0.6 ≦ (AR1 + AR2 + AR3) /TAR≦0.9. Incidentally, the area AR1 and the area AR2 may be the same or slightly different from each other in the design standard dimension not including the manufacturing tolerance.

前掲の0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件は、「接続時の信頼性向上」に有効であるため、以下にその有効性(効果)について説明する。   Since the above-mentioned condition of 0.6 ≦ (AR1 + AR2 + AR3) /TAR≦0.9 is effective for “reliability improvement at the time of connection”, its effectiveness (effect) will be described below.

前述の貫通型コンデンサ10-1は、回路基板に搭載された後に各外部電極12〜14が導体パッド等に電気的に接続される。具体的には、表面実装を可能とした回路基板(部品実装基板)にあっては、各外部電極12〜14がハンダを用いて導体パッドに電気的に接続され、また、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)にあっては、各外部電極12〜14がハンダを用いて導体パッドに電気的に接続される他、各外部電極12〜14に導体ビアが電気的に接続される。   After the feedthrough capacitor 10-1 is mounted on a circuit board, the external electrodes 12 to 14 are electrically connected to conductor pads and the like. Specifically, in a circuit board (component mounting board) capable of surface mounting, each external electrode 12 to 14 is electrically connected to a conductor pad using solder, and surface mounting and internal mounting. In the circuit board (component built-in board) that enables the external electrodes 12 to 14 to be electrically connected to the conductor pads using solder, and the conductor vias are electrically connected to the external electrodes 12 to 14. Connected to.

図1に示した従前の貫通型コンデンサ100は、前述の貫通型コンデンサ10-1のような第3外部電極14を有しておらず、しかも、貫通型コンデンサ100を高さ方向から見たときの平面輪郭の面積に対する第1外部電極102〜第4外部電極105の平面輪郭の面積和の占有割合が50%前後であるため、回路基板への搭載位置が僅かにずれるだけで導体パッドや導体ビアとの電気的接続の信頼性が低下する懸念がある。これに対し、前述の貫通型コンデンサ10-1は、コンデンサ本体11の長さ方向中央部に4角筒状の第3外部電極14が存在し、しかも、貫通型コンデンサ10-1を高さ方向からみたときの平面輪郭の面積に対する第1外部電極12〜第3外部電極14の平面輪郭の面積和の占有割合が60%以上であって前掲の0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足しているため、回路基板への搭載位置が僅かにずれても所期の電気的接続を的確に行って、接続時の信頼性向上を図ることができる。   The conventional feedthrough capacitor 100 shown in FIG. 1 does not have the third external electrode 14 like the feedthrough capacitor 10-1, and when the feedthrough capacitor 100 is viewed from the height direction. Since the occupation ratio of the area sum of the planar outlines of the first external electrode 102 to the fourth external electrode 105 to the area of the planar outline is about 50%, the conductor pad and the conductor are only required to be slightly displaced from the mounting position on the circuit board. There is a concern that the reliability of electrical connection with vias may be reduced. On the other hand, in the feedthrough capacitor 10-1, the third external electrode 14 having a rectangular tube shape is present at the center in the length direction of the capacitor body 11, and the feedthrough capacitor 10-1 is arranged in the height direction. Occupying ratio of the area sum of the planar outlines of the first external electrode 12 to the third external electrode 14 with respect to the area of the planar outline when viewed from above is 60% or more, and 0.6 ≦ (AR1 + AR2 + AR3) / TAR ≦ 0. Since the condition of No. 9 is satisfied, even when the mounting position on the circuit board is slightly shifted, the intended electrical connection can be performed accurately and the reliability at the time of connection can be improved.

尚、前掲の0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件における0.6は、前掲のE1<E3の条件とE2<E3の条件を満足して前記「搭載時の強度向上」が図れることを考慮した下限値である。また、同条件における0.9は、各外部電極12〜14と導体パッド又は導体ビアとを電気的に接続するときの、第1外部電極12と第3外部電極14との短絡、並びに、第2外部電極13と第3外部電極14との短絡を回避することを考慮した上限値である。   In addition, 0.6 in the above-mentioned conditions of 0.6 ≦ (AR1 + AR2 + AR3) /TAR≦0.9 satisfies the above-mentioned conditions of E1 <E3 and E2 <E3, and the above “improvement of strength when mounted” Is a lower limit considering that Further, 0.9 in the same condition is a short circuit between the first external electrode 12 and the third external electrode 14 when the external electrodes 12 to 14 and the conductive pads or the conductive vias are electrically connected, and the first 2 is an upper limit value in consideration of avoiding a short circuit between the external electrode 13 and the third external electrode 14.

さらに、前述の貫通型コンデンサ10-1は、第1外部電極12の表面粗さと第2外部電極13の表面粗さと第3外部電極14の表面粗さが、コンデンサ本体11の露出部分11a及び11bの表面粗さよりも粗くなっている。因みに、第1外部電極12の表面粗さと第2外部電極13の表面粗さは、製造公差を含まない設計上の基準粗さにおいて同じであっても良いし、僅かに異なっていても良い。   Further, in the feedthrough capacitor 10-1, the surface roughness of the first external electrode 12, the surface roughness of the second external electrode 13, and the surface roughness of the third external electrode 14 are determined by the exposed portions 11a and 11b of the capacitor body 11. It is rougher than the surface roughness. Incidentally, the surface roughness of the first external electrode 12 and the surface roughness of the second external electrode 13 may be the same or slightly different in the design reference roughness not including the manufacturing tolerance.

前掲の粗さ関係は、「封止樹脂の剥離防止」に有効であるため、以下にその有効性(効果)について説明する。   Since the roughness relationship described above is effective for “preventing peeling of the sealing resin”, its effectiveness (effect) will be described below.

前述の貫通型コンデンサ10-1は、回路基板の導体パッド等に電気的に接続された後に合成樹脂で封止されることがある。特に、表面実装及び内部実装を可能とした回路基板(部品内蔵基板)にあっては、内部実装の貫通型コンデンサ10-1の殆どは合成樹脂で封止されて気密性が確保される。   The feedthrough capacitor 10-1 described above may be sealed with a synthetic resin after being electrically connected to a conductor pad or the like of a circuit board. In particular, in a circuit board (component built-in board) capable of surface mounting and internal mounting, most of the internal mounting feedthrough capacitor 10-1 is sealed with a synthetic resin to ensure airtightness.

図1に示した従前の貫通型コンデンサ100は、前述の貫通型コンデンサ10-1のような粗さ関係を有していないため、接続後の貫通型コンデンサ100を合成樹脂で封止すると、コンデンサ本体101に対する封止樹脂の密着力よりも各外部電極102〜105に対する封止樹脂の密着力が弱いが故に、各外部電極102〜105から封止樹脂が剥離して腐食等の発生原因となる懸念がある。これに対し、前述の貫通型コンデンサ10-1は、各外部電極12〜14の表面粗さがコンデンサ本体11の露出部分11a及び11bの表面粗さよりも粗いため、各外部電極12〜14に対する封止樹脂の密着力を高めて、封止樹脂の剥離防止を図ることができる。   The conventional feedthrough capacitor 100 shown in FIG. 1 does not have the roughness relationship as the feedthrough capacitor 10-1 described above. Therefore, when the feedthrough capacitor 100 after connection is sealed with a synthetic resin, the capacitor Since the adhesion of the sealing resin to the external electrodes 102 to 105 is weaker than the adhesion of the sealing resin to the main body 101, the sealing resin is peeled off from the external electrodes 102 to 105, causing corrosion and the like. There are concerns. On the other hand, since the surface roughness of the external electrodes 12 to 14 is rougher than the surface roughness of the exposed portions 11 a and 11 b of the capacitor body 11, the feedthrough capacitor 10-1 described above is sealed against the external electrodes 12 to 14. The adhesion of the stop resin can be increased to prevent the sealing resin from peeling off.

さらに、前述の貫通型コンデンサ10-1は、第1外部電極12におけるコンデンサ本体11の長さ方向一面の稜線に近い部分(厚肉部分12f)の厚さが部分12b〜12dの厚さよりも厚く、第2外部電極13におけるコンデンサ本体11の長さ方向他面の稜線に近い部分の厚さ(厚肉部分13f)が部分13b〜13dの厚さよりも厚く、第3外部電極14におけるコンデンサ本体11の高さ方向一面の稜線に近い部分(厚肉部分14e)の厚さとコンデンサ本体11の高さ方向他面の稜線に近い部分(厚肉部分14e)の厚さが部分14a〜14dの厚さよりも厚くなっている。   Further, in the feedthrough capacitor 10-1, the thickness of the portion (thick portion 12f) near the ridge line on the first surface of the capacitor body 11 in the first external electrode 12 is thicker than the thickness of the portions 12b to 12d. The thickness (thick portion 13f) of the second external electrode 13 near the ridge line on the other surface in the length direction of the capacitor body 11 is thicker than the thickness of the portions 13b to 13d. The thickness of the portion close to the ridge line on one surface in the height direction (thick wall portion 14e) and the thickness of the portion close to the ridge line on the other surface in the height direction of the capacitor body 11 (thick wall portion 14e) are larger than the thickness of the portions 14a to 14d. Is also thicker.

前掲の厚さ関係は、「接続不良の防止」に有効であるため、以下にその有効性(効果)について説明する。   Since the thickness relationship described above is effective for “preventing connection failure”, its effectiveness (effect) will be described below.

前述の貫通型コンデンサ10-1は、部品収納凹部を有するテープ状梱包材に包装されて使用に供されることがある。テープ状梱包材に包装された貫通型コンデンサ10-1は、カバーテープをテープ本体から剥離した後、吸着ノズルによって部品収納凹部から取り出され、先に述べたような回路基板への搭載が行われる。   The feedthrough capacitor 10-1 described above may be used after being packaged in a tape-shaped packing material having a component housing recess. The through-type capacitor 10-1 packaged in the tape-shaped packing material is removed from the component housing recess by the suction nozzle after the cover tape is peeled off from the tape body, and mounted on the circuit board as described above. .

