JP2016124086A - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP2016124086A
JP2016124086A JP2015001399A JP2015001399A JP2016124086A JP 2016124086 A JP2016124086 A JP 2016124086A JP 2015001399 A JP2015001399 A JP 2015001399A JP 2015001399 A JP2015001399 A JP 2015001399A JP 2016124086 A JP2016124086 A JP 2016124086A
Authority
JP
Japan
Prior art keywords
atomic
layer
film
content ratio
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015001399A
Other languages
Japanese (ja)
Other versions
JP6529262B2 (en
Inventor
秀峰 小関
Hidemine Koseki
秀峰 小関
智也 佐々木
Tomoya Sasaki
智也 佐々木
謙一 井上
Kenichi Inoue
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Mitsubishi Hitachi Tool Engineering Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Tool Engineering Ltd, Hitachi Metals Ltd filed Critical Mitsubishi Hitachi Tool Engineering Ltd
Priority to JP2015001399A priority Critical patent/JP6529262B2/en
Publication of JP2016124086A publication Critical patent/JP2016124086A/en
Application granted granted Critical
Publication of JP6529262B2 publication Critical patent/JP6529262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coated tool excellent in durability.SOLUTION: A coated tool comprises a base material and an alternate laminate coating film arranged on the base material, in which the alternate laminate coating film is provided by alternately forming an (a1) layer composed of nitride or carbonitride of including by 75%-95% in the inclusion ratio (atomic%) of Al and by 5%-25% in the inclusion ratio (atomic%) of CR to the total amount of a metallic element (including semimetal) and an (a2) layer composed of nitride or carbonitride of including by 65%-85% in the inclusion ratio (atomic%) of Al and by 15%-35% in the inclusion ratio (atomic%) in Ti to the total amount of the metallic element (including the semimetal), and assuming the atomic ratio (atomic%) of a metallic (including the semimetal) element of the alternate laminate coating film as A and the atomic ratio (atomic%) of a nitrogen element as B, 1.02≤B/A≤1.07 is realized.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、切削工具や金型等の工具に適用される硬質皮膜を被覆した被覆工具に関する。   The present invention relates to a coated tool coated with a hard coating applied to a tool such as a cutting tool or a mold.

従来、切削工具や金型等に用いられる工具では、その耐久性を向上させることを目的に、物理蒸着法で多元系のセラミックス皮膜を被覆した被覆工具が採用されている。硬質皮膜の中でも、耐熱性と耐摩耗性に優れる膜種として、AlとCrを主体とするAlCrNやAlCrNCが知られている(特許文献1、2)。また、AlCrNとAlTiNとを交互に積層させた交互積層皮膜を設けた被覆工具も提案されている(特許文献3、4)。
AlとCrを主体とする窒化物または炭窒化物をベースに第三元素の添加や様々な皮膜構造が検討されているが、通常、AlとCrを主体とする窒化物または炭窒化物は、Alの含有量を高くすると皮膜中に脆弱なZnS型の六方最密充墳(hcp;以下、単に「hcp」と省略する)構造が増加して被覆工具の耐久性が低下する傾向にある。そのため、実際の被覆工具においては、AlとCrを主体とする窒化物または炭窒化物は、Alの含有比率を金属(半金属を含む)元素の原子比率(原子%)で70%未満の範囲で適用されている。
2. Description of the Related Art Conventionally, in tools used for cutting tools, dies, and the like, a coated tool in which a multi-component ceramic film is coated by a physical vapor deposition method has been adopted for the purpose of improving the durability. Among hard coatings, AlCrN and AlCrNC mainly composed of Al and Cr are known as film types having excellent heat resistance and wear resistance (Patent Documents 1 and 2). In addition, a coated tool provided with an alternating laminated film in which AlCrN and AlTiN are alternately laminated has been proposed (Patent Documents 3 and 4).
Addition of a third element and various coating structures based on nitrides or carbonitrides mainly composed of Al and Cr have been studied. Usually, nitrides or carbonitrides mainly composed of Al and Cr are When the Al content is increased, the fragile ZnS-type hexagonal close-packed (hcp; hereinafter simply abbreviated as “hcp”) structure increases in the coating, and the durability of the coated tool tends to decrease. Therefore, in an actual coated tool, a nitride or carbonitride mainly composed of Al and Cr has an Al content ratio in a range of less than 70% in terms of atomic ratio (atomic%) of metal (including metalloid) elements. Has been applied.

特開平8−209333号公報JP-A-8-209333 特開平11−216601号公報JP-A-11-216601 特開2014−91169号公報JP 2014-911169 A 特開2014−136265号公報JP 2014-136265 A

近年、金型や切削工具等の工具には、高硬度材等の高能率加工および高精度加工がより高いレベルで要求されており、工具の使用環境はより過酷になっている。そのため、従来のAlとCrを主体とする窒化物または炭窒化物を被覆した被覆工具では満足する耐久性が得られ難い場合があった。
本発明は上記のような事情に鑑み行われたものであり、耐久性に優れる被覆工具を提供することを目的とする。
In recent years, high-efficiency machining and high-precision machining of high-hardness materials and the like are required for tools such as molds and cutting tools at a higher level, and the usage environment of tools has become more severe. For this reason, it is sometimes difficult to obtain satisfactory durability with a conventional coated tool coated with a nitride or carbonitride mainly composed of Al and Cr.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a coated tool having excellent durability.

本発明は、基材と、前記基材の上に配置される交互積層皮膜と、を有し、
前記交互積層皮膜は、金属元素(半金属を含む。以下同様である)の総量に対し、Alの含有比率(原子%)が75%以上95%以下、Crの含有比率(原子%)が5%以上25%以下、を含有する窒化物または炭窒化物からなるa1層と、金属元素の総量に対し、Alの含有比率(原子%)が65%以上85%以下、Tiの含有比率(原子%)が15%以上35%以下、を含有する窒化物または炭窒化物からなるa2層とが交互に形成されたものであり、前記交互積層皮膜の金属元素の原子比率(原子%)をA、窒素元素の原子比率(原子%)をBとした場合、1.02≦B/A≦1.07である被覆工具である。
The present invention has a base material, and an alternating laminated film disposed on the base material,
The alternating laminated film has an Al content ratio (atomic%) of 75% or more and 95% or less and a Cr content ratio (atomic%) of 5% with respect to the total amount of metal elements (including metalloid, the same applies hereinafter). The Al content ratio (atomic%) is 65% or more and 85% or less with respect to the total amount of metal elements and the a1 layer made of nitride or carbonitride containing at least 25% and less than 25%. %) Is formed alternately with a2 layers made of nitride or carbonitride containing 15% or more and 35% or less, and the atomic ratio (atomic%) of the metal elements of the alternately laminated film is A When the atomic ratio (atomic%) of the nitrogen element is B, the coated tool satisfies 1.02 ≦ B / A ≦ 1.07.

