JP2016124157A - Polyimide film laminate - Google Patents

Polyimide film laminate Download PDF

Info

Publication number
JP2016124157A
JP2016124157A JP2014265326A JP2014265326A JP2016124157A JP 2016124157 A JP2016124157 A JP 2016124157A JP 2014265326 A JP2014265326 A JP 2014265326A JP 2014265326 A JP2014265326 A JP 2014265326A JP 2016124157 A JP2016124157 A JP 2016124157A
Authority
JP
Japan
Prior art keywords
polyimide film
resin layer
thickness
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014265326A
Other languages
Japanese (ja)
Other versions
JP6479463B2 (en
Inventor
敏弘 森本
Toshihiro Morimoto
敏弘 森本
裕明 山田
Hiroaki Yamada
裕明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014265326A priority Critical patent/JP6479463B2/en
Priority to KR1020150182780A priority patent/KR20160079679A/en
Publication of JP2016124157A publication Critical patent/JP2016124157A/en
Application granted granted Critical
Publication of JP6479463B2 publication Critical patent/JP6479463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide film laminate excellent in high surface hardness, scratch resistance, wear resistance, chemical resistance, durability, surface smoothness, and heat resistance.SOLUTION: The polyimide film laminate is formed by laminating a resin layer having a glass transition temperature of 250°C or higher and a polyimide film having a glass transition temperature of 230°C or higher. The resin layer is obtained by curing a photocurable resin composition containing a cage silsesquioxane resin having photocurability. The thickness ratio of the resin layer to the polyimide film (the thickness of the resin layer/the thickness of the polyimide film) is 0.05 to 5.0 inclusive.SELECTED DRAWING: None

Description

本発明は、高表面硬度性、耐擦傷性、耐摩耗性、耐薬品性、耐久性、表面平滑性及び耐熱性に優れたポリイミドフィルム積層体に関するものである。   The present invention relates to a polyimide film laminate excellent in high surface hardness, scratch resistance, abrasion resistance, chemical resistance, durability, surface smoothness and heat resistance.

耐熱性に優れるポリイミドフィルムは、近年、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等に使用される各種光学用材料、フラットパネルディスプレイ等の構成部材に使用されている。さらに今後の伸びが期待されるフレキシブルディスプレイの材料フィルムとしても使用が検討されている。   In recent years, polyimide films having excellent heat resistance have been used in various optical materials used for liquid crystal displays, organic EL displays, electronic papers, etc., and constituent members such as flat panel displays. Furthermore, use as a material film for flexible displays, which is expected to grow in the future, is also being studied.

しかし、ポリイミドフィルムは、耐熱性には優れるものの高表面硬度性、表面平滑性、耐擦傷性、耐摩耗性及び耐薬品性について、性能が不十分である。そこでポリイミドフィルムの表面に光硬化性樹脂組成物を塗工し、表面を保護する方法が提案されている。   However, although the polyimide film is excellent in heat resistance, its performance is insufficient with respect to high surface hardness, surface smoothness, scratch resistance, wear resistance and chemical resistance. Therefore, a method for protecting the surface by applying a photocurable resin composition to the surface of the polyimide film has been proposed.

ポリイミドフィルムへの表面に高硬度性を付与すべく、ハードコート層を形成した具体案がいくつか提案されている。例えば特開2007−332218号公報(特許文献1)では、無機複合酸化物粒子を添加した硬化性組成物をポリイミドフィルム上へ塗布、硬化させ、ポリイミドフィルムの表面硬度を向上させることを提案されている。しかしながら、表面硬度性の向上に主眼がおかれ、表面平滑性が担保されておらず、ラフネス値(Ra)が0.2μmと大きな値となっている。また、特開2010−280832号公報(特許文献2)においても、無機粒子の添加された熱硬化性樹脂及び活性エネルギー線硬化性樹脂をハードコート層とし、ポリイミドフィルムの表面硬度の向上させることを提案している。しかしながら、上記同様、表面硬度性、耐擦傷性、耐摩耗性の向上に主眼がおかれ、表面平滑性について、特に検討が為されていない。   Several specific proposals for forming a hard coat layer have been proposed in order to impart high hardness to the surface of the polyimide film. For example, Japanese Patent Application Laid-Open No. 2007-332218 (Patent Document 1) proposes that a curable composition to which inorganic composite oxide particles are added is applied and cured on a polyimide film to improve the surface hardness of the polyimide film. Yes. However, the main focus is on improving the surface hardness, the surface smoothness is not ensured, and the roughness value (Ra) is as large as 0.2 μm. In JP 2010-280832 A (Patent Document 2), the thermosetting resin to which inorganic particles are added and the active energy ray curable resin are used as a hard coat layer to improve the surface hardness of the polyimide film. is suggesting. However, as described above, the focus is on improving surface hardness, scratch resistance, and wear resistance, and no particular consideration has been given to surface smoothness.

特開2007−332218号公報JP 2007-332218 A 特開2010−280832号公報JP 2010-280832 A

本発明は、高表面硬度性、耐擦傷性、耐摩耗性、耐薬品性、耐久性、表面平滑性及び耐熱性に優れたポリイミドフィルム積層体を提供することを目的とする。    An object of the present invention is to provide a polyimide film laminate excellent in high surface hardness, scratch resistance, abrasion resistance, chemical resistance, durability, surface smoothness and heat resistance.

本発明者は、上記の課題を解決するために鋭意検討した結果、ポリイミドフィルム表面に、光硬化性を有するかご型のシルセスキオキサン樹脂を含有した光硬化性樹脂組成物を塗布流延し、この光硬化性樹脂組成物を光硬化させて樹脂層を形成することにより、高表面硬度性、耐擦傷性、耐摩耗性、耐薬品性、耐久性、表面平滑性及び耐熱性に優れたポリイミドフィルム積層体が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have applied and casted a photocurable resin composition containing a cage-type silsesquioxane resin having photocurability to the polyimide film surface. By photocuring this photocurable resin composition to form a resin layer, it was excellent in high surface hardness, scratch resistance, abrasion resistance, chemical resistance, durability, surface smoothness and heat resistance. It discovered that a polyimide film laminated body was obtained and completed this invention.

すなわち、本発明は、ガラス転移温度が250℃以上である樹脂層と、ガラス転移温度が230℃以上であるポリイミドフィルムとが積層されてなるフィルム積層体であって、樹脂層が、光硬化性を有するかご型のシルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて得たものであり、樹脂層とポリイミドフィルムとの厚みの比率(樹脂層の厚み÷ポリイミドフィルムの厚み)が0.05以上5.0以下であることを特徴とするポリイミドフィルム積層体である。  That is, the present invention is a film laminate in which a resin layer having a glass transition temperature of 250 ° C. or more and a polyimide film having a glass transition temperature of 230 ° C. or more are laminated, and the resin layer is photocurable. Is obtained by curing a photocurable resin composition containing a cage-type silsesquioxane resin having a thickness ratio of resin layer to polyimide film (resin layer thickness ÷ polyimide film thickness) Is a polyimide film laminate characterized by being 0.05 or more and 5.0 or less.

また、本発明において、上記ポリイミドフィルム積層体は、好ましくは、ポリイミドフィルムにおける樹脂層が積層された面と反対側の面に対して更に樹脂層が積層されており、ポリイミドフィルムの両面に積層された各樹脂層は、それぞれ樹脂層とポリイミドフィルムとの厚みの比率(樹脂層の厚み÷ポリイミドフィルムの厚み)が0.05以上5.0以下を満たすものであるのがよい。   In the present invention, the polyimide film laminate preferably has a resin layer laminated on the opposite side of the polyimide film on which the resin layer is laminated, and is laminated on both sides of the polyimide film. Each resin layer preferably has a thickness ratio of the resin layer to the polyimide film (resin layer thickness ÷ polyimide film thickness) of 0.05 to 5.0.

ところで、一般に、シートとは薄くその厚さが長さと幅の割りには小さい平らな製品をいい、フィルムとは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通例、ロールの形で供給されるものをいう。従って、シートの中でも厚さの特に薄いものがフィルムであるといえるが、シートとフィルムの境界は定かではなく、明確に区別しにくいので、本明細書ではシートとフィルムの両方を含めて「フィルム」と定義する。   By the way, in general, a sheet is a thin product whose thickness is small relative to the length and width, and a film is extremely small compared to the length and width, and the maximum thickness is arbitrarily limited. A thin, flat product that is usually supplied in the form of a roll. Therefore, it can be said that a sheet having a particularly thin thickness is a film, but the boundary between the sheet and the film is not clear and is difficult to distinguish clearly. Therefore, in this specification, the term “film” includes both the sheet and the film. Is defined.