図1に示した従前の貫通型コンデンサ100は、前述の貫通型コンデンサ10-1のような厚さ関係(厚肉部分12f、13f及び14e)を有していないため、テープ状梱包材に包装すると、各外部電極102〜105の表面、特に電気的接続に利用される高さ方向両側の表面がテープ状梱包材の部品収納凹部の底面やカバーテープの凹部閉塞面に接触して各々の表面に摩擦による変質や汚れ等が生じ、これらが原因となって各外部電極102〜105の電気的な接続に不良を生じる懸念がある。これに対し、前述の貫通型コンデンサ10-1は、各外部電極12〜14におけるコンデンサ本体11の稜線に近い部分に厚肉部分12f、13f及び14eが設けられているため、テープ状梱包材に包装しても、各外部電極12〜14の表面、特に電気的接続に利用される高さ方向両側の表面(部分12b、12c、13b、13c、14a及び14bの表面)がテープ状梱包材の部品収納凹部の底面やカバーテープの凹部閉塞面に接触することを抑制して、各々の表面に摩擦による変質や汚れ等を生じることを防止することができ、これにより、各外部電極12〜14と導体パッド又は導体ビアとを電気的に接続するときの接続不良の防止を図ることができる。   Since the conventional feedthrough capacitor 100 shown in FIG. 1 does not have the thickness relationship (thick portions 12f, 13f, and 14e) as the feedthrough capacitor 10-1 described above, it is packaged in a tape-shaped packing material. Then, the surfaces of the external electrodes 102 to 105, particularly the surfaces on both sides in the height direction used for electrical connection, come into contact with the bottom surfaces of the component storage recesses of the tape-shaped packing material and the recess closing surfaces of the cover tapes. There is a concern that deterioration, dirt, and the like may occur due to friction, which may cause defects in the electrical connection between the external electrodes 102 to 105. On the other hand, since the feedthrough capacitor 10-1 is provided with thick portions 12f, 13f, and 14e near the ridgeline of the capacitor body 11 in each of the external electrodes 12-14, Even after packaging, the surfaces of the external electrodes 12 to 14, particularly the surfaces on both sides in the height direction used for electrical connection (the surfaces of the portions 12 b, 12 c, 13 b, 13 c, 14 a and 14 b) are the tape-shaped packing material. It is possible to suppress contact with the bottom surface of the component housing recess and the recess closing surface of the cover tape, thereby preventing each surface from being altered or contaminated due to friction, whereby each of the external electrodes 12 to 14 can be prevented. It is possible to prevent connection failure when electrically connecting the conductor pad and the conductor via.

次に、前述の有効性(効果)を確認するために用意した、
・図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1
・図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2
の仕様について各図に記した符号を適宜用いて説明する。因みに、後記寸法値は何れも製造公差を含まない設計上の基準寸法である。
Next, we prepared to confirm the effectiveness (effect) described above,
Evaluation sample 1 corresponding to feedthrough capacitor 10-1 shown in FIGS.
Sample 2 for evaluation corresponding to the conventional feedthrough capacitor 100 shown in FIG.
The specifications will be described using the symbols shown in each figure as appropriate. Incidentally, the dimension values described later are design reference dimensions that do not include manufacturing tolerances.

評価用サンプル1の仕様は以下のとおりである。
・全体の長さLが1000μm、幅Wが600μm、高さHが220μm
・コンデンサ本体11の長さが960μm、幅が560μm、高さが180μm
・コンデンサ本体11の第1保護部PP1の厚さと第2保護部PP2の厚さが30μm、容量部CPの厚さが120μm
・容量部CPに含まれる第1内部電極層15の厚さと第2内部電極層16の厚さが0.7μm、誘電体層17の厚さが0.8μm、第1内部電極層15の層数が40層、第2内部電極層16の層数が40層
・第1保護部PP1と各誘電体層17と第2保護部PP2がチタン酸バリウムを主成分とした誘電体セラミックス、各第1内部電極層15と各第2内部電極層16がニッケルを主成分とした良導体
・第1外部電極12の部分12b〜12eの厚さと第2外部電極13の部分13b〜13eの厚さと第3外部電極14の部分14a〜14dの厚さが15μm、第1外部電極12の部分12aの厚さと第2外部電極13の部分13aの厚さが20μm、各外部電極12〜14の厚肉部分12f、13f及び14eの厚さが20μm
・第1外部電極12と第2外部電極13と第3外部電極14がニッケルを主成分とした下地膜と銅を主成分とした表面膜の2層構造
・第1外部電極12の寸法E1と第2外部電極13の寸法E2が200μm、第3外部電極14の寸法E3が350μm
・第1外部電極12の表面粗さRaと第2外部電極13の表面粗さRaと第3外部電極14の表面粗さRaが0.31μm以上、コンデンサ本体11の露出部分11a及び11bの表面粗さRaが0.08μm以下
The specifications of the evaluation sample 1 are as follows.
-Overall length L is 1000 μm, width W is 600 μm, height H is 220 μm
・ The length of the capacitor body 11 is 960 μm, the width is 560 μm, and the height is 180 μm.
The thickness of the first protection part PP1 and the thickness of the second protection part PP2 of the capacitor body 11 are 30 μm, and the thickness of the capacitance part CP is 120 μm.
The thickness of the first internal electrode layer 15 and the thickness of the second internal electrode layer 16 included in the capacitor portion CP is 0.7 μm, the thickness of the dielectric layer 17 is 0.8 μm, and the first internal electrode layer 15 layer The number of the second internal electrode layers 16 is 40. The first protective part PP1, each dielectric layer 17, and the second protective part PP2 are dielectric ceramics mainly composed of barium titanate. 1 internal electrode layer 15 and each 2nd internal electrode layer 16 are the good conductor which has nickel as a main component, the thickness of the parts 12b-12e of the 1st external electrode 12, the thickness of the parts 13b-13e of the 2nd external electrode 13, and 3rd The thickness of the parts 14a to 14d of the external electrode 14 is 15 μm, the thickness of the part 12a of the first external electrode 12 and the thickness of the part 13a of the second external electrode 13 are 20 μm, and the thick part 12f of each external electrode 12 to 14 , 13f and 14e are 20 μm thick
The first external electrode 12, the second external electrode 13, and the third external electrode 14 have a two-layer structure of a base film mainly composed of nickel and a surface film mainly composed of copper. A dimension E1 of the first external electrode 12 The dimension E2 of the second external electrode 13 is 200 μm, and the dimension E3 of the third external electrode 14 is 350 μm.
The surface roughness Ra of the first external electrode 12, the surface roughness Ra of the second external electrode 13, and the surface roughness Ra of the third external electrode 14 are 0.31 μm or more, and the surfaces of the exposed portions 11a and 11b of the capacitor body 11 Roughness Ra is 0.08μm or less

ここで、評価用サンプル1の製法を簡単に紹介する。製造に際しては、先ず、チタン酸バリウム粉末とエタノール(溶剤)とポリビニルブチラール(バインダ)と分散剤等の添加剤等とを含むセラミックスラリーを用意すると共に、ニッケル粉末とターピネオール(溶剤)とエチルセルロース(バインダ)と分散剤等の添加剤とを含む金属ペーストを用意する。   Here, the manufacturing method of the sample 1 for evaluation is introduced briefly. In production, first, a ceramic slurry containing barium titanate powder, ethanol (solvent), polyvinyl butyral (binder), and additives such as a dispersant is prepared, and nickel powder, terpineol (solvent), and ethyl cellulose (binder) are prepared. ) And an additive such as a dispersant.

続いて、ダイコータやグラビアコータ等の塗工装置と乾燥装置とを用いて、キャリアフィルムの表面にセラミックスラリーを塗工し乾燥して、第1グリーンシートを作製する。また、スクリーン印刷機やグラビア印刷機等の印刷装置と乾燥装置とを用いて、第1グリーンシートの表面に金属ペーストをマトリクス状又は千鳥状に印刷し乾燥して、第1内部電極層15用パターン群が形成された第2グリーンシートを作製すると共に、第1グリーンシートの表面に金属ペーストをマトリクス状又は千鳥状に印刷し乾燥して、第2内部電極層16用パターン群が形成された第3グリーンシートを作製する。   Subsequently, using a coating device such as a die coater or a gravure coater and a drying device, a ceramic slurry is coated on the surface of the carrier film and dried to produce a first green sheet. Further, using a printing device such as a screen printing machine or a gravure printing machine and a drying device, a metal paste is printed on the surface of the first green sheet in a matrix or zigzag pattern and dried to be used for the first internal electrode layer 15. The second green sheet on which the pattern group was formed was produced, and a metal paste was printed on the surface of the first green sheet in a matrix or zigzag pattern and dried to form a pattern group for the second internal electrode layer 16. A third green sheet is produced.

続いて、打ち抜き刃及びヒータを有する可動式吸着ヘッド等の積層装置を用いて、第1グリーンシートから打ち抜いた単位シートを所定枚数に達するまで積み重ねて熱圧着して第2保護部PP2に対応した部位を作製する。続いて、前記同様の積層装置を用いて、第3グリーンシートから打ち抜いた単位シート(第2内部電極層16用パターン群を含む)の上に第2グリーンシートから打ち抜いた単位シート(第1内部電極層15用パターン群を含む)を積み重ねて熱圧着する作業を繰り返して容量部CPに対応した部位を作製する。続いて、前記同様の積層装置を用いて、第1グリーンシートから打ち抜いた単位シートを所定枚数に達するまで積み重ねて熱圧着して第1保護部PP1に対応した部位を作製する。続いて、熱間静水圧プレス機や機械式又は油圧式プレス機等の本圧着装置を用いて、前記各部位を積み重ねたものを本熱圧着して、未焼成積層シートを作製する。   Subsequently, using a laminating apparatus such as a movable suction head having a punching blade and a heater, the unit sheets punched from the first green sheet are stacked until they reach a predetermined number and are thermocompression bonded to correspond to the second protective part PP2. Create the site. Subsequently, using the same laminating apparatus, a unit sheet (first internal sheet) punched from the second green sheet on a unit sheet (including the pattern group for the second internal electrode layer 16) punched from the third green sheet. The portion corresponding to the capacitor portion CP is produced by repeating the operation of stacking and thermocompression bonding (including the pattern group for the electrode layer 15). Subsequently, using the same laminating apparatus as described above, the unit sheets punched from the first green sheet are stacked until they reach a predetermined number and are thermocompression bonded to produce a portion corresponding to the first protection part PP1. Subsequently, using a main crimping apparatus such as a hot isostatic press or a mechanical or hydraulic press, the stacked parts are subjected to main thermocompression to produce an unfired laminated sheet.

続いて、ブレードダイシング機やレーザーダイシング機等の切断装置を用いて、未焼成積層シートを格子状に切断して、コンデンサ本体11に対応した未焼成チップを作製する。続いて、トンネル型焼成炉や箱型焼成炉等の焼成装置を用いて、多数の未焼成チップを還元性雰囲気下、或いは、低酸素分圧雰囲気下で、チタン酸バリウム及びニッケルに応じた温度プロファイルにて焼成(脱バインダ処理と焼成処理を含む)を行って、コンデンサ本体11を作製する。   Subsequently, by using a cutting device such as a blade dicing machine or a laser dicing machine, the unfired laminated sheet is cut into a lattice shape, and an unfired chip corresponding to the capacitor body 11 is produced. Subsequently, using a firing apparatus such as a tunnel-type firing furnace or a box-type firing furnace, a large number of unfired chips are subjected to a temperature corresponding to barium titanate and nickel in a reducing atmosphere or in a low oxygen partial pressure atmosphere. The capacitor body 11 is fabricated by firing (including binder removal processing and firing processing) using a profile.