前記a1層は、Alの含有比率(原子%)が85%以下であることが好ましい。   The a1 layer preferably has an Al content (atomic%) of 85% or less.

本発明は、耐久性に優れる被覆工具を提供することができる。   The present invention can provide a coated tool having excellent durability.

本発明例1のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the example 1 of this invention. 本発明例2のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the example 2 of this invention. 本発明例3のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the example 3 of this invention. 比較例1のX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of Comparative Example 1. FIG. 比較例2のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the comparative example 2.

本発明者の検討によれば、AlとCrの窒化物または炭窒化物に含まれるAlの含有量を増加させることで、皮膜自体の耐熱性が向上するとともに、加工中の工具刃先への溶着が減少し、切削抵抗が低減することを確認した。但し、AlとCrの窒化物または炭窒化物に含まれるAlの含有量が増加すると、脆弱なhcp構造のAlNの含有量が増大するため被覆工具の耐久性が低下する傾向にある。
本発明者は、皮膜のAl含有量を高めることを検討し、AlとCrを主体とする窒化物または炭窒化物からなるa1層と、AlとTiを主体とする窒化物または炭窒化物からなるa2層との交互積層皮膜を適用し、その交互積層皮膜における金属元素に対する窒素元素の含有比率を高めることで、交互積層皮膜が一定量のhcp構造のAlNを含有する場合でも被覆工具の耐久性が低下し難くなることを見出し、発明に到達した。以下、本発明の構成要件について説明をする。
According to the inventor's study, by increasing the Al content in Al and Cr nitrides or carbonitrides, the heat resistance of the coating itself is improved and welding to the tool edge during processing is performed. It was confirmed that the cutting resistance was reduced. However, when the content of Al contained in the nitrides and carbonitrides of Al and Cr increases, the content of AlN having a fragile hcp structure increases, so that the durability of the coated tool tends to decrease.
The present inventor has studied to increase the Al content of the film, from the a1 layer made of nitride or carbonitride mainly composed of Al and Cr, and from the nitride or carbonitride mainly composed of Al and Ti. By applying an alternate layer coating with the a2 layer and increasing the content ratio of nitrogen element to metal element in the alternate layer coating, durability of the coated tool is maintained even when the alternate layer coating contains a certain amount of AlN having an hcp structure. The inventors have found that the property is hardly lowered and have reached the invention. Hereinafter, the configuration requirements of the present invention are described.

a1層は、金属元素の総量に対し、Alの含有比率(原子%)が75%以上95%以下、Crの含有比率(原子%)が5%以上25%以下、を含有する窒化物または炭窒化物とする。
a1層のAlの含有比率が小さくなり過ぎれば、交互積層皮膜の全体でAlの含有量が低下して耐熱性が低下するとともに、加工中の切削抵抗も増加する傾向にある。一方、a1層のAlの含有比率が大きくなり過ぎれば、脆弱なhcp構造のAlNの含有量が増大するため被覆工具の耐久性が低下する傾向にある。よって、a1層は、金属元素の総量に対し、Alの含有比率(原子%)が75%以上95%以下とする。
交互積層皮膜に含まれるhcp構造のAlNをより低減するには、a1層のAlの含有比率(原子%)は85%以下とすることが好ましい。交互積層皮膜の耐熱性をより高め、切削抵抗をより低減するには、a1層のAlの含有比率(原子%)は、80%以上とすることが好ましい。
また、a1層のCrの含有比率が小さくなり過ぎれば、脆弱なhcp構造のAlNの含有量が増大するため被覆工具の耐久性が低下する。一方、a1層のCrの含有比率が大きくなり過ぎれば、相対的にAlの含有量が低下して、皮膜全体の耐熱性が低下するとともに、加工中の切削抵抗も増加する傾向にある。よって、a1層は、金属元素の総量に対し、Crの含有比率(原子%)を5%以上25%以下とする。
交互積層皮膜に含まれるhcp構造のAlNをより低減するには、a1層のCrの含有比率は、15%以上とすることが好ましい。a1層のCrの含有比率(原子%)は、20%以下とすることが好ましい。
The a1 layer is a nitride or charcoal containing an Al content ratio (atomic%) of 75% to 95% and a Cr content ratio (atomic%) of 5% to 25% with respect to the total amount of metal elements. Nitride.
If the Al content ratio of the a1 layer becomes too small, the Al content in the entire alternating laminated film decreases, heat resistance decreases, and cutting resistance during processing tends to increase. On the other hand, if the Al content ratio of the a1 layer becomes too large, the content of AlN having a fragile hcp structure increases, and the durability of the coated tool tends to be lowered. Therefore, the a1 layer has an Al content ratio (atomic%) of 75% to 95% with respect to the total amount of metal elements.
In order to further reduce the AlN having an hcp structure contained in the alternately laminated film, the Al content ratio (atomic%) in the a1 layer is preferably 85% or less. In order to further increase the heat resistance of the alternately laminated film and further reduce the cutting resistance, the Al content ratio (atomic%) of the a1 layer is preferably 80% or more.
Further, if the content ratio of Cr in the a1 layer becomes too small, the content of AlN having a fragile hcp structure increases, so that the durability of the coated tool decreases. On the other hand, if the content ratio of Cr in the a1 layer is too large, the Al content is relatively lowered, the heat resistance of the entire film is lowered, and the cutting resistance during processing tends to be increased. Therefore, the a1 layer has a Cr content ratio (atomic%) of 5% to 25% with respect to the total amount of metal elements.
In order to further reduce the AlN having an hcp structure contained in the alternately laminated film, the content ratio of Cr in the a1 layer is preferably 15% or more. The content ratio (atomic%) of Cr in the a1 layer is preferably 20% or less.