本発明のポリイミドフィルム積層体によれば、光硬化性を有したかご型のシルセスキオキサン樹脂を含んだ光硬化性樹脂組成物をポリイミドフィルムに塗布し、この光硬化性樹脂組成物を硬化させてポリイミドフィルムに樹脂層を積層するため、高表面硬度性、耐擦傷性、耐摩耗性、耐薬品性、耐久性、表面平滑性及び耐熱性に優れたポリイミドフィルム積層体を得ることができる。このようなポリイミドフィルム積層体は、特に光学用途に適しており、例えば、液晶ディスプレイ、電子ペーパー、タッチパネル、透明電極付きフィルム、レンズシート等の光学フィルムや、さらに今後の伸びが期待されるフレキシブルディスプレイの材料フィルムとしても適用が可能である。したがって、このようなポリイミドフィルム積層体を得ることができる本発明は、その産業上の利用価値が極めて高いものである。   According to the polyimide film laminate of the present invention, a photocurable resin composition containing a cage-type silsesquioxane resin having photocurability is applied to a polyimide film, and the photocurable resin composition is cured. Since the resin layer is laminated on the polyimide film, a polyimide film laminate excellent in high surface hardness, scratch resistance, abrasion resistance, chemical resistance, durability, surface smoothness and heat resistance can be obtained. . Such a polyimide film laminate is particularly suitable for optical applications, for example, an optical film such as a liquid crystal display, electronic paper, a touch panel, a film with a transparent electrode, a lens sheet, and a flexible display in which future growth is expected. It can also be applied as a material film. Therefore, the present invention capable of obtaining such a polyimide film laminate has an extremely high industrial utility value.

以下、本発明のポリイミドフィルム積層体について、好適な実施形態を詳細に説明する。   Hereinafter, suitable embodiment is described in detail about the polyimide film laminated body of this invention.

本発明において、ポリイミドフィルムに積層される樹脂層は、ガラス転移温度(耐熱温度)が250℃以上である必要がある。このような樹脂層を形成するに際して、光硬化性を有するかご型のシルセスキオキサン樹脂を含有した光硬化性樹脂組成物を用いるようにする。光硬化性樹脂組成物におけるかご型のシルセスキオキサン樹脂の含有量については、好ましくは3〜30質量%含有するようにするのがよい。光硬化性を有するかご型のシルセスキオキサン樹脂が3質量%未満であると、得られるフィルム積層体として、タッチパネル他、電子機器等の用途において重要である耐熱特性が低下する傾向にある。30質量%を超えて配合すると脆くなりやすい傾向があり、また、既に十分な耐熱性を付与しているため過剰に配合することは不要である。また、ガラス転移温度はシルセスキオキサン樹脂の含有量が同じ場合でも、シルセスキオキサン樹脂と併用して使用されるその他の樹脂などのガラス転移温度により変動するため、適宜シルセスキオキサン樹脂の含有量を調節する。   In the present invention, the resin layer laminated on the polyimide film needs to have a glass transition temperature (heat resistant temperature) of 250 ° C. or higher. In forming such a resin layer, a photocurable resin composition containing a cage-type silsesquioxane resin having photocurability is used. The content of the cage silsesquioxane resin in the photocurable resin composition is preferably 3 to 30% by mass. When the cage-type silsesquioxane resin having photocurability is less than 3% by mass, the resulting film laminate tends to deteriorate heat resistance characteristics that are important in applications such as touch panels and other electronic devices. If it exceeds 30% by mass, it tends to be brittle, and since sufficient heat resistance has already been imparted, it is not necessary to add it excessively. In addition, even if the content of the silsesquioxane resin is the same, the glass transition temperature varies depending on the glass transition temperature of other resins used in combination with the silsesquioxane resin. Adjust the content of.

また、樹脂層のガラス転移温度について、ガラス転移温度が250℃未満であると得られるポリイミドフィルム積層体として、タッチパネル他、電子機器等の用途において重要である耐熱特性が不足となる。積層される樹脂層の耐熱温度は高いほど好ましいものであり、積層される樹脂層の他の品質である高表面硬度性、耐候性、耐薬品性、耐久性、表面平滑性及び耐熱性を阻害しなければよいが、現実にタッチパネル他、電子機器等の熱処理工程において400℃を超えることは極めて稀であることなどを考慮すると、実質的に樹脂層のガラス転移温度の上限は400℃である。   Moreover, about the glass transition temperature of a resin layer, as a polyimide film laminated body obtained when a glass transition temperature is less than 250 degreeC, the heat resistance characteristic important in uses, such as a touch panel and electronic devices, becomes insufficient. The higher the heat resistance temperature of the laminated resin layer is, the more preferable it is, and the other qualities of the laminated resin layer, such as high surface hardness, weather resistance, chemical resistance, durability, surface smoothness and heat resistance are inhibited. However, the upper limit of the glass transition temperature of the resin layer is substantially 400 ° C. in view of the fact that it is extremely rare that the temperature exceeds 400 ° C. in the heat treatment process for touch panels and other electronic devices. .

ここで、光硬化性を有するかご型のシルセスキオキサン樹脂としては、例えば、次のようなものが適用できる。
先ず、第1の例として、下記一般式(1)
RSiX3 (1)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、Xは加水分解性基を示す)で表されるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させてなるかご型シルセスキオキサン樹脂である。
Here, as a cage silsesquioxane resin having photocurability, for example, the following can be applied.
First, as a first example, the following general formula (1)
RSix 3 (1)
(Wherein R is an organic functional group having any one of a (meth) acryloyl group, a glycidyl group, and a vinyl group, and X represents a hydrolyzable group) an organic polar solvent and a base It is a cage-type silsesquioxane resin obtained by subjecting a hydrolysis reaction and a partial condensation in the presence of a basic catalyst to further condensation of the obtained hydrolysis product in the presence of a nonpolar solvent and a basic catalyst.

また、第2の例として、下記一般式(2)
[RSiO3/2]n (2)
(但し、Rは(メタ)アクリロイル基、又はグリシジル基のいずれか一つを有する有機官能基であり、nは8、10、12又は14である)で表されるかご型シルセスキオキサン樹脂である。
As a second example, the following general formula (2)
[RSiO 3/2 ] n (2)
(Wherein R is an organic functional group having any one of (meth) acryloyl group and glycidyl group, and n is 8, 10, 12 or 14). It is.

更に第3の例として、一般式(1)において、Rが下記一般式(3)、(4)又は(5)

Figure 2016124157
(但し、mは1〜3の整数であり、R1は水素原子又はメチル基を示す)で表される有機官能基であるかご型シルセスキオキサン樹脂である。 As a third example, in the general formula (1), R is the following general formula (3), (4) or (5).
Figure 2016124157
(Wherein m is an integer of 1 to 3 and R 1 represents a hydrogen atom or a methyl group), which is a cage silsesquioxane resin.

