JP2016125724A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner Download PDF

Info

Publication number
JP2016125724A
JP2016125724A JP2014265608A JP2014265608A JP2016125724A JP 2016125724 A JP2016125724 A JP 2016125724A JP 2014265608 A JP2014265608 A JP 2014265608A JP 2014265608 A JP2014265608 A JP 2014265608A JP 2016125724 A JP2016125724 A JP 2016125724A
Authority
JP
Japan
Prior art keywords
heat storage
refrigerant
heat exchanger
heat
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014265608A
Other languages
Japanese (ja)
Inventor
柯壁 陳
Kebi Chen
柯壁 陳
安尾 晃一
Koichi Yasuo
晃一 安尾
修二 藤本
Shuji Fujimoto
修二 藤本
拓哉 中尾
Takuya Nakao
拓哉 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2014265608A priority Critical patent/JP2016125724A/en
Publication of JP2016125724A publication Critical patent/JP2016125724A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage type air conditioner capable of recovering surplus heat in heating of a room, and capable of surely performing heating of a room and heat storage of hot heat of a heat storage medium according to an operation condition.SOLUTION: In heating heat storage operation, a refrigerant circuit 11 can perform switching between a first operation in which only refrigerant condensed by an indoor heat exchanger 72 flows in a heat exchanger 63 for heat storage, and a second operation in which refrigerant in which refrigerant condensed by the indoor heat exchanger 72 and high-pressure refrigerant in the refrigerant circuit 11 are mixed flows in the heat exchanger 63 for heat storage.SELECTED DRAWING: Figure 10

Description

本発明は、蓄熱式空気調和機に関するものである。     The present invention relates to a heat storage type air conditioner.

従来より、室内の冷房や暖房を行う空気調和機が知られている。特許文献1には、蓄熱媒体を用いた蓄熱式空気調和機が開示されている。この蓄熱式空気調和機は、圧縮機、室外熱交換器、及び室内熱交換器が接続された冷媒回路と、冷媒回路の冷媒と蓄熱媒体とを熱交換させる蓄熱部とを有している。例えば同文献には、暖房運転時の冷媒の温熱を蓄熱媒体に付与する暖房蓄熱運転が記載されている。この暖房蓄熱運転では、圧縮機で圧縮された冷媒が、複数の室内熱交換器で凝縮するとともに、高圧冷媒が蓄熱部を流れる。蓄熱部では、冷媒の熱が蓄熱媒体に付与される。     Conventionally, an air conditioner that performs indoor cooling or heating is known. Patent Document 1 discloses a heat storage type air conditioner using a heat storage medium. This heat storage type air conditioner has a refrigerant circuit to which a compressor, an outdoor heat exchanger, and an indoor heat exchanger are connected, and a heat storage unit that exchanges heat between the refrigerant in the refrigerant circuit and the heat storage medium. For example, this document describes a heating and heat storage operation in which the heat of the refrigerant during the heating operation is applied to the heat storage medium. In this heating and heat storage operation, the refrigerant compressed by the compressor is condensed by the plurality of indoor heat exchangers, and the high-pressure refrigerant flows through the heat storage unit. In the heat storage unit, the heat of the refrigerant is applied to the heat storage medium.

また、同文献の蓄熱式空気調和機では、蓄熱媒体として例えば臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液が用いられる。つまり、蓄熱媒体は、水溶液の温度が所定温度(水和物生成温度)未満に至ると、包接水和物が生成される。包接水和物は、比較的大きな潜熱を有する微細な水和物結晶を構成する。     In the heat storage type air conditioner of the same document, a tetra nbutyl ammonium bromide (TBAB) aqueous solution containing, for example, tetra nbutyl ammonium bromide is used as a heat storage medium. That is, when the temperature of the aqueous solution reaches a temperature lower than a predetermined temperature (hydrate formation temperature), clathrate hydrate is generated. The clathrate hydrate constitutes a fine hydrate crystal having a relatively large latent heat.

特開2007−17089号公報JP 2007-17089 A

特許文献1に記載のような蓄熱式空気調和機では、室内熱交換器で冷媒を凝縮させた後、この冷媒を蓄熱熱交換器に流すことで、蓄熱媒体に温熱を付与する暖房蓄熱運転を行うことが考えられる。このような暖房蓄熱運転を行うことで、圧縮機で圧縮された高圧冷媒の熱のうち暖房に利用された熱の残りを蓄熱媒体の蓄熱にも利用できる。     In the heat storage type air conditioner as described in Patent Document 1, after the refrigerant is condensed in the indoor heat exchanger, the heating heat storage operation for applying the heat to the heat storage medium is performed by flowing the refrigerant through the heat storage heat exchanger. It is possible to do it. By performing such a heating heat storage operation, the remainder of the heat used for heating among the heat of the high-pressure refrigerant compressed by the compressor can be used for heat storage of the heat storage medium.

一方、蓄熱式空気調和機の運転状況によっては、室内熱交換器で凝縮した冷媒の温度と蓄熱媒体の温度差が小さくなってしまい、凝縮後の冷媒により蓄熱媒体を加熱することが困難となり、暖房蓄熱運転を継続して実行することができなくなる。     On the other hand, depending on the operating conditions of the regenerative air conditioner, the temperature difference between the refrigerant condensed in the indoor heat exchanger and the temperature of the heat storage medium becomes small, and it becomes difficult to heat the heat storage medium with the condensed refrigerant, It becomes impossible to continue the heating and heat storage operation.

本発明かかる点に鑑みてなされたものであり、室内の暖房で余った熱を蓄熱媒体に回収でき、且つ運転条件に応じて室内の暖房と蓄熱媒体の温熱の蓄熱とを確実に行うことができる蓄熱式空気調和機を提供することである。     The present invention has been made in view of such a point, and it is possible to recover the heat remaining in the room heating to the heat storage medium, and reliably perform the room heating and the heat storage of the heat storage medium according to the operating conditions. It is to provide a regenerative air conditioner that can be used.

第1の発明は、蓄熱式空気調和機を対象とし、圧縮機(22)と、室外熱交換器(23)と、室内熱交換器(72)とが接続され、冷媒が循環して冷凍サイクルが行われる冷媒回路(11)と、冷却されることによって包接水和物が生成される蓄熱媒体と上記冷媒回路(11)の冷媒とを熱交換させる蓄熱用熱交換器(63)と、該蓄熱媒体を循環させるポンプ(67)と、該蓄熱媒体が貯留される蓄熱タンク(62)とが接続される蓄熱回路(61)と、上記室内熱交換器(72)で冷媒が凝縮し、且つ高圧冷媒が上記蓄熱用熱交換器(63)を介して上記蓄熱媒体を加熱し、上記室外熱交換器(23)で冷媒が蒸発する暖房蓄熱運転と、上記室内熱交換器(72)で冷媒が凝縮し、且つ上記蓄熱媒体が上記蓄熱用熱交換器(63)を介して上記冷媒を加熱し、且つ冷媒が上記室外熱交換器(23)で蒸発する利用暖房運転とを切り換えて実行させるように構成される運転制御部(100)とを備え、上記冷媒回路(11)は、上記暖房蓄熱運転において、上記室内熱交換器(72)で凝縮した冷媒だけが上記蓄熱用熱交換器(63)を流れる第1動作と上記室内熱交換器(72)で凝縮した冷媒と、上記冷媒回路(11)の高圧冷媒とが混合した冷媒が上記蓄熱用熱交換器(63)を流れる第2動作とを切り換えて行うように構成されることを特徴とする。     The first invention is directed to a regenerative air conditioner, wherein a compressor (22), an outdoor heat exchanger (23), and an indoor heat exchanger (72) are connected, and the refrigerant circulates to refrigeration cycle. A heat storage heat exchanger (63) for exchanging heat between the refrigerant circuit (11) in which heat is generated, and the heat storage medium in which clathrate hydrate is generated by cooling and the refrigerant in the refrigerant circuit (11), The refrigerant is condensed in the heat storage circuit (61) connected to the pump (67) for circulating the heat storage medium, the heat storage tank (62) in which the heat storage medium is stored, and the indoor heat exchanger (72), In addition, the high-pressure refrigerant heats the heat storage medium via the heat storage heat exchanger (63), the heating heat storage operation in which the refrigerant evaporates in the outdoor heat exchanger (23), and the indoor heat exchanger (72) The refrigerant condenses, the heat storage medium heats the refrigerant via the heat storage heat exchanger (63), and the refrigerant An operation control unit (100) configured to switch and execute use heating operation evaporating in the heat exchanger (23), and the refrigerant circuit (11) includes the indoor heat in the heating heat storage operation. Only the refrigerant condensed in the exchanger (72) flows through the heat storage heat exchanger (63), the refrigerant condensed in the indoor heat exchanger (72), the high-pressure refrigerant in the refrigerant circuit (11), The refrigerant mixed with is configured to switch between the second operation of flowing through the heat storage heat exchanger (63).

第1の発明では、室内熱交換器(72)で冷媒を凝縮させて室内の暖房を行うと同時に、冷媒の熱を蓄熱媒体に付与する暖房蓄熱運転が行われる。暖房蓄熱運転では、第1動作と第2動作とが切り換えられる。     In the first invention, the indoor heat exchanger (72) condenses the refrigerant to heat the room, and at the same time, the heating and heat storage operation for applying the heat of the refrigerant to the heat storage medium is performed. In the heating and heat storage operation, the first operation and the second operation are switched.

第1動作では、圧縮機(22)で圧縮された高圧冷媒が、室内熱交換器(72)で凝縮した後、蓄熱用熱交換器(63)を通過する。蓄熱用熱交換器(63)では、冷媒の熱が蓄熱媒体に付与され、蓄熱媒体に温熱が蓄えられる。その後、冷媒は室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。このように、室内熱交換器(72)で凝縮した冷媒を蓄熱用熱交換器(63)に直列に流すことで、特に凝縮後の冷媒の温度が高くなる条件において、暖房で余った冷媒の熱を蓄熱媒体に回収させることができる。     In the first operation, the high-pressure refrigerant compressed by the compressor (22) is condensed by the indoor heat exchanger (72) and then passes through the heat storage heat exchanger (63). In the heat storage heat exchanger (63), the heat of the refrigerant is applied to the heat storage medium, and warm heat is stored in the heat storage medium. Thereafter, the refrigerant evaporates in the outdoor heat exchanger (23) and is sucked into the compressor (22). In this way, by flowing the refrigerant condensed in the indoor heat exchanger (72) in series to the heat storage heat exchanger (63), especially in the condition where the temperature of the refrigerant after condensation becomes high, the refrigerant remaining due to heating is removed. Heat can be recovered by the heat storage medium.

第2動作では、室内熱交換器(72)で凝縮した冷媒と、圧縮機(22)で圧縮された高圧ガス冷媒とが混合した後、蓄熱用熱交換器(63)を流れる。混合後の冷媒は、高圧冷媒により加熱されるため、第1動作と比較して高温となる。従って、蓄熱用熱交換器(63)では、冷媒と蓄熱媒体との温度差が大きくなる。この結果、例えば蓄熱媒体の温度が比較的高い条件下であっても、室内の暖房を継続しつつ、蓄熱媒体に温熱を確実に付与することができる。     In the second operation, the refrigerant condensed in the indoor heat exchanger (72) and the high-pressure gas refrigerant compressed in the compressor (22) are mixed and then flow through the heat storage heat exchanger (63). Since the mixed refrigerant is heated by the high-pressure refrigerant, it becomes a higher temperature than the first operation. Therefore, in the heat storage heat exchanger (63), the temperature difference between the refrigerant and the heat storage medium increases. As a result, for example, even if the temperature of the heat storage medium is relatively high, it is possible to reliably apply the heat to the heat storage medium while continuing indoor heating.

第2の発明は、第1の発明において、上記冷媒回路(11)は、上記暖房蓄熱運転中のガスライン(L2)と、上記室内熱交換器(72)と上記蓄熱用熱交換器(63)との間の流路とを繋ぐ導入管(51)と、上記導入管(51)に接続され、上記第1動作時に閉鎖され、上記第2動作時に開放される開閉機構(EV2)とを備えていることを特徴とする。     In a second aspect based on the first aspect, the refrigerant circuit (11) includes the gas line (L2) during the heating and heat storage operation, the indoor heat exchanger (72), and the heat storage heat exchanger (63 And an opening / closing mechanism (EV2) connected to the introduction pipe (51), closed during the first operation, and opened during the second operation. It is characterized by having.

第2の発明の第1動作では、導入管(51)の開閉機構(EV2)が閉鎖状態となる。このため、第1動作では、圧縮機(22)で圧縮された高圧ガス冷媒が、ガスライン(L2)を経由して室内熱交換器(72)を流れて凝縮する。凝縮した冷媒は、蓄熱用熱交換器(63)で蓄熱媒体に温熱を付与する。第2動作では、導入管(51)の開閉機構(EV2)が開放状態となる。このため、第2動作では、圧縮機(22)で圧縮された高圧ガス冷媒の一部が室内熱交換器(72)を流れ、残りは導入管(51)を流れる。室内熱交換器(72)で凝縮した冷媒は、導入管(51)を流出した高圧ガス冷媒と混合する。混合後の冷媒は、蓄熱用熱交換器(63)で蓄熱媒体に温熱を付与する。     In the first operation of the second invention, the opening / closing mechanism (EV2) of the introduction pipe (51) is closed. For this reason, in the first operation, the high-pressure gas refrigerant compressed by the compressor (22) flows through the indoor heat exchanger (72) via the gas line (L2) and condenses. The condensed refrigerant imparts heat to the heat storage medium in the heat storage heat exchanger (63). In the second operation, the opening / closing mechanism (EV2) of the introduction pipe (51) is opened. For this reason, in the second operation, part of the high-pressure gas refrigerant compressed by the compressor (22) flows through the indoor heat exchanger (72), and the rest flows through the introduction pipe (51). The refrigerant condensed in the indoor heat exchanger (72) is mixed with the high-pressure gas refrigerant that has flowed out of the introduction pipe (51). The mixed refrigerant gives warm heat to the heat storage medium in the heat storage heat exchanger (63).

第3の発明は、第1又は第2の発明において、上記運転制御部(100)は、上記暖房蓄熱運転の第1動作において、上記室内熱交換器(72)を流出した冷媒の温度と、上記蓄熱回路(61)の蓄熱媒体の温度との温度差が小さいことを示す条件が成立すると、上記第1動作から上記第2動作へ移行させることを特徴とする。     According to a third aspect of the present invention, in the first or second aspect, the operation control unit (100) includes the temperature of the refrigerant that has flowed out of the indoor heat exchanger (72) in the first operation of the heating heat storage operation, When a condition indicating that the temperature difference with the temperature of the heat storage medium of the heat storage circuit (61) is small is established, the first operation is shifted to the second operation.

第3の発明では、第1動作中において、運転制御部(100)が第2動作へ移行するための判定を行う。この判定は、室内熱交換器(72)を流出した冷媒の温度と、蓄熱回路(61)の蓄熱媒体の温度との温度差ΔTが小さいことを示す条件により行われる。つまり、これらの温度差ΔTが小さい場合、第1動作を継続して行ったとしても、蓄熱用熱交換器(63)では、冷媒と蓄熱媒体との温度差ΔTが小さくなる。このため、蓄熱用熱交換器(63)では、冷媒の熱を蓄熱媒体に付与することがほとんどできず、暖房蓄熱運転が成立しなくなる。     In the third invention, during the first operation, the operation control unit (100) makes a determination for shifting to the second operation. This determination is performed based on a condition indicating that the temperature difference ΔT between the temperature of the refrigerant flowing out of the indoor heat exchanger (72) and the temperature of the heat storage medium of the heat storage circuit (61) is small. That is, when these temperature differences ΔT are small, the temperature difference ΔT between the refrigerant and the heat storage medium is small in the heat storage heat exchanger (63) even if the first operation is continued. For this reason, in the heat storage heat exchanger (63), the heat of the refrigerant can hardly be applied to the heat storage medium, and the heating and heat storage operation is not established.

そこで、運転制御部(100)は、上記温度差ΔTが小さいことを示す条件が成立すると、第1動作から第2動作へ移行させる。第2動作では、室内熱交換器(72)で凝縮した冷媒に高温の高圧ガス冷媒が混合されてから、蓄熱用熱交換器(63)へ送られるため、蓄熱媒体を確実に加熱できる。この結果、暖房蓄熱運転を継続して確実に行うことができる。     Therefore, when the condition indicating that the temperature difference ΔT is small is satisfied, the operation control unit (100) shifts from the first operation to the second operation. In the second operation, since the high-temperature high-pressure gas refrigerant is mixed with the refrigerant condensed in the indoor heat exchanger (72) and then sent to the heat storage heat exchanger (63), the heat storage medium can be reliably heated. As a result, the heating and heat storage operation can be continued and reliably performed.