a2層は、金属元素の総量に対し、Alの含有比率(原子%)が65%以上85%以下、Tiの含有比率(原子%)が15%以上35%以下、を含有する窒化物または炭窒化物とする。
a2層のAlの含有比率が小さくなり過ぎれば、皮膜全体の耐熱性が低下するとともに、加工中の切削抵抗も増加する傾向にある。一方、a2層のAlの含有比率が大きくなり過ぎれば、脆弱なhcp構造のAlNの含有量が増大するため被覆工具の耐久性が低下する傾向にある。よって、a2層は、金属元素の総量に対し、Alの含有比率(原子%)を65%以上85%以下とする。
交互積層皮膜に含まれるhcp構造のAlNをより低減するには、a2層のAlの含有比率(原子%)は、80%以下とすることが好ましい。交互積層皮膜の耐熱性をより高め、切削抵抗をより低減するには、a2層のAlの含有比率(原子%)は、70%以上とすることが好ましい。
また、a2層のTiの含有比率が小さくなり過ぎれば、被覆工具の耐久性が低下する傾向にある。一方、a2層のTiの含有比率が大きくなり過ぎれば、皮膜全体の耐熱性が低下するとともに、加工中の切削抵抗も増加する傾向にある。よって、a2層は、金属元素の総量に対し、Tiの含有比率(原子%)を15%以上35%以下とする。
交互積層皮膜に含まれるhcp構造のAlNをより低減するには、a2層のTiの含有比率(原子%)は、20%以上とすることが好ましい。a2層のTiの含有比率(原子%)は、30%以下とすることが好ましい。
The a2 layer is a nitride or charcoal containing an Al content ratio (atomic%) of 65% to 85% and a Ti content ratio (atomic%) of 15% to 35% with respect to the total amount of metal elements. Nitride.
If the Al content ratio of the a2 layer becomes too small, the heat resistance of the entire film is lowered and the cutting resistance during processing tends to increase. On the other hand, if the Al content ratio of the a2 layer becomes too large, the content of AlN having a fragile hcp structure increases, and the durability of the coated tool tends to decrease. Therefore, the a2 layer has an Al content ratio (atomic%) of 65% to 85% with respect to the total amount of metal elements.
In order to further reduce the AlN having an hcp structure contained in the alternately laminated film, the Al content ratio (atomic%) in the a2 layer is preferably 80% or less. In order to further increase the heat resistance of the alternately laminated film and further reduce the cutting resistance, the Al content ratio (atomic%) of the a2 layer is preferably set to 70% or more.
Moreover, if the Ti content ratio of the a2 layer becomes too small, the durability of the coated tool tends to be lowered. On the other hand, if the content ratio of Ti in the a2 layer becomes too large, the heat resistance of the entire film is lowered and the cutting resistance during processing tends to increase. Therefore, the a2 layer has a Ti content ratio (atomic%) of 15% to 35% with respect to the total amount of metal elements.
In order to further reduce the AlN having an hcp structure contained in the alternately laminated film, the Ti content ratio (atomic%) in the a2 layer is preferably 20% or more. The Ti content (atomic%) in the a2 layer is preferably 30% or less.

交互積層皮膜における全体の金属元素の原子比率(原子%)をA、窒素元素の原子比率(原子%)をBとした場合、1.02≦B/A≦1.07とする。
本発明では、交互積層皮膜の個々の組成を制御することに加えて、交互積層皮膜における金属元素の原子比率(原子%)に対して窒素元素の原子比率(原子%)を一定範囲に制御することが重要である。交互積層皮膜に含まれる窒素元素の原子比率(原子%)を高めて、B/Aを1.02以上とすることで、交互積層皮膜の結晶性および耐熱性が向上し、一定量のhcp構造のAlNを含有しても、優れた耐久性を再現できることを確認した。更には、B/Aは、1.04以上とすることが好ましい。
一方、窒素元素の原子比率(原子%)が大きくなり過ぎ、B/Aが1.07よりも大きくなると、皮膜の残留圧縮応力が大きくなりすぎて被覆工具の耐久性が低下する。そのため、B/Aは1.07以下とする。
When the atomic ratio (atomic%) of the entire metal element in the alternating laminated film is A and the atomic ratio (atomic%) of the nitrogen element is B, 1.02 ≦ B / A ≦ 1.07.
In the present invention, in addition to controlling the individual composition of the alternating laminated film, the atomic ratio (atomic%) of the nitrogen element is controlled within a certain range with respect to the atomic ratio (atomic%) of the metal element in the alternating laminated film. This is very important. By increasing the atomic ratio (atomic%) of the nitrogen element contained in the alternating laminated film and setting B / A to 1.02 or more, the crystallinity and heat resistance of the alternating laminated film are improved, and a certain amount of hcp structure is obtained. It was confirmed that excellent durability can be reproduced even if AlN is contained. Furthermore, B / A is preferably 1.04 or more.
On the other hand, if the atomic ratio (atomic%) of the nitrogen element becomes too large and B / A becomes larger than 1.07, the residual compressive stress of the coating becomes too large and the durability of the coated tool is lowered. Therefore, B / A is 1.07 or less.

本発明において、交互積層皮膜は、酸素等を不可避的に含有する。そのため、交互積層皮膜の分析において、金属元素と窒素、酸素、炭素元素との合計を100%としてB/Aの比率を求める。交互積層皮膜の組成分析は、例えば、波長分散型電子プローブ微小分析(WDS−EPMA)で測定するとができる。   In the present invention, the alternately laminated film inevitably contains oxygen and the like. Therefore, in the analysis of the alternately laminated film, the ratio of B / A is obtained by setting the total of metal elements and nitrogen, oxygen, and carbon elements as 100%. The composition analysis of the alternately laminated film can be measured by, for example, wavelength dispersion type electron probe microanalysis (WDS-EPMA).

a1層は、Alの含有比率(原子%)が75%以上95%以下、Crの含有比率(原子%)が5%以上25%以下、を含有する範囲で、AlとCr以外の金属元素を含有することができる。また、a2層は、Alの含有比率(原子%)が65%以上85%以下、Tiの含有比率(原子%)が15%以上35%以下、を含有する範囲で、AlとTi以外の金属元素を含有することができる。
a1層とa2層に他の金属元素を含有する場合、a1層とa2層のそれぞれに含有する他の金属元素の含有比率(原子%)を10%以下にすることで、皮膜特性を低下させることなく、被覆工具が優れた耐久性を発揮することができ好ましい。a1層とa2層に添加する金属元素は、周期律表の4a族、5a族、6a族の金属元素およびSi、Bから選択される1種または2種以上の元素であることが好ましい。
a1層とa2層は、窒化物または炭窒化物であれば、皮膜の一部に酸素等の非金属元素を含有してもよい。a1層とa2層は、耐熱性が優れる皮膜種である窒化物であることがより好ましい。
The a1 layer contains a metal element other than Al and Cr within a range that the Al content ratio (atomic%) is 75% to 95% and the Cr content ratio (atomic%) is 5% to 25%. Can be contained. Further, the a2 layer has a content ratio of Al (atomic%) of 65% to 85% and a Ti content ratio (atomic%) of 15% to 35%. It can contain elements.
When other metal elements are contained in the a1 layer and the a2 layer, the film characteristics are lowered by setting the content ratio (atomic%) of other metal elements contained in each of the a1 layer and the a2 layer to 10% or less. Therefore, the coated tool is preferable because it can exhibit excellent durability. The metal element added to the a1 layer and the a2 layer is preferably one or more elements selected from the group 4a group, 5a group, and 6a group metal elements of the periodic table, and Si and B.
If the a1 layer and the a2 layer are nitrides or carbonitrides, a part of the film may contain a nonmetallic element such as oxygen. The a1 layer and the a2 layer are more preferably nitrides which are film types having excellent heat resistance.