本発明においては、かご型シルセスキオキサン樹脂がケイ素原子全てに(メタ)アクリロイル基、グリシジル基又はビニル基を有する有機官能基からなる反応性官能基を有する、分子量分布及び分子構造の制御された純度の高いかご型シルセスキオキサン樹脂であるのが好ましいが、一部がアルキル基、フェニル基等に置き換わっていても差し支えなく、また、完全に閉じた多面体構造でない、すなわち、一部が開裂したような構造であってもよい。本発明の光硬化性樹脂組成物には、このようなかご型シルセスキオキサン樹脂、またはこれを主成分として含有する樹脂混合物、また、n数の異なる成分等の他の成分が含まれていてもよく、また、かご型シルセスキオキサン樹脂がオリゴマーであってもよい。ここで、かご型シルセスキオキサン樹脂を主成分として含有する樹脂混合物において、混合に適した樹脂としては、かご型シルセスキオキサン樹脂と相溶性及び反応性を有する樹脂であれば、特に限定するものではないが、(メタ)アクリレート及びエポキシ樹脂等が好ましいものである。さらに光硬化性、表面平滑性を阻害しなければ、光硬化性樹脂組成物にナノサイズのフィラー系添加物を加えてもよい。   In the present invention, the cage silsesquioxane resin has a reactive functional group composed of an organic functional group having a (meth) acryloyl group, a glycidyl group or a vinyl group on all silicon atoms, and the molecular weight distribution and molecular structure are controlled. It is preferable to use a cage-type silsesquioxane resin having a high purity, but it may be partially substituted with an alkyl group, a phenyl group, or the like, and is not a completely closed polyhedral structure, that is, a part of the cage-type silsesquioxane resin. It may be a structure like a cleavage. The photocurable resin composition of the present invention contains such a cage silsesquioxane resin, or a resin mixture containing this as a main component, and other components such as components having different n numbers. Alternatively, the cage silsesquioxane resin may be an oligomer. Here, in the resin mixture containing the cage silsesquioxane resin as a main component, the resin suitable for mixing is not particularly limited as long as the resin has compatibility and reactivity with the cage silsesquioxane resin. Although not intended, (meth) acrylates and epoxy resins are preferred. Furthermore, a nano-sized filler additive may be added to the photo-curable resin composition as long as the photo-curing property and the surface smoothness are not inhibited.

また、光硬化性樹脂組成物には、通常、光重合開始剤が配合される。また、本発明では、適当な溶媒を希釈剤として用い光硬化性樹脂組成物の粘度調整等して用いることもできる。その場合、乾燥工程にて十分、希釈剤を除去し、光硬化段階において、溶媒の含有量は5質量%以下にとどめておくことがよく、実質的には溶媒が含有されていない状態であることが好ましい。   Moreover, a photoinitiator is normally mix | blended with a photocurable resin composition. In the present invention, an appropriate solvent can be used as a diluent to adjust the viscosity of the photocurable resin composition. In that case, the diluent is sufficiently removed in the drying step, and in the photocuring stage, the content of the solvent should be kept at 5% by mass or less, and the solvent is not substantially contained. It is preferable.

「樹脂層−ポリイミドフィルム」からなるポリイミドフィルム積層体において、光硬化性樹脂組成物を硬化して得る樹脂層の厚みについて、樹脂層とポリイミドフィルムとの厚みの比率(樹脂層の厚み÷ポリイミドフィルムの厚み)が0.05以上5.0以下となるようにする。この厚みの比率が0.05に満たないと樹脂層が薄くなり過ぎて、光硬化性樹脂組成物の特徴である高耐熱性の効果が十分に発揮されず、ベースに用いるポリイミドフィルムの耐熱特性を活かせないものとなる。一方、厚みの比率が5.0を超えると樹脂層が厚くなり過ぎて、樹脂層が割れやすくなり、特に加熱により樹脂層にクラックが発生しやすくなり、得られるポリイミドフィルム積層体が破損しやすくなるおそれがある。同時に、樹脂層にクラックが発生することにより、ポリイミドフィルム積層体自体の使用が困難となる。   Regarding the thickness of the resin layer obtained by curing the photocurable resin composition in the polyimide film laminate composed of “resin layer-polyimide film”, the ratio of the thickness of the resin layer to the polyimide film (the thickness of the resin layer ÷ the polyimide film) The thickness) is 0.05 to 5.0. If the thickness ratio is less than 0.05, the resin layer becomes too thin, and the high heat resistance effect that is characteristic of the photocurable resin composition is not fully exhibited, and the heat resistance characteristics of the polyimide film used for the base It will be something that can not make use of. On the other hand, if the thickness ratio exceeds 5.0, the resin layer becomes too thick and the resin layer is easily cracked. In particular, the resin layer is easily cracked by heating, and the resulting polyimide film laminate is easily damaged. There is a risk. At the same time, cracks occur in the resin layer, making it difficult to use the polyimide film laminate itself.

また、本発明においては、ベースのポリイミドフィルムの両面に光硬化性樹脂組成物を塗工し硬化させて、「樹脂層−ポリイミドフィルム−樹脂層」の三層構造からなるポリイミドフィルム積層体にすることが好ましい。樹脂層を片面のみに設けた「樹脂層−ポリイミドフィルム」に比べてポリイミドフィルム積層体の反りや変形等を更に低減させることができる。尚、ポリイミドフィルムの両面に樹脂層を形成する場合には、それぞれの樹脂層が本発明で規定する各条件を満たすようにするのが好ましい。すなわち、例えば、樹脂層とポリイミドフィルムとの厚みの比率は各樹脂層単独でポリイミドフィルムとの厚み比率が上述した範囲となるようにするのがよい。また、両樹脂層を同一成分のから形成してもよく、各面に塗布する光硬化性樹脂組成物を異なるようにしてもよい。   In the present invention, a photocurable resin composition is applied to both surfaces of a base polyimide film and cured to form a polyimide film laminate having a three-layer structure of “resin layer-polyimide film-resin layer”. It is preferable. Compared with “resin layer-polyimide film” in which the resin layer is provided only on one side, the warp or deformation of the polyimide film laminate can be further reduced. In addition, when forming a resin layer on both surfaces of a polyimide film, it is preferable that each resin layer satisfy | fills each condition prescribed | regulated by this invention. That is, for example, the thickness ratio between the resin layer and the polyimide film is preferably such that each resin layer alone has the thickness ratio with the polyimide film within the above-described range. Moreover, both resin layers may be formed from the same component, and the photocurable resin composition applied to each surface may be different.

また、ポリイミドフィルムについては、ガラス転移温度(耐熱温度)が230℃以上であるものを用いる。ガラス転移温度が230℃未満であると本発明のポリイミドフィルム積層体としての液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等に使用される各種光学用材料、フラットパネルディスプレイ等の構成部材及び今後の伸びが期待されるフレキシブルディスプレイの材料フィルムとしても適用用途が限定されることとなる。尚、ポリイミドフィルムのガラス転移温度は、前記樹脂層と同様に実際の熱処理工程において400℃を超えることは極めて稀であることから実質的に上限は400℃である。   Moreover, about a polyimide film, what has a glass transition temperature (heat-resistant temperature) is 230 degreeC or more is used. When the glass transition temperature is less than 230 ° C., various optical materials used for the polyimide film laminate of the present invention, organic EL displays, electronic paper, etc., components such as flat panel displays, and future growth The use application is also limited as a material film of an expected flexible display. Incidentally, the glass transition temperature of the polyimide film is extremely rarely over 400 ° C. in the actual heat treatment step as in the case of the resin layer, so the upper limit is substantially 400 ° C.

また、ポリイミドフィルムについて、全光線透過率は80%以上であることが好ましい。光透過率が80%以上であることにより、得られるポリイミドフィルム積層体として、高表面硬度性、耐候性、耐薬品性、耐久性、表面平滑性、耐熱性に付加し、高透明性を有し、ディスプレイ部材、タッチパネル他、電子機器等の透明フィルム用途において、有用なフィルムとなる。  The total light transmittance of the polyimide film is preferably 80% or more. When the light transmittance is 80% or more, the resulting polyimide film laminate has high surface hardness, weather resistance, chemical resistance, durability, surface smoothness, and heat resistance, and high transparency. And it becomes a useful film in transparent film uses, such as a display member, a touch panel, and other electronic devices.

このような条件を満たすポリイミドフィルムとしては特開平2-251564号公報、特表2010-51359号公報記載のフッ素原子を含有する透明ポリイミドや、WO2006/112286、特開2013-166929号公報記載の脂環構造を有する透明ポリイミドなど公知のポリイミドフィルムを用いることができる。また、市販のものとしてはネオプリム(三菱瓦斯化学)、PI-100、PI-101、PI-117(丸善石油化学)、FLUPI-01(日本電信電話)、SOXR(ニッポン高度紙工業)などが挙げられる。   Examples of the polyimide film satisfying such conditions include transparent polyimides containing fluorine atoms described in JP-A-2-251564 and JP-A-2010-51359, and fats described in WO2006 / 112286 and JP-A-2013-166929. A known polyimide film such as a transparent polyimide having a ring structure can be used. Commercially available products include Neoprim (Mitsubishi Gas Chemical), PI-100, PI-101, PI-117 (Maruzen Petrochemical), FLUPI-01 (Nippon Telegraph and Telephone), SOXR (Nippon Advanced Paper Industries), etc. It is done.