第4の発明は、第3の発明において、上記蓄熱回路(61)の蓄熱媒体の温度を検出する温度検出部(S1)を備え、上記運転制御部(100)は、上記暖房蓄熱運転の第1動作において、上記温度検出部(S1)で検出した蓄熱媒体の温度Taが所定値より高くなると、上記第1動作から上記第2動作へ移行させることを特徴とする。     A fourth invention includes a temperature detection unit (S1) for detecting the temperature of the heat storage medium of the heat storage circuit (61) in the third invention, and the operation control unit (100) is configured to perform the heating heat storage operation In one operation, when the temperature Ta of the heat storage medium detected by the temperature detector (S1) becomes higher than a predetermined value, the first operation is shifted to the second operation.

第4の発明では、温度検出部(S1)で検出した蓄熱媒体の温度Taが所定値より高くなると、上記ΔTが小さくなったと判定する。つまり、暖房蓄熱運転では、室内熱交換器(72)の凝縮温度がある程度の範囲に設定されており、室内熱交換器(72)を流出した冷媒の温度も大きくは変化しない。これに対し、蓄熱回路(61)の蓄熱媒体の温度は、第1動作の継続に伴い上昇していく。従って、蓄熱媒体の温度Taがわかれば、上記ΔTの大小を概ね把握できる。     In the fourth invention, when the temperature Ta of the heat storage medium detected by the temperature detection unit (S1) becomes higher than a predetermined value, it is determined that the ΔT has decreased. That is, in the heating and heat storage operation, the condensation temperature of the indoor heat exchanger (72) is set to a certain range, and the temperature of the refrigerant flowing out of the indoor heat exchanger (72) does not change greatly. On the other hand, the temperature of the heat storage medium of the heat storage circuit (61) rises as the first operation continues. Therefore, if the temperature Ta of the heat storage medium is known, the magnitude of the ΔT can be roughly grasped.

そこで、運転制御部(100)は、温度検出部(S1)で検出した蓄熱媒体の温度Taが所定値より高くなるとΔTも小さくなったとみなし、第1動作から第2動作へ移行させる。この結果、暖房蓄熱運転を継続して確実に行うことができる。     Therefore, the operation control unit (100) considers that ΔT has also decreased when the temperature Ta of the heat storage medium detected by the temperature detection unit (S1) becomes higher than a predetermined value, and shifts from the first operation to the second operation. As a result, the heating and heat storage operation can be continued and reliably performed.

第5の発明は、第4の発明において、上記蓄熱タンク(62)には、蓄熱媒体を流出させる流出管(65)が接続され、上記温度検出部(S1)は、上記流出管(65)の蓄熱媒体の温度を検出することを特徴とする。     According to a fifth aspect, in the fourth aspect, the heat storage tank (62) is connected to an outflow pipe (65) through which the heat storage medium flows out, and the temperature detection unit (S1) is connected to the outflow pipe (65). The temperature of the heat storage medium is detected.

第5の発明では、温度検出部(S1)が蓄熱タンク(62)の流出管(65)の蓄熱媒体の温度を検出する。暖房蓄熱運転の第1動作中において、流出管(65)を流れる蓄熱媒体の温度は比較的低い温度である。従って、この蓄熱媒体の温度が所定値より高くなるということは、室内熱交換器(72)を流出した冷媒の温度と、蓄熱媒体の温度との温度差ΔTが、蓄熱回路(61)の全体に亘って小さくなったことを意味する。そこで、運転制御部(100)は、温度検出部(S1)で検出した蓄熱媒体の温度Taが所定値より高くなると温度差ΔTも小さくなったとみなし、第1動作から第2動作へ移行させる。この結果、温度差ΔTが小さい状況化で不要に第1動作を継続してしまうことを速やかに回避できる。     In 5th invention, a temperature detection part (S1) detects the temperature of the thermal storage medium of the outflow pipe | tube (65) of a thermal storage tank (62). During the first operation of the heating and heat storage operation, the temperature of the heat storage medium flowing through the outflow pipe (65) is a relatively low temperature. Therefore, the fact that the temperature of the heat storage medium becomes higher than a predetermined value means that the temperature difference ΔT between the temperature of the refrigerant flowing out of the indoor heat exchanger (72) and the temperature of the heat storage medium is the entire heat storage circuit (61). This means that it has become smaller over time. Therefore, the operation control unit (100) considers that the temperature difference ΔT is also reduced when the temperature Ta of the heat storage medium detected by the temperature detection unit (S1) becomes higher than a predetermined value, and shifts from the first operation to the second operation. As a result, it is possible to quickly avoid unnecessarily continuing the first operation in a situation where the temperature difference ΔT is small.

第6の発明は、第2の発明において、上記運転制御部(100)は、上記室外熱交換器(23)で冷媒が凝縮し、冷熱が蓄えられた上記蓄熱媒体が上記蓄熱用熱交換器(63)を介して冷媒を冷却し、且つ上記室内熱交換器(72)で冷媒が蒸発する利用冷房運転を切り換えて実行させるように構成され、上記開閉機構は、減圧弁(EV2)で構成され、上記冷媒回路(11)は、上記利用冷房運転において、上記蓄熱用熱交換器(63)から上記室内熱交換器(72)へ送られる高圧冷媒と、上記導入管(51)に分流し上記減圧弁(EV2)で減圧された冷媒とを熱交換させる熱交換器(52)を有していることを特徴とする。     In a sixth aspect based on the second aspect, the operation control unit (100) is configured such that the heat storage medium in which the refrigerant is condensed in the outdoor heat exchanger (23) and the cold energy is stored is the heat storage heat exchanger. (63) is configured to cool the refrigerant via the indoor heat exchanger (72) and to perform a use cooling operation in which the refrigerant evaporates, and the open / close mechanism is configured by a pressure reducing valve (EV2). The refrigerant circuit (11) is divided into a high-pressure refrigerant sent from the heat storage heat exchanger (63) to the indoor heat exchanger (72) and the introduction pipe (51) in the use cooling operation. A heat exchanger (52) for exchanging heat with the refrigerant depressurized by the pressure reducing valve (EV2) is provided.

第6の発明では、利用冷房運転が切り換えて実行される。利用冷房運転では、室外熱交換器(23)で凝縮した冷媒が、蓄熱用熱交換器(63)を流れる際、蓄熱媒体の冷熱が冷媒に付与される。蓄熱用熱交換器(63)を流れた高圧冷媒は、熱交換器(52)を通過する。熱交換器では、この高圧冷媒と、導入管(51)に分流して減圧された冷媒とが熱交換する。この結果、高圧冷媒が冷却され、この冷媒の過冷却度が大きくなる。     In the sixth invention, the use cooling operation is switched and executed. In the use cooling operation, when the refrigerant condensed in the outdoor heat exchanger (23) flows through the heat storage heat exchanger (63), the cold heat of the heat storage medium is imparted to the refrigerant. The high-pressure refrigerant that has flowed through the heat storage heat exchanger (63) passes through the heat exchanger (52). In the heat exchanger, heat exchange is performed between the high-pressure refrigerant and the refrigerant that has been divided into the introduction pipe (51) and decompressed. As a result, the high-pressure refrigerant is cooled, and the degree of supercooling of this refrigerant increases.

蓄熱用熱交換器(63)を通過した冷媒が室内熱交換器(72)へ送られるまでの配管(例えば連絡配管)では、圧力損失や配管の揚程の影響を受けて、冷媒が減圧されてしまう可能性がある。即ち、連絡配管では、いわゆるフラッシュガスが発生する可能性がある。これに対し、本発明では、蓄熱用熱交換器(63)を通過した冷媒を熱交換器(52)で冷却し、冷媒の過冷却度を大きくするため、このようなフラッシュガスの発生を防止できる。     In the piping (for example, connecting piping) until the refrigerant that has passed through the heat storage heat exchanger (63) is sent to the indoor heat exchanger (72), the refrigerant is depressurized due to the effects of pressure loss and the head of the piping. There is a possibility. That is, so-called flash gas may be generated in the communication pipe. In contrast, in the present invention, the refrigerant that has passed through the heat storage heat exchanger (63) is cooled by the heat exchanger (52) to increase the degree of subcooling of the refrigerant, thus preventing the generation of such flash gas. it can.

一方、高圧冷媒の過冷却度を大きくする方法としては、蓄熱用熱交換器(63)の上流側に熱交換器(過冷却熱交換器)を設けることも考えられる。しかし、仮に蓄熱用熱交換器(63)の上流側で冷媒を過冷却すると、蓄熱用熱交換器(63)を流れる冷媒と、蓄熱媒体の温度差が小さくなり、蓄熱媒体の冷熱を有効に利用できなくなる。これに対し、本発明では、利用冷房運転中の蓄熱用熱交換器(63)の下流側に熱交換器(52)を配置し、冷媒を過冷却しているため、蓄熱媒体の冷熱を有効に利用しつつ、上述したフラッシュガスの発生を防止できる。     On the other hand, as a method for increasing the degree of supercooling of the high-pressure refrigerant, it is conceivable to provide a heat exchanger (supercooling heat exchanger) upstream of the heat storage heat exchanger (63). However, if the refrigerant is supercooled on the upstream side of the heat storage heat exchanger (63), the temperature difference between the refrigerant flowing through the heat storage heat exchanger (63) and the heat storage medium is reduced, and the cold energy of the heat storage medium is effectively used. It becomes unavailable. On the other hand, in the present invention, the heat exchanger (52) is arranged downstream of the heat storage heat exchanger (63) during use cooling operation, and the refrigerant is supercooled, so that the cooling heat of the heat storage medium is effectively used. It is possible to prevent the above-described generation of flash gas while being used for the above.

更に、本発明では、暖房蓄熱運転の第1動作と第2動作とを切り換えるための導入管(51)及び開閉機構(EV2)とが、利用冷房運転においても利用される。これにより、冷媒回路(11)の部品点数を削減できる。     Furthermore, in the present invention, the introduction pipe (51) and the opening / closing mechanism (EV2) for switching between the first operation and the second operation of the heating / heat storage operation are also used in the cooling operation. Thereby, the number of parts of a refrigerant circuit (11) can be reduced.

第1の発明の暖房蓄熱運転では、室内熱交換器(72)による暖房で余った熱を蓄熱用熱交換器(63)を介して蓄熱媒体に付与させる第1動作と、室内熱交換器(72)で凝縮した冷媒に高圧ガス冷媒を混合して蓄熱用熱交換器(63)に送る動作とを切り換えて行うようにしている。このため、運転状況に応じて、暖房の余剰の熱を蓄熱媒体に回収させる動作と、蓄熱媒体に温熱を確実に蓄えることができる動作とを切り換えることができ、室内の暖房を継続しつつ、蓄熱媒体に効率よく温熱を蓄積させることができる。     In the heating and heat storage operation according to the first aspect of the invention, a first operation for imparting heat generated by heating by the indoor heat exchanger (72) to the heat storage medium via the heat storage heat exchanger (63), and an indoor heat exchanger ( The operation of mixing the high-pressure gas refrigerant with the refrigerant condensed in 72) and sending it to the heat storage heat exchanger (63) is performed. For this reason, according to the operation situation, it is possible to switch between the operation of collecting the excess heat of the heating in the heat storage medium and the operation of reliably storing the heat in the heat storage medium, while continuing the indoor heating, Heat can be efficiently accumulated in the heat storage medium.

第3の発明では、第1動作において、室内熱交換器(72)を流出した冷媒の温度と、蓄熱媒体の温度との温度差ΔTが小さいことを示す条件が成立すると、第2動作へ移行する。従って、冷媒の熱を蓄熱媒体に付与できないような条件下において、不要に第1動作を継続してしまうことを防止でき、蓄熱媒体に温熱を確実に蓄えることができる。     In the third invention, when the condition indicating that the temperature difference ΔT between the temperature of the refrigerant flowing out of the indoor heat exchanger (72) and the temperature of the heat storage medium is satisfied in the first operation, the process proceeds to the second operation. To do. Therefore, it is possible to prevent the first operation from being continued unnecessarily under conditions where the heat of the refrigerant cannot be applied to the heat storage medium, and it is possible to reliably store the heat in the heat storage medium.

第4の発明では、蓄熱媒体の温度のみを検出し、温度差ΔTを推測できる。この結果、温度センサ等の部品点数を削減できる。     In the fourth invention, only the temperature of the heat storage medium is detected, and the temperature difference ΔT can be estimated. As a result, the number of parts such as a temperature sensor can be reduced.

第5の発明では、蓄熱タンク(62)の流出管(65)の蓄熱媒体の温度を基準に第1動作から第2動作への移行の判定を行うため、実質的にはΔTが比較的小さいにも拘わらず、不要に第1動作が継続されてしまうことを確実に回避できる。     In the fifth invention, since the transition from the first operation to the second operation is determined based on the temperature of the heat storage medium in the outflow pipe (65) of the heat storage tank (62), ΔT is substantially relatively small. Nevertheless, the first operation can be reliably avoided from being continued unnecessarily.

第6の発明では、利用冷房運転時に熱交換器(52)で冷媒を過冷却するため、室内熱交換器(72)までの流路で冷媒が気化する、いわゆるフラッシュガスの発生を防止できる。この結果、連絡配管での異音の発生を防止したり、室内側の膨張弁の制御性の低下を防止したり、冷房運転の効率が低下を防止したりできる。加えて、利用冷房運転では、蓄熱媒体の冷熱を冷媒に効率よく回収しつつ、室内の冷房を行うことができる。     In the sixth aspect of the invention, since the refrigerant is supercooled by the heat exchanger (52) during the use cooling operation, it is possible to prevent the generation of so-called flash gas in which the refrigerant evaporates in the flow path to the indoor heat exchanger (72). As a result, it is possible to prevent the generation of abnormal noise in the connecting pipe, to prevent the controllability of the indoor expansion valve, and to prevent the cooling operation efficiency from decreasing. In addition, in the use cooling operation, indoor cooling can be performed while efficiently collecting the cold heat of the heat storage medium in the refrigerant.

更に、導入管(51)及び開閉機構(EV2)を利用冷房運転と暖房蓄熱運転との双方で兼用でき、部品点数の削減、蓄熱式空気調和機の簡素化を図ることができる。     Furthermore, the introduction pipe (51) and the opening / closing mechanism (EV2) can be used for both the cooling operation and the heating and heat storage operation, so that the number of parts can be reduced and the heat storage type air conditioner can be simplified.

図1は、実施形態に係る蓄熱式空気調和機の全体構成を示す配管系統図である。FIG. 1 is a piping diagram illustrating the overall configuration of a regenerative air conditioner according to an embodiment. 図2は、単純冷房運転の動作を説明するための図1相当図である。FIG. 2 is a view corresponding to FIG. 1 for explaining the operation of the simple cooling operation. 図3は、蓄冷運転の動作を説明するための図1相当図である。FIG. 3 is a view corresponding to FIG. 1 for explaining the operation of the cold storage operation. 図4は、利用冷房運転の動作を説明するための図1相当図である。FIG. 4 is a view corresponding to FIG. 1 for explaining the operation of the use cooling operation. 図5は、冷房蓄冷運転の動作を説明するための図1相当図である。FIG. 5 is a diagram corresponding to FIG. 1 for explaining the operation of the cooling and accumulating operation. 図6は、単純暖房運転の動作を説明するための図1相当図である。FIG. 6 is a diagram corresponding to FIG. 1 for explaining the operation of the simple heating operation. 図7は、蓄熱運転の動作を説明するための図1相当図である。FIG. 7 is a view corresponding to FIG. 1 for explaining the operation of the heat storage operation. 図8は、利用暖房運転(1)を説明するための図1相当図である。FIG. 8 is a view corresponding to FIG. 1 for explaining the use heating operation (1). 図9は、利用暖房運転(2)を説明するための図1相当図である。FIG. 9 is a view corresponding to FIG. 1 for explaining the use heating operation (2). 図10は、暖房蓄熱運転(1)を説明するための図1相当図である。FIG. 10 is a view corresponding to FIG. 1 for explaining the heating and heat storage operation (1). 図11は、暖房蓄熱運転(2)を説明するための図1相当図である。FIG. 11 is a view corresponding to FIG. 1 for explaining the heating and heat storage operation (2).

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

《発明の実施形態》
本発明の実施形態に係る蓄熱式空気調和機(10)は、室内の冷房と暖房とを切り換えて行う。蓄熱式空気調和機(10)は、冷媒の冷熱を蓄熱媒体に蓄え、この冷熱を冷房に利用する。蓄熱式空気調和機(10)は、冷媒の温熱を蓄熱媒体に蓄え、この温熱を暖房に利用する。
<< Embodiment of the Invention >>
The regenerative air conditioner (10) according to the embodiment of the present invention performs switching between indoor cooling and heating. The heat storage type air conditioner (10) stores the cold heat of the refrigerant in a heat storage medium, and uses this cold heat for cooling. The heat storage type air conditioner (10) stores the heat of the refrigerant in a heat storage medium and uses the heat for heating.

〈全体構成〉
図1に示すように、蓄熱式空気調和機(10)は、室外ユニット(20)と、蓄熱ユニット(40)と、複数の室内ユニット(70)とを備えている。室外ユニット(20)及び蓄熱ユニット(40)は、室外に設置される。複数の室内ユニット(70)は、室内に設置される。なお、図1では便宜上、1台の室内ユニット(70)のみを図示している。
<overall structure>
As shown in FIG. 1, the heat storage type air conditioner (10) includes an outdoor unit (20), a heat storage unit (40), and a plurality of indoor units (70). The outdoor unit (20) and the heat storage unit (40) are installed outdoors. The plurality of indoor units (70) are installed indoors. In FIG. 1, only one indoor unit (70) is shown for convenience.