a1層とa2層の個々の膜厚が大きくなり過ぎると、hcp構造のAlNが増大し易くなり被覆工具の耐久性が低下する傾向にある。そのため、a1層とa2層の個々の膜厚は70nm以下とすることが好ましい。より好ましい膜厚は50nm以下である。被覆工具の性能をより安定化させるには、a1層とa2層の個々の膜厚は5nm以上とすることが好ましく、更には10nm以上とすることが好ましい。   If the individual film thicknesses of the a1 layer and the a2 layer are too large, the AlN of the hcp structure tends to increase and the durability of the coated tool tends to decrease. Therefore, the individual film thicknesses of the a1 layer and the a2 layer are preferably 70 nm or less. A more preferable film thickness is 50 nm or less. In order to further stabilize the performance of the coated tool, the individual film thicknesses of the a1 layer and the a2 layer are preferably 5 nm or more, and more preferably 10 nm or more.

交互積層皮膜の全体組成は、金属元素の総量に対し、Alの含有比率(原子%)を70%以上とすることが好ましい。交互積層皮膜の全体でAlの含有比率を70%以上とすることで、皮膜全体の耐熱性が向上するとともに、加工中の溶着を抑制することができる。更には、交互積層皮膜の全体でAlの含有比率(原子%)を75%以上とすることが好ましく、更には80%以上とすることが好ましい。
一方、交互積層皮膜の全体組成のAlの含有比率が大きくなり過ぎると、hcp構造のAlNが増大する傾向を示す。そのため、より高い耐久性を確保するには、交互積層皮膜の全体組成でAlの含有比率(原子%)を85%以下とすることが好ましい。
The total composition of the alternating laminated film is preferably such that the Al content ratio (atomic%) is 70% or more with respect to the total amount of metal elements. By setting the Al content ratio to 70% or more in the entire laminated film, the heat resistance of the entire film is improved and welding during processing can be suppressed. Furthermore, the Al content ratio (atomic%) is preferably 75% or more, and more preferably 80% or more in the entire alternating multilayer coating.
On the other hand, when the Al content ratio of the overall composition of the alternating laminated film becomes too large, AlN having an hcp structure tends to increase. Therefore, in order to ensure higher durability, it is preferable that the Al content ratio (atomic%) is 85% or less in the entire composition of the alternately laminated film.

本発明の交互積層皮膜は、X線回折等で特定される結晶構造において、面心立方格子(fcc;以下、単に「fcc」と略記する)構造に対応するピーク強度が最大である。本発明において、fcc構造が主体とは、例えば、X線回折においてfcc構造に対応するピーク強度が最大であることをいう。X線回折による結晶構造の同定が困難な場合、透過電子顕微鏡(TEM)を用いた制限視野回折法によって結晶構造の同定することができる。
本発明の交互積層皮膜は、fcc構造のピーク強度のうち、fcc構造の(200)面または(111)面の何れかが最大強度を示すものである。fcc構造の(200)面または(111)面の何れかが最大強度を示すことで、より高い耐久性を発揮する傾向にある。本発明の交互積層皮膜は、fcc構造に対応するピーク強度が最大であれば、hcp構造に起因するピークが確認されてもよい。
The alternating multilayer coating of the present invention has the maximum peak intensity corresponding to a face-centered cubic lattice (fcc; hereinafter simply abbreviated as “fcc”) structure in a crystal structure specified by X-ray diffraction or the like. In the present invention, “mainly fcc structure” means that, for example, the peak intensity corresponding to the fcc structure is maximum in X-ray diffraction. When it is difficult to identify a crystal structure by X-ray diffraction, the crystal structure can be identified by a limited field diffraction method using a transmission electron microscope (TEM).
In the alternating laminated film of the present invention, either the (200) plane or the (111) plane of the fcc structure shows the maximum intensity among the peak intensities of the fcc structure. When either the (200) plane or the (111) plane of the fcc structure shows the maximum strength, higher durability tends to be exhibited. If the peak intensity corresponding to the fcc structure is the maximum, the peak resulting from the hcp structure may be confirmed in the alternately laminated film of the present invention.

本発明の交互積層皮膜は、hcp構造のAlNを含有する場合でも、X線回折におけるhcp構造の(100)面に起因するピーク強度をIh、fcc構造の(111)面、fcc構造の(200)面、fcc構造の(220)面に起因するピーク強度の合計をIfとした場合、Ih/(If+Ih)を0.4以下にすることが好ましい。Ih/(If+Ih)を0.4以下にすることで、hcp構造のAlNがより減少して耐久性が向上する傾向にある。更には、Ih/(If+Ih)を0.2以下とすることが好ましい。   Even when the alternating laminated film of the present invention contains AlN having an hcp structure, the peak intensity due to the (100) plane of the hcp structure in X-ray diffraction is Ih, the (111) plane of the fcc structure, and the (200) of the fcc structure (200). ) Plane and the total peak intensity due to the (220) plane of the fcc structure is set to If, Ih / (If + Ih) is preferably set to 0.4 or less. By setting Ih / (If + Ih) to 0.4 or less, the AlN of the hcp structure is further reduced and the durability tends to be improved. Furthermore, Ih / (If + Ih) is preferably 0.2 or less.

交互積層皮膜の全体の膜厚が薄くなり過ぎても、厚くなり過ぎても被覆工具の耐久性を向上する効果が小さい場合がある。そのため、交互積層皮膜の全体の膜厚は0.5μm以上10.0μm以下とすることが好ましい。更には、交互積層皮膜の膜厚の下限は、1.0μm以上とすることが好ましい。更には、交互積層皮膜の膜厚の上限は、5.0μm以上とすることが好ましい。
本発明においては、交互積層皮膜の上層に金属、窒化物、炭窒化物、炭化物、硼化物からなる別層を設けてもよい。また、基材と交互積層皮膜の間に金属、窒化物、炭窒化物、炭化物からなる中間皮膜を設けてもよい。
The effect of improving the durability of the coated tool may be small even if the total thickness of the alternating laminated film becomes too thin or too thick. Therefore, it is preferable that the total film thickness of the alternating laminated film is 0.5 μm or more and 10.0 μm or less. Furthermore, it is preferable that the minimum of the film thickness of an alternating laminated film shall be 1.0 micrometer or more. Furthermore, the upper limit of the film thickness of the alternately laminated film is preferably 5.0 μm or more.
In the present invention, another layer made of metal, nitride, carbonitride, carbide, or boride may be provided on the upper layer of the alternately laminated film. Further, an intermediate film made of metal, nitride, carbonitride, or carbide may be provided between the base material and the alternately laminated film.