また、ポリイミドフィルムにおける樹脂層の積層面は、樹脂層とポリイミドフィルムとの密着性向上のために、例えば、コロナ放電処理、紫外線照射処理、プラズマ処理等の表面活性処理をポリイミドフィルムの表面に行ってもよい。更には、ポリイミドフィルム表面に下地処理やプライマー処理等を行ってもよい。   In addition, the surface of the polyimide film is subjected to surface activation treatment such as corona discharge treatment, ultraviolet irradiation treatment, or plasma treatment on the surface of the polyimide film in order to improve the adhesion between the resin layer and the polyimide film. May be. Furthermore, the polyimide film surface may be subjected to a base treatment or a primer treatment.

ポリイミドフィルムの厚みについては、樹脂層との厚みの比率を満たすことが必要であるが、単独の厚みとしては好ましくは0.003mm以上であるのがよい。ポリイミドフィルムの厚さが0.003mmに満たない場合、樹脂層の硬化時の収縮による変形が発生しやすく、塗工時の張力に耐えられないことがある。尚、ポリイミドフィルムの厚さの上限には特に制限は無いが、ポリイミドフィルムを使用した場合の有用性が薄型化、軽量化などが考えられることなどを考慮すると、ポリイミドフィルムの厚みの上限は1mm程度であるのが望ましい。   About the thickness of a polyimide film, it is necessary to satisfy | fill the ratio of thickness with a resin layer, However As an independent thickness, Preferably it is 0.003 mm or more. When the thickness of the polyimide film is less than 0.003 mm, deformation due to shrinkage at the time of curing of the resin layer is likely to occur, and it may not be able to withstand the tension at the time of coating. In addition, although there is no restriction | limiting in particular in the upper limit of the thickness of a polyimide film, the upper limit of the thickness of a polyimide film is 1 mm when the usefulness at the time of using a polyimide film considers reduction in thickness, weight reduction, etc. The degree is desirable.

光硬化性樹脂組成物は、液状であることから公知の塗布装置で塗布できるが、塗布ヘッドを用いて硬化反応を起こすとゲル状の付着物が筋や異物の原因となるため、望ましくは塗布ヘッドには紫外線が当たらないようにするのがよい。塗布方式としては、グラビアコート、ロールコート、リバースコート、ナイフコート、ダイコート、リップコート、ドクターコート、エクストルージョンコート、スライドコート、ワイヤーバーコート、カーテンコート、押出コート、スピナーコート等の公知の方法を用いることができる。また、厚み制御が容易であることから、いったん別の支持体に樹脂層を形成してからポリイミドフィルム上に転写により樹脂層を形成する方法を採用してもよい。   Since the photo-curable resin composition is liquid, it can be applied with a known coating apparatus. However, when a curing reaction is caused by using a coating head, gel-like deposits cause streaks and foreign matter, and therefore it is preferable to apply the photo-curable resin composition. The head should not be exposed to ultraviolet rays. As a coating method, known methods such as gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion coating, spinner coating, etc. Can be used. Moreover, since thickness control is easy, you may employ | adopt the method of forming a resin layer by transfer on a polyimide film after forming a resin layer once on another support body.

光硬化性樹脂組成物は、ポリイミドフィルムに塗工し流延させた後、光硬化を実施するが、この光硬化としては、紫外線照射法が一般的であり、例えば、紫外線ランプを使用して紫外線を発生させて照射することができる。紫外線ランプには、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、パルス型キセノンランプ、キセノン/水銀混合ランプ、低圧殺菌ランプ、無電極ランプ等があり、いずれも使用することができる。これらの紫外線ランプの中でも、メタルハライドランプもしくは高圧水銀ランプが好ましい。照射条件はそれぞれのランプ条件によって異なるが、照射露光量が20〜10000mj/cm2程度であればよく、好ましくは100〜10000mj/cm2である。また、光エネルギーの有効利用の観点から、紫外線ランプには楕円型、放物線型、拡散型等の反射板を取り付けるのが好ましく、さらには、冷却対策として熱カットフィルター等を装着するようにしてもよい。 The photocurable resin composition is applied to a polyimide film and cast and then photocured. As this photocuring, an ultraviolet irradiation method is generally used, for example, using an ultraviolet lamp. Ultraviolet rays can be generated and irradiated. Examples of ultraviolet lamps include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, pulse-type xenon lamps, xenon / mercury mixed lamps, low-pressure sterilization lamps, and electrodeless lamps, all of which can be used. Among these ultraviolet lamps, a metal halide lamp or a high-pressure mercury lamp is preferable. The irradiation conditions vary depending on individual lamps condition may be a radiation exposure amount 20~10000mj / cm 2 or so, preferably 100~10000mj / cm 2. In addition, from the viewpoint of effective use of light energy, it is preferable to attach an elliptical, parabolic, diffusive or other reflector to the ultraviolet lamp, and furthermore, a heat cut filter or the like may be attached as a cooling measure. Good.

また、紫外線ランプの照射箇所には、冷却装置を有していることが好ましい。この冷却装置により、紫外線ランプからの発生する熱に誘発されるポリイミドフィルム等の熱変形を抑制することができる。冷却方式としては、空冷方式、水冷方式等の公知の方法がある。   Moreover, it is preferable to have a cooling device in the irradiation location of an ultraviolet lamp. With this cooling device, thermal deformation of the polyimide film or the like induced by the heat generated from the ultraviolet lamp can be suppressed. As the cooling method, there are known methods such as an air cooling method and a water cooling method.

紫外線硬化反応はラジカル反応であるため酸素による反応阻害を受ける。そのため、光硬化性樹脂組成物は、ポリイミドフィルムへ塗工、流延後、場合によっては希釈剤除去の乾燥工程が必要となり、その後、光硬化を実施するが、塗工、流延後、酸素阻害を防止するため、乾燥工程後、光硬化性樹脂組成物上へ透明カバーフィルムを施し、流延された原料の液状光硬化性樹脂の表面では酸素濃度を1%以下にすることが好ましく、0.1%以下にすることがより好ましい。酸素濃度を小さくするには、表面に空孔がなく、酸素透過率の小さい透明カバーフィルムを採用する必要がある。透明カバーフィルムとしては、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、ポリプロピレン、ポリエチレン、アセテート、アクリル、フッ化ビニル、ポリアミド、ポリアリレート、セロファン、ポリエーテルスルホン、ノルボルネン樹脂系、等のフィルムを単独で、あるいは2種類以上を組み合わせて使用できる。ただし、光硬化性樹脂組成物との剥離が可能でなければならない。この為、これらの透明カバーフィルムの表面にシリコン塗布、フッ素塗布等の易剥離処理が施されているものが好ましい。   Since the ultraviolet curing reaction is a radical reaction, the reaction is inhibited by oxygen. Therefore, the photocurable resin composition may be applied to a polyimide film and cast, and in some cases, a drying step for removing the diluent is required. After that, photocuring is performed. In order to prevent inhibition, it is preferable to apply a transparent cover film on the photocurable resin composition after the drying step, and to reduce the oxygen concentration to 1% or less on the surface of the cast liquid photocurable resin, More preferably, it is made 0.1% or less. In order to reduce the oxygen concentration, it is necessary to employ a transparent cover film having no pores on the surface and low oxygen permeability. As a transparent cover film, PET (polyethylene terephthalate), PC (polycarbonate), polypropylene, polyethylene, acetate, acrylic, vinyl fluoride, polyamide, polyarylate, cellophane, polyethersulfone, norbornene resin, etc. are used alone. Or two or more types can be used in combination. However, it must be possible to peel from the photocurable resin composition. For this reason, it is preferable that the surface of these transparent cover films is subjected to an easy peeling treatment such as silicon coating or fluorine coating.