続いて、ローラ塗布機やディップ塗布機等の塗布装置と乾燥装置とを用いて、コンデンサ本体11の長さ方向両端部に金属ペースト(前記の金属ペーストを流用)を塗布し乾燥して、前記同様の雰囲気下で焼き付け処理を行って下地膜を形成した後、下地膜を覆う表面膜を電解メッキ等のメッキ処理で形成して、第1外部電極12及び第2外部電極13を作製する。また、前記同様の塗布装置と乾燥装置とを用いて、コンデンサ本体11の長さ方向中央部分に金属ペースト(前記の金属ペーストを流用)を塗布し乾燥して、前記同様の雰囲気下で焼き付け処理を行って下地膜を形成した後、下地膜を覆う表面膜を電解メッキ等のメッキ処理で形成して、第3外部電極14を作製する。続いて、第1外部電極12の表面と第2外部電極13の表面と第3外部電極14の表面に化学エッチング処理を施して各々の表面を荒らす。   Subsequently, using a coating device such as a roller coating machine or a dip coating machine and a drying device, a metal paste (using the metal paste) is applied to both ends in the length direction of the capacitor body 11 and dried. After a baking process is performed in the same atmosphere to form a base film, a surface film covering the base film is formed by a plating process such as electrolytic plating, and the first external electrode 12 and the second external electrode 13 are manufactured. Further, using the same coating apparatus and drying apparatus as described above, a metal paste (using the metal paste is applied) is applied to the central portion in the length direction of the capacitor body 11 and dried, followed by baking in the same atmosphere as described above. After forming the base film, a surface film covering the base film is formed by a plating process such as electrolytic plating, and the third external electrode 14 is manufactured. Subsequently, the surface of the first external electrode 12, the surface of the second external electrode 13, and the surface of the third external electrode 14 are subjected to chemical etching to roughen the surfaces.

一方、評価用サンプル2の仕様は、以下の点においてのみ、評価用サンプル1の仕様と異なる。因みに、評価用サンプル2の製法は、最後の化学エッチング処理を除き、評価用サンプル1の製法と同様である。
・第1外部電極102の厚さと第2外部電極103の厚さと第3外部電極104の厚さと第4外部電極105の厚さが20μm
・第3外部電極104の寸法E13と第4外部電極105の寸法E14が350μm、第3外部電極104の寸法E15と第4外部電極105の寸法E16が150μm(寸法E13〜E16は図1(A)を参照)
・第1外部電極102の表面粗さRaと第2外部電極103の表面粗さRaと第3外部電極104の表面粗さRaと第4外部電極105の表面粗さRaが0.06μm以下、コンデンサ本体101の露出部分の表面粗さRaが0.08μm以下
On the other hand, the specification of the evaluation sample 2 differs from the specification of the evaluation sample 1 only in the following points. Incidentally, the manufacturing method of the evaluation sample 2 is the same as the manufacturing method of the evaluation sample 1 except for the last chemical etching treatment.
The thickness of the first external electrode 102, the thickness of the second external electrode 103, the thickness of the third external electrode 104, and the thickness of the fourth external electrode 105 are 20 μm.
The dimension E13 of the third external electrode 104 and the dimension E14 of the fourth external electrode 105 are 350 μm, the dimension E15 of the third external electrode 104 and the dimension E16 of the fourth external electrode 105 are 150 μm (the dimensions E13 to E16 are shown in FIG. See))
The surface roughness Ra of the first external electrode 102, the surface roughness Ra of the second external electrode 103, the surface roughness Ra of the third external electrode 104, and the surface roughness Ra of the fourth external electrode 105 are 0.06 μm or less, The surface roughness Ra of the exposed portion of the capacitor body 101 is 0.08 μm or less.

次に、前述の有効性(効果)を、前記評価用サンプル1及び2を用いて確認した結果等について説明する。   Next, the results of confirming the effectiveness (effect) described above using the evaluation samples 1 and 2 will be described.

評価用サンプル1は、第1外部電極12の寸法E1と第2外部電極13の寸法E2が何れも200μmで、第3外部電極14の寸法E3が350μmであることから、E1<E3の条件とE2<E3の条件を満足している。一方、評価用サンプル2は、評価用サンプル1のような4角筒状の第3外部電極14を有しないため、前記両条件を満足しない。搭載時の強度向上に係り、計5個の評価用サンプル1の抗折強度と計5個の評価用サンプル2の抗折強度を測定したところ、評価用サンプル1の抗折強度は180gf以上、評価用サンプル2の抗折強度は110gf以下であった。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2に比べて、前記「搭載時の強度向上」に有効であると言える。   In the sample 1 for evaluation, since the dimension E1 of the first external electrode 12 and the dimension E2 of the second external electrode 13 are both 200 μm and the dimension E3 of the third external electrode 14 is 350 μm, the condition of E1 <E3 is satisfied. The condition of E2 <E3 is satisfied. On the other hand, the evaluation sample 2 does not have the quadrangular cylindrical third external electrode 14 unlike the evaluation sample 1, and therefore does not satisfy the both conditions. Regarding the strength improvement at the time of mounting, the bending strength of a total of five evaluation samples 1 and the bending strength of a total of five evaluation samples 2 were measured, and the bending strength of the evaluation sample 1 was 180 gf or more. The bending strength of the sample 2 for evaluation was 110 gf or less. From this, the evaluation sample 1 corresponding to the feedthrough capacitor 10-1 shown in FIGS. 2 to 7 is compared with the evaluation sample 2 corresponding to the previous feedthrough capacitor 100 shown in FIG. It can be said that it is effective for “improvement of strength when mounted”.

また、評価用サンプル1は、評価用サンプル1を高さ方向から見たときの(第1外部電極12の平面輪郭の面積AR1+第2外部電極13の平面輪郭の面積AR2+第3外部電極14の平面輪郭の面積AR3)/評価用サンプル1の平面輪郭の総面積TAR)の算出値(計5個の平均値)が0.77であることから、0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している。一方、評価用サンプル2は、評価用サンプル2を高さ方向から見たときの(第1外部電極102の平面輪郭の面積+第2外部電極103の平面輪郭の面積+第3外部電極104の平面輪郭の面積+第4外部電極105の平面輪郭の面積)/評価用サンプル2の平面輪郭の総面積)の算出値(計5個の平均値)が0.50であることから、前記条件を満足していない。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応する評価用サンプル2に比べて、前記「接続時の信頼性向上」に有効であると言える。   Further, the evaluation sample 1 is obtained when the evaluation sample 1 is viewed from the height direction (the area AR1 of the planar outline of the first external electrode 12 + the area AR2 + of the planar outline of the second external electrode 13 + the area of the third external electrode 14). Since the calculated value of the area of the planar contour AR3) / the total area TAR of the planar contour of the evaluation sample 1 (average value of a total of five) is 0.77, 0.6 ≦ (AR1 + AR2 + AR3) / TAR ≦ 0 .9 condition is satisfied. On the other hand, when the evaluation sample 2 is viewed from the height direction, the evaluation sample 2 (the area of the planar outline of the first external electrode 102 + the area of the planar outline of the second external electrode 103 + the area of the third external electrode 104) Since the calculated value (the total area of the plane contour of the area of the plane contour + the area of the plane contour of the fourth external electrode 105) / the total area of the plane contour of the sample 2 for evaluation) is 0.50, the above condition is satisfied. Not satisfied. From this, the evaluation sample 1 corresponding to the feedthrough capacitor 10-1 shown in FIGS. 2 to 7 is compared with the evaluation sample 2 corresponding to the previous feedthrough capacitor 100 shown in FIG. It can be said that it is effective for “improvement of connection reliability”.

さらに、評価用サンプル1は、第1外部電極12の表面粗さRaと第2外部電極13の表面粗さRaと第3外部電極14の表面粗さRaが0.31μm以上、コンデンサ本体11の露出部分11a及び11bの表面粗さRaが0.08μm以下であるから、第1外部電極12と第2外部電極13と第3外部電極14の各々の表面粗さがコンデンサ本体11の露出部分の表面粗さよりも粗いといった粗さ関係を満足している。一方、評価用サンプル2は、第1外部電極102の表面粗さRaと第2外部電極103の表面粗さRaと第3外部電極104の表面粗さRaと第4外部電極105の表面粗さRaが0.06μm以下、コンデンサ本体101の露出部分の表面粗さRaが0.08μm以下であるから、前記粗さ関係を満足していない。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2に比べて、前記「封止樹脂の剥離防止」に有効であると言える。   Furthermore, in the sample 1 for evaluation, the surface roughness Ra of the first external electrode 12, the surface roughness Ra of the second external electrode 13, and the surface roughness Ra of the third external electrode 14 are 0.31 μm or more. Since the surface roughness Ra of the exposed portions 11 a and 11 b is 0.08 μm or less, the surface roughness of each of the first external electrode 12, the second external electrode 13, and the third external electrode 14 is that of the exposed portion of the capacitor body 11. Satisfies the roughness relationship of being rougher than the surface roughness. On the other hand, the evaluation sample 2 includes the surface roughness Ra of the first external electrode 102, the surface roughness Ra of the second external electrode 103, the surface roughness Ra of the third external electrode 104, and the surface roughness of the fourth external electrode 105. Since Ra is 0.06 μm or less and the surface roughness Ra of the exposed portion of the capacitor body 101 is 0.08 μm or less, the above-described roughness relationship is not satisfied. From this, the evaluation sample 1 corresponding to the feedthrough capacitor 10-1 shown in FIGS. 2 to 7 is compared with the evaluation sample 2 corresponding to the previous feedthrough capacitor 100 shown in FIG. It can be said that it is effective for “preventing peeling of the sealing resin”.

さらに、評価用サンプル1は、第1外部電極12の部分12b〜12eの厚さと第2外部電極13の部分13b〜13eの厚さと第3外部電極14の部分14a〜14dの厚さが15μmで、各外部電極12〜14の厚肉部分12f、13f及び14eの厚さが20μmであり、両者の間には5μmのギャップがある。つまり、評価用サンプル1を部品収納凹部を有するテープ状梱包材に包装しても、各外部電極102〜105の表面、特に電気的接続に利用される高さ方向両側の表面がテープ状梱包材の部品収納凹部の底面やカバーテープの凹部閉塞面に接触し難い。一方、評価用サンプル2は、評価用サンプル1のようなギャップが存在しない。そのため、評価用サンプル2を部品収納凹部を有するテープ状梱包材に包装すると、各外部電極102〜105の表面、特にハンダ接続やビア接続に利用される高さ方向両側面の表面がテープ状梱包材の部品収納凹部の内面やカバーテープの凹部閉塞面に接触して、各々の表面に摩擦による変質や汚れ等を生じ易い。このことから、図2〜図7に示した貫通型コンデンサ10-1に対応した評価用サンプル1は、図1に示した従前の貫通型コンデンサ100に対応した評価用サンプル2に比べて、前記「接続不良の防止」に有益であると言える。   Furthermore, in the sample 1 for evaluation, the thickness of the portions 12b to 12e of the first external electrode 12, the thickness of the portions 13b to 13e of the second external electrode 13, and the thickness of the portions 14a to 14d of the third external electrode 14 are 15 μm. The thicknesses of the thick portions 12f, 13f, and 14e of the external electrodes 12 to 14 are 20 μm, and there is a 5 μm gap between them. That is, even if the evaluation sample 1 is packaged in a tape-shaped packing material having a component storage recess, the surfaces of the external electrodes 102 to 105, particularly the surfaces on both sides in the height direction used for electrical connection, are tape-shaped packing materials. It is difficult to come into contact with the bottom surface of the component housing recess and the recess closing surface of the cover tape. On the other hand, the evaluation sample 2 does not have a gap like the evaluation sample 1. Therefore, when the evaluation sample 2 is packaged in a tape-shaped packaging material having a component housing recess, the surfaces of the external electrodes 102 to 105, particularly the surfaces on both sides in the height direction used for solder connection and via connection, are tape-shaped. Contact with the inner surface of the component housing recess of the material or the recess closing surface of the cover tape tends to cause alteration or contamination due to friction on each surface. From this, the evaluation sample 1 corresponding to the feedthrough capacitor 10-1 shown in FIGS. 2 to 7 is compared with the evaluation sample 2 corresponding to the previous feedthrough capacitor 100 shown in FIG. It can be said that it is useful for “preventing poor connection”.