本発明の基材は、特に制限されるものではなく、用途や目的等に応じて適宜選択することができる。例えば、超硬合金、セラミックス、サーメット、冷間工具鋼、高速度工具鋼、プラスチック金型用鋼、熱間工具鋼等を適用することができる。また、基材には窒化処理や浸炭処理等を施したものを用いてもよい。   The base material of the present invention is not particularly limited, and can be appropriately selected according to the use and purpose. For example, cemented carbide, ceramics, cermet, cold tool steel, high speed tool steel, plastic mold steel, hot tool steel, etc. can be applied. Moreover, you may use what performed the nitriding process, the carburizing process, etc. to a base material.

アークイオンプレーティング法では、成膜する金属成分で形成されたターゲットをカソード(陰極)として、該カソードとアノード(陽極)との間に真空アーク放電を発生させ、ターゲット表面から材料を蒸発、イオン化して、負のバイアス電圧を印加した基材の表面にイオン化したターゲット成分を堆積させて皮膜を形成する。このとき、アーク放電によりカソード(ターゲット)から放電された電子はアノードに向かって飛び、その電子が供給された窒素ガス等の反応ガスと衝突することでガス成分がイオン化し、イオン化したガス成分とターゲット成分とが反応して基材の表面に皮膜を形成する。ここで、電子エネルギー(eV)は電圧に比例することから、カソード電圧を高めることで電子エネルギーが高まり、反応ガスのイオン化がより促進されて、fcc構造の比率がより高まるとともに、皮膜中の窒素の含有比率を高めることができる。
本発明者の検討によると、Alの含有量が多いAlとCrの窒化物または炭窒化物の被覆において、カソード電圧を高めることが皮膜中のhcp構造を低減して、皮膜中の窒素含有比率を高めるのに有効であることを知見した。
In the arc ion plating method, a target formed of a metal component to be deposited is used as a cathode (cathode), a vacuum arc discharge is generated between the cathode and the anode (anode), and the material is evaporated and ionized from the target surface. Then, an ionized target component is deposited on the surface of the substrate to which a negative bias voltage is applied to form a film. At this time, the electrons discharged from the cathode (target) by the arc discharge fly toward the anode, and the gas components are ionized by colliding with the reaction gas such as nitrogen gas supplied with the electrons, and the ionized gas components and The target component reacts to form a film on the surface of the substrate. Here, since the electron energy (eV) is proportional to the voltage, the electron energy is increased by increasing the cathode voltage, the ionization of the reaction gas is further promoted, the ratio of the fcc structure is further increased, and the nitrogen in the film is increased. The content ratio of can be increased.
According to the inventor's study, in the coating of Al and Cr nitrides or carbonitrides with a high Al content, increasing the cathode voltage reduces the hcp structure in the film, and the nitrogen content ratio in the film It was found to be effective in increasing

交互積層皮膜の全体でhcp構造のAlNを低減して窒素含有量を高めるには、AlとCrの窒化物または炭窒化物であるa1層の被覆において、カソード電圧を20Vよりも大きくすることが好ましい。更には、a1層の被覆においてカソード電圧を22V以上とすることが好ましい。一方、カソード電圧が高くなり過ぎるとa1層の成膜が安定し難くなるので、カソード電圧は35V以下とすることが好ましい。更には、a1層の被覆ではカソード電圧を30V以下とすることが好ましい。
AlとTiの窒化物または炭窒化物であるa2層の被覆では、カソード電圧は20V以上35V以下とすることが好ましい。
In order to reduce the hcp-structured AlN and increase the nitrogen content in the entire laminated film, the cathode voltage should be made higher than 20 V in the coating of the a1 layer which is a nitride or carbonitride of Al and Cr. preferable. Furthermore, it is preferable that the cathode voltage is 22 V or more in the coating of the a1 layer. On the other hand, if the cathode voltage becomes too high, the formation of the a1 layer becomes difficult to stabilize, so the cathode voltage is preferably set to 35 V or less. Furthermore, it is preferable that the cathode voltage is 30 V or less in the coating of the a1 layer.
In the coating of the a2 layer made of Al and Ti nitride or carbonitride, the cathode voltage is preferably set to 20 V or more and 35 V or less.

そして、交互積層皮膜の全体でhcp構造を低減した上で窒素含有量を高めるには、被覆中の基材に印加する負のバイアス電圧を制御することも重要である。a1層の被覆においてカソード電圧を高めたとしても基材に印加するバイアス電圧の絶対値が小さいと、皮膜中の窒素含有量が低下するとともに、皮膜中のhcp構造のAlNが増加し易くなる。また、基材に印加するバイアス電圧の絶対値が大きいと成膜が安定し難くなる。そのため、基材に印加するバイアス電圧を−220V以上−80V以下で被覆することが好ましい。   And, in order to increase the nitrogen content while reducing the hcp structure in the entire alternating laminated film, it is also important to control the negative bias voltage applied to the substrate being coated. Even if the cathode voltage is increased in the coating of the a1 layer, if the absolute value of the bias voltage applied to the substrate is small, the nitrogen content in the film is lowered and the AlN of the hcp structure in the film is likely to increase. In addition, when the absolute value of the bias voltage applied to the substrate is large, film formation becomes difficult. Therefore, it is preferable that the bias voltage applied to the substrate is covered with −220V or more and −80V or less.

本発明の交互積層皮膜は、上述したバイアス電圧とカソード圧力の制御に加えて、ターゲット中心付近の垂直方向成分の平均磁束密度が14mT以上のカソードを用いて被覆することが好ましい。このようなカソードを用いて硬質皮膜を被覆することで、皮膜の結晶性がより高まり、皮膜中のhcp構造のAlNが低減し易くなる。更に、ターゲット中心付近から基材付近まで磁力線が到達するように磁場配置を調整したカソードを用いることが好ましい。   In addition to the control of the bias voltage and the cathode pressure described above, the alternating laminated film of the present invention is preferably coated with a cathode having an average magnetic flux density of 14 mT or more in the vertical direction component near the target center. By coating the hard coating using such a cathode, the crystallinity of the coating is further increased, and the AlN of the hcp structure in the coating is easily reduced. Furthermore, it is preferable to use a cathode whose magnetic field arrangement is adjusted so that the lines of magnetic force reach from the vicinity of the target center to the vicinity of the substrate.