以下、本発明のポリイミドフィルム積層体について、実施例及び比較例により詳細に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例もしくは比較例中の部は質量部を表す。また、各実施例及び比較例で用いたポリイミドフィルムのガラス転移温度、並びに形成した各樹脂層の光透過率及びガラス転移温度を表1にまとめて示す。光透過率は濁度計(ヘイズメーター)で測定し、全光線透過率を示した。ガラス転移温度はTMA(熱機械分析)法により、熱分析装置にて加熱による熱膨張量の変化を計測し、求めたものを示した。なお、各樹脂層の測定おいては、あらかじめポリイミドフィルムの表面に剥離処理を施したものを使用した以外は実施例及び比較例と同一条件で作成し、その後、樹脂層のみを剥離して光透過率及びガラス転移温度を測定した。また、合成例等で使用した略語の意味は次のとおりである。
PDA:1,4−フェニレンジアミン
DMAc:N,N−ジメチルアセトアミド
BPDA::3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
TFMB:2,2'−ビス(トリフルオロメチル)−4,4'−ジアミノビフェニル
PMDA:ピロメリット酸二無水物
6FDA:2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
Hereinafter, although the polyimide film laminated body of this invention is demonstrated in detail by an Example and a comparative example, this invention is not limited to the following Example. In addition, the part in an Example or a comparative example represents a mass part. Table 1 shows the glass transition temperature of the polyimide film used in each example and comparative example, and the light transmittance and glass transition temperature of each resin layer formed. The light transmittance was measured with a turbidimeter (haze meter), and the total light transmittance was shown. The glass transition temperature was obtained by measuring the change in the amount of thermal expansion caused by heating with a thermal analyzer using a TMA (thermomechanical analysis) method. In the measurement of each resin layer, it was prepared under the same conditions as in Examples and Comparative Examples except that the surface of the polyimide film was previously subjected to a peeling treatment, and then only the resin layer was peeled off to obtain light. Transmittance and glass transition temperature were measured. Moreover, the meaning of the abbreviation used in the synthesis example etc. is as follows.
PDA: 1,4-phenylenediamine DMAc: N, N-dimethylacetamide BPDA :: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride TFMB: 2,2′-bis (trifluoromethyl)- 4,4′-diaminobiphenyl PMDA: pyromellitic dianhydride 6FDA: 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride

[透明ポリイミドフィルムB1、B2の調製]
合成例1(ポリイミドA)
窒素気流下で、300mlのセパラブルフラスコの中で攪拌しながらPDA8.00gを溶剤DMAcに溶解させた。次いで、この溶液BPDA22.00gを加えた。その後、溶液を室温で5時間攪拌を続けて重合反応を行い、一昼夜保持した。粘稠なポリアミド酸溶液が得られ、高重合度のポリアミド酸Aが生成されていることが確認された。
[Preparation of transparent polyimide films B1 and B2]
Synthesis Example 1 (Polyimide A)
Under a nitrogen stream, 8.00 g of PDA was dissolved in the solvent DMAc while stirring in a 300 ml separable flask. Then 22.00 g of this solution BPDA was added. Thereafter, the solution was stirred at room temperature for 5 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous polyamic acid solution was obtained, and it was confirmed that polyamic acid A having a high polymerization degree was produced.

合成例2(ポリイミドB)
窒素気流下で、300mlのセパラブルフラスコの中で攪拌しながらTFMB12.08gを溶剤DMAcに溶解させた。次いで、この溶液にPMDA6.20gと6FDA4.21gを加えた。その後、溶液を室温で5時間攪拌を続けて重合反応を行い、一昼夜保持した。粘稠なポリアミド酸溶液が得られ、高重合度のポリアミド酸Bが生成されていることが確認された。
Synthesis Example 2 (Polyimide B)
Under a nitrogen stream, 12.08 g of TFMB was dissolved in the solvent DMAc while stirring in a 300 ml separable flask. Next, 6.20 g of PMDA and 4.21 g of 6FDA were added to this solution. Thereafter, the solution was stirred at room temperature for 5 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous polyamic acid solution was obtained, and it was confirmed that polyamic acid B having a high polymerization degree was produced.

フィルム作製例
厚み18μmの電解銅箔上に、合成例1で得たポリアミド酸Aの樹脂溶液を塗布した後、130℃で加熱乾燥し溶剤を除去した。次に、160℃から360℃まで約15℃/分の昇温速度で熱処理することでイミド化し、厚み25μmのポリイミド層A(表面粗さRa=1.3nm、Tg=355℃)が銅箔上に形成された支持基材を得た。
Film Production Example After applying the polyamic acid A resin solution obtained in Synthesis Example 1 on an electrolytic copper foil having a thickness of 18 μm, the solvent was removed by heating at 130 ° C. Next, it is imidized by heat treatment at a temperature increase rate of about 15 ° C./min from 160 ° C. to 360 ° C., and a polyimide layer A having a thickness of 25 μm (surface roughness Ra = 1.3 nm, Tg = 355 ° C.) is formed on the copper foil. A support substrate formed in the above was obtained.

得られた支持基材のポリイミド層A上に、合成例2で得たポリアミド酸Bの樹脂溶液を均一の厚みで塗布した後、130℃で加熱乾燥し、樹脂溶液中の溶剤を除去した。次に、160℃から360℃まで約20℃/分の昇温速度で熱処理することでポリアミド酸をイミド化させてポリイミド層Bとし、ポリイミド層Bの背面側に支持基材(ポリイミド層A+銅箔)を備えたポリイミド積層体とした。この状態で直ちに常温まで冷却し、ポリイミド層Bの部分を支持基材から引き剥がして厚み0.01mm(全光線透過率80%以上)の透明ポリイミドフィルムB1を得た。引き剥がしの際の支持基材と透明ポリイミドフィルムB1との剥離性は良好であった。なお、ポリアミド酸Bのイミド化にあたり、最高到達温度より20℃低い温度から最高到達温度までの高温加熱温度域での加熱時間(高温保持時間)、すなわち340℃から360℃までの高温保持時間は1分とした。   After applying the polyamic acid B resin solution obtained in Synthesis Example 2 with a uniform thickness on the polyimide layer A of the support substrate thus obtained, it was dried by heating at 130 ° C. to remove the solvent in the resin solution. Next, the polyamic acid is imidized by heat-treating from 160 ° C. to 360 ° C. at a heating rate of about 20 ° C./min to form a polyimide layer B. (Foil) was used as a polyimide laminate. In this state, it was immediately cooled to room temperature, and the polyimide layer B was peeled off from the support substrate to obtain a transparent polyimide film B1 having a thickness of 0.01 mm (total light transmittance of 80% or more). The peelability between the support substrate and the transparent polyimide film B1 at the time of peeling was good. In the imidization of polyamic acid B, the heating time (high temperature holding time) in the high temperature heating temperature range from the temperature 20 ° C. lower than the highest temperature to the highest temperature, that is, the high temperature holding time from 340 ° C. to 360 ° C. is 1 minute.

また、合成例2で得たポリアミド酸Bの樹脂溶液を塗布する厚みを変えた以外は上記と同様にして、厚み0.1mm(全光線透過率80%以上)の透明ポリイミドフィルムB2を得た。   Further, a transparent polyimide film B2 having a thickness of 0.1 mm (total light transmittance of 80% or more) was obtained in the same manner as above except that the thickness for applying the resin solution of polyamic acid B obtained in Synthesis Example 2 was changed. .

[実施例1]
トリメチロールプロパントアクリレート(日本化薬社製KS-TMPA)80部、シルセスキオキサンオリゴマー(下記構造式1)20部、ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ社製IRGACURE 184)2.5部を均一に攪拌混合した後、脱泡して液状の光硬化性樹脂組成物を得たのち、本液状の光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB1(幅300mm、厚さ0.01mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。

Figure 2016124157
[Example 1]
80 parts of trimethylol propantoacrylate (KS-TMPA manufactured by Nippon Kayaku Co., Ltd.), 20 parts of silsesquioxane oligomer (the following structural formula 1), hydroxycyclohexyl phenyl ketone (IRGACURE 184 manufactured by Ciba Specialty Chemicals) 2.5 After uniformly stirring and mixing the parts, defoaming to obtain a liquid photocurable resin composition, the liquid photocurable resin composition was put into a coating apparatus, and this was wound at 1 m / min. It was apply | coated to both surfaces simultaneously by the slot die coater method on the taken out transparent polyimide film B1 (width 300mm, thickness 0.01mm, total light transmittance 80% or more).
Figure 2016124157

そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.02mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.02mm)−ポリイミドフィルムB1(厚さ:0.01mm)−樹脂層(厚さ:0.02mm)」の三層構造からなるフィルム積層体(合計厚さ:0.05mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。 Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.02 mm. After that, the transparent cover film is peeled off and removed, and a film layer consisting of a three-layer structure of “resin layer (thickness: 0.02 mm) −polyimide film B1 (thickness: 0.01 mm) −resin layer (thickness: 0.02 mm)” A body (total thickness: 0.05 mm) was obtained. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.