室外ユニット(20)には室外回路(21)が、蓄熱ユニット(40)には中間回路(41)が、室内ユニット(70)には室内回路(71)がそれぞれ設けられる。蓄熱式空気調和機(10)では、室外回路(21)と中間回路(41)とが3本の連絡配管(12,13,14)を介して互いに接続され、中間回路(41)と複数の室内回路(71)とが2本の連絡配管(15,16)を介して互いに接続される。これにより、蓄熱式空気調和機(10)では、充填された冷媒が循環して冷凍サイクルが行われる冷媒回路(11)が構成される。蓄熱式空気調和機(10)は、後述する各機器を制御するコントローラ(100)(運転制御部)を有している。     The outdoor unit (20) includes an outdoor circuit (21), the heat storage unit (40) includes an intermediate circuit (41), and the indoor unit (70) includes an indoor circuit (71). In the regenerative air conditioner (10), the outdoor circuit (21) and the intermediate circuit (41) are connected to each other via three connecting pipes (12, 13, 14), and the intermediate circuit (41) The indoor circuit (71) is connected to each other via two connecting pipes (15, 16). Thereby, in the regenerative air conditioner (10), the refrigerant circuit (11) in which the filled refrigerant circulates and the refrigeration cycle is performed is configured. The heat storage type air conditioner (10) includes a controller (100) (operation control unit) that controls each device described later.

〈室外ユニット〉
室外ユニット(20)には、冷媒回路(11)の一部を成す室外回路(21)が設けられる。室外回路(21)には、圧縮機(22)、室外熱交換器(23)、室外膨張弁(24)、及び四方切換弁(25)が接続される。室外回路(21)には、第1過冷却回路(30)と、中間吸入管(35)とが接続されている。
<Outdoor unit>
The outdoor unit (20) is provided with an outdoor circuit (21) that forms part of the refrigerant circuit (11). A compressor (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and a four-way switching valve (25) are connected to the outdoor circuit (21). A first subcooling circuit (30) and an intermediate suction pipe (35) are connected to the outdoor circuit (21).

〔圧縮機〕
実施形態の圧縮機(22)は、単段式の1台の圧縮機であり、冷媒を圧縮して吐出する圧縮部を構成している。圧縮機(22)では、ケーシング(22a)の内部にモータ及び圧縮機構(図示省略)が収容されている。実施形態の圧縮機構は、スクロール式の圧縮機構で構成されている。しかし、圧縮機構は、揺動ピストン式、ローリングピストン式、スクリュー式、ターボ式等の種々の方式を採用できる。圧縮機構では、渦巻き状の固定スクロールと可動スクロールの間に圧縮室が形成され、この圧縮室の容積が徐々に小さくなることで冷媒が圧縮される。圧縮機(22)のモータは、インバータ部によって運転周波数が可変に構成されている。つまり、圧縮機(22)は、回転数(容量)が可変なインバータ式の圧縮機である。
[Compressor]
The compressor (22) of the embodiment is a single-stage compressor, and constitutes a compression unit that compresses and discharges refrigerant. In the compressor (22), a motor and a compression mechanism (not shown) are accommodated in the casing (22a). The compression mechanism of the embodiment is composed of a scroll type compression mechanism. However, the compression mechanism can employ various types such as a swing piston type, a rolling piston type, a screw type, and a turbo type. In the compression mechanism, a compression chamber is formed between the spiral fixed scroll and the movable scroll, and the refrigerant is compressed by gradually reducing the volume of the compression chamber. The motor of the compressor (22) is configured such that the operation frequency is variable by the inverter unit. That is, the compressor (22) is an inverter type compressor having a variable rotation speed (capacity).

〔室外熱交換器〕
室外熱交換器(23)は、例えばクロスフィン・アンド・チューブ式の熱交換器で構成されている。室外熱交換器(23)の近傍には、室外ファン(26)が設けられている。室外熱交換器(23)では、室外ファン(26)が搬送する空気と、室外熱交換器(23)を流れる冷媒とが熱交換する。
[Outdoor heat exchanger]
The outdoor heat exchanger (23) is composed of, for example, a cross fin and tube heat exchanger. An outdoor fan (26) is provided in the vicinity of the outdoor heat exchanger (23). In the outdoor heat exchanger (23), the air conveyed by the outdoor fan (26) and the refrigerant flowing through the outdoor heat exchanger (23) exchange heat.

〔室外膨張弁〕
室外膨張弁(24)は、室外熱交換器(23)の液側端部と連絡配管(12)の接続端の間に配置されている。室外膨張弁(24)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の流量を調節する。
[Outdoor expansion valve]
The outdoor expansion valve (24) is disposed between the liquid side end of the outdoor heat exchanger (23) and the connection end of the communication pipe (12). The outdoor expansion valve (24) is composed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by changing the opening degree.

〔四方切換弁〕
四方切換弁(25)は、第1から第4までのポートを有している。四方切換弁(25)の第1ポートは、圧縮機(22)の吐出管(27)に接続され、四方切換弁(25)の第2ポートは、圧縮機(22)の吸入管(28)(低圧吸入部)に接続されている。四方切換弁(25)の第3ポートは、室外熱交換器(23)のガス側端部に繋がり、四方切換弁(25)の第4ポートは、連絡配管(14)の接続端に繋がっている。
(4-way switching valve)
The four-way selector valve (25) has first to fourth ports. The first port of the four-way switching valve (25) is connected to the discharge pipe (27) of the compressor (22), and the second port of the four-way switching valve (25) is the suction pipe (28) of the compressor (22). It is connected to (low pressure suction part). The third port of the four-way selector valve (25) is connected to the gas side end of the outdoor heat exchanger (23), and the fourth port of the four-way selector valve (25) is connected to the connection end of the communication pipe (14). Yes.

四方切換弁(25)は、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する状態(図1の実線で示す第1の状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する状態(図1の破線で示す第2の状態)とに切換可能に構成されている。     The four-way switching valve (25) includes a state in which the first port and the third port communicate with each other and a state in which the second port and the fourth port communicate with each other (first state indicated by a solid line in FIG. 1), the first port and the fourth port. It is configured to be able to switch between a state in which the ports are in communication and a state in which the second port and the third port are in communication (second state indicated by a broken line in FIG. 1).

〔第1過冷却回路〕
第1過冷却回路(30)は、第1導入管(31)と第1過冷却熱交換器(32)とを有している。第1導入管(31)の一端は、室外膨張弁(24)と連絡配管(12)の接続端との間に接続される。第1導入管(31)の他端は、圧縮機(22)の吸入管(28)に接続される。つまり、第1導入管(31)は、液ライン(L1)と圧縮機(22)の低圧側の吸入管(28)とを繋ぐ低圧導入管を構成している。ここで、液ライン(L1)は、室外熱交換器(23)の液側端部と室内熱交換器(72)の液側端部に亘るまでの流路である。第1導入管(31)には、その一端から他端に向かって順に、第1減圧弁(EV1)、第1伝熱流路(33)が接続されている。第1減圧弁(EV1)は、例えば電子膨張弁で構成され、その開度を変更することで第2伝熱流路(34)の出口の冷媒の過冷却度を調節する。第1過冷却熱交換器(32)は、第2伝熱流路(34)を流れる冷媒と、第1伝熱流路(33)を流れる冷媒とを熱交換させる第1熱交換器を構成する。第2伝熱流路(34)は、冷媒回路(11)の液ライン(L1)のうち、室外膨張弁(24)と連絡配管(12)の接続端との間に設けられる。
[First supercooling circuit]
The first subcooling circuit (30) includes a first introduction pipe (31) and a first subcooling heat exchanger (32). One end of the first introduction pipe (31) is connected between the outdoor expansion valve (24) and the connection end of the communication pipe (12). The other end of the first introduction pipe (31) is connected to the suction pipe (28) of the compressor (22). That is, the first introduction pipe (31) forms a low-pressure introduction pipe that connects the liquid line (L1) and the suction pipe (28) on the low-pressure side of the compressor (22). Here, the liquid line (L1) is a flow path extending from the liquid side end of the outdoor heat exchanger (23) to the liquid side end of the indoor heat exchanger (72). A first pressure reducing valve (EV1) and a first heat transfer channel (33) are connected to the first introduction pipe (31) in order from one end to the other end. The first pressure reducing valve (EV1) is constituted by, for example, an electronic expansion valve, and adjusts the degree of supercooling of the refrigerant at the outlet of the second heat transfer channel (34) by changing the opening thereof. The first subcooling heat exchanger (32) constitutes a first heat exchanger that exchanges heat between the refrigerant flowing through the second heat transfer channel (34) and the refrigerant flowing through the first heat transfer channel (33). The second heat transfer channel (34) is provided between the outdoor expansion valve (24) and the connection end of the communication pipe (12) in the liquid line (L1) of the refrigerant circuit (11).

〔中間吸入管〕
中間吸入管(35)は、中間圧の冷媒を圧縮機(22)の圧縮室の圧縮途中に導入する中間吸入部を構成している。中間吸入管(35)の始端は、連絡配管(13)の接続端に接続され、中間吸入管(35)の終端は、圧縮機(22)の圧縮機構の圧縮室に接続されている。中間吸入管(35)は、圧縮機(22)のケーシング(22a)の内部に位置する内側配管部(36)を有している。中間吸入管(35)の内圧は、基本的に、冷媒回路(11)の高圧と低圧の間の中間圧力に相当する。中間吸入管(35)には、上流側から下流側に向かって順に、第1電磁弁(SV1)、逆止弁(CV1)が接続される。第1電磁弁(SV1)は、流路を開閉する開閉弁である。逆止弁(CV1)は、主蓄熱用流路(44)(詳細は後述する)から圧縮機(22)へ向かう方向(図1の矢印方向)の冷媒の流れを許容し、圧縮機(22)から主蓄熱用流路(44)へ向かう方向の冷媒の流れを禁止する。
[Intermediate suction pipe]
The intermediate suction pipe (35) constitutes an intermediate suction portion for introducing intermediate-pressure refrigerant in the middle of compression of the compression chamber of the compressor (22). The start end of the intermediate suction pipe (35) is connected to the connection end of the communication pipe (13), and the end of the intermediate suction pipe (35) is connected to the compression chamber of the compression mechanism of the compressor (22). The intermediate suction pipe (35) has an inner pipe part (36) located inside the casing (22a) of the compressor (22). The internal pressure of the intermediate suction pipe (35) basically corresponds to an intermediate pressure between the high pressure and the low pressure of the refrigerant circuit (11). A first solenoid valve (SV1) and a check valve (CV1) are connected to the intermediate suction pipe (35) in order from the upstream side to the downstream side. The first solenoid valve (SV1) is an on-off valve that opens and closes the flow path. The check valve (CV1) allows the refrigerant to flow in the direction (arrow direction in FIG. 1) from the main heat storage channel (44) (details will be described later) to the compressor (22). ) To the main heat storage flow path (44).

〈蓄熱ユニット〉
蓄熱ユニット(40)は、室外ユニット(20)と室内ユニット(70)に介在する中継ユニットを構成している。蓄熱ユニット(40)には、冷媒回路(11)の一部を成す中間回路(41)が設けられる。中間回路(41)には、主液管(42)、主ガス管(43)、及び主蓄熱用流路(44)が接続されている。中間回路(41)には、第2過冷却回路(50)が接続されている。蓄熱ユニット(40)には、蓄熱装置(60)が設けられる。
<Heat storage unit>
The heat storage unit (40) constitutes a relay unit interposed between the outdoor unit (20) and the indoor unit (70). The heat storage unit (40) is provided with an intermediate circuit (41) that forms part of the refrigerant circuit (11). A main liquid pipe (42), a main gas pipe (43), and a main heat storage flow path (44) are connected to the intermediate circuit (41). The second subcooling circuit (50) is connected to the intermediate circuit (41). The heat storage unit (40) is provided with a heat storage device (60).

〔主液管〕
主液管(42)は、液ライン(L1)の一部を構成している。主液管(42)は、連絡配管(12)の接続端と連絡配管(15)の接続端とを接続している。主液管(42)には、第2電磁弁(SV2)が接続される。第2電磁弁(SV2)は、流路を開閉する開閉弁である。主液管(42)は、単純暖房運転(1)において、室内熱交換器(72)で凝縮した冷媒が蓄熱用熱交換器(63)をバイパスして室外熱交換器(23)へ送る第2バイパス流路を構成している。
[Main liquid pipe]
The main liquid pipe (42) constitutes a part of the liquid line (L1). The main liquid pipe (42) connects the connecting end of the connecting pipe (12) and the connecting end of the connecting pipe (15). A second solenoid valve (SV2) is connected to the main liquid pipe (42). The second solenoid valve (SV2) is an open / close valve that opens and closes the flow path. In the simple heating operation (1), the main liquid pipe (42) passes the refrigerant condensed in the indoor heat exchanger (72) to the outdoor heat exchanger (23), bypassing the heat storage heat exchanger (63). 2 bypass flow paths are configured.

〔主ガス管〕
主ガス管(43)は、ガスライン(L2)の一部を構成している。ここで、ガスライン(L2)は、四方切換弁(25)の第4ポートから室内熱交換器(72)のガス側端部に亘るまでの流路である。主ガス管(43)は、連絡配管(14)の接続端と連絡配管(16)の接続端とを連結している。
[Main gas pipe]
The main gas pipe (43) constitutes a part of the gas line (L2). Here, the gas line (L2) is a flow path from the fourth port of the four-way switching valve (25) to the gas side end of the indoor heat exchanger (72). The main gas pipe (43) connects the connecting end of the connecting pipe (14) and the connecting end of the connecting pipe (16).

〔主蓄熱用流路〕
主蓄熱用流路(44)は、主液管(42)と主ガス管(43)との間に接続されている。主蓄熱用流路(44)の一端は、連絡配管(12)の接続端と第2電磁弁(SV2)の間に接続されている。主蓄熱用流路(44)には、主液管(42)側から主ガス管(43)側に向かって順に、第3電磁弁(SV3)、予熱側冷媒流路(64b)、蓄熱用膨張弁(45)、蓄熱側冷媒流路(63b)、第4電磁弁(SV4)が接続されている。第3電磁弁(SV3)及び第4電磁弁(SV4)は、流路を開閉する開閉弁である。蓄熱用膨張弁(45)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。
[Main heat storage channel]
The main heat storage channel (44) is connected between the main liquid pipe (42) and the main gas pipe (43). One end of the main heat storage channel (44) is connected between the connection end of the communication pipe (12) and the second solenoid valve (SV2). In the main heat storage channel (44), in order from the main liquid pipe (42) side to the main gas pipe (43) side, the third solenoid valve (SV3), the preheating side refrigerant channel (64b), The expansion valve (45), the heat storage side refrigerant flow path (63b), and the fourth electromagnetic valve (SV4) are connected. The third solenoid valve (SV3) and the fourth solenoid valve (SV4) are open / close valves that open and close the flow path. The heat storage expansion valve (45) is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing its opening.

主蓄熱用流路(44)には、蓄熱用膨張弁(45)をバイパスする第1バイパス管(44a)が接続されている。第1バイパス管(44a)には、蓄熱用膨張弁(45)と並列に第5電磁弁(SV5)が接続されている。第5電磁弁(SV5)は、流路を開閉する開閉弁である。また、主蓄熱用流路(44)には、蓄熱用膨張弁(45)と並列に圧力逃がし弁(RV)が接続されている。     A first bypass pipe (44a) that bypasses the heat storage expansion valve (45) is connected to the main heat storage flow path (44). A fifth electromagnetic valve (SV5) is connected to the first bypass pipe (44a) in parallel with the heat storage expansion valve (45). The fifth solenoid valve (SV5) is an open / close valve that opens and closes the flow path. In addition, a pressure relief valve (RV) is connected to the main heat storage flow path (44) in parallel with the heat storage expansion valve (45).

主蓄熱用流路(44)は、高圧冷媒が上記室内熱交換器(72)をバイパスして蓄熱用熱交換器(63)へ流れる第1バイパス流路を構成している。     The main heat storage flow path (44) constitutes a first bypass flow path through which the high-pressure refrigerant bypasses the indoor heat exchanger (72) and flows to the heat storage heat exchanger (63).