WC基超硬合金からなる切削評価用のエンドミルと物性評価用のインサートを基材に用い、各条件で交互積層皮膜等の硬質皮膜を被覆して被覆試料を作製して特性評価を行った。
硬質皮膜の成膜にはアークイオンプレーティング成膜装置を用いた。真空容器内に設置した基材にはバイアス電源が接続されおり、基材に負のDCバイアス電圧を印加して硬質皮膜を被覆した。
表1に成膜に用いたカソードおよびバイアス条件について示す。本発明のa1層とa2層の被覆には、ターゲットの外周および背面に永久磁石を配備し、15mTの平均磁束密度のカソード(以下、C1、C2と記載する)を用いた。
Using an end mill for cutting evaluation made of a WC-based cemented carbide and an insert for evaluating physical properties as a base material, a coated film was prepared by coating a hard film such as an alternating laminated film under each condition, and the characteristics were evaluated.
An arc ion plating film forming apparatus was used for forming the hard film. A bias power source was connected to the base material installed in the vacuum vessel, and a negative DC bias voltage was applied to the base material to coat the hard film.
Table 1 shows cathodes and bias conditions used for film formation. For covering the a1 layer and the a2 layer of the present invention, permanent magnets were provided on the outer periphery and the back surface of the target, and cathodes (hereinafter referred to as C1 and C2) having an average magnetic flux density of 15 mT were used.

基材を真空容器内のパイプ状治具に固定し、約500℃、1×10−3Paの真空中で加熱脱ガスを行った後、Arプラズマによるクリーニングを行った。そして、8×10−3Pa以下になるように真空排気して、150Aのアーク電流を供給してTiボンバード処理を4分間実施した。その後、炉内に窒素ガスを導入して炉内圧力を5Paとした。
本発明例1〜3、比較例1の被覆では、基材にバイアス電圧を印加し、C1とC2のそれぞれにアーク電流を投入し、a1層とa2層の個々の膜厚が約20nmになるように成膜し、約2.5μmの交互積層皮膜を被覆した。
比較例2は、単層皮膜からなるAlCrNの窒化物を約2.5μm被覆して作製した。
The substrate was fixed to a pipe-shaped jig in a vacuum vessel, heated and degassed in a vacuum of about 500 ° C. and 1 × 10 −3 Pa, and then cleaned with Ar plasma. And it vacuum-evacuated so that it might become 8 * 10 < -3 > Pa or less, the arc current of 150A was supplied, and Ti bombarding process was implemented for 4 minutes. Thereafter, nitrogen gas was introduced into the furnace so that the pressure in the furnace was 5 Pa.
In the coatings of Invention Examples 1 to 3 and Comparative Example 1, a bias voltage is applied to the substrate, an arc current is applied to each of C1 and C2, and the individual film thicknesses of the a1 layer and the a2 layer are about 20 nm. The film was formed in such a manner as to cover an alternating laminated film of about 2.5 μm.
Comparative Example 2 was fabricated by coating about 2.5 μm of AlCrN nitride composed of a single layer coating.

Figure 2016124086
Figure 2016124086

株式会社日本電子製の電子プローブマイクロアナライザー装置(型番:JXA−8500F)を用いて、付属の波長分散型電子プローブ微小分析(WDS−EPMA)で交互積層皮膜の皮膜組成を測定した。物性評価用のインサートを断面加工して、加速電圧10kV、照射電流5×10−8A、取り込み時間10秒、分析領域直径1μm、分析深さが略1μmで5点測定してその平均から皮膜組成を求めた。
B/Aの値は、金属元素(半金属を含む)と、窒素元素、酸素元素、炭素元素の合計を100%として求めた。
Using an electronic probe microanalyzer device (model number: JXA-8500F) manufactured by JEOL Ltd., the film composition of the alternately laminated film was measured by the attached wavelength dispersion type electron probe microanalysis (WDS-EPMA). Cross section processing of insert for physical property evaluation, acceleration voltage 10 kV, irradiation current 5 × 10 −8 A, uptake time 10 seconds, analysis area diameter 1 μm, analysis depth is approximately 1 μm, and 5 points are measured and the film is obtained from the average The composition was determined.
The value of B / A was determined by setting the total of metal elements (including metalloids), nitrogen elements, oxygen elements, and carbon elements as 100%.

日本電子株式会社製の電界放出型透過電子顕微鏡(型番:JEM−2010F型)を用いて分析用のインサートを加工してTEM解析を行った。a1層とa2層の組成分析は、付属のUTW型Si(Li)半導体検出器を用いてビーム径1nmでa1層とa2層の中心付近を分析して求めた。   The insert for analysis was processed using a field emission transmission electron microscope (model number: JEM-2010F type) manufactured by JEOL Ltd., and TEM analysis was performed. The composition analysis of the a1 layer and the a2 layer was obtained by analyzing the vicinity of the center of the a1 layer and the a2 layer with a beam diameter of 1 nm using an attached UTW type Si (Li) semiconductor detector.

株式会社エリオニクス製のナノインデンテーション装置(型番:ENT−1100a)を用いて交互積層皮膜等の硬度皮膜の表面硬度を測定した。この硬度測定は、分析用のインサートの表面から、押込み荷重49mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、その平均値を求めた。   The surface hardness of a hardness film such as an alternating laminated film was measured using a nanoindentation device (model number: ENT-1100a) manufactured by Elionix Co., Ltd. This hardness measurement was performed by measuring 10 points from the surface of the insert for analysis under the measurement conditions of an indentation load of 49 mN, a maximum load holding time of 1 second, and a removal speed after loading of 0.49 mN / second, and the average value was obtained. .

株式会社リガク製のX線回折装置(型番:RINT2500V−PSRC/MDG)を用いて皮膜の結晶構造を測定した。このX線回折は、物性評価用のインサートを用いて、管電圧40kV、管電流300mA、X線源Cukα(λ=0.15418nm)、2θが20〜70度の測定条件で実施した。
バックグラウンドを除去し、hcp構造の(100)面に起因するピーク強度をIh、fcc構造の(111)面、fcc構造の(200)面、fcc構造の(220)面に起因するピーク強度の合計をIfとし、Ih/(If+Ih)を測定した。
The crystal structure of the film was measured using an X-ray diffractometer (model number: RINT2500V-PSRC / MDG) manufactured by Rigaku Corporation. This X-ray diffraction was performed using an insert for evaluating physical properties under measurement conditions of a tube voltage of 40 kV, a tube current of 300 mA, an X-ray source Cukα (λ = 0.15418 nm), and 2θ of 20 to 70 degrees.
The background is removed, and the peak intensity attributed to the (100) plane of the hcp structure is represented by Ih, the (111) plane of the fcc structure, the (200) plane of the fcc structure, and the (220) plane of the fcc structure. The sum is If, and Ih / (If + Ih) is measured.

Figure 2016124086
Figure 2016124086

各試料の特性評価を表2に纏める。本発明例2と比較例1の比較から、a1層を被覆するときのカソード電圧を高めることで、交互積層皮膜のB/Aが高くなることが確認された。
図1〜3に本発明例1〜3のX線回折結果を示す。図4、5に比較例1、2のX線回折結果を示す。fcc構造の(111)面のピーク強度は37.7°付近、fcc構造の(200)面のピーク強度は43.7°付近、fcc構造の(220)面のピーク強度は63°付近、hcp構造の(100)面のピーク強度は33°付近から求められる。これらのX線回折結果からバックグラウンド強度を除去して、Ih/(If+Ih)を求めたところ、本発明例の中でも、本発明例1、2は、Ih/(If+Ih)がより小さく、hcp構造のAlNがより少ないことが確認された。
The characteristic evaluation of each sample is summarized in Table 2. From comparison between Invention Example 2 and Comparative Example 1, it was confirmed that the B / A of the alternately laminated film was increased by increasing the cathode voltage when coating the a1 layer.
1-3 show the X-ray diffraction results of Examples 1 to 3 of the present invention. 4 and 5 show the X-ray diffraction results of Comparative Examples 1 and 2. FIG. The peak intensity of the (111) plane of the fcc structure is around 37.7 °, the peak intensity of the (200) plane of the fcc structure is around 43.7 °, the peak intensity of the (220) plane of the fcc structure is around 63 °, hcp The peak intensity of the (100) plane of the structure is obtained from around 33 °. The background intensity was removed from these X-ray diffraction results, and Ih / (If + Ih) was determined. Among the inventive examples, inventive examples 1 and 2 had a smaller Ih / (If + Ih) and an hcp structure. It was confirmed that there was less AlN.

切削評価は以下の条件1と条件2で実施した。評価結果を表3に示す。
<切削試験 条件1>
工具:ソリッドエンドミル
φ10×2枚刃(日立ツール株式会社製 HES2100)
基材:WC(bal.)−Co(11質量%)−TaC(0.4質量%)−Cr(0.9質量%)、WC平均粒径0.6μm、硬度92.4HRAの超硬合金
切削方法:側面切削
被削材:質量%で、Ni−19%Cr−18.7%Fe−3.0%Mo−5.0%(Nd+Ta)−0.8%Ti−0.5%Al−0.03%Cの組成を有するNi基合金(時効硬化処理済み)
切込み:軸方向6mm、径方向0.3mm
切削速度:40m/min
一刃送り量:0.04mm/tooth
切削油:水溶性切削油
切削距離:0.2m
Cutting evaluation was performed under the following conditions 1 and 2. The evaluation results are shown in Table 3.
<Cutting test condition 1>
Tool: Solid end mill φ10 × 2 flute (HES2100 manufactured by Hitachi Tool Co., Ltd.)
Base material: WC (bal.)-Co (11 mass%)-TaC (0.4 mass%)-Cr 3 C 2 (0.9 mass%), WC average particle diameter 0.6 μm, hardness 92.4HRA Cemented carbide cutting method: side cutting Work material: Ni-19% Cr-18.7% Fe-3.0% Mo-5.0% (Nd + Ta) -0.8% Ti-0. Ni-based alloy having a composition of 5% Al-0.03% C (age-hardened)
Cutting depth: 6mm in the axial direction, 0.3mm in the radial direction
Cutting speed: 40 m / min
Single blade feed rate: 0.04mm / tooth
Cutting oil: Water-soluble cutting oil Cutting distance: 0.2m

<切削試験 条件2>
工具:ボールノーズエンドミル
φ1×R0.5×2枚刃(日立ツール株式会社製)
基材:組成が、WC(bal.)−Co(8質量%)−TaC(0.25質量%)−Cr(0.9質量%)であり、WC平均粒径0.6μm、硬度93.4HRAの超硬合金
切削方法:底面切削
被削材:HPM(登録商標)38 (52HRC)日立金属株式会社製
切込み:軸方向0.04mm、径方向0.04mm
切削速度:78.5m/min
一刃送り量:0.02mm/tooth
切削油:エアーブロー
切削距離:1m
<Cutting test condition 2>
Tool: Ball nose end mill φ1 × R0.5 × 2 flute (manufactured by Hitachi Tool Co., Ltd.)
Substrate: The composition is WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%), and the WC average particle diameter is 0.6 μm, Cemented carbide with a hardness of 93.4 HRA Cutting method: Bottom cutting Workpiece: HPM (registered trademark) 38 (52HRC) manufactured by Hitachi Metals, Ltd. Cutting: 0.04 mm in the axial direction, 0.04 mm in the radial direction
Cutting speed: 78.5 m / min
Single blade feed rate: 0.02mm / tooth
Cutting oil: Air blow Cutting distance: 1m

Figure 2016124086
Figure 2016124086

本発明例1〜3は何れの切削条件においても、最大摩耗幅が抑制されて、安定した摩耗形態を示すことが確認された。本発明例1と本発明例3の比較から、a1層のAl含有比率がより好ましい本発明例1は、交互積層皮膜に含まれるhcp構造のAlNが少ない傾向にあり、より優れた耐久性を示すことが確認された。
比較例1は、特に条件1において最大摩耗幅が大きくなり、本発明例よりも耐久性が低下することが確認された。
比較例2は、何れの加工条件においても最大摩耗幅が大きくなった。特に加工条件2においては、不安定な摩耗形態を示し、継続して切削加工することが困難であった。

It was confirmed that the inventive examples 1 to 3 showed a stable wear form with the maximum wear width being suppressed under any cutting conditions. From a comparison between Invention Example 1 and Invention Example 3, Invention Example 1 in which the Al content ratio of the a1 layer is more preferable tends to be less AlN of hcp structure contained in the alternating laminated film, and has better durability. It was confirmed to show.
In Comparative Example 1, it was confirmed that the maximum wear width was particularly large under Condition 1, and the durability was lower than that of the inventive example.
In Comparative Example 2, the maximum wear width was large under any processing condition. In particular, in the processing condition 2, it showed an unstable wear form, and it was difficult to continue cutting.