[実施例2]
上記実施例1で得た光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB2(幅300mm、厚さ0.1mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.005mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.005mm)−ポリイミドフィルム(厚さ:0.1mm)−樹脂層(厚さ:0.005mm)」の三層構造からなるフィルム積層体(合計厚さ:0.11mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。
[Example 2]
A transparent polyimide film B2 (width 300 mm, thickness 0.1 mm, total light transmittance of 80% or more) obtained by feeding the photocurable resin composition obtained in Example 1 into a coating apparatus and unwinding it at 1 m / min. ) It was simultaneously coated on both sides by the slot die coater method. Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.005 mm. Thereafter, the transparent cover film is peeled and removed, and a film laminate having a three-layer structure of “resin layer (thickness: 0.005 mm) −polyimide film (thickness: 0.1 mm) −resin layer (thickness: 0.005 mm)”. (Total thickness: 0.11 mm) was obtained. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.

[実施例3]
上記実施例1で得た光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB1(幅300mm、厚さ0.01mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.05mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.05mm)−ポリイミドフィルム(厚さ:0.01mm)−樹脂層(厚さ:0.05mm)」の三層構造からなるフィルム積層体(合計厚さ:0.11mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。
[Example 3]
A transparent polyimide film B1 (width 300 mm, thickness 0.01 mm, total light transmittance of 80% or more) obtained by feeding the photocurable resin composition obtained in Example 1 into a coating apparatus and unwinding it at 1 m / min. ) It was simultaneously coated on both sides by the slot die coater method. Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.05 mm. Thereafter, the transparent cover film is peeled and removed, and a film laminate having a three-layer structure of “resin layer (thickness: 0.05 mm) −polyimide film (thickness: 0.01 mm) —resin layer (thickness: 0.05 mm)”. (Total thickness: 0.11 mm) was obtained. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.

[実施例4]
トリメチロールプロパントアクリレート(日本化薬社製KS-TMPA)80部、シルセスキオキサンオリゴマー(下記構造式2)20部、ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ社製IRGACURE 184)2.5部を均一に攪拌混合した後、脱泡して液状の光硬化性樹脂組成物を得たのち、本液状の光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB1(幅300mm、厚さ0.01mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.02mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.02mm)−ポリイミドフィルム(厚さ:0.01mm)−樹脂層(厚さ:0.02mm)」の三層構造からなるフィルム積層体(合計厚さ:0.05mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。

Figure 2016124157
[Example 4]
80 parts of trimethylol propantoacrylate (KS-TMPA manufactured by Nippon Kayaku Co., Ltd.), 20 parts of silsesquioxane oligomer (Structural Formula 2 below), hydroxycyclohexyl phenyl ketone (IRGACURE 184 manufactured by Ciba Specialty Chemicals) 2.5 After uniformly stirring and mixing the parts, defoaming to obtain a liquid photocurable resin composition, the liquid photocurable resin composition was put into a coating apparatus, and this was wound at 1 m / min. It was simultaneously applied to both sides by the slot die coater method on the taken out transparent polyimide film B1 (width 300 mm, thickness 0.01 mm, total light transmittance 80% or more). Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.02 mm. Thereafter, the transparent cover film is peeled and removed, and a film laminate having a three-layer structure of “resin layer (thickness: 0.02 mm) −polyimide film (thickness: 0.01 mm) −resin layer (thickness: 0.02 mm)”. (Total thickness: 0.05 mm) was obtained. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.
Figure 2016124157

[実施例5]
上記実施例1で得た光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB1(幅300mm、厚さ0.01mm、全光線透過率80%以上)上へスロットダイコーター法にて片面に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の厚みは0.05mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.05mm)−ポリイミドフィルム(厚さ:0.01mm)」の二層構造からなるフィルム積層体(合計厚さ:0.06mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。
[Example 5]
A transparent polyimide film B1 (width 300 mm, thickness 0.01 mm, total light transmittance of 80% or more) obtained by feeding the photocurable resin composition obtained in Example 1 into a coating apparatus and unwinding it at 1 m / min. It was coated on one side by the slot die coater method. Then, after pressure-bonding to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), ultraviolet rays were applied at a rate of 500 mj / cm 2 with a metal halide lamp. Irradiated from both sides. The thickness of the resin layer obtained by curing was set to 0.05 mm. Thereafter, the transparent cover film is peeled off to obtain a film laminate (total thickness: 0.06 mm) having a two-layer structure of “resin layer (thickness: 0.05 mm) −polyimide film (thickness: 0.01 mm)”. It was. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.

[比較例1]
上記実施例1で得た光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB2(幅300mm、厚さ0.1mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.003mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.003mm)−ポリイミドフィルム(厚さ:0.1mm)−樹脂層(厚さ:0.003mm)」の三層構造からなるフィルム積層体(合計厚さ:0.106mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。
[Comparative Example 1]
A transparent polyimide film B2 (width 300 mm, thickness 0.1 mm, total light transmittance of 80% or more) obtained by feeding the photocurable resin composition obtained in Example 1 into a coating apparatus and unwinding it at 1 m / min. ) It was simultaneously coated on both sides by the slot die coater method. Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.003 mm. Thereafter, the transparent cover film is peeled and removed, and a film laminate having a three-layer structure of “resin layer (thickness: 0.003 mm) −polyimide film (thickness: 0.1 mm) −resin layer (thickness: 0.003 mm)”. (Total thickness: 0.106 mm) was obtained. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.

[比較例2]
上記実施例1で得た光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB1(幅300mm、厚さ0.01mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.06mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.06mm)−ポリイミドフィルム(厚さ:0.01mm)−樹脂層(厚さ:0.06mm)」の三層構造からなるフィルム積層体(合計厚さ:0.13mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上となった。
[Comparative Example 2]
A transparent polyimide film B1 (width 300 mm, thickness 0.01 mm, total light transmittance of 80% or more) obtained by feeding the photocurable resin composition obtained in Example 1 into a coating apparatus and unwinding it at 1 m / min. ) It was simultaneously coated on both sides by the slot die coater method. Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.06 mm. Thereafter, the transparent cover film is peeled and removed, and a film laminate having a three-layer structure of “resin layer (thickness: 0.06 mm) −polyimide film (thickness: 0.01 mm) −resin layer (thickness: 0.06 mm)”. (Total thickness: 0.13 mm) was obtained. In addition, the result of measuring the reaction rate of each resin layer was 85% or more.

[比較例3]
ジメチロール‐トリシクロデカンジアクリレート(共栄社化学社製ライトアクリレートDCP−A)90部、シルセスキオキサンオリゴマー(前記構造式1と同じ)10部、ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ社製IRGACURE 184)2.5部を均一に攪拌混合した後、脱泡して液状の光硬化性樹脂組成物を得たのち、本液状の光硬化性樹脂組成物を塗工装置へ投入し、これを毎分1mで巻き出した透明ポリイミドフィルムB2(幅300mm、厚さ0.1mm、全光線透過率80%以上)上へスロットダイコーター法にて両面に同時に塗布した。そして、透明カバーフィルム(ポリエチレンテレフタレートフィルム、幅300mm、厚さ0.1mm、光透過率90%以上)を塗工した光硬化性樹脂へ両面から圧着したのち、メタルハライドランプにて紫外線を500mj/cm2の割合で両面から照射した。硬化して得られた樹脂層の片側の厚みはそれぞれ0.05mmとなるようにした。その後、透明カバーフィルムを剥離除去し、「樹脂層(厚さ:0.05mm)−ポリイミドフィルム(厚さ:0.1mm)−樹脂層(厚さ:0.05mm)」の三層構造からなるフィルム積層体(合計厚さ:0.2mm)を得た。尚、各樹脂層の反応率を測定した結果は85%以上であった。
[Comparative Example 3]
90 parts of dimethylol-tricyclodecane diacrylate (light acrylate DCP-A manufactured by Kyoeisha Chemical Co., Ltd.), 10 parts of silsesquioxane oligomer (same as the above structural formula 1), hydroxycyclohexyl phenyl ketone (IRGACURE manufactured by Ciba Specialty Chemicals Co., Ltd.) 184) After stirring and mixing 2.5 parts uniformly, after defoaming to obtain a liquid photocurable resin composition, the liquid photocurable resin composition was put into a coating apparatus, It was simultaneously coated on both sides by a slot die coater method onto a transparent polyimide film B2 (width 300 mm, thickness 0.1 mm, total light transmittance 80% or more) unwound at 1 m / min. Then, after pressure-bonding from both sides to a photo-curing resin coated with a transparent cover film (polyethylene terephthalate film, width 300 mm, thickness 0.1 mm, light transmittance 90% or more), UV light is applied at 500 mj / cm 2 with a metal halide lamp. Were irradiated from both sides. The thickness of one side of the resin layer obtained by curing was set to 0.05 mm. Thereafter, the transparent cover film is peeled and removed, and a film laminate having a three-layer structure of “resin layer (thickness: 0.05 mm) −polyimide film (thickness: 0.1 mm) −resin layer (thickness: 0.05 mm)”. (Total thickness: 0.2 mm) was obtained. In addition, the result of having measured the reaction rate of each resin layer was 85% or more.