〈第1実施形態の変形例〉
(1)前述の貫通型コンデンサ10-1(評価用サンプル1を含む)として、第1外部電極12の高さ方向両面部分の最大厚さ(厚肉部分12fの厚さ)と、第2外部電極13の高さ方向両面部分の最大厚さ(厚肉部分13fの厚さ)と、第3外部電極14の高さ方向両面部分の最大厚さ(厚肉部分14eの厚さ)が略同じものを示したが、第1外部電極12の高さ方向両面部分の最大厚さ並びに第2外部電極13の高さ方向両面部分の最大厚さよりも第3外部電極14の高さ方向両面部分の最大厚さを薄くすれば、貫通型コンデンサ10-1を回路基板に搭載した後の「安定性の向上」に有効である。
<Modification of First Embodiment>
(1) As the above-described feedthrough capacitor 10-1 (including the evaluation sample 1), the maximum thickness (thickness of the thick portion 12f) of the both sides in the height direction of the first external electrode 12 and the second external The maximum thickness of both side portions of the electrode 13 in the height direction (thickness of the thick portion 13f) and the maximum thickness of both side portions of the third external electrode 14 in the height direction (thickness of the thick portion 14e) are substantially the same. Although the maximum thickness of the both sides in the height direction of the first external electrode 12 and the maximum thickness of the both sides in the height direction of the second external electrode 13 are shown, If the maximum thickness is reduced, it is effective for “improvement of stability” after the feedthrough capacitor 10-1 is mounted on the circuit board.

つまり、前述の貫通型コンデンサ10-1にあっては、第3外部電極14の高さ方向両面部分の最大厚さが、第1外部電極12の高さ方向両面部分の最大厚さ並びに第2外部電極13の高さ方向両面部分の最大厚さよりも厚くなると、回路基板に搭載された貫通型コンデンサ10-1に傾きを生じたり、第1外部電極12又は第2外部電極13に浮き上がりを生じたりして、その後の電気的接続に支障を生じる懸念がある。けれども、第1外部電極12の高さ方向両面部分の最大厚さをT1maxとし、第2外部電極13の高さ方向両面部分の最大厚さをT2maxとし、第3外部電極14の高さ方向両面部分の最大厚さをT3maxとしたときに、最大厚さT1maxと最大厚さT3maxがT1max>T3maxの条件を満足し、且つ、最大厚さT2maxと最大厚さT3maxがT2max>T3maxの条件を満足するようにすれば、前記の傾きや浮き上がりを防止して、前記「安定性の向上」を図ることができる。   That is, in the feedthrough capacitor 10-1, the maximum thickness of the both sides in the height direction of the third external electrode 14 is equal to the maximum thickness of the both sides in the height direction of the first external electrode 12 and the second thickness. When the thickness is larger than the maximum thickness of the both sides in the height direction of the external electrode 13, the feedthrough capacitor 10-1 mounted on the circuit board is inclined or the first external electrode 12 or the second external electrode 13 is lifted. There is a concern that the subsequent electrical connection may be hindered. However, the maximum thickness of both the height direction both sides of the first external electrode 12 is T1max, the maximum thickness of the both sides of the second external electrode 13 in the height direction is T2max, and both the height directions of the third external electrode 14 are both When the maximum thickness of the portion is T3max, the maximum thickness T1max and the maximum thickness T3max satisfy the condition of T1max> T3max, and the maximum thickness T2max and the maximum thickness T3max satisfy the condition of T2max> T3max. By doing so, it is possible to prevent the above-described inclination and lifting, and to achieve the “improvement of stability”.

(2)前述の貫通型コンデンサ10-1(評価用サンプル1を含む)として、コンデンサ本体11の露出部分11a及び11bに特段の間隔制限を設けていないものを示したが、これら露出部分11a及び11bの間隔を第3外部電極14の高さ方向両面部分の平均厚さに基づいて定めれば、イオンマイグレーションを原因とした「短絡の防止」に有効である。   (2) Although the feedthrough capacitor 10-1 (including the evaluation sample 1) described above has not been provided with any particular spacing restrictions on the exposed portions 11a and 11b of the capacitor body 11, these exposed portions 11a and 11b If the distance of 11b is determined based on the average thickness of the both sides in the height direction of the third external electrode 14, it is effective for “prevention of short circuit” due to ion migration.

つまり、前述の貫通型コンデンサ10-1にあっては、第3外部電極14は4角筒状を成していて高さ方向両面部分の面積が広いため、この高さ方向両面部分の平均厚さが厚くなると、濃度勾配を原因とし、金属イオンが第3外部電極14からセラミック本体11を介して第1外部電極12及び第2外部電極13に移動する現象(イオンマイグレーション)が生じ、第3外部電極14と第1外部電極12及び第2外部電極13に短絡が生じる懸念がある。けれども、第3外部電極14の高さ方向両面部分の平均厚さをT3aveとし、コンデンサ本体11の露出部分11aの間隔をI1とし、コンデンサ本体11の露出部分11bの間隔をI2としたときに(I1及びI2は図2(A)を参照)、平均厚さT3aveと間隔I1がT3ave≦I1/2の条件を満足し、且つ、平均厚さT3aveと間隔I2がT3ave≦I2/2の条件を満足するようにすれば、前記のイオンマイグレーションを抑制して、前記「短絡の防止」を図ることができる。   That is, in the feedthrough capacitor 10-1, the third external electrode 14 has a quadrangular cylindrical shape and has a large area on both sides in the height direction. When the thickness increases, a phenomenon (ion migration) occurs in which metal ions move from the third external electrode 14 to the first external electrode 12 and the second external electrode 13 through the ceramic body 11 due to a concentration gradient, There is a concern that a short circuit may occur in the external electrode 14, the first external electrode 12, and the second external electrode 13. However, when the average thickness of both side portions of the third external electrode 14 in the height direction is T3ave, the interval between the exposed portions 11a of the capacitor body 11 is I1, and the interval between the exposed portions 11b of the capacitor body 11 is I2. I1 and I2 refer to FIG. 2A), the average thickness T3ave and the interval I1 satisfy the condition of T3ave ≦ I1 / 2, and the average thickness T3ave and the interval I2 satisfy the condition of T3ave ≦ I2 / 2. If satisfied, the ion migration can be suppressed and the “prevention of short circuit” can be achieved.

この「短絡の防止」に係る有効性(効果)を確認するために、前記評価用サンプル1の第3外部電極14の寸法E1を増加して間隔I1と間隔I2の両方を40μmとし、且つ、第3外部電極14の高さ方向両面部分の平均厚さT3aveを前記評価用サンプル1に合わせて17.5μmとしたサンプルA1と、サンプルA1の第3外部電極14の高さ方向両面部分の平均厚さT3aveを20μmとしたサンプルA2と、サンプルA1の第3外部電極14の高さ方向両面部分の平均厚さT3aveを22.5μmとしたサンプルA3を用意した。そして、各100個のサンプルA1〜A3を温度85℃で湿度85%の雰囲気下で500時間放置した後、ハイレジスタンスメータ(アジレント社製、4329A)を利用して、第3外部電極14と第1外部電極12との短絡発生率並びに第3外部電極14と第2外部電極13との短絡発生率を調べたところ、サンプルA1の短絡発生率は0%、サンプルA2の短絡発生率は0%、サンプルA3の短絡発生率は5%であった。即ち、前掲のT3ave≦I1/2の条件とT3ave≦I2/2の条件を満足するサンプルA1及びA2は、同条件を満足しないサンプルA3に比べて、前記「短絡の防止」に有効であることが確認できた。   In order to confirm the effectiveness (effect) related to the “prevention of short circuit”, the dimension E1 of the third external electrode 14 of the evaluation sample 1 is increased so that both the interval I1 and the interval I2 are 40 μm, and The average thickness T3ave of the both sides in the height direction of the third external electrode 14 is set to 17.5 μm in accordance with the sample 1 for evaluation, and the average of both sides in the height direction of the third external electrode 14 of the sample A1 A sample A2 having a thickness T3ave of 20 μm and a sample A3 having an average thickness T3ave of both sides in the height direction of the third external electrode 14 of the sample A1 of 22.5 μm were prepared. Then, after each 100 samples A1 to A3 were left in an atmosphere of 85 ° C. and 85% humidity for 500 hours, the third external electrode 14 and the second electrode 14 and the third external electrode 14 were obtained using a high resistance meter (Agilent, 4329A). When the short-circuit occurrence rate with the first external electrode 12 and the short-circuit occurrence rate with the third external electrode 14 and the second external electrode 13 were examined, the short-circuit occurrence rate of the sample A1 was 0% and the short-circuit occurrence rate of the sample A2 was 0%. The short-circuit occurrence rate of sample A3 was 5%. That is, the samples A1 and A2 that satisfy the above-mentioned conditions of T3ave ≦ I1 / 2 and T3ave ≦ I2 / 2 are more effective in the “prevention of short circuit” than the sample A3 that does not satisfy the conditions. Was confirmed.

(3)前述の貫通型コンデンサ10-1(評価用サンプル1を含む)として、コンデンサ本体11の露出部分11a及び11bに特段の間隔制限を設けていないものを示したが、これら露出部分11a及び11bの間隔を貫通型コンデンサ10-1の長さL1に基づいて定めれば、「ESL(等価直列インダクタンス)の低減」に有効である。   (3) As the above-described feedthrough capacitor 10-1 (including the sample 1 for evaluation), the exposed portions 11a and 11b of the capacitor body 11 are not provided with a special interval restriction. If the interval 11b is determined based on the length L1 of the feedthrough capacitor 10-1, it is effective for "reduction of ESL (equivalent series inductance)".

つまり、前述の貫通型コンデンサ10-1にあっては、第1内部導体層15と第2内部電極層16との実質的な電流距離が長くなるとESLが増加する。けれども、貫通型コンデンサ10-1の長さをL1とし、コンデンサ本体11の露出部分11aの間隔をI1とし露出部分11bの間隔をI2としたときに(L1、I1及びI2は図2(A)を参照)、間隔I1と長さL1がI1≦0.15×L1の条件を満足し、且つ、間隔I2と長さL1がI2≦0.15×L1の条件を満足するようすれば、前記「ESLの低減」を図ることができる。因みに、間隔I1と間隔I2は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。   That is, in the feedthrough capacitor 10-1, the ESL increases as the substantial current distance between the first internal conductor layer 15 and the second internal electrode layer 16 increases. However, when the length of the feedthrough capacitor 10-1 is L1, the interval between the exposed portions 11a of the capacitor body 11 is I1, and the interval between the exposed portions 11b is I2 (L1, I1 and I2 are shown in FIG. 2A). If the distance I1 and the length L1 satisfy the condition of I1 ≦ 0.15 × L1 and the distance I2 and the length L1 satisfy the condition of I2 ≦ 0.15 × L1, “Reduction of ESL” can be achieved. Incidentally, the interval I1 and the interval I2 may be the same or slightly different from each other in the design standard dimension not including the manufacturing tolerance.

この「ESLの低減」に係る有効性(効果)を確認するために、前記評価用サンプル1(長さL1が1000μm、間隔I1及びI2の両方が125μm)と同じサンプルB1と、サンプルB1の第3外部電極14の寸法E1を減少して間隔I1と間隔I2の両方を150μmとしたサンプルB2と、サンプルB1の第3外部電極14の寸法E1を減少して間隔I1と間隔I2の両方を175μmとしたサンプルB3を用意した。そして、各100個のサンプルB1〜B3のESL値を、ネットワークアナライザ(アジレント社製、8753D)を利用して調べたところ、サンプルB1のESL値(平均値)は15pF、サンプルB2のESL値(平均値)は18pF、サンプルB3のESL値(平均値)は20pFであった。即ち、前掲のI1≦0.15×L1の条件とI2≦0.15×L1の条件の満足するサンプルB1及びB2は、同条件を満足しないサンプルB3に比べて、前記「ESLの低減」に有効であることが確認できた。   In order to confirm the effectiveness (effect) related to the “reduction of ESL”, the same sample B1 as the sample 1 for evaluation (the length L1 is 1000 μm, both the intervals I1 and I2 are 125 μm), and the first sample B1 3 The sample E2 in which the dimension E1 of the external electrode 14 is reduced to reduce both the interval I1 and the interval I2 to 150 μm, and the dimension E1 of the third external electrode 14 in the sample B1 is reduced to reduce both the interval I1 and the interval I2 to 175 μm. Sample B3 was prepared. And when the ESL value of each of 100 samples B1 to B3 was examined using a network analyzer (manufactured by Agilent, 8753D), the ESL value (average value) of sample B1 was 15 pF, and the ESL value of sample B2 ( The average value) was 18 pF, and the ESL value (average value) of Sample B3 was 20 pF. In other words, the samples B1 and B2 satisfying the above-mentioned conditions of I1 ≦ 0.15 × L1 and I2 ≦ 0.15 × L1 are compared with the sample B3 not satisfying the same conditions in the above “reduction of ESL”. It was confirmed that it was effective.

《第2実施形態》
先ず、図8〜図11を用いて、本発明の第2実施形態に係る貫通型積層セラミックコンデンサ10-2(以下単に貫通型コンデンサ10-2と言う)の構造及び効果等について説明する。
<< Second Embodiment >>
First, the structure, effect, etc. of the feedthrough multilayer ceramic capacitor 10-2 (hereinafter simply referred to as feedthrough capacitor 10-2) according to the second embodiment of the present invention will be described with reference to FIGS.

この貫通型コンデンサ10-2が構造上で前述の貫通型コンデンサ10-1と相違するところは、図3(A)に示した第1内部電極層15の代わりに、これと形状が異なる第1内部電極層18(図9(A)を参照)を用いた点にある。この相違点以外の構造は前述の貫通型コンデンサ10-1と同じであり、この相違点に基づいて得られる効果以外の効果は前述の貫通型コンデンサ10-1で得られる効果と同等であるため、各々の説明を省略する。   The feedthrough capacitor 10-2 is different from the feedthrough capacitor 10-1 in the structure in that the first internal electrode layer 15 shown in FIG. The internal electrode layer 18 (see FIG. 9A) is used. Since the structure other than this difference is the same as that of the feedthrough capacitor 10-1, the effects other than those obtained based on this difference are the same as the effects obtained with the feedthrough capacitor 10-1. Each description is omitted.

各第1内部電極層18は、図9(A)に示したようなI字形状を成していて、長さ方向一端部(図9(A)の左端部)の幅方向両側(図9(A)の上下側)と長さ方向他端部(図9(A)の右端部)の幅方向両側(図9(A)の上下側)のそれぞれに、幅方向に延びる幅狭の引出部18aを一体に有している。各第1内部電極層18の引出部18aは、第2内部電極層16の引出部16aと同様に幅方向に延びるものであるため、図10から分かるように、コンデンサ本体10の高さ方向一面に第1内部電極層18と第2内部電極層16を平行投影すると、図10の左下と引出部18aと中央下の引出部16aの間、並びに、左上の引出部18aと中央上の引出部16aの間に間隔I3が形成され、図10の右下の引出部18aと中央下の引出部16aの間、並びに、右下の引出部18aと中央下の引出部16aの間に間隔I4が形成される。   Each of the first internal electrode layers 18 has an I shape as shown in FIG. 9A, and both sides in the width direction (FIG. 9) of one end portion in the length direction (left end portion in FIG. 9A). A narrow drawer extending in the width direction on both sides in the width direction (upper and lower sides in FIG. 9A) of the other side in the length direction (the right end portion in FIG. 9A) and the other end in the length direction (the right end portion in FIG. 9A). The portion 18a is integrally formed. Since the lead portion 18a of each first internal electrode layer 18 extends in the width direction similarly to the lead portion 16a of the second internal electrode layer 16, as can be seen from FIG. When the first internal electrode layer 18 and the second internal electrode layer 16 are projected in parallel to each other, the lower left portion between the lead portion 18a and the middle lower lead portion 16a in FIG. 10, and the upper left lead portion 18a and the middle upper lead portion. An interval I3 is formed between 16a, and an interval I4 is provided between the lower right drawer 18a and the lower center drawer 16a in FIG. 10 and between the lower right drawer 18a and the lower center drawer 16a. It is formed.

図11から分かるように、各第1内部電極層18の長さ方向一端部、具体的には図9(A)の左下と左上の引出部18aの下端縁と上端縁は第1外部電極12の部分12dと部分12eにそれぞれ電気的に接続され、各第1内部電極層18の長さ方向他端部、具体的には図9(A)の2個の右側引出部18aの下端縁と上端縁は第2外部電極13の部分13dと部分13eにそれぞれ電気的に接続されている。   As can be seen from FIG. 11, one end in the length direction of each first internal electrode layer 18, specifically, the lower and upper edges of the lower left and upper left lead portions 18 a in FIG. 9A are the first outer electrodes 12. 12d and 12e are electrically connected to each other, and the other end in the length direction of each of the first internal electrode layers 18, specifically, the lower end edges of the two right lead portions 18a in FIG. The upper end edge is electrically connected to the portion 13d and the portion 13e of the second external electrode 13, respectively.

前述の貫通型コンデンサ10-2は、図10に示したように、コンデンサ本体11の長さをL2とし、コンデンサ本体11の高さ方向一面に平行投影された第1内部電極層18の長さ方向一方の引出部18aと第2内部電極層16の引出部16aの間隔をI3とし、第1内部電極層18の長さ方向他方の引出部18aと第2内部電極層16の引出部16aの間隔をI4としたとき、間隔I3と長さL2はI3≦0.35×L2の条件を満足し、且つ、間隔I4と長さL2はI4≦0.35×L2の条件を満足している。因みに、間隔I3と間隔I4は、製造公差を含まない設計上の基準寸法において同じであっても良いし、僅かに異なっていても良い。   In the feedthrough capacitor 10-2, as shown in FIG. 10, the length of the first internal electrode layer 18 projected in parallel on one surface of the capacitor body 11 in the height direction is set to L2. The distance between the one lead portion 18a in the direction and the lead portion 16a of the second internal electrode layer 16 is I3, and the other lead portion 18a in the length direction of the first internal electrode layer 18 and the lead portion 16a of the second internal electrode layer 16 When the interval is I4, the interval I3 and the length L2 satisfy the condition of I3 ≦ 0.35 × L2, and the interval I4 and the length L2 satisfy the condition of I4 ≦ 0.35 × L2. . Incidentally, the interval I3 and the interval I4 may be the same or slightly different from each other in the design standard dimension not including the manufacturing tolerance.

前掲のI3≦0.35×L2の条件とI4≦0.35×L2の条件は、「ESL(等価直列インダクタンス)の低減」に有効である。つまり、前述の貫通型コンデンサ10-2にあっては、第1内部導体層18と第2内部電極層16との実質的な電流距離が長くなるとESLが増加する。けれども、前掲のI3≦0.35×L2の条件とI4≦0.35×L2の条件を満足するようにすれば、前記「ESLの低減」を図ることができる。   The condition of I3 ≦ 0.35 × L2 and the condition of I4 ≦ 0.35 × L2 are effective for “reduction of ESL (equivalent series inductance)”. That is, in the feedthrough capacitor 10-2, ESL increases as the substantial current distance between the first internal conductor layer 18 and the second internal electrode layer 16 increases. However, if the above-described conditions of I3 ≦ 0.35 × L2 and I4 ≦ 0.35 × L2 are satisfied, the “ESL reduction” can be achieved.

この「ESLの低減」に係る有効性(効果)を確認するため、前記評価用サンプル1(長さL2が960μm)の第1内部電極層15を図9(A)に示した第1内部電極層18に変え、且つ、引出部18aの位置を変えて間隔I3と間隔I4を306μmとしたサンプルC1と、サンプルC1の第1内部電極層18の引出部18aの位置を変えて間隔I3と間隔I4を336μmとしたサンプルC2と、サンプルC1の第1内部電極層18の引出部18aの位置を変えて間隔I3と間隔I4を366μmとしたサンプルC3を用意した。因みに、サンプルC1〜C3における引出部18a及び16aの幅(図10の長さL2に沿う方向の寸法)は90μmで統一した。そして、各100個のサンプルC1〜C3のESL値を、ネットワークアナライザ(アジレント社製、8753D)を利用して調べたところ、サンプルC1のESL値(平均値)は13pF、サンプルC2のESL値(平均値)は15pF、サンプルC3のESL値(平均値)は17pFであった。即ち、前掲のI3≦0.35×L2の条件とI4≦0.35×L2の条件を満足するサンプルC1及びC2は、同条件を満足しないサンプルC3に比べて、前記「ESLの低減」に有効であることが確認できた。   In order to confirm the effectiveness (effect) related to this “reduction of ESL”, the first internal electrode layer 15 of the evaluation sample 1 (length L2 is 960 μm) is shown in FIG. The sample 18 is changed to the layer 18 and the positions of the lead-out portions 18a are changed to set the intervals I3 and I4 to 306 μm, and the positions of the lead-out portions 18a of the first internal electrode layer 18 of the sample C1 are changed. Sample C2 having I4 of 336 μm and sample C3 having interval I3 and interval I4 of 366 μm were prepared by changing the position of the lead-out portion 18a of the first internal electrode layer 18 of sample C1. Incidentally, the widths (the dimension in the direction along the length L2 in FIG. 10) of the lead portions 18a and 16a in the samples C1 to C3 were unified to 90 μm. Then, when the ESL values of 100 samples C1 to C3 were examined using a network analyzer (manufactured by Agilent, 8753D), the ESL value (average value) of sample C1 was 13 pF, and the ESL value of sample C2 ( The average value) was 15 pF, and the ESL value (average value) of Sample C3 was 17 pF. That is, the samples C1 and C2 satisfying the above-described conditions of I3 ≦ 0.35 × L2 and I4 ≦ 0.35 × L2 are compared with the sample C3 not satisfying the same conditions as the above “reduction of ESL”. It was confirmed that it was effective.

〈第2実施形態の変形例〉
(1)前述の貫通型コンデンサ10-2(サンプルC1及びC2を含む)として、図9(A)に示した第1内部電極層18を用いたものを示したが、この第1内部電極層18の代わりに図12(A)に示した第1内部電極層19を用いても良い。この第1内部電極層19は、図12(B)にも示したように、コンデンサ本体11の長さ方向一端から長さ方向他端に及ぶ長さを有している点で図9(A)に示した第1内部電極層18と形状が異なる。図12(B)から分かるように、この第1内部電極層19を用いた場合でも、第1内部電極層18を用いた場合と同様に、コンデンサ本体10の高さ方向一面に第1内部電極層19と第2内部電極層16を平行投影すると、図12(B)の左下の引出部19aと中央下の引出部16aの間、並びに、左上と引出部19aと中央上の引出部16aの間に間隔I3が形成され、図12(B)の右下の引出部19aと中央下の引出部16aの間、並びに、右下の引出部19aと中央下の引出部16aの間に間隔I4が形成される。
<Modification of Second Embodiment>
(1) As the above-described feedthrough capacitor 10-2 (including samples C1 and C2), the one using the first internal electrode layer 18 shown in FIG. 9A is shown. This first internal electrode layer Instead of 18, the first internal electrode layer 19 shown in FIG. As shown in FIG. 12B, the first internal electrode layer 19 has a length extending from one end in the length direction of the capacitor body 11 to the other end in the length direction. The shape is different from the first internal electrode layer 18 shown in FIG. As can be seen from FIG. 12B, even when the first internal electrode layer 19 is used, the first internal electrode is disposed on the entire surface of the capacitor body 10 in the same manner as when the first internal electrode layer 18 is used. When the layer 19 and the second internal electrode layer 16 are projected in parallel, the lower left lead portion 19a and the lower center lead portion 16a in FIG. 12B, as well as the upper left, the lead portion 19a, and the upper center lead portion 16a. An interval I3 is formed between the lower right drawer portion 19a and the lower center drawer portion 16a in FIG. 12B, and between the lower right drawer portion 19a and the lower center drawer portion 16a. Is formed.

(2)前述の貫通型コンデンサ10-2(サンプルC1及びC2を含む)には、前記〈第1実施形態の変形例〉の(1)〜(3)で説明した条件、即ち、「T1max>T3maxの条件とT2max>T3maxの条件」と、「T3ave≦I1/2の条件とT3ave≦I2/2」と、「I1≦0.15×L1の条件とI2≦0.15×L1の条件」を適宜採用することができ、採用することによって同様の効果を得ることができる。   (2) The feedthrough capacitor 10-2 (including the samples C1 and C2) includes the conditions described in (1) to (3) of <Modification of the first embodiment>, that is, “T1max>. “T3max condition and T2max> T3max condition”, “T3ave ≦ I1 / 2 condition and T3ave ≦ I2 / 2”, “I1 ≦ 0.15 × L1 condition and I2 ≦ 0.15 × L1 condition” Can be adopted as appropriate, and the same effect can be obtained by adopting.

10-1…貫通型積層セラミックコンデンサ、11…コンデンサ本体、11a,11b…コンデンサ本体の露出部分、12…第1外部電極、12a…第1外部電極におけるコンデンサ本体の長さ方向一面を覆う部分、12b…第1外部電極におけるコンデンサ本体の高さ方向一面の一部を覆う部分、12c…第1外部電極におけるコンデンサ本体の高さ方向他面の一部を覆う部分、12d…第1外部電極におけるコンデンサ本体の幅方向一面の一部を覆う部分、12e…第1外部電極におけるコンデンサ本体の幅方向他面の一部を覆う部分、12f…第1外部電極の厚肉部分、13…第2外部電極、13a…第2外部電極におけるコンデンサ本体の長さ方向他面を覆う部分、13b…第2外部電極におけるコンデンサ本体の高さ方向一面の一部を覆う部分、13c…第2外部電極におけるコンデンサ本体の高さ方向他面の一部を覆う部分、13d…第2外部電極におけるコンデンサ本体の幅方向一面の一部を覆う部分、13e…第2外部電極におけるコンデンサ本体の幅方向他面の一部を覆う部分、13f…第2外部電極の厚肉部分、14…第3外部電極、14a…第3外部電極におけるコンデンサ本体の高さ方向一面の一部を覆う部分、14bc…第3外部電極におけるコンデンサ本体の高さ方向他面の一部を覆う部分、14c…第3外部電極におけるコンデンサ本体の幅方向一面の一部を覆う部分、14d…第3外部電極におけるコンデンサ本体の幅方向他面の一部を覆う部分、14e…第4外部電極の厚肉部分、15…第1内部電極層、15a…第1内部電極層の引出部、16…第2内部電極層、16a…第2内部電極層の引出部、17…誘電体層、CP…容量部、PP1…第1保護部、PP2…第2保護部、10-2…貫通型積層セラミックコンデンサ、18…第1内部電極層、18a…第1内部電極層の引出部、19…第1内部電極層、19a…第1内部電極層の引出部。   10-1 ... through-type multilayer ceramic capacitor, 11 ... capacitor body, 11a, 11b ... exposed portion of the capacitor body, 12 ... first external electrode, 12a ... a portion of the first external electrode that covers one surface in the length direction of the capacitor body, 12b: a portion covering a part of one surface in the height direction of the capacitor body in the first external electrode, 12c: a portion covering a part of the other surface in the height direction of the capacitor body in the first external electrode, 12d: in the first external electrode A portion covering a part of one surface in the width direction of the capacitor body, 12e... A portion covering a part of the other surface in the width direction of the capacitor body in the first external electrode, 12f... A thick portion of the first external electrode, 13. Electrode, 13a: A portion covering the other surface in the length direction of the capacitor body in the second external electrode, 13b: A portion of one surface in the height direction of the capacitor body in the second external electrode Covering part, 13c: Part covering the other part of the second external electrode in the height direction of the capacitor body, 13d: Part covering the part of the second external electrode in the width direction of the capacitor body, 13e: Second external part A part of the electrode that covers a part of the other surface in the width direction of the capacitor body, 13f ... a thick part of the second external electrode, 14 ... a third external electrode, 14a ... one surface in the height direction of the capacitor body in the third external electrode 14bc: a portion covering a part of the other surface in the height direction of the capacitor body in the third external electrode, 14c: a portion covering a part of one surface in the width direction of the capacitor body in the third external electrode, 14d ... 3 A portion of the external electrode that covers a part of the other surface in the width direction of the capacitor body, 14e, a thick portion of the fourth external electrode, 15 a first internal electrode layer, 15a, a lead portion of the first internal electrode layer, 16 ... Second internal electrode layer, 16a ... extraction part of second internal electrode layer, 17 ... dielectric layer, CP ... capacitance part, PP1 ... first protection part, PP2 ... second protection part, 10-2 ... penetrating multilayer ceramic Capacitors, 18 ... first internal electrode layer, 18a ... leading portion of the first internal electrode layer, 19 ... first internal electrode layer, 19a ... leading portion of the first internal electrode layer.

Claims (11)

長さ、幅及び高さで規定された略直方体状のコンデンサ本体内に、複数の第1内部電極層と複数の第2内部電極層とが誘電体層を介して高さ方向に交互に積層された容量部が設けられた貫通型積層セラミックコンデンサであって、
(1)前記コンデンサ本体の長さ方向一端部に該コンデンサ本体の長さ方向一面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向一端部が接続された第1外部電極と、
(2)前記コンデンサ本体の長さ方向他端部に該コンデンサ本体の長さ方向他面と高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記複数の第1内部電極層の長さ方向他端部が接続された第2外部電極と、
(3)前記コンデンサ本体の長さ方向中央部に前記第1外部電極及び前記第2外部電極と非接触下で該コンデンサ本体の高さ方向両面の一部と幅方向両面の一部とを連続して覆うように設けられ、前記幅方向両面の一部を覆う部分の一方に前記複数の第2電極層の幅方向一端部が接続され、且つ、他方に前記複数の第2電極層の幅方向他端部が接続された4角筒状の第3外部電極と、を備えており、
(4)前記貫通型積層セラミックコンデンサを高さ方向からみたときの前記第1外部電極の前記コンデンサ本体の長さに沿う寸法をE1とし、前記第2外部電極の前記コンデンサ本体の長さに沿う寸法をE2とし、前記第3外部電極の前記コンデンサ本体の長さに沿う寸法をE3としたとき、前記寸法E1と前記寸法E3はE1<E3の条件を満足し、且つ、前記寸法E2と前記寸法E3はE2<E3の条件を満足している、
貫通型積層セラミックコンデンサ。
A plurality of first internal electrode layers and a plurality of second internal electrode layers are alternately stacked in the height direction through a dielectric layer in a substantially rectangular parallelepiped capacitor body defined by length, width and height. A through-type multilayer ceramic capacitor provided with a capacitance portion,
(1) One end of the capacitor body in the length direction is provided so as to continuously cover one surface in the length direction, part of both sides in the height direction, and part of both surfaces in the width direction. A first external electrode to which one longitudinal end of the first internal electrode layer is connected;
(2) provided at the other end in the length direction of the capacitor body so as to continuously cover the other side in the length direction, part of both sides in the height direction and part of both sides in the width direction, A second external electrode to which the other longitudinal ends of the plurality of first internal electrode layers are connected;
(3) A part of both sides of the capacitor body in the height direction and a part of both sides in the width direction are continuously connected to the center part in the length direction of the capacitor body in a non-contact manner with the first external electrode and the second external electrode. One end of the plurality of second electrode layers is connected to one of the portions covering a part of both sides in the width direction, and the width of the plurality of second electrode layers is connected to the other. A quadrangular cylindrical third external electrode to which the other end in the direction is connected,
(4) E1 is a dimension along the length of the capacitor body of the first external electrode when the through-type multilayer ceramic capacitor is viewed from the height direction, and is along the length of the capacitor body of the second external electrode. When the dimension is E2, and the dimension of the third external electrode along the length of the capacitor body is E3, the dimension E1 and the dimension E3 satisfy the condition of E1 <E3, and the dimension E2 and the dimension The dimension E3 satisfies the condition of E2 <E3.
Through-type multilayer ceramic capacitors.
前記貫通型積層セラミックコンデンサを高さ方向から見たときの平面輪郭の総面積をTARとし、前記第1外部電極の平面輪郭の面積をAR1とし、前記第2外部電極の平面輪郭の面積をAR2とし、前記第3外部電極の平面輪郭の面積をAR3としたとき、前記総面積TARと前記面積AR1と前記面積AR2と前記面積AR3は0.6≦(AR1+AR2+AR3)/TAR≦0.9の条件を満足している、
請求項1に記載の貫通型積層セラミックコンデンサ。
The total area of the planar outline when the feedthrough multilayer ceramic capacitor is viewed from the height direction is TAR, the area of the planar outline of the first external electrode is AR1, and the area of the planar outline of the second external electrode is AR2. When the area of the planar contour of the third external electrode is AR3, the total area TAR, the area AR1, the area AR2, and the area AR3 are such that 0.6 ≦ (AR1 + AR2 + AR3) /TAR≦0.9. Are satisfied,
The feedthrough multilayer ceramic capacitor according to claim 1.
前記コンデンサ本体の高さ方向両面及び幅方向両面のうち、前記第1外部電極と前記第3外部電極の間の部分と、前記第2外部電極と前記第3外部電極の間の部分は、それぞれ露出しており、
前記第1外部電極の表面粗さと前記第2外部電極の表面粗さと前記第3外部電極の表面粗さは、前記コンデンサ本体の露出部分の表面粗さよりも粗い、
請求項1又は2に記載の貫通型積層セラミックコンデンサ。
Of both the height direction both sides and the width direction both sides of the capacitor body, a portion between the first external electrode and the third external electrode, and a portion between the second external electrode and the third external electrode are respectively Exposed
The surface roughness of the first external electrode, the surface roughness of the second external electrode, and the surface roughness of the third external electrode are rougher than the surface roughness of the exposed portion of the capacitor body.
The feedthrough multilayer ceramic capacitor according to claim 1 or 2.
前記第1外部電極は、前記コンデンサ本体の長さ方向一面の稜線に近い部分の厚さが他の部分の厚さよりも厚く、
前記第2外部電極は、前記コンデンサ本体の長さ方向他面の稜線に近い部分の厚さが他の部分の厚さよりも厚く、
前記第3外部電極は、前記コンデンサ本体の高さ方向一面の稜線に近い部分の厚さと前記コンデンサ本体の高さ方向他面の稜線に近い部分の厚さが他の部分の厚さよりも厚い、
請求項1〜3の何れか1項に記載の貫通型積層セラミックコンデンサ。
In the first external electrode, the thickness of the portion near the ridge line on one surface in the length direction of the capacitor body is thicker than the thickness of the other portion.
In the second external electrode, the thickness of the portion near the ridge line on the other surface in the length direction of the capacitor body is thicker than the thickness of the other portion.
In the third external electrode, the thickness of the portion close to the ridge line on one surface in the height direction of the capacitor body and the thickness of the portion close to the ridge line on the other surface in the height direction of the capacitor body are thicker than the thickness of the other portion.
The feedthrough multilayer ceramic capacitor according to claim 1.
前記貫通型積層セラミックコンデンサの高さは250μm以下である、
請求項1〜4の何れか1項に記載の貫通型積層セラミックコンデンサ。
The feedthrough multilayer ceramic capacitor has a height of 250 μm or less.
The feedthrough multilayer ceramic capacitor according to any one of claims 1 to 4.
前記第1外部電極の高さ方向両面部分の最大厚さをT1maxとし、前記第2外部電極の高さ方向両面部分の最大厚さをT2maxとし、前記第3外部電極の高さ方向両面部分の最大厚さをT3maxとしたとき、前記最大厚さT1maxと前記最大厚さT3maxはT1max>T3maxの条件を満足し、且つ、前記最大厚さT2maxと前記最大厚さT3maxはT2max>T3maxの条件を満足している、
請求項1〜5の何れか1項に記載の貫通型積層セラミックコンデンサ。
T1max is the maximum thickness of the both sides in the height direction of the first external electrode, T2max is the maximum thickness of the both sides in the height direction of the second external electrode, and When the maximum thickness is T3max, the maximum thickness T1max and the maximum thickness T3max satisfy the condition of T1max> T3max, and the maximum thickness T2max and the maximum thickness T3max satisfy the condition of T2max> T3max. Is pleased,
The feedthrough multilayer ceramic capacitor according to any one of claims 1 to 5.
前記コンデンサ本体の高さ方向両面及び幅方向両面のうち、前記第1外部電極と前記第3外部電極の間の部分と、前記第2外部電極と前記第3外部電極の間の部分は、それぞれ露出しており、
前記第3外部電極の高さ方向両面部分の平均厚さをT3aveとし、前記コンデンサ本体における前記第1外部電極と前記第3外部電極の間の露出部分の間隔をI1とし、前記コンデンサ本体における前記第2外部電極と前記第3外部電極の間の露出部分の間隔をI2としたとき、前記平均厚さT3aveと前記間隔I1はT3ave≦I1/2の条件を満足し、且つ、前記平均厚さT3aveと前記間隔I2はT3ave≦I2/2の条件を満足している、
請求項1〜6の何れか1項に記載の貫通型積層セラミックコンデンサ。
Of both the height direction both sides and the width direction both sides of the capacitor body, a portion between the first external electrode and the third external electrode, and a portion between the second external electrode and the third external electrode are respectively Exposed
The average thickness of the both sides in the height direction of the third external electrode is T3ave, the interval between the exposed portions of the capacitor body between the first external electrode and the third external electrode is I1, and the capacitor body When the interval of the exposed portion between the second external electrode and the third external electrode is I2, the average thickness T3ave and the interval I1 satisfy the condition of T3ave ≦ I1 / 2, and the average thickness T3ave and the interval I2 satisfy the condition of T3ave ≦ I2 / 2.
The feedthrough multilayer ceramic capacitor according to any one of claims 1 to 6.
前記コンデンサ本体の高さ方向両面及び幅方向両面のうち、前記第1外部電極と前記第3外部電極の間の部分と、前記第2外部電極と前記第3外部電極の間の部分は、それぞれ露出しており、
前記貫通型コンデンサの長さをL1とし、前記コンデンサ本体における前記第1外部電極と前記第3外部電極の間の露出部分の間隔をI1とし、前記コンデンサ本体における前記第2外部電極と前記第3外部電極の間の露出部分の間隔をI2としたとき、前記間隔I1と前記長さL1はI1≦0.15×L1の条件を満足し、且つ、前記間隔I2と前記長さL1はI2≦0.15×L1の条件を満足している、
請求項1〜7の何れか1項に記載の貫通型積層セラミックコンデンサ。
Of both the height direction both sides and the width direction both sides of the capacitor body, a portion between the first external electrode and the third external electrode, and a portion between the second external electrode and the third external electrode are respectively Exposed
The length of the feedthrough capacitor is L1, the interval of the exposed portion between the first external electrode and the third external electrode in the capacitor body is I1, and the second external electrode and the third external body in the capacitor body are When the interval of the exposed portion between the external electrodes is I2, the interval I1 and the length L1 satisfy the condition of I1 ≦ 0.15 × L1, and the interval I2 and the length L1 are I2 ≦ Satisfies the condition of 0.15 × L1,
The feedthrough multilayer ceramic capacitor according to any one of claims 1 to 7.
前記複数の第1内部電極層は長さ方向両端部に長さ方向に延びる幅狭の引出部を有する形状を成し、前記複数の第2内部電極層は幅方向両端部に幅方向に延びる幅狭の引出部を有する形状を成している、
請求項1〜8の何れか1項に記載の貫通型積層セラミックコンデンサ。
The plurality of first internal electrode layers have a shape having narrow lead portions extending in the length direction at both ends in the length direction, and the plurality of second internal electrode layers extend in the width direction at both width direction ends. It has a shape with a narrow drawer,
The feedthrough multilayer ceramic capacitor according to any one of claims 1 to 8.
前記複数の第1内部電極層は長さ方向両端部の幅方向両側に幅方向に延びる幅狭の引出部を有する形状を成し、前記複数の第2内部電極層は幅方向両端部に幅方向に延びる幅狭の引出部を有する形状を成している、
請求項1〜8の何れか1項に記載の貫通型積層セラミックコンデンサ。
The plurality of first internal electrode layers have a shape having narrow lead portions extending in the width direction on both sides in the width direction at both ends in the length direction, and the plurality of second internal electrode layers have a width at both ends in the width direction. It has a shape with a narrow drawer extending in the direction,
The feedthrough multilayer ceramic capacitor according to any one of claims 1 to 8.
前記コンデンサ本体の長さをL2とし、前記コンデンサ本体の高さ方向一面に平行投影された前記複数の第1内部電極層における長さ方向一方の引出部と前記複数の第2内部電極層の引出部との間隔をI3とし、前記複数の第1内部電極層における長さ方向他方の引出部と前記複数の第2内部電極層の引出部との間隔をI4としたとき、前記間隔I3と前記長さL2はI3≦0.35×L2の条件を満足し、且つ、前記間隔I4と前記長さL2はI4≦0.35×L2の条件を満足している、
請求項10に記載の貫通型積層セラミックコンデンサ。
The length of the capacitor main body is L2, and one lead portion in the length direction of the plurality of first internal electrode layers projected in parallel on one surface in the height direction of the capacitor main body and the lead of the plurality of second internal electrode layers are drawn. When the interval between the lead portion of the plurality of first internal electrode layers and the lead portion of the plurality of second internal electrode layers is I4, the interval between the portion I3 and the second internal electrode layer is I3. The length L2 satisfies the condition of I3 ≦ 0.35 × L2, and the interval I4 and the length L2 satisfy the condition of I4 ≦ 0.35 × L2.
The feedthrough multilayer ceramic capacitor according to claim 10.
JP2015203774A 2014-12-26 2015-10-15 Feedthrough multilayer ceramic capacitor Withdrawn JP2016127262A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020150149306A KR101736718B1 (en) 2014-12-26 2015-10-27 Feedthrough multilayer ceramic capacitor
TW104136719A TWI581284B (en) 2014-12-26 2015-11-06 Through type laminated ceramic capacitors
US14/973,666 US9922770B2 (en) 2014-12-26 2015-12-17 Through-type multilayer ceramic capacitor
CN201811610389.6A CN110010349B (en) 2014-12-26 2015-12-25 Feedthrough multilayer ceramic capacitor
CN201510994297.2A CN105742059B (en) 2014-12-26 2015-12-25 Feedthrough multilayer ceramic capacitor
HK16110184.7A HK1222038A1 (en) 2014-12-26 2016-08-26 Through-type multilayer ceramic capacitor
JP2018100457A JP6901996B2 (en) 2014-12-26 2018-05-25 Through-type multilayer ceramic capacitor
JP2018100456A JP6929245B2 (en) 2014-12-26 2018-05-25 Penetration type multilayer ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265701 2014-12-26
JP2014265701 2014-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2018100456A Division JP6929245B2 (en) 2014-12-26 2018-05-25 Penetration type multilayer ceramic capacitor
JP2018100457A Division JP6901996B2 (en) 2014-12-26 2018-05-25 Through-type multilayer ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2016127262A true JP2016127262A (en) 2016-07-11

Family

ID=56359804

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015203774A Withdrawn JP2016127262A (en) 2014-12-26 2015-10-15 Feedthrough multilayer ceramic capacitor
JP2018100456A Active JP6929245B2 (en) 2014-12-26 2018-05-25 Penetration type multilayer ceramic capacitor
JP2018100457A Active JP6901996B2 (en) 2014-12-26 2018-05-25 Through-type multilayer ceramic capacitor

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018100456A Active JP6929245B2 (en) 2014-12-26 2018-05-25 Penetration type multilayer ceramic capacitor
JP2018100457A Active JP6901996B2 (en) 2014-12-26 2018-05-25 Through-type multilayer ceramic capacitor

Country Status (4)

Country Link
JP (3) JP2016127262A (en)
KR (1) KR101736718B1 (en)
HK (1) HK1222038A1 (en)
TW (1) TWI581284B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149426A (en) * 2015-02-12 2016-08-18 Tdk株式会社 Stack penetration capacitor
JP2016149424A (en) * 2015-02-12 2016-08-18 Tdk株式会社 Stack penetration capacitor
JP2018107422A (en) * 2016-12-22 2018-07-05 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2018117098A (en) * 2017-01-20 2018-07-26 Tdk株式会社 Multilayer capacitor and electronic component device
JP2018170355A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Through-capacitor
JP2019062023A (en) * 2017-09-25 2019-04-18 Tdk株式会社 Electronic component device
JP2020043272A (en) * 2018-09-13 2020-03-19 太陽誘電株式会社 Multilayer ceramic capacitor and circuit board
KR20200055653A (en) * 2018-11-13 2020-05-21 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
US10734159B2 (en) 2016-12-22 2020-08-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2020150099A (en) * 2019-03-13 2020-09-17 太陽誘電株式会社 Multi-terminal capacitor, manufacturing method of multi-terminal capacitor, and multi-terminal capacitor mounting circuit board
CN113223858A (en) * 2020-01-21 2021-08-06 太阳诱电株式会社 Multilayer ceramic electronic component and method for manufacturing same
JP2022031965A (en) * 2018-09-13 2022-02-22 太陽誘電株式会社 Multilayer ceramic capacitor
US11462359B2 (en) 2018-11-08 2022-10-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JP7494436B2 (en) 2020-01-21 2024-06-04 太陽誘電株式会社 Multilayer ceramic electronic component and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231340B2 (en) * 2018-06-05 2023-03-01 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244058A (en) * 1993-02-19 1994-09-02 Murata Mfg Co Ltd Chip type feedthrough capacitor
JP2000058376A (en) * 1998-08-04 2000-02-25 Tdk Corp Ceramic capacitor
JP2006100708A (en) * 2004-09-30 2006-04-13 Taiyo Yuden Co Ltd Three-terminal laminate capacitor and circuit board mounted therewith
JP2009218363A (en) * 2008-03-10 2009-09-24 Tdk Corp Feedthrough multilayer capacitor
JP2014220377A (en) * 2013-05-08 2014-11-20 Tdk株式会社 Laminated feedthrough capacitor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048230U (en) * 1983-09-11 1985-04-04 株式会社村田製作所 multilayer capacitor
JPH0373422U (en) * 1989-11-22 1991-07-24
JP3903757B2 (en) * 2001-09-05 2007-04-11 株式会社村田製作所 Chip-shaped electronic component manufacturing method and chip-shaped electronic component
JP2004235377A (en) * 2003-01-29 2004-08-19 Kyocera Corp Ceramic electronic component
JP3850398B2 (en) * 2003-08-21 2006-11-29 Tdk株式会社 Multilayer capacitor
JP2008537843A (en) * 2005-03-01 2008-09-25 エックストゥーワイ アテニュエイターズ,エルエルシー Overlapping adjuster inside
JP2007035848A (en) * 2005-07-26 2007-02-08 Taiyo Yuden Co Ltd Stacked ceramic capacitor and its manufacturing method
JP4983400B2 (en) * 2007-05-25 2012-07-25 株式会社村田製作所 Feed-through three-terminal capacitor
JP4725629B2 (en) * 2008-10-14 2011-07-13 Tdk株式会社 Manufacturing method of multilayer feedthrough capacitor
JP5062237B2 (en) * 2009-11-05 2012-10-31 Tdk株式会社 Multilayer capacitor, mounting structure thereof, and manufacturing method thereof
JP5246215B2 (en) * 2010-07-21 2013-07-24 株式会社村田製作所 Ceramic electronic components and wiring boards
JP5267583B2 (en) * 2011-01-21 2013-08-21 株式会社村田製作所 Multilayer ceramic electronic components
JP2012156315A (en) * 2011-01-26 2012-08-16 Murata Mfg Co Ltd Multilayer ceramic electronic component
JP5620938B2 (en) * 2012-03-30 2014-11-05 太陽誘電株式会社 Multilayer ceramic capacitor
JP5811152B2 (en) * 2012-11-05 2015-11-11 株式会社村田製作所 MULTILAYER CERAMIC ELECTRONIC COMPONENT, METHOD FOR MANUFACTURING THE SAME, TAPING ELECTRONIC COMPONENT RANGE, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR DIRECTION IDENTIFICATION
KR101452058B1 (en) * 2012-12-06 2014-10-22 삼성전기주식회사 Multi-layered ceramic electronic component
JP5689143B2 (en) * 2013-03-19 2015-03-25 太陽誘電株式会社 Low profile multilayer ceramic capacitor
JP2014220527A (en) * 2014-08-13 2014-11-20 株式会社村田製作所 Multilayer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244058A (en) * 1993-02-19 1994-09-02 Murata Mfg Co Ltd Chip type feedthrough capacitor
JP2000058376A (en) * 1998-08-04 2000-02-25 Tdk Corp Ceramic capacitor
JP2006100708A (en) * 2004-09-30 2006-04-13 Taiyo Yuden Co Ltd Three-terminal laminate capacitor and circuit board mounted therewith
JP2009218363A (en) * 2008-03-10 2009-09-24 Tdk Corp Feedthrough multilayer capacitor
JP2014220377A (en) * 2013-05-08 2014-11-20 Tdk株式会社 Laminated feedthrough capacitor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149424A (en) * 2015-02-12 2016-08-18 Tdk株式会社 Stack penetration capacitor
JP2016149426A (en) * 2015-02-12 2016-08-18 Tdk株式会社 Stack penetration capacitor
US10734159B2 (en) 2016-12-22 2020-08-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2018107422A (en) * 2016-12-22 2018-07-05 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2018117098A (en) * 2017-01-20 2018-07-26 Tdk株式会社 Multilayer capacitor and electronic component device
JP2018170355A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Through-capacitor
JP2019062023A (en) * 2017-09-25 2019-04-18 Tdk株式会社 Electronic component device
US11373807B2 (en) 2017-09-25 2022-06-28 Tdk Corporation Electronic component device
JP2020043272A (en) * 2018-09-13 2020-03-19 太陽誘電株式会社 Multilayer ceramic capacitor and circuit board
JP2022031965A (en) * 2018-09-13 2022-02-22 太陽誘電株式会社 Multilayer ceramic capacitor
JP7231703B2 (en) 2018-09-13 2023-03-01 太陽誘電株式会社 Multilayer ceramic capacitor
KR20200031042A (en) 2018-09-13 2020-03-23 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and circuit board
US10950388B2 (en) 2018-09-13 2021-03-16 Taiyo Yuden Co., Ltd. Multi-layer ceramic capacitor and circuit board
JP7006879B2 (en) 2018-09-13 2022-02-10 太陽誘電株式会社 Multilayer ceramic capacitors and circuit boards
US11462359B2 (en) 2018-11-08 2022-10-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
KR20200055653A (en) * 2018-11-13 2020-05-21 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
US11342118B2 (en) 2018-11-13 2022-05-24 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
KR102412702B1 (en) * 2018-11-13 2022-06-24 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
WO2020184096A1 (en) * 2019-03-13 2020-09-17 太陽誘電株式会社 Multi-terminal capacitor, method for manufacturing multi-terminal capacitor, and multi-terminal capacitor-mounted circuit board
JP2020150099A (en) * 2019-03-13 2020-09-17 太陽誘電株式会社 Multi-terminal capacitor, manufacturing method of multi-terminal capacitor, and multi-terminal capacitor mounting circuit board
JP7289677B2 (en) 2019-03-13 2023-06-12 太陽誘電株式会社 MULTI-TERMINAL CAPACITOR, MULTI-TERMINAL CAPACITOR MANUFACTURING METHOD, AND MULTI-TERMINAL CAPACITOR MOUNTING CIRCUIT BOARD
US11990285B2 (en) 2019-03-13 2024-05-21 Taiyo Yuden Co., Ltd. Multi-terminal capacitor having external terminals provided in a specific manner thereon, method of manufacturing multi-terminal capacitor, and multi-terminal-capacitor-mounted circuit board
CN113223858A (en) * 2020-01-21 2021-08-06 太阳诱电株式会社 Multilayer ceramic electronic component and method for manufacturing same
JP7494436B2 (en) 2020-01-21 2024-06-04 太陽誘電株式会社 Multilayer ceramic electronic component and its manufacturing method

Also Published As

Publication number Publication date
JP2018152594A (en) 2018-09-27
HK1222038A1 (en) 2017-06-16
KR101736718B1 (en) 2017-05-17
TWI581284B (en) 2017-05-01
JP2018152593A (en) 2018-09-27
JP6929245B2 (en) 2021-09-01
JP6901996B2 (en) 2021-07-14
TW201628033A (en) 2016-08-01
KR20160079636A (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP6929245B2 (en) Penetration type multilayer ceramic capacitor
CN110010349B (en) Feedthrough multilayer ceramic capacitor
JP5551296B1 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR102018307B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR101983129B1 (en) Multi-layered ceramic electronic parts and method of manufacturing the same
KR102018306B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR102061507B1 (en) Multi-layered ceramic electronic part and board for mounting the same
JP2016189423A (en) Multilayer ceramic capacitor
CN104112586A (en) Multilayer Ceramic Electronic Component And Board For Mounting The Same
KR20180072555A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20130111000A (en) Laminated ceramic electronic parts and fabricating method thereof
US10170243B2 (en) Multilayer ceramic capacitor
JP7145652B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR20200078083A (en) Capacitor component
KR102076152B1 (en) Multi-layered ceramic capacitor and board for mounting the same
JP2015053526A (en) Multilayer ceramic capacitor
KR20190116134A (en) Multi-layered ceramic electroic components
KR102115955B1 (en) Multi-layered ceramic electronic componentthe
JP2017143130A (en) Electronic component
KR102527062B1 (en) Ceramic electronic device and manufacturing method of ceramic electronic device
JP6116862B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
CN115602446A (en) Multilayer ceramic capacitor
JP2020043220A (en) Multilayer ceramic capacitor, package thereof, and component mounting circuit board
WO2022210642A1 (en) Multilayer ceramic capacitor
EP4345855A2 (en) Multilayered capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180418

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180528