Claims (2)

基材と、前記基材の上に配置される交互積層皮膜と、を有し、
前記交互積層皮膜は、金属元素(半金属を含む)の総量に対し、Alの含有比率(原子%)が75%以上95%以下、Crの含有比率(原子%)が5%以上25%以下、を含有する窒化物または炭窒化物からなるa1層と、
Alの含有比率(原子%)が65%以上85%以下、Tiの含有比率(原子%)が15%以上35%以下、を含有する窒化物または炭窒化物からなるa2層とが交互に形成されたものであり、
前記交互積層皮膜の金属(半金属を含む)元素の原子比率(原子%)をA、窒素元素の原子比率(原子%)をBとした場合、1.02≦B/A≦1.07である被覆工具。
A base material, and an alternately laminated film disposed on the base material,
The alternating layered film has an Al content ratio (atomic%) of 75% to 95% and a Cr content ratio (atomic%) of 5% to 25% with respect to the total amount of metal elements (including metalloids). A1 layer made of a nitride or carbonitride containing
Al2 layers made of nitride or carbonitride containing Al content (atomic%) of 65% to 85% and Ti content (atomic%) of 15% to 35% are alternately formed. It has been
When the atomic ratio (atomic%) of the metal (including metalloid) element of the alternating laminated film is A and the atomic ratio (atomic%) of the nitrogen element is B, 1.02 ≦ B / A ≦ 1.07 A coated tool.
前記a1層は、Alの含有比率(原子%)が85%以下である請求項1に記載の被覆工具。   The coated tool according to claim 1, wherein the a1 layer has an Al content ratio (atomic%) of 85% or less.
JP2015001399A 2015-01-07 2015-01-07 Coated tools Active JP6529262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001399A JP6529262B2 (en) 2015-01-07 2015-01-07 Coated tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001399A JP6529262B2 (en) 2015-01-07 2015-01-07 Coated tools

Publications (2)

Publication Number Publication Date
JP2016124086A true JP2016124086A (en) 2016-07-11
JP6529262B2 JP6529262B2 (en) 2019-06-12

Family

ID=56358521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001399A Active JP6529262B2 (en) 2015-01-07 2015-01-07 Coated tools

Country Status (1)

Country Link
JP (1) JP6529262B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098363A1 (en) * 2017-11-20 2019-05-23 三菱日立ツール株式会社 Coated cutting tool
WO2020226088A1 (en) * 2019-05-09 2020-11-12 株式会社Moldino Coated cutting tool
US11666976B2 (en) 2019-03-18 2023-06-06 Moldino Tool Engineering, Ltd. Coated cutting tool
WO2024048306A1 (en) * 2022-08-29 2024-03-07 株式会社Moldino Coated tool

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
JP2008031517A (en) * 2006-07-28 2008-02-14 Tungaloy Corp Coated member
JP2009220260A (en) * 2008-02-22 2009-10-01 Hitachi Tool Engineering Ltd Coated cutting tool and method for manufacturing the same
JP2010120100A (en) * 2008-11-18 2010-06-03 Hitachi Tool Engineering Ltd Hard coating film coated tool for turning
JP2010131741A (en) * 2008-10-31 2010-06-17 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2010142932A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2010284787A (en) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd Hard film coated cutting tool
JP2011011286A (en) * 2009-07-01 2011-01-20 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2011011287A (en) * 2009-07-01 2011-01-20 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
WO2011149064A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Cutting tool
JP2012036506A (en) * 2011-11-08 2012-02-23 Tungaloy Corp Coating member
JP2012157938A (en) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool
JP2014087858A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Cutting tool

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
JP2008031517A (en) * 2006-07-28 2008-02-14 Tungaloy Corp Coated member
JP2009220260A (en) * 2008-02-22 2009-10-01 Hitachi Tool Engineering Ltd Coated cutting tool and method for manufacturing the same
JP2010131741A (en) * 2008-10-31 2010-06-17 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2010120100A (en) * 2008-11-18 2010-06-03 Hitachi Tool Engineering Ltd Hard coating film coated tool for turning
JP2010142932A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2010284787A (en) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd Hard film coated cutting tool
JP2011011286A (en) * 2009-07-01 2011-01-20 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2011011287A (en) * 2009-07-01 2011-01-20 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
WO2011149064A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Cutting tool
JP2012157938A (en) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool
JP2012036506A (en) * 2011-11-08 2012-02-23 Tungaloy Corp Coating member
JP2014087858A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Cutting tool

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200169B1 (en) * 2017-11-20 2021-01-07 가부시키가이샤 몰디노 Cloth cutting tool
KR20200033352A (en) * 2017-11-20 2020-03-27 미츠비시 히타치 쓰루 가부시키가이샤 Cloth cutting tools
JPWO2019098363A1 (en) * 2017-11-20 2020-04-16 三菱日立ツール株式会社 Coated cutting tools
CN111511490A (en) * 2017-11-20 2020-08-07 三菱日立工具株式会社 Coated cutting tool
WO2019098363A1 (en) * 2017-11-20 2019-05-23 三菱日立ツール株式会社 Coated cutting tool
EP3715026A4 (en) * 2017-11-20 2021-04-14 Mitsubishi Hitachi Tool Engineering, Ltd. Coated cutting tool
US11052464B2 (en) 2017-11-20 2021-07-06 Moldino Tool Engineering, Ltd. Coated cutting tool
US11666976B2 (en) 2019-03-18 2023-06-06 Moldino Tool Engineering, Ltd. Coated cutting tool
WO2020226088A1 (en) * 2019-05-09 2020-11-12 株式会社Moldino Coated cutting tool
JPWO2020226088A1 (en) * 2019-05-09 2020-11-12
JP7031791B2 (en) 2019-05-09 2022-03-08 株式会社Moldino Cover cutting tool
US11965235B2 (en) 2019-05-09 2024-04-23 Moldino Tool Engineering, Ltd. Coated cutting tool
WO2024048306A1 (en) * 2022-08-29 2024-03-07 株式会社Moldino Coated tool

Also Published As

Publication number Publication date
JP6529262B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
US11872636B2 (en) Surface-coated cutting tool and method for manufacturing same
US10556273B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance
JP5465873B2 (en) Method for producing coated cutting tool and cutting tool
JP4950499B2 (en) Hard coating and method for forming the same
EP3120955B1 (en) Coated cutting tool and method for producing same
JP6525310B2 (en) Coated tools
JP6311700B2 (en) Hard coating, hard coating covering member, and manufacturing method thereof
KR20140047688A (en) Nano-layer coating for high performance tools
JP2006225708A (en) Wear resistant film, wear resistant film-coated cutting tool, and method for producing wear resistant film
JP2011189419A (en) Coated tool excellent in wear resistance
JP2017001147A (en) Coated cutting tool
JP6555796B2 (en) Coated cutting tool
JPWO2019035220A1 (en) Coated cutting tools
JP6529262B2 (en) Coated tools
JP6385243B2 (en) Coated cutting tool
CN113613817B (en) Coated cutting tool
WO2019230166A1 (en) Coated cutting tool and production method therefor
KR102085536B1 (en) Coated cutting insert
JP2017064845A (en) Surface coating cutting tool excellent in chipping resistance and abrasion resistance
WO2019035219A1 (en) Coated cutting tool
JP2018161691A (en) Surface-coated cutting tool having hard coating layer exerting excellent wear resistance and peeling resistance
WO2019188967A1 (en) Surface-coated cutting tool
KR20210118093A (en) hard film cutting tool
JP2019171483A (en) Surface-coated cutting tool
JP2019171482A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350