Figure 2016124157
Figure 2016124157

上記実施例及び比較例で得たフィルム積層体について、以下のとおり評価を行った。
[評価方法:表面硬度測定試験]
鉛筆硬度法(JIS−K5400)に準じて、各種硬度の鉛筆を90度の角度で得られたフィルム積層体の表面(樹脂層)に当て、荷重1kgで引っ掻き、傷が発生した時の鉛筆の硬さで表示した。その結果を表2に示す。
About the film laminated body obtained by the said Example and comparative example, it evaluated as follows.
[Evaluation method: Surface hardness measurement test]
According to the pencil hardness method (JIS-K5400), pencils of various hardnesses were applied to the surface (resin layer) of the film laminate obtained at an angle of 90 °, and scratched with a load of 1 kg. Displayed in hardness. The results are shown in Table 2.

[評価方法:耐熱評価試験]
熱風オーブンを使用し、得られたフィルム積層体を加熱温度200℃で1時間加熱した後の物性値(引っ張り弾性率)の変化を次の基準で評価した。
○:耐熱試験後にて物性値の低下無し
×:耐熱試験後にて物性値の低下有り
その結果を表2に示す。
[Evaluation method: Heat resistance evaluation test]
Using a hot air oven, changes in physical properties (tensile modulus) after the obtained film laminate was heated at a heating temperature of 200 ° C. for 1 hour were evaluated according to the following criteria.
○: No decrease in physical property value after heat test ×: There is a decrease in physical property value after heat test The results are shown in Table 2.

[評価方法:外観評価]
得られたフィルム積層体の製造後の外観評価を次の基準で評価した。
○:積層体の表面にクラック、変形等の外観異常無し
×:積層体の表面にクラック、変形等の外観異常有り
その結果を表2に示す。
[Evaluation method: Appearance evaluation]
Appearance evaluation after production of the obtained film laminate was evaluated according to the following criteria.
○: No abnormal appearance such as cracks and deformations on the surface of the laminate ×: Abnormal appearance such as cracks and deformations on the surface of the laminate The results are shown in Table 2.

Figure 2016124157
Figure 2016124157

本発明は光硬化性樹脂組成物を用いて得たポリイミドフィルム積層体を提供するものである。得られたポリイミドフィルム積層体は、高表面硬度性、耐擦傷性、耐摩耗性、耐薬品性、耐久性、表面平滑性及び耐熱性が要求される光学材料分野に適しており、具体的には、液晶ディスプレイ、電子ペーパー、タッチパネル、透明電極付きフィルム、レンズシート等の光学フィルムや、さらに今後の伸びが期待されるフレキシブルディスプレイの材料フィルムとしても好適に用いることができる。   This invention provides the polyimide film laminated body obtained using the photocurable resin composition. The obtained polyimide film laminate is suitable for the optical material field where high surface hardness, scratch resistance, abrasion resistance, chemical resistance, durability, surface smoothness and heat resistance are required. Can be suitably used as an optical film such as a liquid crystal display, electronic paper, a touch panel, a film with a transparent electrode, a lens sheet, and a material film for a flexible display which is expected to grow in the future.

Claims (6)

ガラス転移温度が250℃以上である樹脂層と、ガラス転移温度が230℃以上であるポリイミドフィルムとが積層されてなるポリイミドフィルム積層体であって、樹脂層が、光硬化性を有するかご型のシルセスキオキサン樹脂を含有した光硬化性樹脂組成物を硬化させて得たものであり、樹脂層とポリイミドフィルムとの厚みの比率(樹脂層の厚み÷ポリイミドフィルムの厚み)が0.05以上5.0以下であることを特徴とするポリイミドフィルム積層体。   A polyimide film laminate in which a resin layer having a glass transition temperature of 250 ° C. or more and a polyimide film having a glass transition temperature of 230 ° C. or more are laminated, and the resin layer is a cage type having photocurability It is obtained by curing a photocurable resin composition containing a silsesquioxane resin, and the ratio of the thickness of the resin layer to the polyimide film (the thickness of the resin layer ÷ the thickness of the polyimide film) is 0.05 or more. The polyimide film laminated body characterized by being 5.0 or less. 前記ポリイミドフィルムにおける樹脂層が積層された面と反対側の面に対して更に前記樹脂層が積層されており、ポリイミドフィルムの両面に積層された各樹脂層は、それぞれ樹脂層とポリイミドフィルムとの厚みの比率(樹脂層の厚み÷ポリイミドフィルムの厚み)が0.05以上5.0以下を満たすことを特徴とする請求項1に記載のポリイミドフィルム積層体。   The said resin layer is further laminated | stacked with respect to the surface on the opposite side to the surface where the resin layer in the said polyimide film was laminated | stacked, and each resin layer laminated | stacked on both surfaces of the polyimide film is respectively a resin layer and a polyimide film. 2. The polyimide film laminate according to claim 1, wherein a ratio of thickness (resin layer thickness ÷ polyimide film thickness) satisfies 0.05 or more and 5.0 or less. 前記ポリイミドフィルムにおける樹脂層の積層面は、樹脂層との密着性を向上させる表面活性処理が施されていることを特徴とする請求項1又は2に記載のポリイミドフィルム積層体。   3. The polyimide film laminate according to claim 1, wherein a surface activation treatment for improving adhesion with the resin layer is performed on a laminated surface of the resin layer in the polyimide film. 前記ポリイミドフィルムの全光線透過率が80%以上であることを特徴とする請求項1〜3のいずれかに記載のポリイミドフィルム積層体。   The total light transmittance of the said polyimide film is 80% or more, The polyimide film laminated body in any one of Claims 1-3 characterized by the above-mentioned. 前記かご型のシルセスキオキサン樹脂が、下記一般式(2)
[RSiO3/2]n (2)
(但し、Rは(メタ)アクリロイル基、グリシジル基又はビニル基のいずれか一つを有する有機官能基であり、nは8、10、12又は14である)で表されるかご型シルセスキオキサン樹脂であることを特徴とする請求項1〜4のいずれかに記載のポリイミドフィルム積層体。
The cage silsesquioxane resin has the following general formula (2):
[RSiO 3/2 ] n (2)
(Wherein R is an organic functional group having any one of (meth) acryloyl group, glycidyl group and vinyl group, and n is 8, 10, 12 or 14). It is a sun resin, The polyimide film laminated body in any one of Claims 1-4 characterized by the above-mentioned.
前記かご型のシルセスキオキサン樹脂が、下記一般式(1)
RSiX3 (1)
(但し、Rは(メタ)アクリロイル基、若しくはグリシジル基のいずれか一つを有する有機官能基、又は下記一般式(3)、(4)若しくは(5)
Figure 2016124157
(但し、mは1〜3の整数であり、R1 は水素原子又はメチル基を示す)であり、Xは加水分解性基を示す)で表されるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させてなるかご型シルセスキオキサン樹脂であることを特徴とする請求項1〜5のいずれかに記載のポリイミドフィルム積層体。
The cage silsesquioxane resin has the following general formula (1):
RSix 3 (1)
(However, R is an organic functional group having any one of (meth) acryloyl group or glycidyl group, or the following general formula (3), (4) or (5)
Figure 2016124157
(Wherein m is an integer of 1 to 3, R 1 represents a hydrogen atom or a methyl group, and X represents a hydrolyzable group) an organic polar solvent and a basic catalyst It is a cage-type silsesquioxane resin obtained by performing a hydrolysis reaction in the presence and partially condensing, and further recondensing the obtained hydrolysis product in the presence of a nonpolar solvent and a basic catalyst. The polyimide film laminate according to any one of claims 1 to 5.
JP2014265326A 2014-12-26 2014-12-26 Polyimide film laminate Expired - Fee Related JP6479463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014265326A JP6479463B2 (en) 2014-12-26 2014-12-26 Polyimide film laminate
KR1020150182780A KR20160079679A (en) 2014-12-26 2015-12-21 Polyimide film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265326A JP6479463B2 (en) 2014-12-26 2014-12-26 Polyimide film laminate