〔第2過冷却回路〕
第2過冷却回路(50)は、第2導入管(51)と第2過冷却熱交換器(52)とを有している。第2導入管(51)の一端は、第2電磁弁(SV2)と連絡配管(15)の接続端との間に接続される。第2導入管(51)の他端は、主ガス管(43)に接続される。主ガス管(43)において、第2導入管(51)の接続部は、主蓄熱用流路(44)の接続部と連絡配管(16)の接続端の間に位置している。第2導入管(51)には、その一端から他端に向かって順に、第2減圧弁(EV2)、第3伝熱流路(53)が接続されている。第2減圧弁(EV2)は、例えば電子膨張弁で構成され、その開度を変更することで第4伝熱流路(54)の出口の冷媒の過冷却度を調節する。第2過冷却熱交換器(52)は、第4伝熱流路(54)を流れる冷媒と、第3伝熱流路(53)を流れる冷媒とを熱交換させる。第4伝熱流路(54)は、主液管(42)のうち第2電磁弁(SV2)と連絡配管(15)の接続端の間に設けられる。第2過冷却回路(50)は、詳細は後述する利用冷房運転や利用蓄冷運転において、連絡配管(15)を流れる冷媒が気化してフラッシュするのを防止するための過冷却器を構成する。
[Second supercooling circuit]
The second subcooling circuit (50) has a second introduction pipe (51) and a second subcooling heat exchanger (52). One end of the second introduction pipe (51) is connected between the second solenoid valve (SV2) and the connection end of the communication pipe (15). The other end of the second introduction pipe (51) is connected to the main gas pipe (43). In the main gas pipe (43), the connection part of the second introduction pipe (51) is located between the connection part of the main heat storage channel (44) and the connection end of the communication pipe (16). A second pressure reducing valve (EV2) and a third heat transfer channel (53) are connected to the second introduction pipe (51) in order from one end to the other end. The second pressure reducing valve (EV2) is constituted by, for example, an electronic expansion valve, and adjusts the degree of supercooling of the refrigerant at the outlet of the fourth heat transfer channel (54) by changing the opening thereof. The second subcooling heat exchanger (52) exchanges heat between the refrigerant flowing through the fourth heat transfer channel (54) and the refrigerant flowing through the third heat transfer channel (53). A 4th heat-transfer channel (54) is provided between the connection ends of a 2nd solenoid valve (SV2) and connecting piping (15) among main liquid pipes (42). The second subcooling circuit (50) constitutes a supercooler for preventing the refrigerant flowing through the communication pipe (15) from being vaporized and flushed in the use cooling operation and the use cold storage operation, which will be described in detail later.

第2導入管(51)は、暖房蓄熱運転中のガスライン(L2)と、室内熱交換器(72)と蓄熱用熱交換器(63)との間の流路とを繋ぐ導入管を構成している。第2減圧弁(EV2)は、導入管(51)に接続され、第1動作(暖房蓄熱運転(1))時に閉鎖され、第2動作(暖房蓄熱運転(2))時に開放される開閉機構(EV2)を構成している(詳細は後述する)。     The second introduction pipe (51) constitutes an introduction pipe that connects the gas line (L2) during the heating and heat storage operation and the flow path between the indoor heat exchanger (72) and the heat storage heat exchanger (63). doing. The second pressure reducing valve (EV2) is connected to the introduction pipe (51) and is closed during the first operation (heating heat storage operation (1)) and opened during the second operation (heating heat storage operation (2)). (EV2) (details will be described later).

〔その他の配管〕
中間回路(41)には、中間中継管(46)と、第1分岐管(47)と、第2分岐管(48)と、第3分岐管(49)とが接続される。中間中継管(46)の一端は、主蓄熱用流路(44)における第3電磁弁(SV3)と予熱側冷媒流路(64b)との間に接続される。中間中継管(46)の他端は、連絡配管(13)を介して中間吸入管(35)と接続している。第1分岐管(47)の一端は、主蓄熱用流路(44)における蓄熱側冷媒流路(63b)と第4電磁弁(SV4)との間に接続される。
[Other piping]
An intermediate relay pipe (46), a first branch pipe (47), a second branch pipe (48), and a third branch pipe (49) are connected to the intermediate circuit (41). One end of the intermediate relay pipe (46) is connected between the third solenoid valve (SV3) and the preheating side refrigerant flow path (64b) in the main heat storage flow path (44). The other end of the intermediate relay pipe (46) is connected to the intermediate suction pipe (35) via the connection pipe (13). One end of the first branch pipe (47) is connected between the heat storage side refrigerant flow path (63b) and the fourth electromagnetic valve (SV4) in the main heat storage flow path (44).

第1分岐管(47)の他端は、主ガス管(43)における主蓄熱用流路(44)の接続部と第2導入管(51)の接続部との間に接続される。第1分岐管(47)には、第3減圧弁(EV3)が接続される。第3減圧弁(EV3)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。第3減圧弁(EV3)は、室内熱交換器(72)が蒸発器となる運転時において、連絡配管(16)の圧力損失や室内ユニット(70)と室外ユニット(20)の設置条件によるヘッド差に起因して、室内熱交換器(72)の蒸発圧力とガス管(41)の圧力差により、蓄熱用熱交換器(63)の圧力が過剰に低くならないように、その開度が調節される。     The other end of the first branch pipe (47) is connected between the connection portion of the main heat storage flow path (44) and the connection portion of the second introduction pipe (51) in the main gas pipe (43). A third pressure reducing valve (EV3) is connected to the first branch pipe (47). The third pressure reducing valve (EV3) is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing its opening degree. The third pressure reducing valve (EV3) is a head that depends on the pressure loss of the communication pipe (16) and the installation conditions of the indoor unit (70) and the outdoor unit (20) when the indoor heat exchanger (72) is an evaporator. Due to the difference, the opening degree is adjusted so that the pressure in the heat storage heat exchanger (63) does not become excessively low due to the difference in evaporation pressure between the indoor heat exchanger (72) and the gas pipe (41). Is done.

第2分岐管(48)と第3分岐管(49)とは、主液管(42)と主蓄熱用流路(44)との間に並列に接続されている。第2分岐管(48)及び第3分岐管(49)の一端は、主蓄熱用流路(44)における蓄熱側冷媒流路(63b)と第4電磁弁(SV4)との間に接続される。第2分岐管(48)及び第3分岐管(49)の他端は、主液管(42)における第2電磁弁(SV2)と第2導入管(51)の接続部との間に接続される。第2分岐管(48)には、第4減圧弁(EV4)が接続される。第4減圧弁(EV4)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。第3分岐管(49)には、第6電磁弁(SV6)が接続されている。第6電磁弁(SV6)は、流路を開閉する開閉弁である。    The second branch pipe (48) and the third branch pipe (49) are connected in parallel between the main liquid pipe (42) and the main heat storage flow path (44). One ends of the second branch pipe (48) and the third branch pipe (49) are connected between the heat storage side refrigerant flow path (63b) and the fourth solenoid valve (SV4) in the main heat storage flow path (44). The The other ends of the second branch pipe (48) and the third branch pipe (49) are connected between the second solenoid valve (SV2) in the main liquid pipe (42) and the connection portion of the second introduction pipe (51). Is done. A fourth pressure reducing valve (EV4) is connected to the second branch pipe (48). The fourth pressure reducing valve (EV4) is constituted by, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing its opening degree. A sixth solenoid valve (SV6) is connected to the third branch pipe (49). The sixth solenoid valve (SV6) is an open / close valve that opens and closes the flow path.

第3分岐管(49)は、暖房蓄熱運転(1)において、室内熱交換器(72)と蓄熱用熱交換器(63)とを繋ぐ直列流路を構成している。     The 3rd branch pipe (49) comprises the serial flow path which connects an indoor heat exchanger (72) and the heat storage heat exchanger (63) in heating heat storage operation (1).

[蓄熱装置]
蓄熱装置(60)は、冷媒回路(11)の冷媒と蓄熱媒体とを熱交換させる蓄熱部を構成している。蓄熱装置(60)は、蓄熱回路(61)と、該蓄熱回路(61)に接続される蓄熱タンク(62)とを有している。蓄熱装置(60)は、蓄熱用熱交換器(63)及び予熱用熱交換器(64)を有している。
[Heat storage device]
The heat storage device (60) constitutes a heat storage unit that exchanges heat between the refrigerant of the refrigerant circuit (11) and the heat storage medium. The heat storage device (60) includes a heat storage circuit (61) and a heat storage tank (62) connected to the heat storage circuit (61). The heat storage device (60) includes a heat storage heat exchanger (63) and a preheating heat exchanger (64).

蓄熱回路(61)は、充填された蓄熱媒体が循環する閉回路である。蓄熱タンク(62)は、中空筒状の容器である。蓄熱タンク(62)は開放容器であってもよい。蓄熱タンク(62)には、蓄熱媒体が貯留される。蓄熱タンク(62)の上部には、蓄熱タンク(62)内の蓄熱媒体を流出させる流出管(65)(流出部)が接続される。蓄熱タンク(62)の下部には、蓄熱タンク(62)の外部の蓄熱媒体を蓄熱タンク(62)内に流入させる流入管(66)(流入部)が接続される。つまり、蓄熱タンク(62)では、流出管(65)の接続部が流入管(66)の接続部よりも高い位置にある。蓄熱回路(61)には、流出管(65)から流入管(66)に向かって順に、予熱側蓄熱流路(64a)、ポンプ(67)、蓄熱側蓄熱流路(63a)が接続されている。     The heat storage circuit (61) is a closed circuit in which the filled heat storage medium circulates. The heat storage tank (62) is a hollow cylindrical container. The heat storage tank (62) may be an open container. A heat storage medium is stored in the heat storage tank (62). An outflow pipe (65) (outflow portion) through which the heat storage medium in the heat storage tank (62) flows out is connected to the upper part of the heat storage tank (62). An inflow pipe (66) (inflow part) for allowing a heat storage medium outside the heat storage tank (62) to flow into the heat storage tank (62) is connected to the lower part of the heat storage tank (62). That is, in the heat storage tank (62), the connection part of the outflow pipe (65) is located higher than the connection part of the inflow pipe (66). The preheat side heat storage channel (64a), the pump (67), and the heat storage side heat storage channel (63a) are connected to the heat storage circuit (61) in order from the outflow pipe (65) to the inflow pipe (66). Yes.

予熱用熱交換器(64)は、予熱側蓄熱流路(64a)を流れる蓄熱媒体と、予熱側冷媒流路(64b)を流れる冷媒とを熱交換させる。蓄熱用熱交換器(63)は、蓄熱側蓄熱流路(63a)を流れる蓄熱媒体と、蓄熱側冷媒流路(63b)を流れる冷媒とを熱交換させる。ポンプ(67)は、蓄熱回路(61)の蓄熱媒体を循環させる。     The preheating heat exchanger (64) exchanges heat between the heat storage medium flowing through the preheating side heat storage flow path (64a) and the refrigerant flowing through the preheating side refrigerant flow path (64b). The heat storage heat exchanger (63) exchanges heat between the heat storage medium flowing through the heat storage side heat storage flow path (63a) and the refrigerant flowing through the heat storage side refrigerant flow path (63b). The pump (67) circulates the heat storage medium of the heat storage circuit (61).

蓄熱回路(61)では、蓄熱タンク(62)と予熱用熱交換器(64)との間の流路に温度センサ(S1)(温度検出部)が設けられる。具体的に、温度センサ(S1)は流出管(65)内の蓄熱媒体の温度を検出する位置に設けられる。温度センサ(S1)の位置は、これに限らず蓄熱回路(61)の他の位置に設けてもよい。なお、温度センサ(S1)は、便宜上、図1のみに図示し、他の図2〜図11での図示は省略している。     In the heat storage circuit (61), a temperature sensor (S1) (temperature detection unit) is provided in a flow path between the heat storage tank (62) and the preheating heat exchanger (64). Specifically, the temperature sensor (S1) is provided at a position for detecting the temperature of the heat storage medium in the outflow pipe (65). The position of the temperature sensor (S1) is not limited to this, and may be provided at another position of the heat storage circuit (61). The temperature sensor (S1) is shown only in FIG. 1 for the sake of convenience, and the illustration in the other FIGS. 2 to 11 is omitted.

[蓄熱媒体]
蓄熱回路(61)に充填される蓄熱媒体について詳細に説明する。蓄熱媒体には、冷却によって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態にて何らかのきっかけが与えられると、過冷却の溶液が包接水和物を含んだ溶液(即ちスラリー)へと遷移する。即ち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高いスラリー状となる。ここで、過冷却状態とは、蓄熱媒体が水和物生成温度以下の温度となっても包接水和物が生成されずに溶液の状態を保っている状態を言う。逆に、スラリー状となっている臭化テトラnブチルアンモニウム水溶液は、加熱により当該水溶液の温度が水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態(溶液)となる。
[Heat storage medium]
The heat storage medium filled in the heat storage circuit (61) will be described in detail. As the heat storage medium, a heat storage material in which clathrate hydrate is generated by cooling, that is, a fluid heat storage material is employed. Specific examples of the heat storage medium include tetra nbutylammonium bromide (TBAB) aqueous solution, tetramethylolethane (TME) aqueous solution, paraffinic slurry and the like containing tetra nbutylammonium bromide. . For example, an aqueous solution of tetra-n-butylammonium bromide maintains the state of the aqueous solution even in a supercooled state in which the temperature of the aqueous solution is lower than the hydrate formation temperature after being stably cooled. When given a trigger, the supercooled solution transitions to a solution containing clathrate hydrate (ie, slurry). That is, the aqueous solution of tetra-n-butylammonium bromide eliminates the supercooled state, and clathrate hydrate (hydrate crystal) composed of tetra-n-butylammonium bromide and water molecules is generated, and the viscosity is relatively low. It becomes a high slurry state. Here, the supercooled state refers to a state where the clathrate hydrate is not generated and the state of the solution is maintained even when the heat storage medium becomes a temperature lower than the hydrate generation temperature. Conversely, when the aqueous solution of tetra-n-butylammonium bromide in a slurry state is heated, the temperature of the aqueous solution becomes higher than the hydrate formation temperature, the clathrate hydrate melts and the fluidity is relatively high. It becomes a liquid state (solution).

本実施形態では、上記蓄熱媒体として、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム水溶液を採用している。特に、上記蓄熱媒体は、調和濃度の近傍の濃度を有する媒体であることが好ましい。本実施形態では、調和濃度を約40%とする。この場合の臭化テトラnブチルアンモニウム水溶液の水和物生成温度は、約12℃である。   In the present embodiment, an aqueous solution of tetra nbutylammonium bromide containing tetra nbutylammonium bromide is employed as the heat storage medium. In particular, the heat storage medium is preferably a medium having a concentration near the harmonic concentration. In this embodiment, the harmonic concentration is about 40%. In this case, the hydrate formation temperature of the aqueous solution of tetra-n-butylammonium bromide is about 12 ° C.

〈室内ユニット〉
複数の室内ユニット(70)には、冷媒回路(11)の一部を成す室内回路(71)がそれぞれ設けられる。複数の室内回路(71)は、連絡配管(15)(液管)と連絡配管(16)(ガス管)との間に並列に接続されている。複数の室内回路(71)と上述した主蓄熱用流路(44)とは、液ライン(L1)とガスライン(L2)の間に並列に接続されている。各室内回路(71)には、ガス側端部から液側端部に向かって順に、室内熱交換器(72)と室内膨張弁(73)とがそれぞれ接続されている。
<Indoor unit>
The indoor units (70) are each provided with an indoor circuit (71) that forms part of the refrigerant circuit (11). The plurality of indoor circuits (71) are connected in parallel between the communication pipe (15) (liquid pipe) and the communication pipe (16) (gas pipe). The plurality of indoor circuits (71) and the main heat storage flow path (44) described above are connected in parallel between the liquid line (L1) and the gas line (L2). An indoor heat exchanger (72) and an indoor expansion valve (73) are connected to each indoor circuit (71) in order from the gas side end to the liquid side end.

〔室内熱交換器〕
室内熱交換器(72)は、例えばクロスフィン・アンド・チューブ式の熱交換器で構成されている。室内熱交換器(72)の近傍には、室内ファン(74)が設けられている。室内熱交換器(72)では、室内ファン(74)が搬送する空気と、室内熱交換器(72)を流れる冷媒とが熱交換する。
[Indoor heat exchanger]
The indoor heat exchanger (72) is composed of, for example, a cross fin and tube heat exchanger. An indoor fan (74) is provided in the vicinity of the indoor heat exchanger (72). In the indoor heat exchanger (72), the air conveyed by the indoor fan (74) and the refrigerant flowing through the indoor heat exchanger (72) exchange heat.

〔室内膨張弁〕
室内膨張弁(73)は、室内熱交換器(72)の液側端部と連絡配管(15)の接続端の間に配置されている。室内膨張弁(73)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の流量を調節する。
[Indoor expansion valve]
The indoor expansion valve (73) is disposed between the liquid side end of the indoor heat exchanger (72) and the connection end of the communication pipe (15). The indoor expansion valve (73) is composed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by changing the opening thereof.

〈コントローラ〉
コントローラ(100)は、各機器を制御する運転制御部を構成している。具体的に、コントローラ(100)は、圧縮機(22)のON/OFFの切換、四方切換弁(25)の状態の切換、各電磁弁(SV1-6)の開閉の切換、各膨張弁(24,45,73)や減圧弁(EV1-4)の開度の調節、各ファン(26,74)のON/OFFの切換、ポンプ(67)のON/OFFの切換等を行う。また、蓄熱式空気調和機(10)には、図示を省略した各種のセンサが設けられている。コントローラ(100)は、これらの検出値に基づいて、上述した各機器を制御する。
<controller>
The controller (100) constitutes an operation control unit that controls each device. Specifically, the controller (100) switches ON / OFF of the compressor (22), switches the state of the four-way switching valve (25), switches opening / closing of each solenoid valve (SV1-6), and each expansion valve ( 24, 45, 73) and opening of the pressure reducing valve (EV1-4), ON / OFF switching of each fan (26, 74), ON / OFF switching of the pump (67), and the like. The regenerative air conditioner (10) is provided with various sensors (not shown). The controller (100) controls each device described above based on these detection values.

〈蓄熱式空気調和機の運転動作〉
実施形態に係る蓄熱式空気調和機(10)の運転動作について説明する。蓄熱式空気調和機(10)は、単純冷房運転、蓄冷運転、利用冷房運転、冷房蓄冷運転、単純暖房運転、蓄熱運転、利用暖房運転、及び暖房蓄熱運転を切り換えて行う。コントローラ(100)は、これらの各運転を切り換えるように、各機器を制御する。
<Operation of regenerative air conditioner>
The operation of the regenerative air conditioner (10) according to the embodiment will be described. The regenerative air conditioner (10) performs simple cooling operation, cold storage operation, use cooling operation, cooling storage operation, simple heating operation, heat storage operation, use heating operation, and heating heat storage operation. The controller (100) controls each device so as to switch each of these operations.

〔単純冷房運転〕
単純冷房運転では、蓄熱装置(60)が停止し、室内ユニット(70)で室内の冷房が行われる。図2に示す単純冷房運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第4電磁弁(SV4)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態になる。第2減圧弁(EV2)及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第1減圧弁(EV1)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が停止状態となり作動しない。単純冷房運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、第1過冷却熱交換器(32)が過冷却器となり、室内熱交換器(72)が蒸発器となる冷凍サイクルが行われる。単純冷房運転では、低圧側のガスライン(L2)と主蓄熱用流路(44)とが連通する。これにより、主蓄熱用流路(44)の内部での液溜まりを回避できる。
[Simple cooling operation]
In the simple cooling operation, the heat storage device (60) is stopped, and the indoor unit (70) cools the room. In the simple cooling operation shown in FIG. 2, the four-way switching valve (25) is in the first state, the second solenoid valve (SV2), the fourth solenoid valve among the first solenoid valve (SV1) to the sixth solenoid valve (SV6). (SV4) and the fifth solenoid valve (SV5) are opened, and the rest are closed. The second pressure reducing valve (EV2) and the fourth pressure reducing valve (EV4) are fully closed, the outdoor expansion valve (24) is fully opened, and the first pressure reducing valve (EV1) and the indoor expansion valve (73) are opened. Adjust as appropriate. The compressor (22), the outdoor fan (26), and the indoor fan (74) operate. The heat storage device (60) does not operate because the pump (67) is stopped. In the refrigerant circuit (11) for simple cooling operation, the outdoor heat exchanger (23) serves as a condenser, the first subcooling heat exchanger (32) serves as a supercooler, and the indoor heat exchanger (72) serves as an evaporator. A refrigeration cycle is performed. In the simple cooling operation, the low pressure side gas line (L2) communicates with the main heat storage flow path (44). Thereby, the liquid pool in the main heat storage flow path (44) can be avoided.

圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒の多くは、第2伝熱流路(34)を流れ、残りは第1減圧弁(EV1)で減圧された後、第1伝熱流路(33)を流れる。第1過冷却熱交換器(32)では、第2伝熱流路(34)の冷媒が第1伝熱流路(33)の冷媒によって冷却される。液ライン(L1)に流入した冷媒は、室内膨張弁(73)で減圧された後、室内熱交換器(72)で蒸発する。ガスライン(L2)を流れる冷媒は、第1導入管(31)を流入した冷媒と合流し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23). Most of the condensed refrigerant flows through the second heat transfer channel (34), and the rest flows through the first heat transfer channel (33) after being depressurized by the first pressure reducing valve (EV1). In the first subcooling heat exchanger (32), the refrigerant in the second heat transfer channel (34) is cooled by the refrigerant in the first heat transfer channel (33). The refrigerant flowing into the liquid line (L1) is depressurized by the indoor expansion valve (73) and then evaporated by the indoor heat exchanger (72). The refrigerant flowing through the gas line (L2) joins with the refrigerant flowing into the first introduction pipe (31) and is sucked into the compressor (22).

〔蓄冷運転〕
蓄冷運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)の蓄熱媒体に冷熱が蓄えられる。図3に示す蓄冷運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、及び第4電磁弁(SV4)が開状態になり、残りは閉状態になる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び室内膨張弁(73)が全閉状態に、室外膨張弁(24)が全開状態に、蓄熱用膨張弁(45)の開度が適宜調節される。圧縮機(22)、室外ファン(26)は作動し、室内ファン(74)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄冷運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)が放熱器(冷媒冷却器)となり、蓄熱用熱交換器(63)が蒸発器となる冷凍サイクルが行われる。蓄冷運転では、高圧の液ライン(L1)から室内ユニット(70)までに亘る流路に余剰の冷媒を保持することができる。
(Cool storage operation)
In the cold storage operation, the heat storage device (60) is operated, and cold heat is stored in the heat storage medium of the heat storage tank (62). In the cold storage operation shown in FIG. 3, the four-way switching valve (25) is in the first state, and the second solenoid valve (SV2), the third solenoid valve (of the first solenoid valve (SV1) to the sixth solenoid valve (SV6)) ( SV3) and 4th solenoid valve (SV4) are opened, and the rest are closed. The first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), the fourth pressure reducing valve (EV4), and the indoor expansion valve (73) are fully closed, and the outdoor expansion valve (24 ) Fully open, the opening degree of the heat storage expansion valve (45) is adjusted as appropriate. The compressor (22) and the outdoor fan (26) operate, and the indoor fan (74) stops. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) for cold storage operation, the outdoor heat exchanger (23) serves as a condenser, the preheating heat exchanger (64) serves as a radiator (refrigerant cooler), and the heat storage heat exchanger (63) evaporates. A refrigeration cycle is performed. In the cold storage operation, surplus refrigerant can be held in the flow path extending from the high-pressure liquid line (L1) to the indoor unit (70).

圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒は、主蓄熱用流路(44)の予熱側冷媒流路(64b)を流れる。予熱用熱交換器(64)では、蓄熱媒体が冷媒によって加熱される。これにより、蓄熱タンク(62)から流出した包接水和物の核(微小な結晶)が融解する。予熱側冷媒流路(64b)で冷却された冷媒は、予熱用熱交換器(64)で減圧された後、蓄熱側冷媒流路(63b)を流れる。蓄熱用熱交換器(63)では、蓄熱媒体が冷媒によって冷却され、蒸発する。主蓄熱用流路(44)からガスライン(L2)に流入した冷媒は、圧縮機(22)に吸入される。蓄熱タンク(62)には、蓄熱用熱交換器(63)で冷却された蓄熱媒体が貯留される。     The refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23). The condensed refrigerant flows through the preheating side refrigerant flow path (64b) of the main heat storage flow path (44). In the preheating heat exchanger (64), the heat storage medium is heated by the refrigerant. As a result, the clathrate hydrate core (fine crystals) flowing out of the heat storage tank (62) is melted. The refrigerant cooled in the preheating side refrigerant flow path (64b) is depressurized by the preheating heat exchanger (64) and then flows through the heat storage side refrigerant flow path (63b). In the heat storage heat exchanger (63), the heat storage medium is cooled by the refrigerant and evaporated. The refrigerant flowing into the gas line (L2) from the main heat storage channel (44) is sucked into the compressor (22). The heat storage tank (62) stores the heat storage medium cooled by the heat storage heat exchanger (63).

〔利用冷房運転〕
利用冷房運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に蓄えられた蓄熱媒体の冷熱が、室内の冷房に利用される。図4に示す利用冷房運転では、四方切換弁(25)が第1状態に第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、及び第6電磁弁(SV6)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第2減圧弁(EV2)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用冷房運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)、蓄熱用熱交換器(63)、及び第2過冷却熱交換器(52)が放熱器(冷媒冷却器)となり、室内熱交換器(72)が蒸発器となる冷凍サイクルが行われる。
[Use cooling operation]
In the use cooling operation, the heat storage device (60) is operated, and the cold energy of the heat storage medium stored in the heat storage tank (62) is used for indoor cooling. In the utilization cooling operation shown in FIG. 4, the four-way switching valve (25) is set to the first state among the first solenoid valve (SV1) to the sixth solenoid valve (SV6), the third solenoid valve (SV3), the fifth solenoid valve ( SV5) and the sixth solenoid valve (SV6) are opened, and the rest are closed. The first pressure reducing valve (EV1) and the fourth pressure reducing valve (EV4) are fully closed, the outdoor expansion valve (24) is fully opened, and the opening degrees of the second pressure reducing valve (EV2) and the indoor expansion valve (73) are Adjust as appropriate. The compressor (22), the outdoor fan (26), and the indoor fan (74) operate. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) for use cooling operation, the outdoor heat exchanger (23) is a condenser, and the preheating heat exchanger (64), the heat storage heat exchanger (63), and the second subcooling heat exchanger ( A refrigeration cycle is performed in which 52) becomes a radiator (refrigerant cooler) and the indoor heat exchanger (72) becomes an evaporator.

圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒は、主蓄熱用流路(44)の予熱用熱交換器(64)で冷却され、第1バイパス管(44a)を通過した後、蓄熱用熱交換器(63)で更に冷却される。主蓄熱用流路(44)、第3分岐管(49)を流れて液ライン(L1)に流入した冷媒の多くは、第4伝熱流路(54)を流れ、残りは第2減圧弁(EV2)で減圧された後、第3伝熱流路(53)を流れる。第2過冷却熱交換器(52)では、第4伝熱流路(54)を流れる冷媒が第3伝熱流路(53)の冷媒によって冷却される。第2過冷却熱交換器(52)で冷却された冷媒は、室内膨張弁(73)で減圧された後、室内熱交換器(72)で蒸発する。ガスライン(L2)を流れる冷媒は、第2導入管(51)を流出した冷媒と合流し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23). The condensed refrigerant is cooled by the preheat heat exchanger (64) of the main heat storage flow path (44), passes through the first bypass pipe (44a), and further cooled by the heat storage heat exchanger (63). The Most of the refrigerant flowing through the main heat storage flow path (44) and the third branch pipe (49) and flowing into the liquid line (L1) flows through the fourth heat transfer flow path (54), and the rest flows through the second pressure reducing valve ( After being depressurized by EV2), it flows through the third heat transfer channel (53). In the second subcooling heat exchanger (52), the refrigerant flowing through the fourth heat transfer channel (54) is cooled by the refrigerant in the third heat transfer channel (53). The refrigerant cooled by the second subcooling heat exchanger (52) is depressurized by the indoor expansion valve (73) and then evaporated by the indoor heat exchanger (72). The refrigerant flowing through the gas line (L2) merges with the refrigerant that has flowed out of the second introduction pipe (51), and is sucked into the compressor (22).

このように利用冷房運転では、室外熱交換器(23)で凝縮した冷媒が、蓄熱用熱交換器(63)を流れる際、蓄熱媒体の冷熱が冷媒に付与される。蓄熱用熱交換器(63)を流れた高圧冷媒は、第2過冷却熱交換器(52)を通過する際に冷却され、この冷媒の過冷却度が増大する。     Thus, in the cooling use operation, when the refrigerant condensed in the outdoor heat exchanger (23) flows through the heat storage heat exchanger (63), the heat of the heat storage medium is imparted to the refrigerant. The high-pressure refrigerant that has flowed through the heat storage heat exchanger (63) is cooled when passing through the second subcooling heat exchanger (52), and the degree of supercooling of this refrigerant increases.

蓄熱ユニット(40)と室内ユニット(70)とを繋ぐ連絡配管(15)は、極めて長い長配管で構成される。このため、連絡配管(15)では、圧力損失や配管の揚程の影響を受けて、冷媒が減圧されてしまう。従って、連絡配管(15)の冷媒が減圧されると、この冷媒が周囲の空気から吸熱して蒸発・気化してしまう可能性がある。即ち、連絡配管(15)では、いわゆるフラッシュガスが発生する可能性がある。これに対し、本実施形態では、蓄熱用熱交換器(63)を通過した冷媒を第2過冷却熱交換器(52)で冷却し、冷媒の過冷却度を大きくするため、このようなフラッシュガスの発生を防止できる。     The connecting pipe (15) connecting the heat storage unit (40) and the indoor unit (70) is composed of a very long long pipe. For this reason, in the communication pipe (15), the refrigerant is depressurized due to the influence of pressure loss and the head of the pipe. Therefore, when the refrigerant in the communication pipe (15) is depressurized, the refrigerant may absorb heat from the surrounding air and evaporate / vaporize. That is, so-called flash gas may be generated in the communication pipe (15). In contrast, in this embodiment, the refrigerant that has passed through the heat storage heat exchanger (63) is cooled by the second subcooling heat exchanger (52), and the degree of supercooling of the refrigerant is increased. Generation of gas can be prevented.

一方、高圧冷媒の過冷却度を大きくする方法としては、蓄熱用熱交換器(63)の上流側に熱交換器(即ち、第1過冷却熱交換器(32))を利用することも考えられる。しかし、仮に蓄熱用熱交換器(63)の上流側で冷媒を過冷却すると、蓄熱用熱交換器(63)を流れる冷媒と、蓄熱媒体の温度差が小さくなり、蓄熱媒体の冷熱を有効に回収できなくなる。これに対し、本実施形態では、利用冷房運転中の蓄熱用熱交換器(63)の下流側に第2過冷却熱交換器(52)を配置し、冷媒を過冷却しているため、蓄熱媒体の冷熱を有効に回収しつつ、上述したフラッシュガスの発生を防止できる。     On the other hand, as a method for increasing the degree of supercooling of the high-pressure refrigerant, a heat exchanger (that is, the first supercooling heat exchanger (32)) may be used upstream of the heat storage heat exchanger (63). It is done. However, if the refrigerant is supercooled on the upstream side of the heat storage heat exchanger (63), the temperature difference between the refrigerant flowing through the heat storage heat exchanger (63) and the heat storage medium is reduced, and the cold energy of the heat storage medium is effectively used. Can no longer be recovered. On the other hand, in this embodiment, since the 2nd subcooling heat exchanger (52) is arrange | positioned in the downstream of the heat storage heat exchanger (63) in use air_conditionaing | cooling operation, and a refrigerant | coolant is supercooled, The generation of the flash gas described above can be prevented while effectively recovering the cold heat of the medium.

〔冷房蓄冷運転〕
冷房蓄冷運転では、蓄熱装置(60)が作動し、蓄熱媒体に冷熱が蓄えられるとともに、室内ユニット(70)で室内の冷房が行われる。図5に示す冷房蓄冷運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、及び第4電磁弁(SV4)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第2減圧弁(EV2)、蓄熱用膨張弁(45)、及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。冷房蓄冷運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)及び第2過冷却熱交換器(52)が放熱器(冷媒冷却器)となり、蓄熱用熱交換器(63)及び室内熱交換器(72)が蒸発器となる。
(Cooling / cooling operation)
In the cooling and regenerating operation, the heat storage device (60) operates to store the cold energy in the heat storage medium, and the indoor unit (70) cools the room. In the cooling storage operation shown in FIG. 5, the four-way switching valve (25) is in the first state, and the second solenoid valve (SV2) and the third solenoid valve among the first solenoid valve (SV1) to the sixth solenoid valve (SV6). (SV3) and the fourth solenoid valve (SV4) are opened, and the rest are closed. The first pressure reducing valve (EV1), the third pressure reducing valve (EV3), and the fourth pressure reducing valve (EV4) are fully closed, the outdoor expansion valve (24) is fully open, the second pressure reducing valve (EV2), and heat storage The opening degrees of the expansion valve (45) and the indoor expansion valve (73) are appropriately adjusted. The compressor (22), the outdoor fan (26) and the indoor fan (74) operate. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) for cooling and storing operation, the outdoor heat exchanger (23) serves as a condenser, and the preheating heat exchanger (64) and the second subcooling heat exchanger (52) serve as a radiator (refrigerant cooler). Thus, the heat storage heat exchanger (63) and the indoor heat exchanger (72) serve as an evaporator.

圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒は、第2伝熱流路(34)を流れ、主蓄熱用流路(44)と主液管(42)とに分流する。主蓄熱用流路(44)の冷媒は、予熱用熱交換器(64)の蓄熱媒体によって冷却され、蓄熱用膨張弁(45)で減圧される。主液管(42)の冷媒の多くは、第4伝熱流路(54)を流れ、残りは第2減圧弁(EV2)で減圧された後、第3伝熱流路(53)を流れる。第2過冷却熱交換器(52)では、第4伝熱流路(54)を流れる冷媒が第3伝熱流路(53)の冷媒によって冷却される。第2過冷却熱交換器(52)で冷却された冷媒は、室内膨張弁(73)で減圧された後、室内熱交換器(72)で蒸発する。ガスライン(L2)を流れる冷媒は、第2導入管(51)を流出した冷媒と合流し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23). The condensed refrigerant flows through the second heat transfer channel (34) and is divided into the main heat storage channel (44) and the main liquid pipe (42). The refrigerant in the main heat storage flow path (44) is cooled by the heat storage medium of the preheating heat exchanger (64) and depressurized by the heat storage expansion valve (45). Most of the refrigerant in the main liquid pipe (42) flows through the fourth heat transfer channel (54), and the rest flows through the third heat transfer channel (53) after being depressurized by the second pressure reducing valve (EV2). In the second subcooling heat exchanger (52), the refrigerant flowing through the fourth heat transfer channel (54) is cooled by the refrigerant in the third heat transfer channel (53). The refrigerant cooled by the second subcooling heat exchanger (52) is depressurized by the indoor expansion valve (73) and then evaporated by the indoor heat exchanger (72). The refrigerant flowing through the gas line (L2) merges with the refrigerant that has flowed out of the second introduction pipe (51), and is sucked into the compressor (22).

このように利用蓄熱運転では、高圧冷媒が、第2過冷却熱交換器(52)を通過する際に冷却され、この冷媒の過冷却度が増大する。この結果、連絡配管(15)でのフラッシュガスの発生を防止できる。     Thus, in the utilization heat storage operation, the high-pressure refrigerant is cooled when passing through the second supercooling heat exchanger (52), and the degree of supercooling of this refrigerant increases. As a result, generation of flash gas in the communication pipe (15) can be prevented.

一方、高圧冷媒の過冷却度を大きくする方法としては、蓄熱用熱交換器(63)の上流側に熱交換器(即ち、第1過冷却熱交換器(32))を利用することも考えられる。しかし、仮に予熱用熱交換器(64)の上流側で冷媒を過冷却すると、予熱用熱交換器(64)を流れる冷媒と、蓄熱媒体の温度差が小さくなり、冷媒によって蓄熱媒体を十分に加熱できない。この結果、蓄熱タンク(62)から流出した包接水和物の結晶を冷媒によって十分に加熱できず、この結晶が配管内で蓄積して閉塞してしまうおそれがある。これに対し、本実施形態では、利用蓄冷運転中の予熱用熱交換器(64)及び蓄熱用熱交換器(63)の下流側に第2過冷却熱交換器(52)を配置し、冷媒を過冷却しているため、蓄熱回路()の結晶を確実に融解することができる。     On the other hand, as a method for increasing the degree of supercooling of the high-pressure refrigerant, a heat exchanger (that is, the first supercooling heat exchanger (32)) may be used upstream of the heat storage heat exchanger (63). It is done. However, if the refrigerant is supercooled on the upstream side of the preheating heat exchanger (64), the temperature difference between the refrigerant flowing through the preheating heat exchanger (64) and the heat storage medium will be small, and the refrigerant will sufficiently absorb the heat storage medium. It cannot be heated. As a result, the clathrate hydrate crystals that have flowed out of the heat storage tank (62) cannot be sufficiently heated by the refrigerant, and the crystals may accumulate in the piping and become clogged. On the other hand, in the present embodiment, the second subcooling heat exchanger (52) is arranged downstream of the preheating heat exchanger (64) and the heat storage heat exchanger (63) during the use cold storage operation, and the refrigerant Is supercooled, the crystal of the heat storage circuit () can be surely melted.

〔単純暖房運転〕
単純暖房運転では、蓄熱装置(60)が停止し、室内ユニット(70)で室内の暖房が行われる。図6に示す単純暖房運転では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)が開状態となり、残りは全て閉状態なる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び蓄熱用膨張弁(45)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が停止状態となり作動しない。単純暖房運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。室内膨張弁(73)は、室内熱交換器(72)の出口冷媒の過冷却度を制御する。
[Simple heating operation]
In the simple heating operation, the heat storage device (60) is stopped, and the indoor unit (70) performs indoor heating. In the simple heating operation shown in FIG. 6, the four-way switching valve (25) is in the second state, and the second solenoid valve (SV2) among the first to sixth solenoid valves (SV1) to (SV6) is in the open state. The rest are all closed. The first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), the fourth pressure reducing valve (EV4), and the heat storage expansion valve (45) are fully closed, and the indoor expansion valve ( 73) and the opening degree of the outdoor expansion valve (24) are appropriately adjusted. The compressor (22), the outdoor fan (26), and the indoor fan (74) operate. The heat storage device (60) does not operate because the pump (67) is stopped. In the refrigerant circuit (11) for simple heating operation, a refrigeration cycle is performed in which the indoor heat exchanger (72) serves as a condenser and the outdoor heat exchanger (23) serves as an evaporator. The indoor expansion valve (73) controls the degree of supercooling of the outlet refrigerant of the indoor heat exchanger (72).

圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、室内熱交換器(72)で凝縮する。液ライン(L1)に流出した冷媒は、室外膨張弁(24)で減圧された後、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) flows through the gas line (L2) and is condensed in the indoor heat exchanger (72). The refrigerant flowing out to the liquid line (L1) is decompressed by the outdoor expansion valve (24), evaporated by the outdoor heat exchanger (23), and sucked into the compressor (22).

〔蓄熱運転〕
蓄熱運転では、蓄熱タンク(62)に温熱を蓄えた蓄熱媒体が貯留される。図7に示す蓄熱運転では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第4電磁弁(SV4)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び室内膨張弁(73)が全閉状態に、室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)は作動し、室内ファン(74)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、蓄熱用熱交換器(63)及び予熱用熱交換器(64)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
[Heat storage operation]
In the heat storage operation, the heat storage medium storing the heat is stored in the heat storage tank (62). In the heat storage operation shown in FIG. 7, the four-way switching valve (25) is in the second state, and the third solenoid valve (SV3), the fourth solenoid valve (SV6) among the first solenoid valve (SV1) to the sixth solenoid valve (SV6) SV4) and the fifth solenoid valve (SV5) are opened, and the rest are closed. The first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), the fourth pressure reducing valve (EV4), and the indoor expansion valve (73) are fully closed, and the outdoor expansion valve (24 ) Is adjusted as appropriate. The compressor (22) and the outdoor fan (26) operate, and the indoor fan (74) stops. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) in the heat storage operation, a refrigeration cycle is performed in which the heat storage heat exchanger (63) and the preheating heat exchanger (64) serve as a condenser and the outdoor heat exchanger (23) serves as an evaporator.

圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、蓄熱用熱交換器(63)で放熱し、第2バイパス管(44a)を通過した後、予熱用熱交換器(64)で更に放熱する。主蓄熱用流路(44)を流出した冷媒は、室外膨張弁(24)で減圧された後、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。蓄熱タンク(62)には、蓄熱用熱交換器(63)及び予熱用熱交換器(64)で加熱された蓄熱媒体が貯留される。     The refrigerant discharged from the compressor (22) flows through the gas line (L2), dissipates heat in the heat storage heat exchanger (63), passes through the second bypass pipe (44a), and then passes through the second heat exchanger (44a). 64) further dissipate heat. The refrigerant flowing out of the main heat storage flow path (44) is decompressed by the outdoor expansion valve (24), evaporated by the outdoor heat exchanger (23), and sucked into the compressor (22). The heat storage tank (62) stores the heat storage medium heated by the heat storage heat exchanger (63) and the preheating heat exchanger (64).

〔利用暖房運転〕
利用暖房運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に蓄えられた蓄熱媒体の温熱が、室内の暖房に利用される。利用暖房運転は、第1利用暖房運転(以下、利用暖房運転(1)という)と、第2利用暖房運転(以下、利用暖房運転(2)という)とに大別される。
[Use heating operation]
In the use heating operation, the heat storage device (60) is operated, and the heat of the heat storage medium stored in the heat storage tank (62) is used for room heating. The utilization heating operation is roughly classified into a first utilization heating operation (hereinafter referred to as utilization heating operation (1)) and a second utilization heating operation (hereinafter referred to as utilization heating operation (2)).

[利用暖房運転(1)]
利用暖房運転(1)は、蓄熱用熱交換器(63)で蒸発する冷媒の圧力(MP)と、室外熱交換器(23)で蒸発する冷媒の圧力(LP)との差(MP−LP)が比較的小さくなるような条件下で実行される。例えば冬季において、外気温度が比較的高い一方、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的低いような場合が、この条件に相当する。
[Use heating operation (1)]
Utilization heating operation (1) is the difference between the pressure (MP) of the refrigerant evaporating in the heat storage heat exchanger (63) and the pressure (LP) of the refrigerant evaporating in the outdoor heat exchanger (23) (MP-LP ) Is executed under such a condition that becomes relatively small. For example, this condition corresponds to a case in which the temperature of the heat storage medium of the heat storage circuit (61) of the heat storage device (60) is relatively low while the outside air temperature is relatively high in winter.

図8に示す利用暖房運転(1)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)及び第5電磁弁(SV5)が開状態になり、残りが閉状態となる。第1減圧弁(EV1)及び室外膨張弁(24)が全開状態に、第2減圧弁(EV2)、第3減圧弁(EV3)が全閉状態に、第4減圧弁(EV4)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)及び室内ファン(74)は作動し、室外ファン(26)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用暖房運転(1)の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)が蒸発器となる冷凍サイクルが行われる。     In the utilization heating operation (1) shown in FIG. 8, the four-way switching valve (25) is in the second state, and the third solenoid valve (SV3) and the sixth solenoid valve (SV6) out of the first solenoid valve (SV1) to the sixth solenoid valve (SV6). 5 Solenoid valve (SV5) is opened and the rest is closed. The first pressure reducing valve (EV1) and the outdoor expansion valve (24) are fully opened, the second pressure reducing valve (EV2) and the third pressure reducing valve (EV3) are fully closed, the fourth pressure reducing valve (EV4) and the indoor expansion valve The opening degree of the valve (73) is adjusted as appropriate. The compressor (22) and the indoor fan (74) operate, and the outdoor fan (26) stops. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) of the utilization heating operation (1), a refrigeration cycle is performed in which the indoor heat exchanger (72) serves as a condenser and the heat storage heat exchanger (63) serves as an evaporator.

圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、室内熱交換器(72)で凝縮する。液ライン(L1)に流出した冷媒は、その全量が第2分岐管(48)に流入する。第2分岐管(48)では、第4減圧弁(EV4)によって冷媒が低圧まで減圧される。減圧された冷媒は、蓄熱用熱交換器(63)の蓄熱側冷媒流路(63b)を流れ、蓄熱媒体から吸熱して蒸発する。蓄熱用熱交換器(63)で蒸発した冷媒は、第1バイパス管(44a)と通過し、予熱用熱交換器(64)の予熱側冷媒流路(64b)を流れ、蓄熱媒体から吸熱して更に蒸発する。この冷媒は、主蓄熱用流路(44)を流れ、第1導入管(31)と室外熱交換器(23)とに分流する。これらの冷媒は、吸入管(28)で合流し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) flows through the gas line (L2) and is condensed in the indoor heat exchanger (72). The entire amount of the refrigerant that has flowed out to the liquid line (L1) flows into the second branch pipe (48). In the second branch pipe (48), the refrigerant is decompressed to a low pressure by the fourth pressure reducing valve (EV4). The decompressed refrigerant flows through the heat storage side refrigerant flow path (63b) of the heat storage heat exchanger (63), absorbs heat from the heat storage medium, and evaporates. The refrigerant evaporated in the heat storage heat exchanger (63) passes through the first bypass pipe (44a), flows through the preheating side refrigerant flow path (64b) of the preheating heat exchanger (64), and absorbs heat from the heat storage medium. Evaporate further. This refrigerant flows through the main heat storage channel (44) and is divided into the first introduction pipe (31) and the outdoor heat exchanger (23). These refrigerants merge through the suction pipe (28) and are sucked into the compressor (22).

このように、外気温度が高く、暖房負荷が小さい条件下では、室内熱交換器(72)で凝縮した後の冷媒の質量流量も比較的少ない。従って、利用暖房運転(1)では、室内熱交換器(72)で凝縮した冷媒の全量を蓄熱用熱交換器(63)へ送ったとしても、この冷媒を蓄熱媒体の顕熱だけで十分に蒸発させることができる。この結果、蓄熱媒体に蓄熱した温熱を十分に回収しつつ、暖房運転を行うことができる。     Thus, under conditions where the outside air temperature is high and the heating load is small, the mass flow rate of the refrigerant after being condensed in the indoor heat exchanger (72) is also relatively small. Therefore, in the use heating operation (1), even if the entire amount of the refrigerant condensed in the indoor heat exchanger (72) is sent to the heat storage heat exchanger (63), the refrigerant can be sufficiently removed only by the sensible heat of the heat storage medium. Can be evaporated. As a result, the heating operation can be performed while sufficiently collecting the heat stored in the heat storage medium.

また、主蓄熱用流路(44)を通過した冷媒は、第1導入管(31)と室外熱交換器(23)とに分流し、圧縮機(22)に吸入される。このため、冷媒の圧力損失を低減でき、圧縮機(22)の動力を軽減できる。この際、第1導入管(31)を流れる冷媒は、第1過冷却熱交換器(32)を流れるが、第1過冷却熱交換器(32)は空気熱交換器でないため、熱ロスも少ない。また、室外ファン(26)は停止状態であるため、冷媒が室外熱交換器(23)を流れても、熱ロスが少ない。このように、利用暖房運転(1)では、低圧ガス冷媒の圧力損失や熱ロスの低減を図ることができる。また、第1導入管(31)は、冷媒を過冷却するための低圧インジェクション管を兼用するので、配管の本数を削減できる。     The refrigerant that has passed through the main heat storage channel (44) is divided into the first introduction pipe (31) and the outdoor heat exchanger (23), and is sucked into the compressor (22). For this reason, the pressure loss of a refrigerant | coolant can be reduced and the motive power of a compressor (22) can be reduced. At this time, the refrigerant flowing through the first introduction pipe (31) flows through the first subcooling heat exchanger (32). However, since the first subcooling heat exchanger (32) is not an air heat exchanger, heat loss is also reduced. Few. Moreover, since the outdoor fan (26) is in a stopped state, even if the refrigerant flows through the outdoor heat exchanger (23), there is little heat loss. Thus, in use heating operation (1), the pressure loss and heat loss of the low-pressure gas refrigerant can be reduced. Further, since the first introduction pipe (31) also serves as a low-pressure injection pipe for supercooling the refrigerant, the number of pipes can be reduced.

なお、利用暖房運転(1)において、第1減圧弁(EV1)と室外膨張弁(24)のうち室外膨張弁(24)だけを全閉状態とし、低圧ガス冷媒を第1導入管(31)だけに流してもよい。また、第1減圧弁(EV1)と室外膨張弁(24)のうち第1減圧弁(EV1)だけを全閉状態とし、低圧ガス冷媒を室外熱交換器(23)だけに流してもよい。     In the use heating operation (1), only the outdoor expansion valve (24) of the first pressure reducing valve (EV1) and the outdoor expansion valve (24) is fully closed, and the low pressure gas refrigerant is supplied to the first introduction pipe (31). You can only flush it. Alternatively, only the first pressure reducing valve (EV1) of the first pressure reducing valve (EV1) and the outdoor expansion valve (24) may be fully closed, and the low pressure gas refrigerant may flow only to the outdoor heat exchanger (23).

[利用暖房運転(2)]
利用暖房運転(2)は、蓄熱用熱交換器(63)で蒸発する冷媒の圧力(MP)と、室外熱交換器(23)で蒸発する冷媒の圧力(LP)との差(MP−LP)が比較的大きくなるような条件下で実行される。例えば冬季において、外気温度が比較的低い一方、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的高いような場合が、この条件に相当する。
[Use heating operation (2)]
Utilization heating operation (2) is the difference between the pressure (MP) of the refrigerant evaporating in the heat storage heat exchanger (63) and the pressure (LP) of the refrigerant evaporating in the outdoor heat exchanger (23) (MP-LP ) Is performed under conditions that are relatively large. For example, in the winter season, the outside air temperature is relatively low, while the temperature of the heat storage medium in the heat storage circuit (61) of the heat storage device (60) is relatively high.

図9に示す利用暖房運転(2)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第1電磁弁(SV1)、第2電磁弁(SV2)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、及び第3減圧弁(EV3)が全閉状態に、第4減圧弁(EV4)、室内膨張弁(73)、及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用暖房運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)及び室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。     In the utilization heating operation (2) shown in FIG. 9, the four-way switching valve (25) is in the second state, and the first solenoid valve (SV1) to the sixth solenoid valve (SV6) out of the first solenoid valve (SV1) to the sixth solenoid valve (SV6). 2 solenoid valve (SV2) and 5th solenoid valve (SV5) are opened, and the rest are closed. The first pressure reducing valve (EV1), the second pressure reducing valve (EV2), and the third pressure reducing valve (EV3) are fully closed, and the fourth pressure reducing valve (EV4), the indoor expansion valve (73), and the outdoor expansion valve ( The opening degree of 24) is adjusted as appropriate. The compressor (22), the outdoor fan (26), and the indoor fan (74) operate. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) for use heating operation, a refrigeration cycle is performed in which the indoor heat exchanger (72) serves as a condenser and the heat storage heat exchanger (63) and the outdoor heat exchanger (23) serve as an evaporator.

圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、室内熱交換器(72)で凝縮する。液ライン(L1)に流出した冷媒は、第2分岐管(48)と主液管(42)とに分流する。第2分岐管(48)の冷媒は、第4減圧弁(EV4)で中間圧(冷媒回路(11)の高圧圧力と低圧圧力との間の中間圧力)にまで減圧され、主蓄熱用流路(44)に流出する。主蓄熱用流路(44)の冷媒は、蓄熱用熱交換器(63)及び予熱用熱交換器(64)で加熱され、蒸発する。蒸発した冷媒は、中間中継管(46)、連絡配管(13)、及び中間吸入管(35)を順に流れ、圧縮機(22)の圧縮途中の圧縮室に吸入される。     The refrigerant discharged from the compressor (22) flows through the gas line (L2) and is condensed in the indoor heat exchanger (72). The refrigerant flowing out to the liquid line (L1) is divided into the second branch pipe (48) and the main liquid pipe (42). The refrigerant in the second branch pipe (48) is reduced to an intermediate pressure (intermediate pressure between the high pressure and low pressure of the refrigerant circuit (11)) by the fourth pressure reducing valve (EV4), and the main heat storage flow path. To (44). The refrigerant in the main heat storage flow path (44) is heated and evaporated by the heat storage heat exchanger (63) and the preheating heat exchanger (64). The evaporated refrigerant flows through the intermediate relay pipe (46), the communication pipe (13), and the intermediate suction pipe (35) in this order, and is sucked into the compression chamber in the middle of compression of the compressor (22).

主液管(42)の冷媒は、室外膨張弁(24)で減圧された後、室外熱交換器(23)で蒸発し、圧縮機(22)の吸入管(28)に吸入される。圧縮機(22)の圧縮室では、吸入管(28)から吸入された低圧冷媒が中間圧まで圧縮された後、中間吸入管(35)から吸入された中間圧冷媒と混合し、高圧圧力まで圧縮される。     The refrigerant in the main liquid pipe (42) is decompressed by the outdoor expansion valve (24), evaporates in the outdoor heat exchanger (23), and is sucked into the suction pipe (28) of the compressor (22). In the compression chamber of the compressor (22), the low-pressure refrigerant sucked from the suction pipe (28) is compressed to the intermediate pressure, and then mixed with the intermediate-pressure refrigerant sucked from the intermediate suction pipe (35) to reach the high pressure. Compressed.

利用暖房運転(2)は、外気温度が低く、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的高い条件下で実行されるため、蓄熱用熱交換器(63)の冷媒の蒸発圧力MPと、室外熱交換器(23)の冷媒の蒸発圧力LPとの圧力差(MP−LP)とが比較的大きくなる。このため、圧縮機(22)の圧縮室の圧縮途中では、圧縮室の内圧が中間吸入管(35)より導入される冷媒の圧力より大きくなることを抑制でき、中間吸入管(35)の冷媒を圧縮室に確実に導入できる。       The utilization heating operation (2) is performed under the condition that the outside air temperature is low and the temperature of the heat storage medium of the heat storage circuit (61) of the heat storage device (60) is relatively high, so that the heat storage heat exchanger (63) The pressure difference (MP−LP) between the refrigerant evaporation pressure MP and the refrigerant evaporation pressure LP in the outdoor heat exchanger (23) becomes relatively large. For this reason, during the compression of the compression chamber of the compressor (22), it is possible to suppress the internal pressure of the compression chamber from becoming larger than the pressure of the refrigerant introduced from the intermediate suction pipe (35), and the refrigerant in the intermediate suction pipe (35) Can be reliably introduced into the compression chamber.

しかも、中間吸入管(35)には、圧縮機(22)から主蓄熱用流路(44)へ向かう逆流を禁止する逆止弁(CV1)が設けられている。このため、仮に中間吸入管(35)を流出する冷媒の圧力MPが、圧縮途中の圧縮室の内圧より低くなったとしても、圧縮室の冷媒が中間吸入管(35)を逆流してしまうことがない。なお、逆止弁(CV1)は、中間吸入管(35)のうち圧縮機(22)のケーシング(22a)内に位置する内側配管部(36)に設けてもよい。これにより、圧縮機構の圧縮途中の圧縮室から逆止弁(CV1)までの流路長さを最小限に抑えることができ、ひいては冷媒の圧縮に寄与しない死容積を最小限に抑えることができる。この結果、圧縮機(22)の圧縮効率の低下を防止できる。     In addition, the intermediate suction pipe (35) is provided with a check valve (CV1) that prohibits backflow from the compressor (22) toward the main heat storage flow path (44). For this reason, even if the pressure MP of the refrigerant flowing out of the intermediate suction pipe (35) becomes lower than the internal pressure of the compression chamber in the middle of compression, the refrigerant in the compression chamber flows back through the intermediate suction pipe (35). There is no. The check valve (CV1) may be provided in the inner pipe portion (36) located in the casing (22a) of the compressor (22) in the intermediate suction pipe (35). As a result, the flow path length from the compression chamber in the middle of compression of the compression mechanism to the check valve (CV1) can be minimized, and the dead volume that does not contribute to refrigerant compression can be minimized. . As a result, it is possible to prevent a reduction in compression efficiency of the compressor (22).

また、MP−LPが比較的大きい条件下で冷媒が圧縮されると、圧縮機(22)で冷媒を高圧まで圧縮させるために要する総仕事量が軽減される。この結果、利用暖房運転(2)では、蓄熱媒体の温熱を冷媒に回収させつつ、省エネ性の高い暖房を行うことができる。     Further, when the refrigerant is compressed under a condition where the MP-LP is relatively large, the total work amount required for compressing the refrigerant to a high pressure by the compressor (22) is reduced. As a result, in the use heating operation (2), it is possible to perform heating with high energy saving performance while collecting the heat of the heat storage medium in the refrigerant.

〔暖房蓄熱運転〕
暖房蓄熱運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に温熱が蓄えられるとともに、室内ユニット(70)で室内の暖房が行われる。暖房蓄熱運転は、第1動作(以下、暖房蓄熱運転(1)という)と、第2動作(以下、暖房蓄熱運転(2)という)とに大別される。
[Heating heat storage operation]
In the heating and heat storage operation, the heat storage device (60) operates to store the heat in the heat storage tank (62), and the indoor unit (70) heats the room. Heating heat storage operation is roughly divided into a first operation (hereinafter referred to as heating heat storage operation (1)) and a second operation (hereinafter referred to as heating heat storage operation (2)).

[暖房蓄熱運転(1)]
運転制御部(100)は、暖房蓄熱運転を開始する信号が入力されると、暖房蓄熱運転(1)が実行される。図10に示す暖房蓄熱運転(1)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、及び第6電磁弁(SV6)が開状態となり、残りが閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)及び予熱用熱交換器(64)が放熱器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
[Heating heat storage operation (1)]
The operation control unit (100) executes the heating / heat storage operation (1) when a signal for starting the heating / heat storage operation is input. In the heating and heat storage operation (1) shown in FIG. 10, the four-way switching valve (25) is in the second state, and the third solenoid valve (SV3), the first solenoid valve (SV1) to the sixth solenoid valve (SV6), 5 solenoid valve (SV5) and 6th solenoid valve (SV6) are opened, and the rest are closed. The first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), and the fourth pressure reducing valve (EV4) are fully closed, and the indoor expansion valve (73) and the outdoor expansion valve (24 ) Is adjusted as appropriate. The compressor (22), the outdoor fan (26), and the indoor fan (74) operate. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) for the heat storage operation, the indoor heat exchanger (72) serves as a condenser, the heat storage heat exchanger (63) and the preheating heat exchanger (64) serve as a radiator, and the outdoor heat exchanger (23 ) Is used as an evaporator.

圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、その全量が室内熱交換器(72)を流れる。室内熱交換器(72)では、冷媒が室内空気へ放熱して凝縮する。室内熱交換器(72)で凝縮した冷媒は、その全量が第3分岐管(49)を流れ、蓄熱用熱交換器(63)を流れる。蓄熱用熱交換器(63)では、冷媒が蓄熱媒体へ放熱し、蓄熱媒体が加熱される。蓄熱用熱交換器(63)を流れた冷媒は、予熱用熱交換器(64)で更に蓄熱媒体へ放熱し、液ライン(L1)を流れる。この冷媒は、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) flows through the gas line (L2), and the entire amount flows through the indoor heat exchanger (72). In the indoor heat exchanger (72), the refrigerant dissipates heat to the indoor air and condenses. The entire amount of the refrigerant condensed in the indoor heat exchanger (72) flows through the third branch pipe (49), and then flows through the heat storage heat exchanger (63). In the heat storage heat exchanger (63), the refrigerant dissipates heat to the heat storage medium, and the heat storage medium is heated. The refrigerant that has flowed through the heat storage heat exchanger (63) further dissipates heat to the heat storage medium in the preheating heat exchanger (64), and flows through the liquid line (L1). This refrigerant evaporates in the outdoor heat exchanger (23) and is sucked into the compressor (22).

以上のように、暖房蓄熱運転(1)では、室内熱交換器(72)で凝縮した冷媒の全量が、蓄熱用熱交換器(63)を流れる。これにより、蓄熱媒体の温度が比較的低く、且つ室内熱交換器(72)を流出した冷媒の温度が比較的高い条件下では、冷媒から蓄熱媒体へ温熱が付与される。この結果、暖房に利用されなかった余剰の冷媒の熱を蓄熱媒体の温蓄熱に利用できる。     As described above, in the heating and heat storage operation (1), the entire amount of the refrigerant condensed in the indoor heat exchanger (72) flows through the heat storage heat exchanger (63). As a result, heat is applied from the refrigerant to the heat storage medium under conditions where the temperature of the heat storage medium is relatively low and the temperature of the refrigerant flowing out of the indoor heat exchanger (72) is relatively high. As a result, the heat of the surplus refrigerant that has not been used for heating can be used for the heat storage of the heat storage medium.

[暖房蓄熱運転(2)]
暖房蓄熱運転(1)が継続して行われると、蓄熱回路(61)の蓄熱媒体の温度が徐々に上昇していく。これにより、室内熱交換器(72)を流出した冷媒の温度と、蓄熱媒体の温度との差ΔTが小さくなっていく。運転制御部(100)は、この温度差ΔTが所定値より小さくなると、暖房蓄熱運転(1)から暖房蓄熱運転(2)へと運転を切り換える。
[Heating heat storage operation (2)]
When the heating and heat storage operation (1) is continuously performed, the temperature of the heat storage medium of the heat storage circuit (61) gradually increases. As a result, the difference ΔT between the temperature of the refrigerant flowing out of the indoor heat exchanger (72) and the temperature of the heat storage medium becomes smaller. When the temperature difference ΔT is smaller than a predetermined value, the operation control unit (100) switches the operation from the heating heat storage operation (1) to the heating heat storage operation (2).

具体的に、暖房蓄熱運転(1)では、温度検出部(S1)が蓄熱媒体の温度Taを検出する。この温度Taは、暖房蓄熱運転を継続することで大きく変化する。これに対し、室内熱交換器(72)を流出する冷媒の温度Trはさほど大きく変化しないため、温度Taは、温度差ΔTを示す指標となる。そこで、運転制御部(100)は、蓄熱媒体の温度Taが所定値より高くなると、温度差ΔTが小さくなったと判定し、暖房蓄熱運転(1)から暖房蓄熱運転(2)へと運転を切り換える。     Specifically, in the heating and heat storage operation (1), the temperature detection unit (S1) detects the temperature Ta of the heat storage medium. This temperature Ta changes greatly by continuing the heating and heat storage operation. On the other hand, since the temperature Tr of the refrigerant flowing out of the indoor heat exchanger (72) does not change so much, the temperature Ta is an index indicating the temperature difference ΔT. Therefore, when the temperature Ta of the heat storage medium becomes higher than a predetermined value, the operation control unit (100) determines that the temperature difference ΔT has decreased and switches the operation from the heating heat storage operation (1) to the heating heat storage operation (2). .

図11に示す暖房蓄熱運転(2)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、第6電磁弁(SV6)が開状態となり、残りが閉状態となる。第1減圧弁(EV1)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び蓄熱用膨張弁(45)が全閉状態になる。室内膨張弁(73)は、例えば室内熱交換器(72)の出口冷媒の過冷却度が所定値になるように開度が調節される。第2減圧弁(EV2)は、蓄熱用熱交換器(63)の蓄熱側冷媒流路(63b)の出口冷媒の過冷却度が所定値になるように開度が調節される。室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、室内熱交換器(72)及び蓄熱用熱交換器(63)が凝縮器となり、予熱用熱交換器(64)が放熱器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。     In the heating and heat storage operation (2) shown in FIG. 11, the four-way switching valve (25) is in the second state, and the third solenoid valve (SV3), the sixth solenoid valve (SV3) among the first solenoid valve (SV1) to the sixth solenoid valve (SV6). 5 solenoid valve (SV5) and 6th solenoid valve (SV6) are opened and the rest are closed. The first pressure reducing valve (EV1), the third pressure reducing valve (EV3), the fourth pressure reducing valve (EV4), and the heat storage expansion valve (45) are fully closed. The opening of the indoor expansion valve (73) is adjusted so that the degree of supercooling of the outlet refrigerant of the indoor heat exchanger (72) becomes a predetermined value, for example. The opening of the second pressure reducing valve (EV2) is adjusted so that the degree of supercooling of the outlet refrigerant of the heat storage side refrigerant flow path (63b) of the heat storage heat exchanger (63) becomes a predetermined value. The opening degree of the outdoor expansion valve (24) is adjusted as appropriate. The compressor (22), the outdoor fan (26), and the indoor fan (74) operate. The heat storage device (60) operates when the pump (67) is in operation. In the refrigerant circuit (11) for the heat storage operation, the indoor heat exchanger (72) and the heat storage heat exchanger (63) serve as a condenser, the preheating heat exchanger (64) serves as a radiator, and the outdoor heat exchanger (23 ) Is used as an evaporator.

圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、一部が室内熱交換器(72)を流れ、残りが第2導入管(51)を流れる。室内熱交換器(72)では、冷媒が室内空気へ放熱して凝縮する。室内熱交換器(72)で凝縮した冷媒は、主液管(42)を流れ、第2導入管(51)から流出した高圧冷媒と合流する。混合された冷媒は、第3分岐管(49)を流れ、蓄熱用熱交換器(63)を流れる。蓄熱用熱交換器(63)では、高圧冷媒が混入された冷媒と蓄熱媒体との温度差が大きくなるため、蓄熱媒体に確実に温熱を付与することができる。蓄熱用熱交換器(63)で凝縮した冷媒は、第1バイパス管(44a)、予熱用熱交換器(64)を流れ、室外膨張弁(24)で減圧される。減圧後の冷媒は、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。     The refrigerant discharged from the compressor (22) flows through the gas line (L2), a part flows through the indoor heat exchanger (72), and the rest flows through the second introduction pipe (51). In the indoor heat exchanger (72), the refrigerant dissipates heat to the indoor air and condenses. The refrigerant condensed in the indoor heat exchanger (72) flows through the main liquid pipe (42) and joins the high-pressure refrigerant flowing out from the second introduction pipe (51). The mixed refrigerant flows through the third branch pipe (49), and then flows through the heat storage heat exchanger (63). In the heat storage heat exchanger (63), the temperature difference between the refrigerant mixed with the high-pressure refrigerant and the heat storage medium becomes large, so that the heat storage medium can be surely given warm heat. The refrigerant condensed in the heat storage heat exchanger (63) flows through the first bypass pipe (44a) and the preheating heat exchanger (64) and is decompressed by the outdoor expansion valve (24). The decompressed refrigerant evaporates in the outdoor heat exchanger (23) and is sucked into the compressor (22).

以上のように、暖房蓄熱運転(2)では、室内熱交換器(72)で凝縮した冷媒に、高温の高圧冷媒が混合される。従って、室内の暖房を継続しつつ、蓄熱用熱交換器(63)で蓄熱媒体を十分に加熱できる。     As described above, in the heating and heat storage operation (2), the high-temperature high-pressure refrigerant is mixed with the refrigerant condensed in the indoor heat exchanger (72). Therefore, the heat storage medium can be sufficiently heated by the heat storage heat exchanger (63) while continuing the indoor heating.

−実施形態の効果−
上記実施形態の暖房蓄熱運転では、室内熱交換器(72)による暖房で余った熱を蓄熱用熱交換器(63)を介して蓄熱媒体に付与させる暖房蓄熱運転(1)と、室内熱交換器(72)で凝縮した冷媒に高圧ガス冷媒を混合して蓄熱用熱交換器(63)に送る暖房蓄熱運転(2)とを切り換えて行うようにしている。このため、運転状況に応じて、暖房の余剰の熱を蓄熱媒体に回収させる動作と、蓄熱媒体に温熱を確実に蓄えることができる動作とを切り換えることができ、室内の暖房を継続しつつ、蓄熱媒体に効率よく温熱を蓄積させることができる。
-Effect of the embodiment-
In the heating and heat storage operation of the above embodiment, the heating and heat storage operation (1) in which the heat generated by the heating by the indoor heat exchanger (72) is applied to the heat storage medium via the heat storage heat exchanger (63), and the indoor heat exchange. The high-temperature gas refrigerant is mixed with the refrigerant condensed in the cooler (72), and the heating and heat storage operation (2) to be sent to the heat storage heat exchanger (63) is switched. For this reason, according to the operation situation, it is possible to switch between the operation of collecting the excess heat of the heating in the heat storage medium and the operation of reliably storing the heat in the heat storage medium, while continuing the indoor heating, Heat can be efficiently accumulated in the heat storage medium.

暖房蓄熱運転(1)では、室内熱交換器(72)を流出した冷媒の温度と、蓄熱媒体の温度との温度差ΔTが小さいことを示す条件が成立すると、暖房蓄熱運転(2)へ移行する。従って、冷媒の熱を蓄熱媒体に付与できないような条件下において、不要に暖房蓄熱運転(1)を継続してしまうことを防止でき、蓄熱媒体に温熱を確実に蓄えることができる。     In the heating and heat storage operation (1), when a condition indicating that the temperature difference ΔT between the temperature of the refrigerant flowing out of the indoor heat exchanger (72) and the temperature of the heat storage medium is small, the process proceeds to the heating and heat storage operation (2). To do. Therefore, it is possible to prevent the heating and heat storage operation (1) from being continued unnecessarily under conditions where the heat of the refrigerant cannot be applied to the heat storage medium, and it is possible to reliably store the heat in the heat storage medium.

暖房蓄熱運転(1)では、蓄熱媒体の温度Taのみを検出し、温度差ΔTを推測できる。この結果、温度センサ等の部品点数を削減できる。暖房蓄熱運転では、蓄熱タンク(62)の流出管(65)の蓄熱媒体の温度Taを基準に暖房蓄熱運転(1)から暖房蓄熱運転(2)への移行の判定を行うため、実質的にはΔTが比較的小さいにも拘わらず、不要に第1動作が継続されてしまうことを確実に回避できる。     In the heating and heat storage operation (1), only the temperature Ta of the heat storage medium is detected, and the temperature difference ΔT can be estimated. As a result, the number of parts such as a temperature sensor can be reduced. In the heating and heat storage operation, since the transition from the heating and heat storage operation (1) to the heating and heat storage operation (2) is determined based on the temperature Ta of the heat storage medium of the outflow pipe (65) of the heat storage tank (62), Can reliably prevent the first operation from being unnecessarily continued even though ΔT is relatively small.

利用冷房運転では、第2過冷却熱交換器(52)で冷媒を過冷却するため、連絡配管(15)でのフラッシュガスの発生を防止できる。この結果、連絡配管での異音の発生を防止したり、室内側の膨張弁の制御性の低下を防止したり、冷房運転の効率の低下を防止したりできる。加えて、利用冷房運転では、蓄熱媒体の冷熱を冷媒に効率よく回収しつつ、室内の冷房を行うことができる。     In the use cooling operation, since the refrigerant is supercooled by the second supercooling heat exchanger (52), generation of flash gas in the communication pipe (15) can be prevented. As a result, it is possible to prevent the generation of abnormal noise in the communication pipe, prevent the controllability of the indoor expansion valve, and prevent the cooling operation from decreasing. In addition, in the use cooling operation, indoor cooling can be performed while efficiently collecting the cold heat of the heat storage medium in the refrigerant.

更に、第2導入管(51)及び第2減圧弁(EV2)は、利用冷房運転と暖房蓄熱運転との双方で兼用されるので、部品点数の削減、蓄熱式空気調和機の簡素化を図ることができる。     Furthermore, since the second introduction pipe (51) and the second pressure reducing valve (EV2) are used for both the use cooling operation and the heating heat storage operation, the number of parts is reduced and the heat storage type air conditioner is simplified. be able to.

《その他の実施形態》
上記実施形態では、蓄熱媒体の温度Taを検出することで、温度差ΔTが小さくなることを示す条件が成立したか否かを判定している。しかしながら、暖房蓄熱運転(1)において、蓄熱媒体の温度と、室内熱交換器(72)を流出した冷媒の温度との双方を検出し、温度差ΔTが小さくなったことを判定してもよい。
<< Other Embodiments >>
In the above-described embodiment, it is determined whether or not a condition indicating that the temperature difference ΔT is reduced by detecting the temperature Ta of the heat storage medium. However, in the heating and heat storage operation (1), both the temperature of the heat storage medium and the temperature of the refrigerant flowing out of the indoor heat exchanger (72) may be detected to determine that the temperature difference ΔT has become small. .

上記実施形態では、暖房蓄熱運転(1)時に蓄熱媒体の温度Taが所定値より高くなると、暖房蓄熱運転(2)を実行するようにしている。しかし、例えば運転制御部(100)は、蓄熱式空気調和機(10)の停止中に暖房蓄熱運転を開始させる信号が入力されると、蓄熱媒体の温度Taが所定値より高いか否かを判定し、この温度Taが所定値以下の場合に暖房蓄熱運転(1)を実行し、この温度Taが所定値より高い場合に暖房蓄熱運転(2)を実行するようにしてもよい。これにより、暖房蓄熱運転の開始に併せて、運転状況に応じた蓄熱媒体に温熱を蓄積させることができる。     In the above embodiment, when the temperature Ta of the heat storage medium becomes higher than a predetermined value during the heating heat storage operation (1), the heating heat storage operation (2) is executed. However, for example, when the signal for starting the heating heat storage operation is input while the heat storage type air conditioner (10) is stopped, the operation control unit (100) determines whether the temperature Ta of the heat storage medium is higher than a predetermined value. It may be determined that the heating heat storage operation (1) is performed when the temperature Ta is equal to or lower than a predetermined value, and the heating heat storage operation (2) is performed when the temperature Ta is higher than a predetermined value. Thereby, along with the start of the heating and heat storage operation, the heat can be accumulated in the heat storage medium corresponding to the operation state.

上記実施形態では、単段圧縮式の冷凍サイクルを行う蓄熱式空気調和機である。しかしながら、複数の圧縮機が直列に接続され、冷媒を2段階に圧縮する二段圧縮式の冷凍サイクルを行う蓄熱式空気調和機に本発明に係る暖房蓄熱運転を適用してもよい。ここで、圧縮機(22)は、低段側圧縮機構と高段側圧縮機構を1つのケーシングに収納し、同一の回転軸で回転させる一軸型二段圧縮機であってもよいし、低段側圧縮機構と高段側圧縮機構を個別のケーシングに収納する二段圧縮機構であってもよい。     In the said embodiment, it is a thermal storage type air conditioner which performs a single stage compression refrigerating cycle. However, the heating heat storage operation according to the present invention may be applied to a regenerative air conditioner that performs a two-stage compression refrigeration cycle in which a plurality of compressors are connected in series and compresses the refrigerant in two stages. Here, the compressor (22) may be a single-shaft two-stage compressor in which the low-stage side compression mechanism and the high-stage side compression mechanism are housed in one casing and rotated by the same rotation shaft. A two-stage compression mechanism that houses the stage-side compression mechanism and the high-stage side compression mechanism in separate casings may be used.

以上説明したように、本発明は、蓄熱式空気調和機について有用である。     As described above, the present invention is useful for a heat storage type air conditioner.

10 蓄熱式空気調和機
11 冷媒回路
22 圧縮機
23 室外熱交換器
51 第2導入管(導入管)
52 第2過冷却熱交換器(熱交換器)
EV2 第2減圧弁(開閉機構)
61 蓄熱回路
62 蓄熱タンク
63 蓄熱用熱交換器
65 流出管
67 ポンプ
72 室内熱交換器
100 運転制御部(コントローラ)
S1 温度センサ(温度検出部)
10 Thermal storage air conditioner
11 Refrigerant circuit
22 Compressor
23 Outdoor heat exchanger
51 Second introduction pipe (introduction pipe)
52 Second supercooling heat exchanger (heat exchanger)
EV2 Second pressure reducing valve (open / close mechanism)
61 Thermal storage circuit
62 Thermal storage tank
63 Heat exchanger for heat storage
65 Outflow pipe
67 Pump
72 Indoor heat exchanger
100 Operation controller (controller)
S1 Temperature sensor (temperature detector)

Claims (6)

蓄熱式空気調和機であって、
圧縮機(22)と、室外熱交換器(23)と、室内熱交換器(72)とが接続され、冷媒が循環して冷凍サイクルが行われる冷媒回路(11)と、
冷却されることによって包接水和物が生成される蓄熱媒体と上記冷媒回路(11)の冷媒とを熱交換させる蓄熱用熱交換器(63)と、該蓄熱媒体を循環させるポンプ(67)と、該蓄熱媒体が貯留される蓄熱タンク(62)とが接続される蓄熱回路(61)と、
上記室内熱交換器(72)で冷媒が凝縮し、且つ高圧冷媒が上記蓄熱用熱交換器(63)を介して上記蓄熱媒体を加熱し、上記室外熱交換器(23)で冷媒が蒸発する暖房蓄熱運転と、上記室内熱交換器(72)で冷媒が凝縮し、且つ上記蓄熱媒体が上記蓄熱用熱交換器(63)を介して上記冷媒を加熱し、且つ冷媒が上記室外熱交換器(23)で蒸発する利用暖房運転とを切り換えて実行させるように構成される運転制御部(100)とを備え、
上記冷媒回路(11)は、上記暖房蓄熱運転において、
上記室内熱交換器(72)で凝縮した冷媒だけが上記蓄熱用熱交換器(63)を流れる第1動作と
上記室内熱交換器(72)で凝縮した冷媒と、上記冷媒回路(11)の高圧冷媒とが混合した冷媒が上記蓄熱用熱交換器(63)を流れる第2動作とを切り換えて行うように構成される
ことを特徴とする蓄熱式空気調和機。
A regenerative air conditioner,
A refrigerant circuit (11) in which a compressor (22), an outdoor heat exchanger (23), and an indoor heat exchanger (72) are connected, and a refrigerant is circulated to perform a refrigeration cycle;
A heat storage heat exchanger (63) for exchanging heat between the heat storage medium in which clathrate hydrate is generated by cooling and the refrigerant in the refrigerant circuit (11), and a pump (67) for circulating the heat storage medium And a heat storage circuit (61) connected to a heat storage tank (62) in which the heat storage medium is stored,
The refrigerant is condensed in the indoor heat exchanger (72), the high-pressure refrigerant heats the heat storage medium via the heat storage heat exchanger (63), and the refrigerant evaporates in the outdoor heat exchanger (23). Heating heat storage operation, the refrigerant is condensed in the indoor heat exchanger (72), the heat storage medium heats the refrigerant through the heat storage heat exchanger (63), and the refrigerant is the outdoor heat exchanger. An operation control unit (100) configured to switch and execute use heating operation that evaporates in (23),
In the heating and heat storage operation, the refrigerant circuit (11)
Only the refrigerant condensed in the indoor heat exchanger (72) flows through the heat storage heat exchanger (63), the refrigerant condensed in the indoor heat exchanger (72), and the refrigerant circuit (11) A regenerative air conditioner configured to perform switching between the second operation in which the refrigerant mixed with the high-pressure refrigerant flows through the heat storage heat exchanger (63).
請求項1において、
上記冷媒回路(11)は、
上記暖房蓄熱運転中のガスライン(L2)と、上記室内熱交換器(72)と上記蓄熱用熱交換器(63)との間の流路とを繋ぐ導入管(51)と、
上記導入管(51)に接続され、上記第1動作時に閉鎖され、上記第2動作時に開放される開閉機構(EV2)とを備えている
ことを特徴とする蓄熱式空気調和機。
In claim 1,
The refrigerant circuit (11)
A gas line (L2) during the heating and heat storage operation, and an introduction pipe (51) connecting the flow path between the indoor heat exchanger (72) and the heat storage heat exchanger (63),
A regenerative air conditioner comprising: an opening / closing mechanism (EV2) connected to the introduction pipe (51), closed during the first operation, and opened during the second operation.
請求項1又は2において、
上記運転制御部(100)は、上記暖房蓄熱運転の第1動作において、上記室内熱交換器(72)を流出した冷媒の温度と、上記蓄熱回路(61)の蓄熱媒体の温度との温度差が小さいことを示す条件が成立すると、上記第1動作から上記第2動作へ移行させる
ことを特徴とする蓄熱式空気調和機。
In claim 1 or 2,
In the first operation of the heating and heat storage operation, the operation control unit (100) is configured to provide a temperature difference between the temperature of the refrigerant flowing out of the indoor heat exchanger (72) and the temperature of the heat storage medium of the heat storage circuit (61). If the condition which shows that is small is satisfied, it will transfer to the said 2nd operation | movement from the said 1st operation | movement. The thermal storage air conditioner characterized by the above-mentioned.
請求項3において、
上記蓄熱回路(61)の蓄熱媒体の温度を検出する温度検出部(S1)を備え、
上記運転制御部(100)は、上記暖房蓄熱運転の第1動作において、上記温度検出部(S1)で検出した蓄熱媒体の温度Taが所定値より高くなると、上記第1動作から上記第2動作へ移行させる
ことを特徴とする蓄熱式空気調和機。
In claim 3,
A temperature detection unit (S1) for detecting the temperature of the heat storage medium of the heat storage circuit (61);
When the temperature Ta of the heat storage medium detected by the temperature detection unit (S1) becomes higher than a predetermined value in the first operation of the heating heat storage operation, the operation control unit (100) performs the second operation from the first operation. Regenerative air conditioner, characterized in that
請求項4において、
上記蓄熱タンク(62)には、蓄熱媒体を流出させる流出管(65)が接続され、
上記温度検出部(S1)は、上記流出管(65)の蓄熱媒体の温度を検出する
ことを特徴とする蓄熱式空気調和機。
In claim 4,
The heat storage tank (62) is connected to an outflow pipe (65) through which the heat storage medium flows out,
The heat storage air conditioner, wherein the temperature detector (S1) detects the temperature of the heat storage medium of the outflow pipe (65).
請求項2において、
上記運転制御部(100)は、上記室外熱交換器(23)で冷媒が凝縮し、冷熱が蓄えられた上記蓄熱媒体が上記蓄熱用熱交換器(63)を介して冷媒を冷却し、且つ上記室内熱交換器(72)で冷媒が蒸発する利用冷房運転を切り換えて実行させるように構成され、
上記開閉機構は、減圧弁(EV2)で構成され、
上記冷媒回路(11)は、上記利用冷房運転において、上記蓄熱用熱交換器(63)から上記室内熱交換器(72)へ送られる高圧冷媒と、上記導入管(51)に分流し上記減圧弁(EV2)で減圧された冷媒とを熱交換させる熱交換器(52)を有している
ことを特徴とする蓄熱式空気調和機。
In claim 2,
The operation control unit (100) is configured such that the refrigerant is condensed in the outdoor heat exchanger (23), the heat storage medium in which cold is stored cools the refrigerant via the heat storage heat exchanger (63), and The indoor heat exchanger (72) is configured to switch and execute use cooling operation in which the refrigerant evaporates,
The opening / closing mechanism is composed of a pressure reducing valve (EV2).
The refrigerant circuit (11) is divided into the high-pressure refrigerant sent from the heat storage heat exchanger (63) to the indoor heat exchanger (72) and the introduction pipe (51) in the cooling use operation, and the decompression A heat storage air conditioner characterized by having a heat exchanger (52) for exchanging heat with the refrigerant decompressed by the valve (EV2).
JP2014265608A 2014-12-26 2014-12-26 Heat storage type air conditioner Pending JP2016125724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265608A JP2016125724A (en) 2014-12-26 2014-12-26 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265608A JP2016125724A (en) 2014-12-26 2014-12-26 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JP2016125724A true JP2016125724A (en) 2016-07-11

Family

ID=56359261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265608A Pending JP2016125724A (en) 2014-12-26 2014-12-26 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2016125724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015285A1 (en) * 2018-07-17 2020-01-23 珠海格力电器股份有限公司 Method and system for controlling pressure of air conditioning unit, and computer device and storage medium
CN114466995A (en) * 2019-09-17 2022-05-10 东芝开利株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015285A1 (en) * 2018-07-17 2020-01-23 珠海格力电器股份有限公司 Method and system for controlling pressure of air conditioning unit, and computer device and storage medium
CN114466995A (en) * 2019-09-17 2022-05-10 东芝开利株式会社 Air conditioner
CN114466995B (en) * 2019-09-17 2023-08-15 东芝开利株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP6052380B2 (en) Thermal storage air conditioner
JP6020549B2 (en) Thermal storage air conditioner
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
JPWO2014068967A1 (en) Refrigeration equipment
EP3546850B1 (en) Refrigeration device
JP2013002744A (en) Refrigerating cycle device and hot water heating device having the same
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2016125725A (en) Heat storage type air conditioner
JP2015218911A (en) Refrigeration device
JP2016125724A (en) Heat storage type air conditioner
JP6020548B2 (en) Thermal storage air conditioner
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP6507635B2 (en) Heat storage type air conditioner
WO2010041453A1 (en) Refrigeration device
JP7038277B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP6679840B2 (en) Heat storage type air conditioner
JP2016211802A5 (en)
JP2016125722A (en) Storage air conditioner
JP2008292016A (en) Freezer, air conditioner and method for controlling them
WO2020003590A1 (en) Refrigeration cycle device and liquid heating device comprising same
JP2016125719A (en) Heat storage type air conditioner
KR101493783B1 (en) Refrigerant supercooling type air conditioner
JP2015169347A (en) Heat pump device