Publications (2)

Publication Number Publication Date
JP2016124157A true JP2016124157A (en) 2016-07-11
JP6479463B2 JP6479463B2 (en) 2019-03-06

Family

ID=56358604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265326A Expired - Fee Related JP6479463B2 (en) 2014-12-26 2014-12-26 Polyimide film laminate

Country Status (2)

Country Link
JP (1) JP6479463B2 (en)
KR (1) KR20160079679A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066002A (en) * 2016-10-21 2018-04-26 三星電子株式会社Samsung Electronics Co., Ltd. Plastic substrate and display device including the same
WO2018088542A1 (en) * 2016-11-11 2018-05-17 宇部興産株式会社 Laminted body including polyimide film and hard coat layer
WO2018096729A1 (en) * 2016-11-25 2018-05-31 株式会社ダイセル Hard coating film
WO2018166242A1 (en) * 2017-03-14 2018-09-20 华南理工大学 Method for preparing polyimide film having low dielectric constant and high fracture toughness
CN114181420A (en) * 2021-12-09 2022-03-15 宁波惠之星新材料科技有限公司 Additional coating for transparent polyimide film, use method of additional coating and cover plate film

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289865A (en) * 1991-03-19 1992-10-14 Fujitsu Ltd Manufacture for wiring structure
JPH05222193A (en) * 1990-10-26 1993-08-31 Internatl Business Mach Corp <Ibm> Enhancement of adhesion of polyimide to reactive metal
JP2005104025A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Laminated film with gas barrier properties and image display element using this laminated film
JP2006123307A (en) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd Gas barrier laminate
JP2008163107A (en) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc Optical member
JP2009221321A (en) * 2008-03-14 2009-10-01 Nippon Steel Chem Co Ltd Method for producing laminate
JP2011201256A (en) * 2010-03-26 2011-10-13 Nippon Steel Chem Co Ltd Decorative printing film laminate without printing level difference
JP2012183818A (en) * 2011-02-17 2012-09-27 Nippon Steel Chem Co Ltd Method of manufacturing injection-molded body using hardcoat film laminate for injection molding
JP2014000801A (en) * 2012-05-23 2014-01-09 Mazda Motor Corp Transparent laminate and method for manufacturing the same
WO2014020919A1 (en) * 2012-08-03 2014-02-06 マツダ株式会社 Transparent layered object and process for producing same
JP2014205294A (en) * 2013-04-12 2014-10-30 新日鉄住金化学株式会社 Resin laminate for thermoforming and method for molding the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332218A (en) 2006-06-13 2007-12-27 Tokuyama Corp Hardcoat liquid
JP2010280832A (en) 2009-06-05 2010-12-16 Chisso Corp Curable resin composition and optical film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222193A (en) * 1990-10-26 1993-08-31 Internatl Business Mach Corp <Ibm> Enhancement of adhesion of polyimide to reactive metal
JPH04289865A (en) * 1991-03-19 1992-10-14 Fujitsu Ltd Manufacture for wiring structure
JP2005104025A (en) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd Laminated film with gas barrier properties and image display element using this laminated film
JP2006123307A (en) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd Gas barrier laminate
JP2008163107A (en) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc Optical member
JP2009221321A (en) * 2008-03-14 2009-10-01 Nippon Steel Chem Co Ltd Method for producing laminate
JP2011201256A (en) * 2010-03-26 2011-10-13 Nippon Steel Chem Co Ltd Decorative printing film laminate without printing level difference
JP2012183818A (en) * 2011-02-17 2012-09-27 Nippon Steel Chem Co Ltd Method of manufacturing injection-molded body using hardcoat film laminate for injection molding
JP2014000801A (en) * 2012-05-23 2014-01-09 Mazda Motor Corp Transparent laminate and method for manufacturing the same
WO2014020919A1 (en) * 2012-08-03 2014-02-06 マツダ株式会社 Transparent layered object and process for producing same
JP2014205294A (en) * 2013-04-12 2014-10-30 新日鉄住金化学株式会社 Resin laminate for thermoforming and method for molding the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066002A (en) * 2016-10-21 2018-04-26 三星電子株式会社Samsung Electronics Co., Ltd. Plastic substrate and display device including the same
JP7028603B2 (en) 2016-10-21 2022-03-02 三星電子株式会社 Plastic substrate and display device including it
WO2018088542A1 (en) * 2016-11-11 2018-05-17 宇部興産株式会社 Laminted body including polyimide film and hard coat layer
WO2018088543A1 (en) * 2016-11-11 2018-05-17 宇部興産株式会社 Laminate comprising polyimide film and hard coat layer
CN109922956A (en) * 2016-11-11 2019-06-21 宇部兴产株式会社 Laminate comprising polyimide film and hard conating
JPWO2018088543A1 (en) * 2016-11-11 2019-10-10 宇部興産株式会社 Laminated body including polyimide film and hard coat layer
WO2018096729A1 (en) * 2016-11-25 2018-05-31 株式会社ダイセル Hard coating film
WO2018166242A1 (en) * 2017-03-14 2018-09-20 华南理工大学 Method for preparing polyimide film having low dielectric constant and high fracture toughness
US10882967B2 (en) 2017-03-14 2021-01-05 South China University Of Technology Method for preparing polyimide film having low dielectric constant and high fracture toughness
CN114181420A (en) * 2021-12-09 2022-03-15 宁波惠之星新材料科技有限公司 Additional coating for transparent polyimide film, use method of additional coating and cover plate film

Also Published As

Publication number Publication date
KR20160079679A (en) 2016-07-06
JP6479463B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP4920513B2 (en) Film laminate and method for producing the same
JP6479463B2 (en) Polyimide film laminate
KR101345170B1 (en) Film laminate and method of manufacturing the same
JP6939556B2 (en) Laminated film
US11654665B2 (en) Window cover film and flexible display panel including the same
WO2012060267A1 (en) Polycarbonate with hard coat layer
JP2015525143A (en) LAMINATE, LAMINATE MANUFACTURING METHOD, ELEMENT SUBSTRATE, ELEMENT SUBSTRATE MANUFACTURING METHOD, ELEMENT AND ELEMENT MANUFACTURING METHOD
JP2011140187A (en) Laminated film, transparent conductive laminated film, and electronic component
US12038559B2 (en) Window cover film and flexible display panel including the same
JP7401463B2 (en) Gas barrier laminate
JP2019034422A (en) Hard coat film
JP2015171770A (en) Glass with scattering prevention performance
JP2015058687A (en) Surface smoothed liquid crystal polymer film and gas barrier film
US11796718B2 (en) Optical laminate and flexible display panel including the same
JP2020203481A (en) Film and image display device
WO2021261195A1 (en) Optical film, optical film manufacturing method, transparent conductive film, and gas barrier film
JP2010201773A (en) Manufacturing method of surface functionality light curing sheet
JP2015034193A (en) Curable resin composition, cured product, laminate, hard coat film and film laminate
JP6171515B2 (en) Transparent laminated film and transparent substrate
JP5642498B2 (en) Four-layer laminate and manufacturing method thereof
WO2020235274A1 (en) Hard-coat film, article provided with hard-coat film, and image display device
JP6179211B2 (en) Laminated film for transparent substrate and display panel using the same
JP2014168948A (en) Transparent laminate film and transparent substrate
JP2014205278A (en) Transparent laminated film and transparent substrate
JP2013252687A (en) Resin sheet with hard coat layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees